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Finite Element Interpolation

This chapter introduces the concept of finite elements along with the corre-
sponding interpolation techniques. As an introductory example, we study how
to interpolate functions in one dimension. Finite elements are then defined in
arbitrary dimension, and numerous examples of scalar- and vector-valued fi-
nite elements are presented. Next, the concepts underlying the construction
of meshes, approximation spaces, and interpolation operators are thoroughly
investigated. The last sections of this chapter are devoted to the analysis of
interpolation errors and inverse inequalities.

1.1 One-Dimensional Interpolation

The scope of this section is the interpolation theory of functions defined on an
interval |a, b[. For an integer k > 0, P}, denotes the space of the polynomials
in one variable, with real coefficients and of degree at most k.

1.1.1 The mesh

A mesh of 2 = ]a, b[ is an indexed collection of intervals with non-zero measure
{I; = [%1,i, ®2,:] }o<i<n forming a partition of £2, i.e.,

N
0= Uli and LNIL=0 for i # j. (1.1)

i=0
The simplest way to construct a mesh is to take (N +2) points in §2 such that
a=x9g <2 <..<xTNy <INyl =D (1.2)

and to set z1; = x; and x3; = x;41 for 0 < ¢ < N. The points in the set
{zo,...,zn41} are called the vertices of the mesh. The mesh may have a
variable step size



4 Chapter 1. Finite Element Interpolation

hi = xi11 — x4, 0<i<N,

and we set
h = max h;.
0<i<N
In the sequel, the intervals I; are also called elements (or cells) and the mesh
is denoted by 7;, = {I;}o<i<n. The subscript h refers to the refinement level.

1.1.2 The P; Lagrange finite element
Consider the vector space of continuous, piecewise linear functions
Py ={v, €C°(2); Vi € {0,..., N}, vp1, € P1}. (1.3)

This space can be used in conjunction with Galerkin methods to approximate
one-dimensional PDEs; see, e.g., Chapters 2 and 3. For this reason, P} is
called an approzimation space. Introduce the functions {o, ..., pn+1} defined
elementwise as follows: For i € {0,..., N + 1},

1
i—1

oi(x) = F(wiy —x) ifzel, (1.4)

i

(,I — xi—l) ifx e I 1,

=

h
0 otherwise,

with obvious modifications if i = 0 or N + 1. Clearly, ¢; € P. These functions
are often called “hat functions” in reference to the shape of their graph; see
Figure 1.1.

Proposition 1.1. The set {po, ..., on+1} s a basis for P}.

Proof. The proof relies on the fact that ¢;(z;) = d;;, the Kronecker symbol,
for 0 < i,j < N +1. Let (ag,...,ans1)? € RM*2 and assume that the
continuous function w = Zfigl a;; vanishes identically in (2. Then, for
0<i< N+1, o = w(x;) = 0; hence, the set {©g,...,on+1} is linearly
independent. Furthermore, for all v, € Pﬁ, it is clear that v, = fool v (24) @i
since, on each element I;, the functions v, and Zil\:gl vp ()¢, are affine and
coincide at two points, namely z; and x;41. a

a xr1 T2 Ti—1 T4 Tit1 IN b

Fig. 1.1. One-dimensional hat functions.
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a b

Fig. 1.2. Interpolation by continuous, piecewise linear functions.

Definition 1.2. Choose a basis {70, ..., Yn+1} for L(PL;R); henceforth, the
linear forms in this basis are called the global degrees of freedom in P}. The
functions in the dual basis are called the global shape functions in P}.

For i € {0,..., N + 1}, choose the linear form
7 :C%R2) v — (v) = v(x;) €R. (1.5)

The proof of Proposition 1.1 shows that a function v;, € P} is uniquely defined
by the (N+2)-uplet (v (z;))o<i<n+1. In other words, {70, ..., Yn+1} is a basis
for L(P};R). Choosing the linear forms (1.5) as the global degrees of freedom
in P,%, the global shape functions are the functions {g, ..., ¢n+1} defined in
(1.4) since v;(¢;) = 045, 0 < 4,5 < N + 1.

Consider the so-called interpolation operator

N+1
7} : () s v — Z Yi(v)p; € Pl (1.6)
=0

For a function v € C%(£2), Zlv is the unique continuous, piecewise linear
function that takes the same value as v at all the mesh vertices; see Figure 1.2.
The function I,%v is called the Lagrange interpolant of v of degree 1. Note that
the approximation space Pﬁ is the codomain of Ii.

When approximating PDEs using finite elements, it is important to inves-
tigate the properties of Z} in Sobolev spaces; see Appendix B. In particular,
recall that for an integer m > 1, H™((2) denotes the space of square-integrable
functions over {2 whose distributional derivatives up to order m are square-
integrable. We use the following notation: [|v||o,0 = ||v[|22(2), [v|1,e = |V/]0,2,

o]l = (105 o + [V113.0)2, vl2.2 = ["[lo.0, etc.
Lemma 1.3. P! c H'(2).

Proof. Let v, € P}. Clearly, v, € L?(£2). Furthermore, owing to the conti-
nuity of vy, its first-order distributional derivative is the piecewise constant
function wy, such that
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Op(Tig1) — Uh(xi).

VI; € Tn, wy1, = »

(1.7)

Clearly, wy, € L*(£2); hence, vy, € H*(£2). 0

Proposition 1.4. 7} is a linear continuous mapping from H'(§2) to H(£2),
and HI],:lLHL:(Hl(Q);Hl(Q)) is uniformly bounded with respect to h.

Proof. (1) In one dimension, a function in H'(§2) is continuous. Indeed, for

v € HY() and z,y € 02,

o)~ vla)| < [ " l()]ds <y — [} ol (18)

owing to the Cauchy—Schwarz inequality (this can be justified rigorously by a
density argument). Furthermore, taking = to be a point where |v| reaches its
minimum over {2, the above inequality implies

1
0,2 +[b—al?|v]i 0, (1.9)

_1
lvllLee(2y < |b—al™2|v]

since |v(x)] < |b— a|~ 2 ||v]|o.. Therefore, Z}v is well-defined for v € H(£2).
Moreover, Lemma 1.3 implies Z}v € H'(£2); hence, Z} maps H'(£2) to H'(2).
(2) Let I; € Tp, for 0 <4 < N. Owing to (1.7), (I}lv)hi = hi Y (v(zit) —v(s));
hence, using (1.8) yields the estimate |Z}v|1 j, < |v|1 1,. Therefore, |Z}v|1 0 <
|v]1. . Moreover, since ||Z}v]jo.0 < |b— a|%||I]_1LU||Loo(Q) and HI}IUHLw(Q) <
|v]| o< (22), we deduce from (1.9) that | Z}v|o,e < ¢||v]|1,2 Where ¢ is indepen-
dent of h (assuming h bounded). The conclusion follows readily. O

Proposition 1.5. For all h and v € H?(12),
o= ZTyollo.e < h*vlee and  |v—Thv|10 < hlvlsq. (1.10)

Proof. (1) Consider an interval I; € 7j,. Let w € H*(I;) be such that w van-
ishes at some point £ in I;. Then, owing to (1.8) we infer ||wlo,;, < hi|w]|1,r,-
(2) Let v € H3(£2), let i € {0,..., N}, and set w; = (v — I,{v)hi. Note that
w; € H'(I;) and that w; vanishes at some point £ in I; owing to the mean-
value theorem. Applying the estimate derived in step 1 to w; and using the
fact that (Z}v)” vanishes identically on I; yields |v — Zjv|y,7, < hi|v|s,1,. The
second estimate in (1.10) is then obtained by summing over the mesh inter-
vals. To prove the first estimate, observe that the result of step 1 can also be
applied to (v — Z}v));, yielding

v = Zyvllo,r, < halv — Tyvlr,, < hilvla,r,-

Conclude by summing over the mesh intervals. a
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Remark 1.6.

(i) The bound on the interpolation error involves second-order derivatives
of v. This is reasonable since the larger the second derivative, the more the
graph of v deviates from the piecewise linear interpolant.

(ii) If the function to be interpolated is in H!(§2) only, one can prove the
following results:

Vh, ||v—Zivllo.e < hlv|ia and }lin%) lv —Ziv|10 =0. O
11—

The proof of Proposition 1.5 shows that the operator Z} is endowed with
local interpolation properties, i.e., the interpolation error is controlled ele-
mentwise before being controlled globally over {2. This motivates the intro-
duction of local interpolation operators. Let I; = [z;,x;y+1] € 73 and let
Y, ={0i0,0:1} where 0;0,0;1 € L(P1;R) are such that, for all p € P,

oio(p) =p(z;)  and  051(p) = p(wit1). (1.11)

Note that X; is a basis for £(P1;R). The triplet {I;,P1, X;} is called a (one-
dimensional) Py Lagrange finite element, and the linear forms {0, o, 0;1} are
the corresponding local degrees of freedom. The functions {6;,6;1} in the
dual basis of X; (i.e., 04 m(0in) = 0mn for 0 < m,n < 1) are called the local
shape functions. One readily verifies that

fiot)=1-5% and  6;.(t) = 2 (1.12)

Finally, introduce the family {Z} }1,e7, of local interpolation operators such
that, for i € {0,..., N},

1
I} C) v — Z Gim (V)8 .- (1.13)
m=0

The proof of Propositions 1.4 and 1.5 can now be rewritten using the local
interpolation operators 1}1 In particular, the key properties are, for 0 < i < N
and v € H?(I;),

o —Z1vllo,r, < BElvlay, and o — 7wl < hilv]ar,.

1.1.3 P, Lagrange finite elements

The interpolation technique presented in §1.1.2 generalizes to higher-degree
polynomials. Consider the mesh 7, = {I; }o<i;<n introduced in §1.1.1. Let

Pf = {v, €C2(02); Vi€ {0,...,N}, v, € Py} (1.14)

To investigate the properties of the approximation space P[f and to construct
an interpolation operator with codomain PF, it is convenient to consider La-
grange polynomials. Recall the following:
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Definition 1.7 (Lagrange polynomials). Let k > 1 and let {so,..., s} be
(k + 1) distinct numbers. The Lagrange polynomials {LE, ..., LF} associated
with the nodes {sqg, ..., sk} are defined to be
_ Hl#m (t - Sl)
Hl;ﬁm(sm - sl) ,

The Lagrange polynomials satisfy the important property

LE (1) 0<m<k. (1.15)

LE(s) =0, 0<m,l<k.

Figure 1.3 presents families of Lagrange polynomials with equi-distributed
nodes in the reference interval [0, 1] for k =1, 2, and 3.

For i € {0,...,N}, introduce the nodes &, = x; + Fhi, 0 < m < k,
in the mesh interval I;; see Figure 1.4. Let {Ef',o, e Efk} be the Lagrange
polynomials associated with these nodes. For j € {0,...,k(N+1)} with j =
ki+m and 0 < m < k — 1, define the function ¢; elementwise as follows: For
1<m<k-1,

k .

0 otherwise,

and for m = 0,

05| 4051 N

0

I I I
0 05 1 0 05 1 0 05 1

Fig. 1.3. Families of Lagrange polynomials with equi-distributed nodes in the ref-
erence interval [0,1] and of degree k =1 (left), 2 (center), and 3 (right).

: : : e i T mesh vertices
] SIS DU

Fig. 1.4. Mesh vertices and nodes for k =1, 2, and 3.
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‘C?—l,k(l‘) ifx e I 1,
vri(x) = ﬁﬁo(x) if x € I,
0 otherwise,

with obvious modifications if ¢ = 0 or N 4 1. The functions ¢; are illustrated
in Figure 1.5 for k = 2. Note the difference between the support of the func-
tions associated with mesh vertices (two adjacent intervals) and that of the
functions associated with cell midpoints (one interval).

Lemma 1.8. ¢; € PF.

Proof. Let j € {0,...,k(N+1)} with j =ki+m. If 1 <m <k —1, p;(x;) =
¢j(wi41) = 0; hence, ¢; € CY(£2). Moreover, the restrictions of ¢; to the
mesh intervals are in P, by construction. Therefore, ¢; € P}’f. Now, assume
m =0 (ie, j = ki) and 0 < i < N + 1. Clearly, ¢y; is continuous at x; by
construction and g (2;—1) = ki (zi+1) = 0; hence, pg; € Pff. The cases i = 0
and ¢ = N + 1 are treated similarly. O

Introduce the set of nodes {a;}o<j<p(n+1) such that a; = & ,, where
j=ik+m. For j € {0,...,k(N+1)}, consider the linear form

75 : CU02) v — v;(v) = v(ay). (1.16)

Proposition 1.9. {©o, ..., 0rn+1)} is a basis for PF, and {vo,. .. s YVR(N+1)
is a basis for L(PF;R).

Proof. Similar to that of Proposition 1.1 since v;(¢;/) = d,; for 0 < j, 5" <
E(N +1). O

The global degrees of freedom in PJ are chosen to be the (k(N+1)+1)
linear forms defined in (1.16); hence, the global shape functions in P,’f are the
functions {@o, ..., YrN+1)}-

The main advantage of using high-degree polynomials is that smooth func-
tions can be interpolated to high-order accuracy. Define the interpolation op-
erator I} to be

(A
§i—11 & i

Fig. 1.5. Global shape functions in the approximation space PZ.
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k(N+1)
77 C°(2) 30— Z v (v)p; € PF. (1.17)
=0

I,’fv is called the Lagrange interpolant of v of degree k. Clearly, I{f is a linear
operator, and I}’fu is the unique function in P,’f that takes the same value as
v at all the mesh nodes. The approximation space P,f is the codomain of I;f.

Lemma 1.10. P} C H'(12).
Proof. Similar to that of Lemma 1.3. O

To investigate the properties of I,’f, it is convenient to introduce a family of
local interpolation operators. On I; = [x;, z;41] € Tp, choose the local degrees
of freedom to be the (k + 1) linear forms {o;,...,0;x} defined as follows:

Oim P 3p — 0im(p) =p&im), 0<m<Ek. (1.18)

The triplet {I;, Py, X;} is called a (one-dimensional) P, Lagrange finite ele-
ment, and the points {§; o, ...,& x} are called the nodes of the finite element.
Clearly, the local shape functions {6;0,...,6; 1} are the (k + 1) Lagrange
polynomials associated with the nodes {&;0,...,& 1}, 1€, Oim = [,f’m for
0 < m < k. Finally, introduce the family {Z} };,c7, of local interpolation
operators such that, for i € {0,..., N},

k
Ip CUL) 3 v — Y 0im(v)0im, (1.19)
m=0

ie, forall 0 <i< N and v € C°(£2), (Zfv)1, = IF (vj1,)-
Let us show that the family {I}C }r,eT, can be generated from a single
reference interpolation operator. Let K= [0, 1] be the unit interval, henceforth

referred to as the reference interval. Set P= Pk, and define the (k+ 1) linear
forms {0y, ...,0%} as follows:

Gm P3P — () =PEm), 0<m<E, (1.20)

where Em = 7. Let {2’5, .. ,Zﬁ} be the Lagrange polynomials associated

with the nodes {50, . ,g}}; see Figure 1.3. Set §m =LF,0<m <k, so that
Om(0n) = dmn for 0 < m,n < k. Then, {K, P, X} is a P, Lagrange finite
element, and the corresponding interpolation operator is
A~ k ~
I;i{ CUK)37 — Z O (V)0

m=0

{IA(, ﬁ, f} is called the reference finite element and I}i{ the reference interpo-
lation operator. For i € {0,..., N}, consider the affine transformations
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Ti:IA(Bt»—>x:xi+thiEIi. (1.21)

Since T(I/(\') = I;, the mesh 7, can be constructed by applying the affine

transformations 7; to the reference interval K. Moreover, owing to the fact
that T(fm) = &, for 0 < m < k, it is clear that 6, ,, o T; = 9m and
0im(V) = Gm(voT;) for all v € C°(I;). Hence, using

k k
TEONT@) = Y 0im@)0im(Ti@) = Y 0im(0)0 () =
m=0

m=0
k o~
= G (v 0 Ty)0m (%) = Tk (v o Ti)(2),
m=0
we infer
Yo e L), Ij(v)oTi=T%(voT;). (1.22)

In other words, the family {1’}C }1,e7, is entirely generated by the transfor-
mations {T;},e7, and the reference interpolation operator 7' ;i( The property

(1.22) plays a key role when estimating the interpolation error; see the proof
of Proposition 1.12 below.

