Quiz 6 (Notes, books, and calculators are not authorized)
Show all your work in the blank space you are given on the exam sheet. Always justify your answer. Answers with no justification will not be graded. Here is a formula you may want to use,

$$
\int_{\Omega} \psi \Delta \phi \mathrm{d} x=\int_{\Omega} \phi \Delta \psi \mathrm{d} x+\int_{\Gamma} \psi \partial_{n} \phi \mathrm{~d} \sigma-\int_{\Gamma} \phi \partial_{n} \psi \mathrm{~d} \sigma
$$

Question 1: Let Ω be a seven-dimensional domain with boundary Γ, and consider the PDE

$$
u-\Delta u=f(x), \quad x \in \Omega, \quad \text { with } \quad \partial_{n} u(x)+2 u(x)=h(x) \quad \text { on the boundary } \Gamma .
$$

Let $G\left(x, x_{0}\right)$ be the Green's function of this problem (the exact expression of $G\left(x, x_{0}\right)$ does not matter; just assume that $G\left(x, x_{0}\right)$ is known). (a) what is the PDE solved by $G\left(x, x_{0}\right)$?
Either you remember from class that the operator $u \longmapsto u-\Delta u$ with zero Neumann boundary condition is self-adjoint, or you redo the computation. Multiply the PDE by $G\left(x, x_{0}\right)$, integrate over Ω, and integrate by parts (using the hint):

$$
\begin{aligned}
\int_{\Omega} G\left(x, x_{0}\right) f(x) \mathrm{d} x & =\int_{\Omega} G\left(x, x_{0}\right)(u(x)-\Delta u(x)) \mathrm{d} x \\
& =\int_{\Omega} G\left(x, x_{0}\right) u(x) \mathrm{d} x-\int_{\Omega} u(x) \Delta G\left(x, x_{0}\right) \mathrm{d} x-\int_{\Gamma} G\left(x, x_{0}\right) \partial_{n} u(x) \mathrm{d} \sigma+\int_{\Gamma} u(x) \partial_{n} G\left(x, x_{0}\right) \mathrm{d} \sigma \\
& =\int_{\Omega}\left(G\left(x, x_{0}\right)-\Delta G\left(x, x_{0}\right)\right) u(x) \mathrm{d} x+\int_{\Gamma} G\left(x, x_{0}\right)(2 u(x)-h(x)) \mathrm{d} \sigma+\int_{\Gamma} u(x) \partial_{n} G\left(x, x_{0}\right) \mathrm{d} \sigma \\
& =\int_{\Omega}\left(G\left(x, x_{0}\right)-\Delta G\left(x, x_{0}\right)\right) u(x) \mathrm{d} x+\int_{\Gamma} u(x)\left(2 G\left(x, x_{0}\right)+\partial_{n} G\left(x, x_{0}\right)\right) \mathrm{d} \sigma-\int_{\Gamma} G\left(x, x_{0}\right) h(x) \mathrm{d} \sigma
\end{aligned}
$$

We then define $G\left(x, x_{0}\right)$ so that

$$
G\left(x, x_{0}\right)-\Delta G\left(x, x_{0}\right)=\delta_{x-x_{0}}, \quad 2 G\left(x, x_{0}\right)+\left.\partial_{n} G\left(x, x_{0}\right)\right|_{\Gamma}=0
$$

where $\delta_{x-x_{0}}$ is the Dirac measure: $\int \delta_{x-x_{0}} \varphi=\varphi\left(x_{0}\right)$ for all $\varphi \in \mathcal{C}^{0}\left(\mathbb{R}^{7}\right)$. This means that

$$
\int_{\Omega} G\left(x, x_{0}\right) f(x) \mathrm{d} x=u\left(x_{0}\right)-\int_{\Gamma} G\left(x, x_{0}\right) h(x) \mathrm{d} \sigma .
$$

(b) Give a representation of $u(x)$ in terms of G, f and h.