Proposition 1.11. ZF is a linear continuous mapping from H*(£2) to H(2),
and || ZF|| £z ()11 (2)) s uniformly bounded with respect to h.

Proof. (1) To prove that Z} maps H'(£2) to H(£2), use the argument of
step 1 in the proof of Proposition 1.4.

(2) Let v € H'(2) and I; € Ty, Since S2F 0/ =0,
k
Z fzm - )] i,m*
m=0

1
Inequality (1.8) yields |v(&;,m)—v(xs)| < hZ |v|1, 1, for 0 < m < k. Furthermore,
1A
changing variables in the integral, it is clear that [0; ,|1,7, = h; *|0m|; - Set
Crp = MaxXo<m<k |t§m|1 7 and observe that this quantity is mesh-independent.
A straightforward calculation yields

ZEvl1,1, < (k+ Derlvlyg,

showing that |ZF
addition, since E’:n:() Oim =1,

k
Iy v —v(z;) :Z (&i,m) — v(24)]03,m.
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implying, for @ € I;, |Z} v(z)| < ||v|| Lo (o) + (k+ 1)dkh§|v\1’1i with the mesh-
independent constant dy = maxo<m<k ||§m||Loo(f<)' Then, using(1.9) yields
| ZFv]| 1o (52) is controlled by ||v[1, uniformly with respect to h. To conclude,
use the fact that [|ZFv|o.0 < [b— a|%||I’,fv||Loo(Q). O

we

Proposition 1.12. Let 0 < [ < k. Then, there exists ¢ such that, for all h
and v € H'TY($2),

(1.23)

lv = Zvllo.e + hlv —

and forl > 1,

N

I+1

Z h™ (Z |U - Ihv‘m I; > < Chl+1|v|l+179' (124)

Proof. Let 0 <1 <kand 0 <m <[+ 1. Let v € H*1(12).
(1) Consider a mesh interval I;. Set ¥ = v o T;. Then, use (1.22) and change
variables in the integral to obtain

[0 = T§ Oz, = by "0 - TED),, &

.. N I+3
Similarly, |U|l+1,f( =h, 2|v|i+1,1,-
(2) Consider the linear mapping

F:H"(K)50 — 0-1IEt € H™(K).

Note that 77 is meamngful since in one dimension, ¥ € H'™(K) with [ > 0

implies v € CO( ) Moreover, F is continuous from HH‘I(K) to Hm(K)
Indeed, one can easily adapt the proof of Proposition 1.11 to prove that I = is

continuous from H'(K) to H*(K) for all s > 1. Furthermore, it is clear that
Py, is invariant under F since, for all p € Py with p = Zn o anen,

k k
E anam 9 9 m = E 0 Omn O = E anl, = p.
m,n=0 m,n=0 n=0

(3) Since | < k, P; is invariant under F. As a result,
[0 = T8l & = F @), & = D [FO+P),z
< Il @y iy 12f 10+ Pl z

< e dnf [0+l 7 < clPl 2
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the last estimate resulting from the Deny-Lions Lemma; see Lemma B.67.
The identities derived in step 1 yield

B

k ~ k-~
[0 =T70lmp = hy 20 = IR0, &

+1 _
<chy ROl g S ehT T ol

(4) To derive the estimates (1.23) and (1.24), sum over the mesh intervals.
When m = 0 or 1, global norms over {2 can be used since P} C H!(£2) owing
to Lemma 1.10. O

Remark 1.13.

(i) The proof of Proposition 1.12 shows that the interpolation properties
of I{f are local.

(ii) If the function to be interpolated is smooth enough, say v € H*+1(12),
the interpolation error is of optimal order. In particular, (1.23) yields

Vh, Vv € H*Y(Q), |lv—Zv|o.o + hlv — kv o < ch* o) 0.

However, one should bear in mind that the order of the interpolation error
may not be optimal if the function to be interpolated is not smooth. For
instance, if v € H*(2) and v ¢ H*T(£2) with s > 2, considering polynomials
of degree larger than s — 1 does not improve the interpolation error.

(iii) If the function to be interpolated is in H*({2) only, one can still prove
limy,—o |[v — Zfv|1, = 0. To this end, use the density of H?(£2) in H'(£2) and
(1.23); details are left as an exercise. O

1.1.4 Interpolation by discontinuous functions

Let
Pi, ={v, € L'(2);Vi€{0,...,N}, vp1, € Pi}.

Since the restriction of a function v, € P(]ﬁh to an interval I; can be chosen
independently of its restriction to the other intervals, Pf,h is a vector space
of dimension (k + 1) x (VN + 1). However, instead of taking the Lagrange
polynomials as local shape functions, it is often more convenient to consider
the Legendre polynomials or modifications thereof based on the concept of
hierarchical bases; see §1.1.5. Let K = [0, 1] be the reference interval.

Definition 1.14 (Legendre polynomials). The Legendre polynomials on
the reference interval [0,1] are defined to be E;(t) = %%(ﬁ —t)* for k > 0.

The Legendre polynomial & is of degree k, £;(0) = (—1)%, (1) =1, and
its k roots are in K. The roots of the Legendre polynomials are called Gaufi—
Legendre points and play an important role in the design of quadratures; see
88.1. The first four Legendre polynomials are (see Figure 1.6)
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051
/'/l v/‘

-05

Fig. 1.6. Legendre polynomials of degree at most 3 on the reference interval [0, 1]

&) =2t—1,
Es(t) = 20t° — 30t + 12t — 1.

EO(t) = ]-7

Ex(t) = 6t — 6t + 1,
In the literature, the Legendre polynomials are sometimes defined using the

reference interval [—1, +1]. Up to rescaling, both definitions are equivalent. In
the context of finite elements, an important property of Legendre polynomials
(1.25)

is that )
/ B (D& (1) At = 55y,
0

Introduce the functions {©; m o<i<n,0<m<k such that ¢; 1, = di; gm o

! where the geometric transformation 7T; is defined in (1.21). Clearly,
{@i,m}o<i<N,0<m<k IS a basis for P(’ih. The corresponding degrees of freedom

T
are the linear forms 7; ,,, 0 < ¢ < N and 0 < m < k, such that
/ v(z) Ep o 77!
1 I,

Yi,m Ll((l) SV — Yim(v) = 2mtl

since, for 0 < 4,7 < N and 0 <m,m' <k,
’yi,m(@i’,m’) = %/ Soi’,m' (1’) é‘\m o) Ti_l(l’) dl’
k3 Il
= (2 + 1) Gy / En(1)2 b = G116
K

Define the interpolation operator chf’ » by
N &
Ig,h (L) 30— Z Z Yi,m (V)@i,m € Pcllc,h-

=0 m=0

(1.26)
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For instance, Z3 ,v is the unique piecewise constant function that takes the
same mean value as v over the mesh intervals.

Let I, = [z;,x;41] € 75 and choose for the local degrees of freedom in Py
the set X; = {vi.m fo<m<k- The triplet {I;, Py, X;} is often called a modal finite
element; see §1.1.5 for further insight. The local shape functions are 6; ,,, =

Em © Ti_l. Introduce the family {Ig,h}lmeTh of local interpolation operators
such that, for 0 <i < N,

k
I!ili LML) s v — Z Gim (V)8 m. (1.27)
m=0

Then, it is clear that, for all v € L'(£2), (Z§ ,v);1, = Z§ 1 (v)1,). Using the
family {I[i 1, }1,€T,,, one easily verifies the following results:

Proposition 1.15. I}, is a linear continuous mapping from L' (£2) to L' (12),

and HI[lihHL‘/(Ll(Q);Ll(Q)) is uniformly bounded with respect to h.

Proposition 1.16. Let £ > 0 and let 0 < [ < k. Then, there exists ¢ such
that, for all h and v € H*1(2),

141 N 3
lo = Z§ pollo + Y A" (Z v — I!f,h”%,h) < eh ol
m=1 =0

Proof. Use steps 1, 2, and 3 in the proof of Proposition 1.12. a

Example 1.17. Taking £ = [ = 0 in Proposition 1.16 yields, for all A and
v € HY (), Hv—I&hv lo.o < chlv|1 g O

1.1.5 Hierarchical polynomial bases

Although the emphasis in this book is set on h-type finite element methods
for which convergence is achieved by refining the mesh, it is also possible to
consider p-type finite element methods for which convergence is achieved by
increasing the polynomial degree of the interpolation in every element. The
hp-type finite element method is a combination of these two strategies. The
idea that the p version of the finite element method can be as efficient as the
h version is rooted in a series of papers by Babuska et al. [BaS81, BaD81].

When working with high-degree polynomials, it is important to select care-
fully the polynomial basis. The material presented herein is set at an intro-
ductory level; see, e.g., [KaS99°, pp. 31-59]. The following definition plays an
important role in the construction of polynomial bases:

Definition 1.18 (Hierarchical modal basis). A family {By, } k>0, where By
is a set of polynomials, is said to be a hierarchical modal basis if, for all k > 0:

(i) By, is a basis for Py.
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(i1) By C Bgy1-

Example 1.19. The simplest example of hierarchical modal basis is By =
{1,z,...,2"}. O

So far, the local shape functions {50, . ,é\k} we have used are the Lagrange
polynomials {Z’g, cee Eﬁ} or the Legendre polynomials {go, . ,Ek}. Clearly,
the Legendre polynomial basis is a hierarchical modal basis. This is not the
case for the Lagrange polynomial basis, which instead has the remarkable
property that £ (fl/) = 4;» at the associated nodes {{0, o ,fk} Because of
this property, the Lagrange polynomial basis is said to be a nodal basis.

A first important criterion to select a high-degree polynomial basis is that
the basis is orthogonal or nearly orthogonal with respect to an appropriate
inner product. Let K = [0,1] be the reference interval and define the matrix
M of order k + 1 with entries

-~

Vm,n € {0,...,k}, Kmn 9 ()0, (t (1.28)

The matrix My is symmetric positive definite and is called the elemental
mass matriz. The high-degree polynomial basis can be constructed so that
M is diagonal or “almost” diagonal. Define the condition number of Mz to
be the ratio between its largest and smallest eigenvalue; see §9.1. Instead of
diagonality, an alternative criterion to select a polynomial basis can be that
the condition number of Mg does not increase “too much” as k grows; see
Remark 1.20(i).

A second important criterion is that interface conditions between adjacent
mesh elements can be imposed easily. For instance, imposing continuity at the
interfaces ensures that the codomain of the global interpolation operator is in
HY(£2); see, e.g., Lemmas 1.3 and 1.10.

Remark 1.20.

(i) The conditioning of the elemental mass matrix has important conse-
quences on computational efficiency. For instance, in time-dependent problems
discretized with explicit time-marching algorithms, this matrix has to be in-
verted at each time step; see, e.g.,(6.27). Furthermore, for time-dependent
advection problems, explicit time step restrictions are less severe when the
elemental mass matrix is well-conditioned; see [KaS99°, p. 187] and also Ex-
ercises 6.7 and 6.9.

(ii) Instead of the elemental mass matrix, one can also consider the ele-
mental stiffness matriz Ay defined by

ym,n€{0,....k}, Az, = /A 90,,,(t) 2, (t) dt.
K

This matrix, which is symmetric and positive, arises when approximating the
Laplace equation; see §3.1. The high-degree polynomial basis can then be
constructed so that Az remains relatively well-conditioned. O
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The Legendre polynomial basis satisfies the first criterion above. Owing
to (1.25), the mass matrix is diagonal and its condition number is (2k + 1).
However, Legendre polynomials do not vanish at the boundary of K , making it
cumbersome to enforce C°-continuity between adjacent mesh intervals. On the
other hand, the Lagrange polynomial basis satisfies the C°-continuity criterion
provided the nodal points contain the interval endpoints, but the mass matrix
is dense and its condition number explodes exponentially with &; see [O1D95]
for a proof and [KaS99®, p. 44] for an illustration. We now discuss appropriate
modifications of the above bases designed to better fulfill the above criteria.

Modal (C°-continuous) basis. We first define the Jacobi polynomials.

Definition 1.21 (Jacobi polynomials). Let « > —1 and § > —1. The
Jacobi polynomials {j,f’ﬁ}kzo are defined by

a -D* 5—a— —oy— k a
TPty = G ameB(1 —p)me P AL (1 — g)athyfrhy (1.29)

The Jacobi polynomials satisfy the important orthogonality property

/f((l =PIl (0T () dt = e a,50mn, (1.30)
with constant ¢y, = smratsr HZ‘,‘}?&QZS:%?%‘” The first Jacobi poly-

nomials for o« = g = 1 are J37'(t) = 1, J"'(t) = 4t — 2, and J,°'(t) =
15t2 — 15t + 3. Note that the Legendre polynomials introduced in Defini-
tion 1.14 are Jacobi polynomials with parameters o = 8 = 0. For more details
on Jacobi polynomials, see [AbS72, Chap. 22] and [KaS99°, p. 350].

The modal (C%-continuous) basis is the set of functions {6y, ... ,ék} such
that
1—t ifl =0,
h(t) = 1 —te gt ifo<l<k, (1.31)
t itl =k.

This basis possesses several attractive features:

(i) It is a hierarchical modal basis according to Definition 1.18.

(ii) C%-continuity at element endpoints can be easily enforced since only the
first and last basis functions do not vanish at the endpoints.

(iii) Owing to the use of Jacobi polynomials with parameters a = 8 =1, the
elemental mass matrix M is such that Mz = 0 for [m —n[ > 2
and 0 < m,n < k, unless m = kand n < 2orn =k and m < 2.
Furthermore, this matrix remains relatively well-conditioned. A precise
result in arbitrary dimension d using tensor products of modal hierar-
chical bases is that the condition number of the elemental mass matrix
(resp., stiffness matrix) is equivalent to 4*? (resp., 4*(?=1)) uniformly in
k; see [HuG98|.
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Fig. 1.7. Left: Modal (C°-continuous) basis functions of degree at most 4 on the
reference interval [0, 1]. Right: Nodal (C°-continuous) basis functions of degree at
most 3 on the same interval.

The modal (C°-continuous) basis functions are shown in the left panel of
Figure 1.7 for k = 5.

Remark 1.22. Note that in the present case the degrees of freedom have
no evident definition. It is more natural to define directly the local shape
functions without resorting to the notion of degrees of freedom. O

Nodal (C°-continuous) basis. Nodal basis functions are interesting in the
context of quadratures; see §8.1 for an introduction to these techniques. The
principle of quadratures is to approximate the integral of a function over K
by a linear combination of the values it takes at (k 4+ 1) points in K, say

{aJa ce ,Ek}, in the form
k
[ i0a=Y as@). (132)
K 1=0

The points {{AO, . ,5}} are called the quadrature nodes and the numbers
{@o,...,0} the quadrature weights. For k > 2, the Gauf-Lobatto quadra-
ture nodes are defined to be the two endpoints of K and the (k — 1) roots of
g,’c The resulting quadrature rule is exact for polynomials up to degree 2k — 1.

Define the local degrees of freedom {&y,...,0%} such that, for 0 < i <k,

0i: P >p +— 5i(p) = p(&) € R.

Then, the local shape functions {é\o, .. .,é\k} are the Lagrange polynomials
associated with the nodes {&o, ..., & }. Using standard induction relations on

the Legendre polynomials, it is possible to show that the local shape functions
{6o,...,0;} are given by
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(t — 1)tE(t)
(k + 1) & (Em)(t — &m)

These functions are shown in the right panel of Figure 1.7 for k = 4. Although
these nodal basis functions are not hierarchical, they present attractive fea-
tures in the context of spectral element methods; see [KaS99°, p. 51] and [Pat84]
for more details. If the quadrature (1.32) is used to evaluate Mz in (1.28), the
elemental mass matrix becomes diagonal, and each diagonal entry is equal to
the row-wise sum of the entries of the exact elemental matrix. Summing row-
wise the entries of the mass matrix and using the result as diagonal entries is
often referred to as lumping.

vme{0... .k}, On(t) = p (1.33)

1.2 Finite Elements: Definitions and Examples

The purpose of this section is to give a general definition of finite elements and
local interpolation operators. Numerous two- and three-dimensional examples
are listed.

1.2.1 Main definitions

Following Ciarlet, a finite element is defined as a triplet {K, P, X'}; see, e.g.,
[Ciag1, p. 93].

Definition 1.23. A finite element consists of a triplet {K, P, X} where:

(i) K is a compact, connected, Lipschitz subset of R? with non-empty inte-
7407
(ii) P is a vector space of functions p: K — R™ for some positive integer m
(typicallym =1 or d).
(i) X is a set of nen linear forms {o1,...,0n,,} acting on the elements of
P, and such that the linear mapping

P>p +— (01(p),--.,0n,(p)) € R™", (1.34)

is bijective, i.e., X is a basis for L(P;R). The linear forms {o1,...,0n,}
are called the local degrees of freedom.

Proposition 1.24. There exists a basis {01,...,0,_ } in P such that
ai(Gj):éij7 1§i7j§nsh.
Proof. Direct consequence of the bijectivity of the mapping (1.34). a

Definition 1.25. {#1,...,0,, } are called the local shape functions.



20 Chapter 1. Finite Element Interpolation

Remark 1.26. Condition (iii) in Definition 1.23 amounts to proving that
V(ag,...,an,) €ER™ Fpe P, oi(p) =a; for 1 <i<ng,
which, in turn, is equivalent to

dim P = card X = ngy,
Vpe P, (oi(p)=0,1<i<ng) = (p=0).

This property is usually referred to as unisolvence. In the literature, the bijec-
tivity of the mapping (1.34) is sometimes not included in the definition and,
if this property holds, the finite element is said to be unisolvent. O

Definition 1.27 (Lagrange finite element). Let {K, P, X'} be a finite ele-
ment. If there is a set of points {a1,...,an_, } in K such that, for allp € P,
oi(p) = pla;), 1 < i < ng,, {K,P, X} is called a Lagrange finite element.
The points {a1,...,an, } are called the nodes of the finite element, and the
local shape functions {01,...,0n,} (which are such that 0;(a;) = 6;5 for
1 <4,5 < ngy) are called the nodal basis of P.

Example 1.28. See §1.1.2 and §1.1.3 for one-dimensional examples of La-
grange finite elements. O

Remark 1.29. In the literature, Lagrange finite elements as defined above
are also called nodal finite elements. a

1.2.2 Local interpolation operator

Let {K, P, X'} be a finite element. Assume that there exists a normed vector
space V(K) of functions v : K — R™, such that:

(i) P C V(K).
(ii) The linear forms {o1,...,0,, } can be extended to V(K)'.

Then, the local interpolation operator i can be defined as follows:
Ik :V(K)3v Zoi(v)ﬁi eP. (1.35)

V(K) is the domain of Zx and P is its codomain. Note that the term “in-
terpolation” is used in a broad sense since Zxv is not necessarily defined by
matching point values of v.

Proposition 1.30. P is invariant under Tk, i.e., Vp € P, Txp = p.

Proof. Letting p = Z?j‘l a;0; yields Tgp = ZZ’;“:l a;0;(05)0; = p. O
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Example 1.31.

(i) For Lagrange finite elements, one may choose V(K) = [C°(K)]™ or
V(K) = [H*(K)]™ with s > 4. The local Lagrange interpolation operator is
defined as follows:

I VIK) 30— Txo=Y v(a:)d, (1.36)

i=1

i.e., the Lagrange interpolant is constructed by matching the point values at
the Lagrange nodes.

(ii) For the modal finite elements discussed in §1.1.4, an admissible choice
is V(K) = LY(K). O

Remark 1.32. It may seem more appropriate to define a finite element as a
quadruplet {K, P, X, V(K)}, where the triplet {K, P, X'} complies with Def-
inition 1.23 and V(K) satisfies properties (i)—(ii). However, for the sake of
simplicity, we hereafter employ the well-established triplet-based definition,
and always implicitly assume that there exists a normed vector space V(K)
satisfying properties (i)—(ii). In many textbooks, V(K) is implicitly assumed
to be of the form C*(K) for some integer s > 0; see, e.g., [Cia91, p. 96] or
[BrS94, p. 79]. O

1.2.3 Simplicial Lagrange finite elements

Simplices and barycentric coordinates. Let {ay,...,aq} be a family a
points in R?, d > 1. Assume that the vectors {a; —ay, ..., aq—ao} are linearly
independent. Then, the convex hull of {ay,...,aq} is called a simplex, and the
points {ag,...,aq} are called the vertices of the simplex. The unit simplex of
R? is the set

d
{xeRd; z; >0,1<i<d, and ingl}.

i=1

A simplex can be equivalently defined to be the image of the unit simplex by
a bijective affine transformation. For 0 < i < d, define F; to be the face of K
opposite to a;, and define n; to be the outward normal to F;. Note that in
dimension 2 a face is also called an edge, but this distinction will not be made
unless necessary.

Given a simplex K in R, it is often convenient to consider the associated
barycentric coordinates {Ao, ..., \q} defined as follows: For 0 < i < d,

(x —a;) -n;

A 0 RY Ni(z) =1 -
>z — \(2) (@& ) s

ER, (1.37)

where a; is an arbitrary vertex in F; (the definition of ); is clearly independent
of the choice of the vertex in F;). The barycentric coordinate A; is an affine
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function; it is equal to 1 at a; and vanishes at F;. Furthermore, its level-sets are
hyperplanes parallel to F;. Note that the barycenter G of K has barycentric
coordinates (d%_l, ceey ﬁ) The barycentric coordinates satisfy the following

properties: For all z € K, 0 < \;(z) < 1, and for all 2 € R,

d+1 d+1
d Xilw)=1  and > A(z)( —a;) =0.
=1 1=1

See Exercise 1.4 for further properties in dimension 2 and 3.

Example 1.33. In the unit simplex, \g =1 — 27 — 29, A1 = 21, and Ay = 29
in dimension 2, and /\0 =1- r1 — T2 — X3, )\1 = I, /\2 = T2, )\3 = I3 in
dimension 3. O

The polynomial space Py. Let 2 = (x1,...,24) and let P, be the space
of polynomials in the variables x1, ..., x4, with real coefficients and of global
degree at most k,

_ _ i1 id.
P = ¢ p(z) = E Qg gy gy, €R
0<ig,..., ig<k
i1t tig<k

One readily verifies that P is a vector space of dimension

kE+1 ifd=1,
dim Py = (ﬁ""‘) =Lk +1)(k+2) itd—2,
%(k+1)(k+2)(k+3) ifd=3.
Proposition 1.34. Let K be a simplex in R%. Let k > 1, let P = Py, and let
nsh = dimPy. Consider the set of nodes {a; }1<i<n,, with barycentric coordi-

nates
(o, .,%), 0<idp,...,ig <k, ig+...+iq=k.

Let ¥ = {01,...,0n,} be the linear forms such that o;(p) = p(a;), 1 <i <
ngn. Then, {K, P, X} is a Lagrange finite element.

Proof. See Exercise 1.3. a

Table 1.1 presents examples for k£ = 1, 2, and 3 in dimension 2 and 3. For
k =1, the (d 4+ 1) local shape functions are the barycentric coordinates

;=X\, 0<i<d.
For k = 2, the local shape functions are

2N —1), 0<i<d,
4)\1')\]', 0§Z<]§d,
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Py Py ]P3

Table 1.1. Two- and three-dimensional P, P2, and Ps Lagrange finite elements; in
three dimensions, only visible degrees of freedom are shown.

and for k = 3,

INGBX —1)(3X\; —2), 0<i<d,
27)\i/\j)\ka 0<1< ] < k <d.

1.2.4 Tensor product Lagrange finite elements

Cuboids. Given a set of d intervals {[¢;, d;] }1<i<q, all with non-zero measure,
the set K = Hle[ci, d;] is called a cuboid. For x € K, there exists a unique
vector (ti,...,tq) € [0,1]¢ such that, for all 1 < i < d, x; = ¢; + t;(d; — ¢;).
The vector (t1,...,tq) is called the local coordinate vector of x in K.

The polynomial space Q. Let Q be the polynomial space in the variables
x1,...,Tq, with real coefficients and of degree at most k in each variable. In
dimension 1, Q; = P; in dimension d > 2,

Qr=1¢q(x) = Z O‘il...idzlf ---l’;‘i; iy ig €ER

0<iy,...,ia<k

One readily verifies that Qf is a vector space of dimension
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Q1 Qo Qs
b [ [ o [ ¢ [ ]

Table 1.2. Two- and three-dimensional Q1, Q2, and Q3 Lagrange finite elements;
in three dimensions, only visible degrees of freedom are shown.

E+1)? ifd=2,
dimQy = (k+1)¢ = (k1) i
(k+1)3 ifd=3.

Note the inclusions P, C Qi C Pggy.

Proposition 1.35. Let K be a cuboid in R?. Let k > 1, let P = Qy,, and let
nsh = dim Qy. Consider the set of nodes {a; }1<i<n., with local coordinates

(%,..%), 0<iy,....ig <k

Let ¥ = {01,...,0n,} be the linear forms such that o;(p) = p(a;), 1 <14 <
nsn. Then, {K, P,X} is a Lagrange finite element.

Table 1.2 presents examples for £ = 1, 2, and 3 in dimension 2 and 3.
For 1 <i <d, set & = ¢+ £(di —¢;), 0 <1 <k, and let {LF,.... L}
be the Lagrange polynomials in the variable x; associated with the nodes
{&.,0,---,& k}; see Definition 1.7. Then, the local shape functions are

Oiy.ig(x) = LY, (x1) ... LE; (za), 0<i1,... i<k

1.2.5 Prismatic Lagrange finite elements

Prisms. For 2 € R?, set 2/ = (x1,...,24_1). Let K’ be a simplex in R?~!
and let [a,b] be an interval with non-zero measure. Then, the set K = {z €
R% 2" € K'; 24 € [a,b]} is called a prism. Let (Ao, - . ., Aa—1) be the barycentric
coordinates of z’ in K’ and let ¢ € [0,1] be such that 4 = a+t(b— a). Then,

the prismatic coordinates of x € K are defined to be (Ag, ..., Ag—1;t).



1.2. Finite Elements: Definitions and Examples 25

]PR1 P RQ ]PRB

e S

Table 1.3. Prismatic Lagrange finite elements of degree 1, 2, and 3; only visible
degrees of freedom are shown.

Prismatic polynomials. Let Py[2'] (resp., Px[z4]) be the set of polynomials
with real coefficients in the variable x’ (resp., x4) of global degree at most k.
Set

PRy, = {p(z) = p1(2') pa(za); p1 € Px[2'], p2 € Pi[za]}.

Clearly, P, C PRy, and dim PRy, = %(k + 1)?(k + 2) in dimension 3.
Proposition 1.36. Let K be a prism in R%. Let k > 1, let P = PRy, and let

nsh = AimPRy,. Consider the set of nodes {a;}1<i<n,, With prismatic coordi-
nates

(%7"'5”1;1;%)7 0<io,...,%4-1,%d Skv to+ ... +ig—1 =k
Let ¥ = {01,...,0n,,} be the linear forms such that o;(p) = p(a;), 1 <4 <
nsn. Then, {K, P, X} is a Lagrange finite element.

Table 1.3 presents examples for k = 1, 2, and 3. The local shape functions
can be expressed in tensor product form using the local shape functions on
the simplex K’ and the Lagrange polynomials in xg4.

1.2.6 The Crouzeix—Raviart finite element

Let K be a simplex in R%, set P = P;, and take for the local degrees of
freedom the mean-value over the (d + 1) faces of K, i.e., for 0 <i < d,

0) = e |
oi(p) = ——— .
0P meas(F;) Fip
Proposition 1.37. Let X = {0;}o<i<a. Then, {K,P1, X} is a finite element.
Using the barycentric coordinates {\g, ..., Aq} defined in (1.37), the local
shape functions are
1

0,(x) = d(a - )\i(:c)), 0<i<d. (1.38)
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Fig. 1.8. Crouzeix—Raviart finite element in two (left) and three (right) dimensions;
in three dimensions, only visible degrees of freedom are shown.

Indeed, 0; € Py and o;(0;) = d;; for 0 < 4,5 < d. Note that 0,5, = 1 and
Gi(ai) =1-—d.

A conventional representation of the Crouzeix—Raviart finite element is
shown in Figure 1.8. The dot means that the mean-value is taken over the
corresponding face. This finite element has been introduced by Crouzeix and
Raviart; see [CrR73] and also [BrF91°, pp. 107-109].

An admissible choice for the domain of the local interpolation operator
is V(K) = WH1(K). Indeed, owing to the Trace Theorem B.52 applied with
p = 1, the trace of a function in W(K) is in L'(9K). The local Crouzeiz—
Raviart interpolation operator is then defined as follows:

d
IgR : V(K) S50U — I%Rv = Z (nleim/ ’U) 0; € Py. (1.39)
i=0 Fi

Remark 1.38.