The above computation shows that

$$
u\left(x_{0}\right)=\int_{\Omega} f(x) G\left(x, x_{0}\right) \mathrm{d} x+\int_{\Gamma} h(x) G\left(x, x_{0}\right) \mathrm{d} x
$$

Question 2: Consider the equation $\partial_{x x} u(x)=f(x), x \in(0, L)$, with $u(0)=a$ and $\partial_{x} u(L)=b$.
(a) Compute the Green's function of the problem.

Let x_{0} be a point in $(0, L)$. The Green's function of the problem is such that

$$
\partial_{x x} G\left(x, x_{0}\right)=\delta_{x_{0}}, \quad G\left(0, x_{0}\right)=0, \quad \partial_{x} G\left(L, x_{0}\right)=0
$$

The following holds for all $x \in\left(0, x_{0}\right)$:

$$
\partial_{x x} G\left(x, x_{0}\right)=0
$$

This implies that $G\left(x, x_{0}\right)=a x+b$ in $\left(0, x_{0}\right)$. The boundary condition $G\left(0, x_{0}\right)=0$ gives $b=0$. Likewise, the following holds for all $x \in\left(x_{0}, L\right)$:

$$
\partial_{x x} G\left(x, x_{0}\right)=0
$$

This implies that $G\left(x, x_{0}\right)=c x+d$ in $\left(x_{0}, L\right)$. The boundary condition $\partial_{x} G\left(L, x_{0}\right)=0$ gives $c=0$. The continuity of $G\left(x, x_{0}\right)$ at x_{0} implies that $a x_{0}=d$. The condition

$$
\int_{-\epsilon}^{\epsilon} \partial_{x x} G\left(x, x_{0}\right) \mathrm{d} x=1, \quad \forall \epsilon>0
$$

gives the so-called jump condition: $\partial_{x} G\left(x_{0}^{+}, x_{0}\right)-\partial_{x} G\left(x_{0}^{-}, x_{0}\right)=1$. This means that $0-a=1$, i.e., $a=-1$ and $d=-x_{0}$. In conclusion

$$
G\left(x, x_{0}\right)= \begin{cases}-x & \text { if } \leq x \leq x_{0} \\ -x_{0} & \text { otherwise }\end{cases}
$$

(b) Give the integral representation of u using the Green's function.

Let x_{0} be a point in $(0, L)$. The definition of the Dirac measure at x_{0} is such that

$$
\begin{aligned}
u\left(x_{0}\right) & =\left\langle\delta_{x_{0}}, u\right\rangle=\left\langle\partial_{x x} G\left(\cdot, x_{0}\right), u\right\rangle \\
& =-\int_{0}^{L} \partial_{x} G\left(x, x_{0}\right) \partial_{x} u(x) \mathrm{d} x+\left[\partial_{x} G\left(x, x_{0}\right) u(x)\right]_{0}^{L} \\
& =\int_{0}^{L} G\left(x, x_{0}\right) \partial_{x x} u(x) \mathrm{d} x-\left[G\left(x, x_{0}\right) \partial_{x} u(x)\right]_{0}^{L}+\left[\partial_{x} G\left(x, x_{0}\right) u(x)\right]_{0}^{L} \\
& =\int_{0}^{L} G\left(x, x_{0}\right) f(x) \mathrm{d} x-G\left(L, x_{0}\right) \partial_{x} u(L)+G\left(0, x_{0}\right) \partial_{x} u(0)+\partial_{x} G\left(L, x_{0}\right) u(L)-\partial_{x} G\left(0, x_{0}\right) u(0)
\end{aligned}
$$

This finally gives the following representation of the solution:

$$
u\left(x_{0}\right)=\int_{0}^{L} G\left(x, x_{0}\right) f(x) \mathrm{d} x-G\left(L, x_{0}\right) b-\partial_{x} G\left(0, x_{0}\right) a
$$