(i) Since a polynomial in P is linear, its mean-value over a face is equal to
the value it takes at the barycenter. Therefore, another possible choice for the
degrees of freedom is to take the value at the face barycenters. The resulting
finite element is a Lagrange finite element according to Definition 1.27. The
only difference with the Crouzeix—Raviart finite element is that it is no longer
possible to take W1 1(K) for the domain of the local interpolation operator;
an admissible choice is, for instance, V(K) = C(K).

(ii) Another choice for the local degrees of freedom is o;(p) = | F, P for

0 < i < d; then, the local shape functions are 6; = ﬁ(ﬂ) (é — )\i). a

1.2.7 The Raviart—Thomas finite element
Let K be a simplex in R%. Consider the vector space of R%-valued polynomials
RT = [Po]¢ @ z . (1.40)

Clearly, the dimension of RTy is d + 1. For p € RTy, the local degrees of
freedom are chosen to be the value of the flux of the normal component of p
across the faces of K, i.e., for 0 <17 < d,
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Fig. 1.9. Raviart—-Thomas finite element in two (left) and three (right) dimensions;
in three dimensions, only visible degrees of freedom are shown.

7 = [ e

i

Proposition 1.39. Let ¥ = {0;}o<i<d- Then, {K,RTy, X} is a finite ele-
ment.

The local shape functions are

0:(z) = m(m‘ —a), 0<i<d. (1.41)
Indeed, 6; € RTy and ¢;(6;) = &;; for 0 < 4,5 < d. Note that the normal
component of a local shape function is constant on the face with which it is
associated and is zero on the other faces.

A conventional representation of the degrees of freedom of the Raviart—
Thomas finite element is shown in Figure 1.9. An arrow means that the flux
of the normal component is taken over the corresponding face. This finite
element has been introduced by Raviart and Thomas and is often referred
to as the RTy finite element [RaT77]. It is used, for instance, in applications
related to fluid mechanics where the functions to be interpolated are velocities.

The domain of the local interpolation operator can be taken to be
VIV(K) = {v € [LP(K)]4; Vv € L*(K)} for p > 2, s > g, % = Il)—&— i
Note that V4V(K) = WH(K) with ¢t > dQTle is also an admissible choice.
Indeed, one can show that for v € V4V(K) and for a face F; of K, the quan-
tity | 7. vn; is meaningful. The local Raviart-Thomas interpolation operator

is then defined as follows:

d

IR VIWV(K) v v It = Z </ U~ni> 0; € RTy. (1.42)
i=0 /T

Remark 1.40.

(i) See Exercise 1.5 for the proofs of the above results and for an alternative
expression of the local shape functions in terms of barycentric coordinates.
Further results can be found in [BrF91°, p. 113] and [QuV97, p. 82].

(ii) In the spirit of Remark 1.38, the Raviart—Thomas finite element can
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be defined as a Lagrange finite element. Another choice for the degrees of
freedom is o;(p) = m fF p-n;; then, the local shape functions are 6; =
meas FrL'

ol (= ay). O
Lemma 1.41. Let I} be defined in (1.42). Let % be the orthogonal projec-
tion from L?(K) to Py. The following diagram commutes:

Vv (K) L2(K)
g 0
RT, v P,
Proof. Left as an exercise. a

1.2.8 The Nédélec (or edge) finite element

Let K be a simplex in R%, d = 2 or 3. Define the polynomial space of dimension
sd(d+ 1),

NO = [Po]d @ Rl, Rl . {p S [Pl]d; Trp= 0} (143)

Introducing the mapping R : R? — R? such that R(z,22) = (22, —1), the
following equivalent definition of Ny holds in dimension 2:

No = [Po]? @ (R(x)Po). (1.44)
In dimension 3, the following equivalent definition of Ny holds:
Ny = [Po]® @ (z x [Pg]?). (1.45)

For p € Ny, the local degrees of freedom are chosen to be the integral of
the tangential component of p along the three (resp., six) edges of K in two
(resp., three) dimensions. Set ne = 3 if d = 2 and n. = 6 if d = 3. Denote by
{ei}1<i<n, the set of edges of K and, for each edge e;, let ¢; be one of the two
unit vectors parallel to e;. For 1 < ¢ < n,, the local degrees of freedom are

oi(p) = /G_P'tzv

i

Proposition 1.42. Let ¥ = {0;}1<i<n,. Then, {K,No, X} is a finite ele-
ment.

In two dimensions, the local shape function associated with the edge e;,
1<i<3,is

R(x — a;)
ti-[R(Ll;ai? — a;)] meas(e;)
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Fig. 1.10. Edge finite element in dimension 2 (left) and 3 (right); in three dimen-
sions, only visible degrees of freedom are shown.

In three dimensions, define the mapping j : {1,...,6} — {1,...,6} such that
(i) is the index of the edge opposite to e;, i.e., e; does not intersect e;(;y. Note
that j = j~'. Let m; be the midpoint of e;. Then, the local shape function
associated with the edge e;, 1 < i <6, is

(z —mjw) Xt
i [(mi —mj(;)) X tj(i)] meas(e;)

0;(x) = (1.47)

In both cases, the tangential component of a local shape function is constant
along the edge with which it is associated and vanishes along the other edges.
A conventional representation of the edge finite element is shown in Fig-
ure 1.10. An arrow means that the integral of the component parallel to this
direction is taken over the corresponding edge. This finite element has been in-
troduced by Nédélec [Néds0, Néds6]; see also [Whi57]. It is used, for instance,
in electromagnetism and in magneto-hydrodynamics; see [Bos93, Chap. 3].
In two dimensions, the domain of the local interpolation operator can be
taken to be VU(K) = {v = (v1,v2) € [LP(K)]?; Oqv1 — Oyvg € LP(K)} for
p > 2. Indeed, one can show that for v € V" (K) and for an edge e; of K,
the quantity fei v-t; is meaningful. In three dimensions, a suitable choice is
Verl(K) = {v € [H*(K)]?; Vxv € [LP(K)]3} for s > 1 and p > 2; see, e.g.,
[AmBI8]. The local Nédélec interpolation operator is then defined as follows:

IRV (K) 30 v THo = Z (/ v~ti> 6; € No. (1.48)

=1

Remark 1.43.
(i) See Exercise 1.6 for the proofs of the above results and for an alternative
expression of the local shape functions in terms of barycentric coordinates.
(ii) In the spirit of Remark 1.38, the Nédélec finite element can be defined
as a Lagrange finite element. Another choice for the degrees of freedom is
oi(p) = mfe pt; for 1 < i < ng; the local shape functions are then
readily derived from (1.46) and (1.47). O

Lemma 1.44. Assume d = 3. Let IET and I} be defined in (1.42) and (1.48),
respectively. The following diagram commutes:
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V x

chrl (K) Vdiv (K)
5,
v
No . RT,

Proof. Let v € VU(K). Tt is clear that VxZRXv € [Pg]® C RTy. Let F be a
face of K and np be the corresponding outward normal. Then,

[@x@par =3 [Bivte= 3 [o.

eCOF V€ eCOF Y€

[ @xvne = [ @),

where t. is a unit vector parallel to the edge e so that the edge integrals
are taken anti-clockwise along OF. The above equality implies IIP}T(VXU) =
Vx(ZXv), since these two functions are in RTy and their fluxes across the
faces of K are identical. ad

Lemma 1.45. Assume d = 2 or 3. Let I}, be the interpolation operator as-
sociated with the Py Lagrange finite element and let VY(K) = H*(K) be its
domain, s > g. The following diagram commutes:

Vl (K) chrl (K)
& &
P v Ny

Proof. Le v € V(K). Let e be an edge of K and denote by aj, ay the two

vertices of e. Set t = —22=%_ to obtain
laz—a1la

/V(I}(U)-t =Trv(az) — Iv(ay) = v(ag) — v(ar)

e :/e(Vv)'t:/eI%(Vv)i.

Conclude using the fact that both ZX(Vv) and V(Zxv) belong to N. O

1.2.9 High-order finite elements

As in the one-dimensional case, basis functions must be selected carefully
when working with high-degree polynomials.
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Nodal finite elements. When K is a simplex in R? and P = P, with & large,
it is possible to define sets of quadrature points with near optimal interpolation
properties: the so-called Fekete points; see [ChB95, TaW00]. Then, these points
can be used as Lagrange nodes to define nodal bases. Finite element methods
using the Fekete points as Lagrange nodes when k is large are often referred
to as spectral element methods; see, e.g., [KaS99"].

When K is a cuboid in R? and P = Qy, one can use the tensor product of
Gaufl-Lobatto nodes instead of equi-distributing the Lagrange nodes in each
space direction. Then, the local shape functions are

9,;17,__,,-(1(331,...,:1:(1):Gil(:rl)...ﬁid(xd), Ogih...,idgk, (149)

where the functions {6;}o<i<x are the images by suitable mappings of the
nodal (C°-continuous) basis functions defined in (1.33). An interesting prop-
erty of the GauB-Lobatto points is that they are the Fekete points for the
d-dimensional cuboid, i.e., these points have near optimal interpolation prop-
erties; see [BoTO01].

Modal finite elements. When K is a cuboid, hierarchical modal bases can
be constructed using tensor products of one-dimensional hierarchical modal
bases. For instance, we can consider the basis functions defined in (1.49),
where the functions {6;}o<i<r are now the images by suitable mappings of
the modal (C°-continuous) basis functions defined in (1.31).

When K is a simplex or a prism, the construction of hierarchical bases is
more technical. The idea is to introduce a nonlinear transformation mapping
K to a square or a cube and to use tensor products of one-dimensional bases.
See [KaS99°, pp. 70-94] for a detailed presentation.

1.3 Meshes: Basic Concepts

This section presents the general principles governing the construction of a
mesh. Implementation aspects are investigated in Chapter 7.

1.3.1 Domains and meshes
Throughout this book, we shall use the following:

Definition 1.46 (Domain). In dimension 1, a domain is an open, bounded
interval. In dimension d > 2, a domain is an open, bounded, connected set
in R® such that its boundary 082 satisfies the following property: There are
a >0, 3 >0, a finite number R of local coordinate systems x" = (z"',x}),
1 < r < R, where 2" € R and zl; € R, and R local maps ¢" that are
Lipschitz on their definition domain {z" € R~ |2™| < a} and such that
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R
00 = | J{(@", ah); & = ¢ (a™); || < a},
r=1

{(x",2]); ¢" (™) < 2, < ¢"(2"") + B; |27] < a} C £, vr,
{(@",zh); ¢"(z") — B < a2ty < ¢"(z"); |2"'| < o} € RN\, vr,

where |27 | < o means that |z}'| < a for all1 <i < d—1. Form > 1, §2 is
said to be of class C™ (resp., piecewise of class C™) if all the local maps "
are of class C™ (resp., piecewise of class C™).

Definition 1.47 (Polygon, polyhedron). In dimension 2, a polygon is a
domain whose boundary is a finite union of segments. In dimension 3, a poly-
hedron is a domain whose boundary is a finite union of polygons. When the
distinction is not relevant, the term polyhedron is also employed for polygons.

Remark 1.48.

(i) Definition 1.46 implies that a domain is necessarily located on one side
of its boundary 042, i.e., it excludes sets with slits. This assumption can be
weakened, but this involves technical complexities that go beyond the scope
of this book; see, e.g., [CoD02].

(ii) For a domain 2 in R¢ with d > 2, the outward normal, say n, is defined
for a.e. x € 9f2. For a domain of class C", m > 1, n is defined for all z € 92
and is a function of class C™ 1.

(iil) Definition 1.47 can be extended to arbitrary dimension d by induction:
a polyhedron in R? is a domain whose boundary is a finite union of polyhedra
in R4-1, a

Definition 1.49 (Mesh). Let 2 be a domain in R%. A mesh is a union of
a finite number No of compact, connected, Lipschitz sets K,, with non-empty
interior such that {K,, }1<m<n,, forms a partition of (2, i.e.,

Nei o o
=) K, and K,nK,=0 for m#n. (1.50)

m=1

The subsets K, are called mesh cells or mesh elements (or simply elements
when there is no ambiguity).

Figure 1.11 presents an example of a mesh of the unit square in R? involv-
ing triangles and quadrangles. In the sequel, a mesh { K, }1<m<n,, is denoted
by 7j. The subscript h refers to the level of refinement of the mesh. Setting

VK €Ty, hg =diam(K) = max |1 — z2||a,
€

Z1,T2
where || - ||4 is the Euclidean norm in R, the parameter h is defined by

h = max hg.
KeTy,

A sequence of successively refined meshes is denoted by {7, }n>0-
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T

Fig. 1.11. Example of a mesh of the unit square in R2.

1.3.2 Mesh generation

In practice, a mesh is generated from a reference cell, say K , and a set of ge-
ometric transformations mapping K to the actual mesh cells. We shall hence-
forth assume that the geometric transformations are C !L_diffeomorphisms. For
K € 7T, denote by T : K — K the corresponding transformation. Usu-
ally T is specified using a Lagrange finite element {K, Pyeo, Xgeo}. Let

~

Ngeo = card(Xgeo), let {91, ..., Gn,., } be the nodes of K associated with Zeeos
and let {1;1, . ,zzngeo} be the local shape functions.

Definition 1.50. {K, ﬁgeo, ﬁgeo} is called the geometric (reference) finite ele-

ment, {g1,...,9n,., | the geometric (reference) nodes, and {7,;1, . ,&ngeo} the
geometric (reference) shape functions.

For the sake of simplicity, assume that all the mesh cells are generated
using the same geometric reference finite element. This assumption can be
easily lifted. When K is a simplex, 7}, is called a simplicial mesh.

A mesh generator usually provides a list of ngeo-uplets

m m
{91, g F<me N

where g/ € R? and N, is the number of mesh elements. The points
{g’f‘,...,g,’fgeo} are called the geometric nodes of the m-th element. For
1 < m < Ng|, define the geometric transformation

Ngeo

Tw: K37 — Tu(@) =Y g"i(@) € R, (1.51)
i=1

~

so that T, (g;) = g for 1 < i < ngeo, and set K, = T, (K).

Remark 1.51. The hypothesis that the geometric transformation T, is a C*-
diffeomorphism requires that the numbering of the nodes {g}", ... ,g;fgco} and
that employed in the reference element are compatible; see Figure 1.12. An
usual convention is to impose the additional requirement that the numbering
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1 6 2
Fig. 1.12. The numbering of the nodes of K, (right) is compatible with that of K;
the numbering in K7, (left) is not.

] b= -

Fig. 1.13. Examples of geometric transformations: P; transformation of a triangle
(left); P2 transformation of a triangle (center); Q1 transformation of a quadrangle
(right).

is such that the Jacobian determinant of the transformation T, is positive.
For instance, in two dimensions, there are three compatible ways of numbering
the nodes of a triangle, and there are four compatible ways of numbering the
nodes of a square. In three dimensions, there are 3 x 4 compatible ways of
numbering the nodes of a tetrahedron, and there are 4 x 6 compatible ways
of numbering the nodes of a cube. O

Example 1.52. Figure 1.13 presents three examples in dimension 2:

(i) A transformation based on the Lagrange finite element P; maps the
unit simplex to a non-degenerate triangle.

(ii) A transformation based on the Lagrange finite element Py maps the
unit simplex to a curved triangle.

(iii) A transformation based on the Lagrange finite element Q; maps the
unit square to a non-degenerate quadrangle. O

Definition 1.53 (Affine meshes). When the transformations {To, }1<m<n,,
are affine, the mesh is said to be affine. In dimension 2, when the reference cell
K is a simplez, an affine mesh is also called a triangulation. This terminology
is used henceforth in any dimension for an affine, simplicial mesh.

Examples of affine meshes include the following:

(i) When the geometric reference finite element is the Lagrange finite ele-
ment Py, all the mesh elements are triangles in dimension 2 and tetra-
hedra in dimension 3.

(ii) When the geometric reference finite element is the Lagrange finite ele-
ment Q, all the mesh elements are parallelograms in dimension 2 and
parallelepipeds in dimension 3.
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Fig. 1.14. Geometric construction of a curved triangle.

Domains with curved boundary. For domains with curved boundary, the
use of affine meshes generates an interpolation error in the neighborhood of
the boundary. Hence, when high-order accuracy is required, it is necessary to
generate the mesh with geometric transformations of degree kqq, larger than
one; the mesh then contains curved elements.

A relatively straightforward way to proceed is the following:

(i) Construct an affine mesh 7, so that all the vertices of the resulting
polyhedron lie on the curved boundary 9f2.

(ii) For each element K € 7} having a non-empty intersection with 942, de-
sign a polynomial transformation (of degree larger than 1) that approx-
imates the boundary more accurately than the first-order interpolation.
The resulting element K replaces K in the mesh.

Example 1.54. The following example illustrates a simple technique relying
on P, Lagrange finite elements to approximate a curved boundary in R? (see
Figure 1.14):

(i) Let K be an element having an edge whose vertices lie on 9f2. Let
{b1,...,bn,,} be the geometric nodes of K (ngeo = 6).
(ii) For each b;, 1 < ¢ < ngeo, construct a new node g; as follows:
e If b; is located on an edge whose vertices lie on 0f2, g; is defined as
the intersection with 92 of the line normal to the corresponding edge
and passing through b;.
e Otherwise, set g; = b;.
(iii) Replace {b1,...,bn,.} by {91, 9ng. ) in the list of ngeo-uplets pro-
vided by the mesh generator. In other words, replace K by the curved

-~

triangle K = Tk (K) where

Ngeo

VieK, Tx(@) = gh(@),
1=1

and {12)\1, . ,ingeo} are the Py Lagrange local shape functions. O
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. DEDE

Fig. 1.15. Examples of reference elements.

Note that a mesh consisting of curved triangles may not necessarily cover
the domain (2; see Figure 1.14. In other words, the open set {2}, such that

2= |J K (1.52)
KeTy,

does not necessarily coincide with 2; the domain (25, is called a geometric
interpolation of §2. For the sake of simplicity, 7} is said to be a mesh of {2
even though it may happen that 2 # (2.

1.3.3 Geometrically conforming meshes

Henceforth we assume that the reference element K used to generate the mesh
is a polyhedron. Classical examples include the following (see Figure 1.15):

(i) K is the unit interval [0,1] in dimension 1.
(ii) K is either the unit simplex with vertices (0,0), (1,0), (0,1) or the unit
square [0,1]? in dimension 2.
(iii) K is either the unit simplex with vertices (0,0,0), (1,0,0), (0,1,0),
(0,0,1), or the unit cube [0,1]3, or the unit prism with vertices (0,0, 0),
(1,0,0), (0,1,0), (0,0,1), (1,0,1), (0,1,1) in dimension 3.

~

For a given mesh cell K = Tk (K), the vertices, edges, and faces are defined
to be the image by the geometric transformation Ty of the vertices, edges,
and faces of the reference element K.

Definition 1.55 (Geometrically conforming meshes). Let 2 be a do-
main in R? and let T, = {Km }1<m<n,, be a mesh of 2. The mesh Ty, is said
to be geometrically conforming if the following matching criterion is satisfied:
For all K, and K,, having a non-empty (d — 1)-dimensional intersection, say
F = K,, N K,, there is a face F of K and renumberings of the geometric

~

nodes of K, and K,, such that F =T,,(F) =T,(F) and
T =Ty (1.53)
If more than one geometric reference element is used to generate the mesh,
say K7 and Ko, (1.53) is replaced by the following statement: T;‘lF (F) is a face
of Ky, Tn_‘},(F) is a face of Ky, and there is a bijective affine transformation

mapping T, - (F) to T, 5. (F).
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Fig. 1.16. Example and counterexample of a geometrically conforming mesh.

Remark 1.56. If §2;, is connected, Definition 1.55 implies that for any cell
pair {K,,, K, } with m # n, the intersection K,, N K, is:

(i) either empty or a common vertex in dimension 1;
(ii) either empty, or a common vertex, or a common edge in dimension 2;
(iii) either empty, or a common vertex, or a common edge, or a common face
in dimension 3.

An example and a counterexample of a geometrically conforming mesh are
shown in Figure 1.16. a

Geometrically conforming meshes form a particular class of meshes that
are convenient to generate H'-conforming approximation spaces; see §1.4.5.
Moreover, on such meshes, the Euler relations provide useful means to count
global degrees of freedom.

Lemma 1.57 (Euler relations). Let 7, be a geometrically conforming mesh
and let £2p, be defined in (1.52).

(i) In dimension 2, let I be the degree of multiple-connectedness® of 25, Ne
the number of cells (or elements), Noq the number of edges, Ny the num-
ber of wvertices, Ncad the number of boundary edges, and N? the number
of boundary vertices; then,

NelfNed+Nv:17]7
N? — N2 =o.

e

Furthermore, if the mesh cells are polygons with v vertices,
2Neq — N2, = vNy.

In particular, 2Neq — Nfd = 3Ng for triangles and 2Nqq — Ne‘?d = 4Ny
for quadrangles.

(ii) In dimension 3, let I be the degree of multiple-connectedness of 2p, J the
number of connected components of the boundary of 2y, Ne the number
of elements, Nt the number of faces, Noq the number of edges, Ny the

1 I is the number of holes in 2.
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number of vertices, Nfa the number of boundary faces, Nead the number
of boundary edges, and N? the number of boundary vertices; then,

Neg — Nt + Neg — Ny = —1+1—J,
{N?—Nfd+Nf =2(J - 1I).
Furthermore, if the mesh cells are polyhedra with v faces,
2Nt — NP = vNy.

In particular, 2Ny — Nfa = 4N for tetrahedra and 2N; — Nf8 = 6N for
hexahedra.

1.3.4 Faces, edges, and jumps

Henceforth, we denote by Fj the set of interior faces (or interfaces), i.e.,
F € F| if Fis a (d—1)-manifold and there are K;, Ko € 75, such that
F = K; N K5. We denote by .7-',? the set of the faces that separate the mesh
from the exterior of (2, i.e., F € F? if F is a (d—1)-manifold and there
is K € 7; such that FF = K N 0{2;. Finally, we set F}, = f,il U ]—'}‘?. In all
dimensions we refer to the elements of Fj as faces. In dimension 2, faces
are also called edges, but this distinction will not be made unless necessary.
In dimension d > 3, we define &}, 5,?, and &, = & U 5,? to be the sets of
internal edges (i.e., one-dimensional manifolds), boundary edges, and edges,
respectively.

Let F € .7-','11 with ' = K; N K5, and denote by n; and ny the outward
normal to K7 and Ks, respectively. Let v be a scalar-valued function defined
on all cells K of the mesh. Assume that v is smooth enough to have limits on
both sides of F' (these limits being not necessarily the same). Set v; = vx,
and vy = v|g,. Then, the jump of v across F' is defined to be

[[U]]F = VN1 + V2aN2. (154)

Note that [v]p is an R-valued function defined on F. When there is no
ambiguity, the subscript F is dropped. When v is an R%-valued function, we
use the notation
[vn]r = ving + vena, (1.55)
for the jump of the normal component of v. In dimension 3, we also use the
notation
[vxn]F = v1 XNy + vaXng, (1.56)

for the jump of the tangential component of v.

1.4 Approximation Spaces and Interpolation Operators

This section reviews approximation spaces and global interpolation operators
that can be used in conjunction with Galerkin methods to approximate PDEs.
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1.4.1 Finite element generation

Let {K, P, X} be a fixed finite element. Denote by {51, .. .,5n,, } the local de-
grees of freedom and by {51, ...,0,.} the local (R™-valued) shape functions.
Let V(IA( ) be the domain of the local interpolation operator Iz associated with
{K,P,5}, iec.,

TIp:V(K)27 — Y i(0)0; € P. (1.57)

Definition 1.58. {K, P, £} is called the reference finite element and Iy the
reference interpolation operator.

Let 7), be a mesh generated as described in §1.3.2. Recall that a cell K € 7),
is constructed using the C'-diffeomorphism Tk : K — K defined in (1.51).

Definition 1.59 (Iso- and subparametric interpolation). Let (K,P,%}
be the reference finite element and let {K Pge072geo} be the geometric ref-
erence finite element used to define Tx. When the two finite elements are
identical, the interpolation is said to be isoparametric, whereas it is said to be
subparametric whenever Pgeo € P.

Example 1.60. For scalar-valued finite elements, the most common example
of subparametric interpolation is P; C Pgeo #Py C p. a

Elementary generation of finite elements. For all K € 7, one must
first define the counterpart of V(K), i.e., a Banach space V(K of R™-valued
functions and a linear bijective mapping

~

Vg V(K) — V(K).
Then, a set of 7j-based finite elements can be defined as follows:

Proposition 1.61. For K € Ty, the triplet {K, Pk, Xk} defined by

K = Tx(K);
Pi = {5 (p); p € P}; (1.58)
Yk = {{oxiti<i<na; 0kx,i(P)=0i(Yk (p)), VP € Pi};
is a finite element. The local shape functions are 0 ; wK ( i), 1 <i < ng,
and the associated local interpolation operator is

Nsh
Ik :V(E)3v +— Igv=Y oki(v)0k,; € Px. (1.59)

i=1

Proof. Left as an exercise. a
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Proposition 1.62. Let T be defined in (1.59). Then, the following diagram
commutes:

V(K) V(K)
|z
Pe— Y% . p

Proof. Let v in V(K). The definition (1.58) for {K, Px, X'k} implies

Msh MNsh

T (Wre(0) = 3 () B = 3 0a(0) U (Ocs) = V(T (0).

owing to the linearity of 1. O

Proposition 1.62 plays an important role in the analysis of the interpolation
error; see, e.g., the proof of Theorem 1.103. This result is the main motivation
for the construction (1.58).

Example 1.63.
(i) Let {K,P,X} be a Lagrange finite element. Then, one may choose
V(K) = [C°(K)]™. Defining V(K) similarly and setting

Vi V(K) 30 — thr(v) =vo Tk € V(K), (1.60)

yields a linear bijective mapping. Then, for all K € 7, the finite element
{K, Pg, Xk} constructed in Proposition 1.61 is a Lagrange finite element.
Indeed, owing to

0i(v) = 0i(Yk (v)) = Yi (v)(@:) = v o Tk (a:),

and setting ax; = Tk (a;) for 1 < i < ng,, we infer that {ax ;}1<i<n,, are the
nodes of {K, Px, Xk }.

(i) For the Raviart-Thomas finite element (see §1.2.7), set V(K) = {v €
[LP([?)]d; Vo e Lg([?)} for p > 2, s > q, % = %—i— é, and define V(K)
similarly. The transformation p — p o Tx does not map V(K) to V(K). A
suitable choice for 1k is the so-called Piola transformation; see §1.4.7. O

Remark 1.64. In the literature the notation ¥k (v) = ¥ is often used. Then,
the relation Z5 (¢Yx (v)) = ¥ (Zk (v)) resulting from Proposition 1.62 can be

rewritten in the form Zz0 = T (v). This notation can sometimes be mislead-
ing; in particular, it must not be confused with the notation Z = ngl(w). O
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Finite element generation with rescaling. The technique described in
Proposition 1.61 to generate finite elements is generally sufficient to construct
approximation spaces. However, in the most general situation, a more sophis-
ticated technique must be designed. To understand the nature of the problem,
observe that the degrees of freedom in X' are constrained only locally by unisol-
vence. When constructing approximation spaces, one often wishes to enforce
interface conditions between adjacent elements, thus introducing a new con-
straint on the degrees of freedom. Accordingly, we allow for a rescaling of the
degrees of freedom in Y.

Proposition 1.65. For K € T, let ag € R be such that ag; # 0 for all
1 <i < ngy. Define the triplet { K, Pg, X%} by taking K and Pk as in (1.58)
and by choosing the local degrees of freedom X% = {0k 1,...,0K n,} Such
that, for all 1 < i < ng,

OK,i': PK S5p UK,i(p) = CVK’Z'a'i((/)K(p)). (].6].)

Then, {K, Px, X%} is a finite element. Furthermore, the local shape functions
on K are given by O, = $¢1}1(9i), 1 < i < ngn, and the associated local
interpolation operator I¢ is defined as in (1.59).

Proof. Left as an exercise. O

Proposition 1.66. Let I3 be the local interpolation operator associated with
{K, Pg, X% }. Then, the diagram in Proposition 1.62 commutes.

Proof. Straightforward verification. ad

Example 1.67. An example where a rescaling of the degrees of freedom
is needed is the Hermite finite element discussed in §1.4.6; see also Re-
mark 1.72(i), Remark 1.88, and Remark 1.94 for further examples. ad

1.4.2 Global interpolation operator

Using the 7p,-based family of finite elements {K, Px, X'k } ke7, generated in
Proposition 1.61 or Proposition 1.65, a global interpolation operator Z; can
be constructed as follows: First, choose its domain to be

D(Tp) = {v € [L'(£2,)]™; VK € Ty, v € V(K)}, (1.62)

where (2, is the geometric interpolation of {2 defined in (1.52). For a function
v € D(Zy,), the quantities o ;(v|x) are meaningful on all the mesh elements
and for all 1 < ¢ < ng,. Then, the global interpolant Z,v can be specified
elementwise using the local interpolation operators defined in (1.59), i.e.,

Msh

VK € Tp,  (Inv)|x = Ik (vik) = ZUK,i(U\K)eK,i~
=1
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Note that the function Z;v is defined on (2;. It may happen that Z,v is multi-
valued at the interfaces of the elements. This is not a major difficulty since
Fp is of zero Lebesgue measure. The global interpolation operator is defined
as follows:

Msh
Zh:D(Zp) v — Z ZO’KJ(U‘K)QKJ € W, (1.63)
KeTy i=1
where Wy, the codomain of 7, is
W, = {v, € [L"(2,)]™; VK € T, vjic € Pi}. (1.64)

The space W), is called an approzimation space. In (1.63), we abuse the nota-
tion by implicitly extending 6 ; by zero outside K.

One often wishes to impose additional regularity properties on the func-
tions of W},. At this stage, we only state the following general definition:

Definition 1.68 (Conforming approximation). Let Wy be defined in
(1.64) and let V be a Banach space. Wy, is said to be V-conforming if W), C V.

Practical examples are investigated in §1.4.5, §1.4.6, §1.4.7, and §1.4.8.

1.4.3 Totally discontinuous spaces

Totally discontinuous spaces play an important role in the so-called Discon-
tinuous Galerkin (DG) method; see §3.2.4, §5.6, and §6.3.2. Functions in such
spaces only satisfy the simplest regularity requirement, namely to be inte-
grable over (2y,. o

For the sake of simplicity, assume that {K, P, X'} is such that the local
degrees of freedom are of the form

~

.. V(K) 37 — 5:(0) =

meas(}?)/lievlc“ lgignshv

where ng, = dim(P) and K; is a smooth function on K; hence, V/(K) = L!(K)
is an admissible choice. Define V(K) similarly and choose the mapping defined
in (1.60), i.e., ¥k (v) = v o Tk. Construct the family {K, Px, X'k } ke, using
Proposition 1.61. Then, for each K € 7j,, setting Kg ; = K; o Tgl, we infer

o1a(v) = Gk () = meiir /K oK

The local shape functions are O ; = @ngl, 1 <7 < ngn, where {@1, e ,@Lsh}
are the local shape functions associated with {71,...,0,_ }
Consider the approximation space

Zyan = {vn € L'(2,); VK € Ty, vjic € Pk} (1.65)
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Because local degrees of freedom can be taken independently on each mesh
cell, Ziq,p is of dimension N¢ X ng, where Ng is the number of mesh cells.
For v € L'(f2,), the quantities ok ;(v|x) are meaningful for K € 7, and
1 <i < ngn. Then, the global interpolation operator is constructed as follows:

Itdh L (.Qh) S0V — Z Z mcas(K) (/ 'U]CKJ'> QK_J' c th_’h. (166)

KeT, i=1

Example 1.69.
(i) Choosing P = P and assuming that the mesh is affine, we infer Px =
Py, so that the approximation space defined in (1.65) is

Pl ={vn € L'(2,); VK € Ty, vpjic € Pi} (1.67)

For instance, the space P&h = {vp € L'(12,); VK € Ty, vy i € Po} is of di-
mension N and spanned by {1 } ke, where 1k is the characteristic function
of K. The global interpolation operator associated with P&, h 1

Idh L (.Qh)a'lj [ Itiod,hv: Z <rncai(1()/ 'U) 1K€Pt%,h'
K

KeT,

(ii) A similar construction is possible with Q polynomials. For instance,
on quadrangular meshes, the local shape functions can be taken to be tensor
products of Legendre polynomials, i.e.,

O,.0,@) =&,@1)...E,(Tq), 0<ly,... la<k.

This choice naturally yields hierarchical bases; see, e.g., §1.1.5 and §1.2.9. O

1.4.4 Discontinuous spaces with patch-test

In this section, we assume that 7, is a simplicial, affine, and geometrically
conforming mesh.

The Crouzeix—Raviart approximation space. Let { ,ﬁ 2’} be the
Crouzeix-Raviart finite element introduced in §1.2.6. Set V(K) = W1(K),
define V(K) similarly, and choose the mapping defined in (1.60), i.e., ¥ x (v) =
voTg. Construct the family {K, Pk, ZK}KGTh using Proposmon 1.61. Then,
for each K € Ty, letting F; = TK(F) 0 < i < d, where {FO, . Fd} are

the faces of K , the local degrees of freedom are

ok,i(v) =0i(VK(v)) = mcaS(F) / Vi (V) = poms Fxl) /F v.  (1.68)
K

K3

In addition, since the mesh is affine, Px = P;. As a result, {K, Pk, Yk} is a
Crouzeix—Raviart finite element.
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Fig. 1.17. Global shape function for the Crouzeix—Raviart approximation space.
The support is materialized by thick lines and the graph by thin lines.

Consider the so-called Crouzeiz—Raviart approximation space
P ={vn € L'(12,); VK € Ty, vy € Py

VF e Fi, /F[[vh]] _ (1.69)

Recall that F} denotes the set of interior faces (interfaces) in the mesh and
[vr] the jump of vy, across interfaces. For F' € Fj,, consider the function ¢p
with support consisting of the one or two simplices to which F' belongs and
such that on each of these simplices, say K, the function pp|k is the local
shape function of {K, Pk, X'k} associated with the face F. The graph of a
function ¢p is shown in Figure 1.17.

Lemma 1.70. ¢ € Pr}mh'

Proof. Let F € Fl, say F = K; N K». Since ¢F|K, is the local shape function
of {K1, Pk,, XYk, } associated with F', (1.68) implies

/ op|k, = meas(F).
F

Similarly, [, ¢px, = meas(F), proving that [.[pr] = 0. Use the same
argument to prove | ler] = 0 for all faces F” # F'. Since the restriction

of pr to any mesh element is in Py, g € PJ, . ]

For F € F},, define the linear form ~p : P;t’h > v mfF V.
Although vy, € P[}t,h may be multi-valued at F', the quantity vz (vp) is single-
valued since [.[vn] = 0.

Proposition 1.71. {¢r}rer, is a basis for P;}t,m and {yr}rer, is a basis
Jor L:(P;t,h; R).
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Proof. The proof is based on the fact that (with obvious notation) vg/(pp) =
opp: for F,F' € F,. Consider a set of real numbers {ap}recr,, and as-
sume that the function w = ) Fer, OFPF vanishes identically. Then, arp =
vr(w) = 0; hence, the set {¢r}rer, is linearly independent. Let v, € PJ,

and set
=3 (st [on) or

FeFn

Then, for all K € 7}, vy and wy| g are in Pg, and for all o € Y, a(vh‘K)
o(wp|k ). Unisolvence implies vy, g = wy k. This shows that {pr}recr, is a
basis for P[}t, 1~ The proof is easily completed. O

Proposition 1.71 implies that P ¢ 1S a space of dimension Ngq in two
dimensions and V¢ in three dlmenslons The linear forms {vr} rez, are called
the global degrees of freedom in Ppt w and {¢r}rer, are called the global
shape functions.

For a function v € W11(£2;,), the quantity yp(v) is meaningful (and single-
valued) for all F' € F},. The so-called global Crouzeiz—Raviart interpolation
operator is constructed as follows:

PR whl(2) 30 — TR0 = Z (me;s(F)/ v) ¢ € P} . (1.70)
FeFn F

Note that P1t , is the codomain of ZFR.

Remark 1.72. R
(i) If the degrees of freedom in { K, P, X'} are chosen to be the integral over
the faces instead of the mean-value (see Remark 1.38(ii)), Proposition 1.65

must be used to generate the family { K, Pk, EK}KGTh Indeed, taking ax ; =
%ﬁf;) for 0 <i < din (1.61) yields o ;(v) = [, v. Then, constructing
¢p as before, Lemma 1.70 holds. If Propomtlon 1. 61 had been used instead,

(1-=5 A1) where AK,i

on Fk ;; hence,

then o ;(v) = m‘gzj(sFK " fFK v, yielding 0k ; = m

is the i-th barycentric coordinate of K. Then, 0 ; =

meas(ﬁ,-)
[rler]l #0, ie., pr & Py, (unless K is equilateral).

(i) Since [vp]p : F' 3 2 — [vp](2) € R is linear, the condition [, [vs] =0
in (1.69) is equivalent to the continuity of vy, at the center of gravity of . O

Extension to high-degree polynomials. The extension of the Crouzeix—
Raviart approximation space P! ot.p t0 higher-degree polynomials is somewhat
technical. When approximating PDES one often wishes to 1mpose the con-
tinuity of the moments, up to order k — 1, of the functions in Ppt 5, on any
interface of the mesh. This condition is known as the patch-test; see [IrR72].
The space Ppt,h is thus defined as follows:
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Fig. 1.18. Continuity points for functions in P}, ,: k = 1 (left); k = 2 (center); and
k = 3 (right). For k = 2, the six points lie on an ellipse.

Pt ={vn € L'(24); VK € Ty, i € Py

VF € Fj,, Vg € Py, / [vn] ¢ = 0}. (1.71)
F

In two dimensions, the patch-test is equivalent to the continuity of vy at
the £ Gauf} points located on each face of K; see Figure 1.18 and Definition 8.1.
These points (completed with internal points for & > 3) can be used to define
local Lagrange degrees of freedom, say Y/, on the simplex K if k is odd, but
this construction is not possible if k is even. For instance, if kK = 2, the six
Gauf} points lie on the ellipse of equation 2 — 3(\§ x + A} + A3 x) = O,
where {A\o k', A1 Kk, A2k} are the barycentric coordinates of the simplex K.
This means that the so-called Fortin—-Soulié bubble

b =2 =3\ x + M g + 3 k), (1.72)

vanishes at these six Gauf points. Then, because bx € Ps, the linear mapping
(1.34) associated with the triplet { K, P2, X'} is not bijective; hence, { K, P, X'}
is not a finite element.

In the three-dimensional case, a similar construction is possible. However,
the patch-test no longer implies point-continuity except for k = 1.

Remark 1.73. The space Pgt’ 5, can be used to approximate PDEs owing to a

decomposition involving H!-conforming quadratics and Fortin-Soulié bubbles;
see [FoS83] and Exercise 1.12. O

1.4.5 H'-conforming spaces based on Lagrange finite elements

The goal of this section is to construct a H'-conforming subspace of the
approximation space Wj, defined in (1.64). We assume that the mesh is geo-
metrically conforming (but not necessarily affine) and that the reference finite
element is a Lagrange finite element. Hence, setting V (K) = [C°(K)]™, defin-
ing V(K) similarly, and choosing the mapping ¥, defined in (1.60), the family
{K, Pk, Xk }keT, constructed as in Proposition 1.61 is a family of Lagrange
finite elements; see Example 1.63(i).
Consider the space
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Vi = {vn, € Wi; VF € Fl, [vn]r = 0}. (1.73)
The main motivation for introducing V}, is the following:
Proposition 1.74. V,, C [H'(£2,)]™.

Proof. Assume m = 1. For vector-valued functions, the proof below is simply
applied component by component. Let v, € V}. Since its restriction to every
K € Ty, is a polynomial, it is differentiable in the classical sense. For 1 < j < d,
consider the function w; € L?(£2;,) defined on K € Tj, by wjjx = 9;(vpk)-
Let ¢ € D(£2,). Using the Green formula yields

/Qhqub_ Z /ijqs:_ Z /K”thaj¢+ Z /E}K¢Uh|K”K,j»

KeTy, KeTy, KeTy,
where K is the boundary of K and nk ; is the j-th component of the outer
normal to K. Use the fact that ¢ vanishes at the boundary of (2, regroup
interface terms, and employ the notation of §1.3.4 to infer

/nh wj¢:_/:zh, wndid+ Y /F(bej.[[vh]]F’

FeF),

where {ey, ..., eq} is the canonical basis of R%. Owing to [vs]r = 0, Jo, wid =
— f o v, 0j¢. Therefore, for 1 < j < d, the distributional derivative of v;, with
respect to the j-th coordinate is w;. Since w; € L2(£2y,), vy, € H(£2),). O

The next question is to determine how the zero-jump condition in (1.73)
can be enforced using the local degrees of freedom of adjacent cells. For K €
Th, denote by {ak 1,...,ax n,, } the Lagrange nodes (not to be confused with
the geometric nodes of K). Assume that:

9]

Msh*

7} be its nodes. Define
W

(scl) All the faces of K have the same number of nodes, say n

(sc2) Consider a face F' of K and let {a 0
Ps={g;¥eP, §=pp} and £ = {71,..., 3,5} such that 5,(7) =
q(a, z) for g € Py and 1 < i < nf . Then, {F,Pp, Xz} is a finite
element.

(sc3) For all F € Fi with F = K; N K>, assume that there are renumberings
of the Lagrange nodes of K; and K> such that (see Figure 1.19):

Lﬁ,...,a

. o
Vie{l,...,n, }, @K, i=aK,;.

Lemma 1.75. Assume (scl)—(sc3). Let v, € Wy. Then, [up]r = 0 for all
F € F} if and only if, for all F € F such that F = K1 N K,

Vie{l,... mﬂsh}, Ui, (AKy i) = Vnii, (0K i) (1.74)
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Fig. 1.19. Compatible (left) and incompatible (right) position of nodes at an in-
terface for a geometrically conforming mesh.

Proof. The direct statement is evident. To prove the converse, let vy, € W,
let F € f}L with F' = K7 N Ky, and assume (1.74). Let 77 and T5 be the
geometric transformations associated with K7 and Ks, respectively. Set v; =
vp i, and va = vy ,. Since the mesh is geometrically conforming, there are
renumberings of the geometric nodes of K; and Kj such that (1.53) holds.
Owing to (sC3), @; 5 = Tl_uﬂlﬂ(aKw-) = Ti}(aK”) for 1 < i < ng_ . Define
ﬁllﬁ = vyp o Ty p and 62“; = vy © Ty p. Then, (1.74) implies

. ) ~ ~ ~ ~
Vief{l,...onp, b 0y5(@ 5) = Uy 5(@; 5).

Owing to (sc2), 61‘ F= AQ‘ 7, and since the geometric transformations are

bijective, this readily implies vy = vy|F. O

Remark 1.76. All the Lagrange finite elements introduced in §1.2.3-§1.2.5
satisfy assumption (sC2). This is not the case for the Crouzeix—Raviart finite
element considered as a Lagrange finite element. O

Let {a1,...,an} = Uger, {aK1,- - @K n,, | be the set of all the Lagrange
nodes. For K € T, and m € {1,...,na}, let j(K,m) € {1,..., N} be the
corresponding index of the Lagrange node. Let {®1,...,on} be the set of
functions in W}, defined elementwise by ¢;x(ax,m) = Oms if there is n €
{1,...,nen} such that ¢ = j(K,n) and 0 otherwise. This implies ¢;(a;) = 0;;
for 1 <i,5 < N.

Lemma 1.77. Under the assumptions of Lemma 1.75, ¢; € V},.
Proof. Use the converse statement in Lemma 1.75. a
For 1 < i < N, define the linear form ~; : V}, 3 vp, — vp,(a;) € R.

Proposition 1.78. {¢1,...,pn} is a basis for Vi, and {v1,...,on} is a basis
for L(Vi; R).

Proof. The family {¢1,...,¢n} is linearly independent; indeed, if the func-
tion Z;v:1 aj; vanishes identically, evaluating it at the node a; yields a; = 0.
Now, let v;, € V},. Owing to the direct statement of Lemma 1.75, vy, is single-
valued at all the Lagrange nodes. Set w;, = vazl vp(a;)p;. Then, for all
K € Tp,, vy x and wy i are in Px and coincide at the nodes {ar 1, ..., ax n,, }-
Unisolvence implies vy, g = wp, i - Hence, {¢1,..., N} is a basis for V3. Prov-
ing that {v1,...,on} is a basis for L(V};R) is then straightforward. O
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dim.| k=1 k=2 k=3
Pf, 2 | Ny Ny + Ned Ny + 2Neq + Nay

fn 2 | Ny Ny 4 Nea + Nei Ny + 2Neq + 4No
Pk, 3| N, Ny + Nea Ny + 2Neq + N
ng,h 3 Ny | Ny + Nea + Nt + Nei | Ny 4+ 2Neq + 4Nt 4 8Nei

Table 1.4. Dimension of H'-conforming spaces constructed using a geometrically
conforming mesh and various Lagrange finite elements. The second column indicates
the space dimension. Ne) denotes the number of cells in the mesh, Nf the number of
faces, Neq the number of edges, and N, the number of vertices.

Proposition 1.78 implies that V} is a space of dimension N. The lin-
ear forms {71,...,yn} are called the global degrees of freedom in V4, and
{¢1,-..,¢n} are called the global shape functions. The global Lagrange inter-
polation operator is defined as follows:

N
Iy : Co(ﬁh) SV — Zv(ai)goi € V. (1.75)

i=1

Note that the domain of Zj, can also be taken to be H*({2;) for s > .
We shall often consider the approximation spaces

PF, = {v, € CO(021,); VK € T, vy o Tk € Py}, (1.76)
ng,h = {’Uh € Co(ﬁh); VK € 7;“ vpolx € Qk} (177)

The dimension of these spaces is given in Table 1.4 for the first values of k.
The subscript ‘c’ refers to the continuity condition across mesh interfaces (for
simplicity, it was not used in the one-dimensional cases treated in §1.1).

Example 1.79. Assume that 7} is composed of triangles in dimension 2.

(i) Let {S1,...,Sn,} be the mesh vertices. For 1 < i < N, the global
shape functions in Pclyh satisfy ¢;(S;) = 6;; for 1 < 4,5 < Ny; see the left
panel of Figure 1.20. Owing to Proposition 1.78, the set {¢1,...,¢n,} is a
basis for P},

(ii) Let ’{Tl, ..., TN, } be the edge midpoints. For 1 < i < Ny, let ;¢ €
Pgh be such that ¢; 0(S;) = d;; and ¢; o(T;) = 0. In addition, for 1 < i < Ngq,
let ©i,1 S Pgh be such that (pi71(Sj) =0 and (le(Tj) = 5L] The functions ©i,0
and ¢; 1 are illustrated in the central and right panels of Figure 1.20. Owing
to Proposition 1.78, {©1.0,---,9N,.0,P1,15- -+, PNq.1} is @ basis for P2,. 0O

Remark 1.80. Lemma 1.77 can be easily extended to R"-valued functions
by considering the functions ¢;, for 1 < ¢ < N and 1 < n < m, such that
@i n(aj) = d;jen, where e, is the n-th vector of the canonical basis of R™. O
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—

Fig. 1.20. Global shape functions for H'-conforming spaces in two dimensions: PC{ h
(left) and P2, (center and right).

05 Y 4

Fig. 1.21. Local shape functions for the Hermite finite element in the reference
interval [0, 1].

1.4.6 H2-conforming spaces

In dimension 1, a Hi—conforming space can be constructed using Hermite
finite elements. Let K = [0,1] be the reference interval, set P = P3, and
define the local degrees of freedom X' = {71,02,03,04} to be

a1(p) =p0),  G2(p) =P'(0),  Ts(p)=p(1),  Gu(p)=P(1).

One readily verifies that {I/(\’ P, 2‘} is a finite element; it is called a Hermite
finite element. The local shape functions {61, 02,603,604} are (see Figure 1.21)

~

O.(t) = (2t +1)(t—1)2,  Ba(t) = t(t — 1),

2(t) =1
03(t) = (3 — 2t)12, 04(t) = (t — 1)t
Owing to the choice of the local degrees of freedom, an admissible choice for
V(K)is CY(K) (or H*(K) with s > 2).
Let 2 = Ja,b] and let 7, = {I;}o<i<n be the one-dimensional mesh
of 2 introduced in §1.1.1. Consider the affine transformation T; defined in
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(1.21), ie., T; : K>tw 2 =ua+th € I,. The goal is to generate a
family of Hermite finite elements over the mesh intervals. To this end, one
must use Proposition 1.65 since the degrees of freedom in X are of dif-
ferent dimensionality. Specifically, set V(I;) = C'(I;) and choose the map-
ping 5, : V(L) > v — ¢¥,(v) = voT; € V(K). Set a1 = a3 = 1,
Qg = Q4 = %, and «; = (41,02, 03, q;.4). Using Proposition 1.65 to
generate the family {I,, P;, X; }o<i<n, we infer P, = P3 and that the local
degrees of freedom are
oi1(p) = p(z:), oi2(p) = p'(2i),
0i3(p) =p(zir1),  oialp) = p'(zit1).
The local shape functions are
91‘,1 = é\l o T;l, 9@2 = hlé} o T;17
Ois=030T ", Ois=hiflsoT] ",

and the local Hermite interpolation operator is defined as follows:
4
IE : Cl(Ii) Sv — Z Oim(0)0; m € Ps. (1.78)
m=1

Consider the so-called Hermite approrimation space
Hy, = {v, € C'(2); Vi € {0,..., N}, vp1, € P3}. (1.79)
The main motivation for introducing Hy, is the following:

Proposition 1.81. H, C H?({2).

Proof. Adapt the proof of Lemma 1.3. |
Introduce the functions {¢o.,0,- .-, ¥N+1,0,%0,1,---s@YN+1,1} such that
91'_173(1‘) ifx e Iz'—17 91'_174(1’) ifxe Ii—17
(,0@0(3)) = 01'71(%) ifx e Ii, (,Oi@(ﬂf) = 91'72(%) ifx e Il',
0 otherwise, 0 otherwise,

with obvious modifications if i = 0 or N + 1.

Lemma 1.82. ¢; 0 € Hy and ;1 € Hy,.

Proof. Left as an exercise. O
For i € {0,..., N}, consider the linear forms

Yi0: CH2) 3 v — 7io(v) = v(z:),
Yia:CH(2) 3 v — yia(v) = ' (z3).
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Proposition 1.83. {¢;;}o<i<n,0<i<1 is a basis for Hy,, and {71 }o<i<n,o<i<1
is a basis for L(Hp;R).

Proof. Use the fact that v, (@) = 870y and that on each interval I;, a
function in Hp, is a polynomial of degree at most 3 and is, therefore, uniquely
determined by its value and that of its first derivative at the endpoints x; and
x;4+1; details are left as an exercise. O

Proposition 1.83 implies that Hy, is a space of dimension 2(N + 2). The
linear forms {v;;}o<i<no0<i<1 are called the global degrees of freedom in Hy,
and the functions {¢;;}o<i<n,0<i<1 are called the global shape functions.

Define the global Hermite interpolation operator Z}IL{ with codomain Hj, as
follows:

N+1 N+1
i . cl() 91}»—>Z%0 4,010+2%1 )i € Hp. (1.80)

I,IL{ is a linear operator, and I,va is the unique function in Hy, that coincides

with v and its derivatives at all the mesh points.
In dimension 2, the construction of H2-conforming spaces is more techni-
cal. A classical example uses Argyris finite elements; see, e.g., [Cia91, p. 88].

1.4.7 H(div)-conforming spaces

Let {K,P, f‘} be the Raviart-Thomas finite element introduced in §1.2.7.

Choose V( ) = {v € [LP(K))% Vo € L5(K)}, with p > 2 and s > g,

5 == + 1. and define V(K) snmlarly. Since ¥ (v) = v o Tk does not map

V(K) to V(K), one introduces the so-called Piola transformation

Vi V(K) 30 v Y (0)(@) = det(Jx) Jz' [vo Tk (@)] € V(K), (1.81)
where Jg is the Jacobian matrix of Tk .

Lemma 1.84. Let v € V(K) and set v = i (v). Then, whenever the left-
hand sides are meaningful, the following identities hold:

(l) V””U det(JK) [ acl/)K( )] ‘]I_(l and fF vn = fﬁ vn.
(ii) [x ¢Vav = [z qVsV and [, v-Voq= [0-V3q with §=qoTk.

Proof. Observe that V,q = (Jz')TVzq and V,v(z) = Va o). O

det(J

Construct the family {K, Pk, EK}KGTh using Proposition 1.61. Then, for
each K € T, letting Fr; = Tk( 1) with 0 < ¢ < d where {FO, .. Fd} are
the faces of K, Lemma 1.84(i) implies that the local degrees of freedom are

ok,i(v) = /F vy, (1.82)

3



1.4. Approximation Spaces and Interpolation Operators 53

Fig. 1.22. Global shape functions associated with the Raviart-Thomas (left) and
the Nédélec (right) finite elements in dimension 2. The normal (resp., tangential)
component of the Raviart—-Thomas (resp., Nédélec) global shape function is contin-
uous across the interface, but since the triangles are not isosceles, the tangential
(resp., normal) component is not antisymmetric.

where n; is the outward normal to Fx ;. Furthermore, since the mesh is affine,
Tk (%) = JgT + bi where Jg € R%? and bx € R Hence, for p € P,
Vi (p) = T + o, where Ty € [Py]? and « € R, yielding p = 15! (Tp + aZ) =
WJK(JA:O—FO&\). Then, using 7 = J ' (z —bx) yields p € RTy. As a result,
Pk =RTy and {K, Pk, Xk} is a Raviart—Thomas finite element.

Consider the so-called Raviart—Thomas approzimation space

Dy, = {vy € [L'(24)]% VK € T, v i € RTY,
VF € F, [on-n]r = 0}, (1.83)

where [v,-n]r denotes the jump of the normal component of v;, across the
interface F'. The main motivation for introducing Dy, is the following:

Proposition 1.85. D), C H(div; 2,) = {v € [L3(£2,)]%; Vv € L2(£2)}.
Proof. Proceed as in the proof of Proposition 1.74. a

Now, let us specify the global shape functions in Dy,. For F' € Fj,, let np
be a normal unit vector to F' (its direction is irrelevant). Consider the function
wp with support consisting of the one or two simplices to which F' belongs
and such that on one simplex, say K, the function ¢p g is the local shape
function of { K, Px, X'k } associated with the face F' and on the other simplex,
say K', ¢p|k is the opposite of the local shape function associated with F'
on K'; see the left panel of Figure 1.22.

Lemma 1.86. pr € Dy,

Proof. Adapt the proof of Lemma 1.70 and use the fact that ¢p-np is constant
on F. a
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Proposition 1.87. {¢r}rcr, is a basis for Dy, and defining the linear forms
YF : Dy 3 v — [ponnp €R, {yr}rer, is a basis for L(Dy;R).

Proof. Left as an exercise. O

Proposition 1.87 implies that Dy, is a space of dimension Ngq in two di-
mensions and N in three dimensions. The linear forms {vr}rex, are called
the global degrees of freedom in Dy, and {¢F}rer, the global shape functions.

For a function v in the space

VY = (v € [LP(2,)]% Vv € L°(2)}, (1.84)

with p > 2 and s > ¢, % = %—i— é, the quantity yp(v) is meaningful (and single-
valued) for all F' € Fj,. The so-called global Raviart—Thomas interpolation
operator is constructed as follows:

Vv sy — Iy = > (/ v-nF> ¢r € Dy, (1.85)
Fer, VF

Note that Dy, is the codomain of ZXT. See [BrF91°, RaT77] for further results
on H(div)-conforming spaces.

Remark 1.88. If the degrees of freedom in {K, P, X} are chosen to be the
mean-value of the flux (see Remark 1.40(ii)), Proposition 1.65 must be used
to construct the family {K, Pk, Xk } ke, ; see Remark 1.72(i). O

1.4.8 H(curl)-conforming spaces

We consider a three-dimensional setting, but a similar construction is possible
in two dimensions. Let {K 25 } be the Nédélec finite element introduced in
§1.2.8. Choose V(K) = {v € [LP(K)]?; Vxv € [L*(K)]*} with p > 2 and
s > 3, and define V(K) similarly. Introduce the mapping

Vi V(K) 3 v — g (0)(3) = JE[vo Tk (7)) € V(K). (1.86)

Lemma 1.89. Let C(v) = Vv — (Vu)T. For all v € V(K), the following
identities hold:

(i) For all B € R3, C(v)-B = (Vxv)xf.
(ii) [IC(v) lpaa = IV x0|ga.
(iii) Clx (v)] = (JK)TC(v) Jx

Construct the family {K, Pk, Yk }ker, using Proposition 1.61. Denote
by {€1,...,és} the edges of K and, for 1 < i < 6, let ex; = Tk (e;) be the

corresponding edge of K. Let t: (resp. tk;) be one of the two unit vectors

parallel to €; (resp. ek ;). Since Jrti = %t&u



1.4. Approximation Spaces and Interpolation Operators 55

mto) = [ ()= / vt (1.87)

Furthermore, since the mesh is affine, Ty (Z) = Jx7 + bx where Ji € R%4
and br € RZ Hence, for p € P, Y (p) = JE[po Tk] = a + Bx7, yielding
p = o + (JE)YBxJ' x]. Then, it is clear that ((JE) '[BxJ'az])x =
(ﬁnglx)-ngx =0, i.e., p € Ng. As a result, Px = Ny and {K, Pk, Xk} is
a Nédélec finite element.

Consider the so-called Nédélec approzimation space

Ry = {vn € [L*(24)]%; VK € Tp, vp k€ No;
VE € Fi, [onxn]p = 0}, (1.88)

where [upxn]r denotes the jump of the tangential component of vy, across
the interface F'. The main motivation for introducing R}, is the following:

Proposition 1.90. Ry, C H(curl; 2,) = {v € [L*(£2,)]%; Vxv € [L?(£2,)]3}.
Proof. Proceed as in the proof of Proposition 1.74. ad
To derive the global shape functions in Ry, we first state the following:

Lemma 1.91. Let F' = K; N K3 and let vy be such that vy, € No and
Up i, € No. Then, [vpxn]p =0 if and only if [, vpk, te = [, Vnk,-te for the
three edges of F.

Proof. Write vy, = a1 + f1xx and vy g, = a2 + B2Xz. Let np be one of
the two unit vectors that are normal to F. Clearly, v, x, Xnp = a1 xnp +
(Binp)r — (z-np)Br. Since x-np is constant on F', vy g, Xxnp = s + tx where
s € R? and t € R; that is to say, vp k, Xnr € RTo; see (1.40). Let eq, ez, and
e3 be the three edges of F. Denote by nq, ns, and ng the three unit vectors
that are parallel to F', are normal to e, es, and ez, and point outward. It is
clear that t; = ng X n; is a unit vector parallel to the edge e;. Let {61,062, 05}
be the two-dimensional Raviart-Thomas shape functions on F'. It is readily
checked that

3 3
URITEDY (/ (vhir, an)-ni) 0= (/ Un| K, ~t,»> 0;.

i=1 i=1

Since the set {01,602, 603} is linearly independent, it is clear that Jupxn]r =0
if and only if [ vy, ti = [, vnk,-ti for all i € {1,2,3}. O

For an edge e € &, choose one of the two unit vectors parallel to e, say t..
Consider the function ¢, with support consisting of the simplices to which e
belongs and such that on each of these simplices, say K, the function ¢, g is
the local shape function of {K, Pk, X'k} associated with the edge e oriented
by t; see the right panel of Figure 1.22.
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Lemma 1.92. ¢, € Ry,.

Proof. Let e € &,.

(1) Let K7 and K3 be two elements sharing the edge e. Then, owing to (1.87),
fe Pe|K1 te = 1: fe <pe|K2't€ and for ¢’ 7é ¢, fe/ Pe|K1 Tt =0= fe’ (pe|K2'te’-
(2) Let F' € F}, say F' = K1 N K. Owing to step 1, the converse statement
of Lemma 1.91 implies [¢. xn]r = 0. The conclusion follows easily. O

Proposition 1.93.

(i) For all e € &, the linear form v, : Ry 3 vp — fe Vp-te 15 single-valued.
(ii) {@e tees, is a basis for Ry, and {Ve}ece, is a basis for L(Rp;R).

Proof. (1) Let e € &, and let K; and K5 be two elements sharing the edge
e. Then, there exists a finite family of elements {Kj,,...,K;,} such that
K; = Ki, Kj, = Ko, and K; N Kj,,, is a face containing e. Owing to
the direct statement of Lemma 1.91 for each pair {Kj,, Kj,, }, the quantity
fe vpte is single-valued for all edge e € &, and all vy, € Ry,.

(2) The family {@c}ece, is linearly independent since e (o) = deer (With
obvious notation). Let vp, € Rp,. Owing to step 1, it is legitimate to consider

the function
Whp = Z (/vh-te) Pe-

ecéy
Then, it is clear that for all K € 7Ty, vy x and wyx are in Ny and that
[, vnkte = [, wp i -te for all edge e € QK. Unisolvence implies vy = W s -
Hence, {@.}ece, is a basis for Ry,. Proving that {7, }cce, is a basis for L(Rp;R)
is then straightforward. O

Proposition 1.93 implies that R is a space of dimension Neq. The linear
forms {7 }ece, are called the global degrees of freedom in Ry, and {p.}ece,
are called the global shape functions.

For a function v in the space

venl = {u e [L(2,)]% Vo € [L (2]}, (1.89)

with p > 2 and s > %, the quantity . (v) is meaningful (and single-valued) for
all e € &,. The so-called global Nédélec interpolation operator is constructed
as follows:

vl sy s TN = Z </v-te) e € Rp. (1.90)
ec&y €

Note that Ry, is the codomain of ZY. For further results on H (curl)-conforming
spaces, see, e.g., [Néd80, Néds6, Mon92, Bos93].

Remark 1.94. If the degrees of freedom in {K, P, £} are chosen to be the
mean-value of the integral over the edges (see Remark 1.43(ii)), Proposi-
tion 1.65 must be used to construct the family {K, Px, Xk }keT,; see Re-
mark 1.72(i). O
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1.4.9 A link between H'-, H(curl)-, and H(div)-conforming spaces

When the mesh 7;, consists of affine simplices, an interesting relation exists
between the spaces PC{h7 Ry, and Dy, in three dimensions. To formalize this
relation, we introduce the concept of exact sequence; see, e.g., [God71]. Let
{E;}jes be a sequence of vector spaces on the same field and indexed by an
interval J of N. For j € J such that j+1 € J, let h; : E; — E;4; be a
homomorphism.

Definition 1.95. The sequence

h‘71 h; h‘+1 h'+2

is said to be exact if for all j € J such that j +2 € J, Ker(h;41) = Im(h;).

Consider a domain {2 in R3. Let Hy(curl; £2) be the subspace of H (curl; £2)
consisting of the vector fields whose tangential components vanish at 0f2. Let
also Ho(div; £2) be the subspace of H(div;{2) consisting of the vector fields
whose normal component vanishes at 0f2. Let ¢ be the canonical injection and
let m be the averaging operator over (2.

Proposition 1.96. If (2 is simply connected and 012 is connected, the follow-
ing sequence 1S exact:

(0} - HI(Q) s Hy(cwrl; 2) X5 Ho(div; 2) 5 L2(02) ™ span{1}.

Let (25 be a geometric interpolate of the domain {2 based on a mesh
75, Define the approximation spaces P!, o = P!, N Hj(2), Ruo = Ry N
Hy(curl; £2,), and Dy o = Dy, N Ho(div; §2). Let also P&h be the space of

piecewise constant functions on the mesh 7. As a discrete counterpart of
Proposition 1.96, one easily proves the following:

Proposition 1.97. If (2}, is simply connected and 012, is connected, the fol-
lowing sequence s exact:

{0} = Plyo ~5 Ruo 5 Dpo ~» Py ), % span{1}.

Assume §2;, C {2 for the sake of simplicity. Set V! = H*({2) with s > ¢
and VO = L1(2). Let V4 and V! be defined in (1.84) and (1.89), respec-
tively. Let I,ll, I}j, Z}?T, and I&L ,, the interpolation operators associated with

the finite element spaces Pcl7 n» By, Dp, and P&h, respectively. The following
striking property holds:

Proposition 1.98. The following diagram commutes:

\Y V x

Vl chrl

1 N RT 0
1, 7, Iy Zia,n

1 _ ‘ ) , PO
P, Ry, Dy, ed, h
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Proof. This is a simple corollary of Lemmas 1.41, 1.44, and 1.45. O

Remark 1.99.
(i) Propositions 1.97 and 1.98 can be extended to higher-order finite ele-
ment spaces; see the de Rham diagram theory developed in [DeM00, Bof01].
(ii) Proposition 1.97 provides an efficient means of constructing all the
fields in Rj o with vanishing curl and all the solenoidal fields in Dy, . For
further results, see [Bos93]. O

1.5 Interpolation of Smooth Functions

Letting 7, be one of the interpolation operators constructed in §1.4, the goal
of this section is to estimate the interpolation error v — Z,v assuming that the
function v is smooth enough to be in the domain of Zj,. First, we investigate
thoroughly the interpolation of scalar- and vector-valued functions on affine
meshes. Then, we briefly discuss non-affine transformations.

1.5.1 Interpolation in W*?({2)

In this section, we establish local and global interpolation error estimates

on affine meshes for scalar-valued functions living in Sobolev spaces; see Ap-

pendix B for a definition of these spaces and the corresponding norms. Inter-

polation error estimates in vector-valued Sobolev spaces are readily derived

by applying the scalar-valued interpolation error estimates componentwise.
Since the mesh is affine, the transformation Tk takes the form

T :K>% — Jgi+bg €K, (1.91)

where Jx € R%4 and by € R?. The Jacobian matrix Jx is invertible since Tk
is bijective. Let || - || be the Euclidean norm in R? as well as the associated
matrix norm. Throughout this section, we assume that the mapping vk :
V(K) — V(K) in Proposition 1.62 is ¢k (v) = vo Tk, and we set ¥ = vo Tk.

Lemma 1.100. Let px be the diameter of the largest ball that can be inscribed
in K. Then,

jdet(Jx)| = 2e=UD gl < B and U e < SEL(1.92)

mea,s(f(\') ’ PR’ PK
Proof. The first property in (1.92) is classical. Furthermore,

JrZ|a 1 5
T e e
w20 |Zla PR 1Ela=rg

Write ¥ = 71 — %2 with 77 and 75 in K and use JxT =TxT1—TkTs = 21— T2
to obtain ||JxZ||4 < hx. This proves the first inequality in (1.92). The second
inequality is obtained by exchanging the roles of K and K. O
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Lemma 1.101. Let s > 0 and let 1 < p < oo. There exists ¢ such that, for
all K and w € W*P(K),

~

1
@l , & < cllJxllq [det(Jr)| ™7 [wlsp x, (1.93)

Wl < e T3 ldet(Ji0) 7 1@, 7 (1.94)

with W = w o Tk and with the convention that, for p = oo and any positive
1
real x, z¥r =1.

Proof. Let « be a multi-index with length |a| = s. Use the chain-rule and the
fact that the transformation Tk is affine to obtain

10°@ iy < eI lls 32 107w 0 Ticll o -
|B|=s

Changing variables in the right-hand side yields

. 1
10°@]| 1oy < el x|l |det (k)| wlsp.x

We deduce (1.93) upon summing over «. The proof of (1.94) is similar. O

Remark 1.102. The upper bounds in (1.93) and (1.94) involve only semi-
norms because affine transformations are considered. O

Theorem 1.103 (Local interpolation). Let {K, P, Y} be a finite element
with associated normed vector space V(K). Let 1 < p < oo and assume that
there exists an integer k such that

Py C P c WHIP(K) c V(K). (1.95)

Let Tk : K — K be an affine bijective mapping and let If( be the local

interpolation opemtor on K defined in (1.59). Let | be such that 0 <1 < k
and WHhr(K) € V(K) with continuous embedding. Then, setting o = M

PK
there exists ¢ > 0 such that, for allm € {0,...,14+ 1},
VK, Yo € WHP(K), o —Thvlmpr < W moR wliipx. (1.96)

Proof. Let I % be the local interpolation operator on K defined in (1.57). Let

w € With p( K). Since Wt1»(K) ¢ V(K) with continuous embedding, the
linear operator

FWHYYE) 3@ — & —TIh0 e W™P(K),

k &
ITpw
is continuous from WP (K) to W™»(K) for all m € {0,...,l1+1}. Since | <
k, P, C P and, therefore, IP; is invariant under If{ owing to Proposition 1.30.
Hence, F vanishes on P;. As a consequence,
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& = V@), = 0 (F@ 45,5

< IFlleqweero@ywmn )y 20 10+ Pl 7
= ﬁiélJPa ||@+ﬁ||l+17pf< < Cm‘l-&-l,p,ff’
the last estimate resulting from the Deny—Lions Lemma; see Lemma B.67.

Now let v € W!*TLP(K) and set ¥ = ¥ (v) = v o T). Owing to Proposi-
tion 1.62, [Zkv] o Tk = If?i}\. Using Lemma 1.101 yields

™ _ 1 o k-~
v = Tgvlmpx < cllJg' 13 1det(Ji)l7 [0 - T30, , &

— 1
< el I 1det(Tx) |7 [0],44 , &

< el T 1w llg™ 1ol p.ie

< c(Ilxlla 15 )™ 15 g ™ ol
Conclude using (1.92). O

Definition 1.104 (Degree of a finite element). The largest integer k such
that (1.95) holds is called the degree of the finite element {K, P, X}.

Remark 1.105. If the interpolated function is in W**1?(K), one can take
[ = k in Theorem 1.103. The resulting error estimate is optimal, i.e., for
m € {0,...,k+1},

VK, Yo € WHIP(K), v —Tho|mpx < ch oW vkt pk- O

Example 1.106. N R
(i) For a Lagrange finite element of degree k, V(K) = C°(K); hence,
the condition on [ in Theorem 1.103 is % — 1 < I < k. Indeed, owing to

Theorem B.46, Wl"'l’p(f(\') c V([A() provided I +1 > %. More generally, for a

finite element with V(K) = C!(K) (for instance, t = 1 for the Hermite finite
element), the condition on [ is % — 1+t <1 <k;see also [BrS94, p. 104].

(ii) For the Crouzeix-Raviart finite element, k = 1 and V(K) = WL1(K);
as a result, the conditionon lis 0 <[ <k =1. O

To obtain global interpolation error estimates on {2 and to prove that these
estimates converge to zero as h — 0, the quantity o appearing in (1.96) must
be controlled independently of K and h. This leads to the following:

Definition 1.107 (Shape-regularity). A family of meshes {Tn}n>0 is said
to be shape-regular if there exists oy such that

Vh, VK € T;,, ox = & <gy.
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Remark 1.108.
(i) Let K be a triangle and denote by 0k the smallest of its angles. One

readily sees that
hk 2
pr — sinfg’

Therefore, in a shape-regular family of triangulations, the triangles cannot
become too flat as h — 0.
(ii) In dimension 1, hx = pg; hence, any mesh family is shape-regular.
(iii) Lemma 1.100 shows that for a shape-regular family of meshes, there
is ¢ such that, for all h and K € Ty, ||Jx|lallJ5'la < e The quantity
| Trc||all Tr || is called the Euclidean condition number of Ji. O

Corollary 1.109 (Global interpolation). Let p, k, and | satisfy the as-
sumptions of Theorem 1.103. Let 2 be a polyhedron and let {Tp}p~o be a
shape-regular family of affine meshes of (2. Denote by V¥ the approzimation

space based on Ty, and {I?, ]3, 2‘} Let I}’f be the corresponding global interpo-
lation operator. Then, there exists ¢ such that, for all h and v € Wl“’p(!)),

+1 P
||U—I;’f’l)||Lp(_Q) + Z hm< Z |’U—I,§U|fn’p}K> < Chl+1‘1}|l+l7p7.Q; (1.97)
m=1 KeTy,

for p < oo, and for p = o0

+1
lo = Tl () + Zlh’” max |v = Tfvlnoo i < h foligr o000 (198)
=

Furthermore, for p < oo and v € LP(§2), the following density result holds:

li inf ||v— . —0. 1.99
Lim <wlgvi lv—vnllL <o>> (1.99)

Proof. Since the family {7}, }5~¢ is shape-regular, estimates (1.97) and (1.98)
result from (1.96). Let v € LP(§2) and € > 0. Since W!T1P(02) is dense in
LP(£2) for p < oo, there is v € W!THP(£2) such that [[v — v%||re(0) < e
Furthermore, (1.97) yields |[v° — Zfv®|| o) < ch! T v%| 141 p,0. Hence,

inf, Jlv—vallze@) < flv - Tholloe) < llo = vllLr) + 0 = Tyv |l o) -
Uh h

That is to say, limsup,_q(inf,, cyr [v — vallze(2)) < € and (1.99) follows
from the fact that € is arbitrary. a

Corollary 1.110 (Interpolation in W*P?((2)). Let the hypotheses of Corol-
lary 1.109 hold and assume that th is WHP-conforming. Then, there is c such
that, for all h and v € W'HLP(02),
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[0 = Zivlp.0 < ch'folipip.e. (1.100)

For p < o0, the following density result holds:

Yo e WHP(2), lim ( inf |v-— Uh|1,pﬁg> =0. (1.101)

h—0 vhe\/’f

Example 1.111.

(i) Cousider a Lagrange finite element of degree k. Take p = 2 and assume
d < 3. Then, owing to Example 1.106(i), one can take 1 <! < k, and (1.97)
yields, for all v € H'*1(£2),

v — ZFvllo.0 + hlv — TFv|1.0 < ch™ vy, (1.102)

This estimate is optimal if v is smooth enough, i.e., v € H**1(£2). However,
if v is in H*(£2) and not in H*T1(£2) for some s > 2, increasing the degree
of the finite element beyond s — 1 does not improve the interpolation error.
This phenomenon is illustrated in §3.2.5. Note also that the same asymptotic
order is obtained for P, and Q Lagrange finite elements. For Q) Lagrange
finite elements, a sharper interpolation error estimate can be derived using a
different norm for v in the right-hand side of (1.97); see, e.g., [BrS94, p. 112].

(ii) Consider the Hermite finite element; see §1.4.6. Take p = 2; since d = 1
and k = 3, Example 1.106(i) shows that one can take 2 < [ < 3. Owing to
(1.97), we infer, for all v € H'*1($2),

v —Zfvllo,0 + hlv — IFv|,o + K2 v — Tivla,o < ch T ulipr,0. (1.103)
If | = 3, i.e., if v € H*(£2), the error estimate is optimal. O

Remark 1.112. Estimate (1.97) also applies when the parameter I is not an

integer. As a simple example, consider a Lagrange finite element of degree k >
P N

1 in dimension d < 3. Since Wk“’?’oo(f/(\') C C%(K) = V(K) with continuous
embedding (i.e., k+1—% > 0), (1.98) can be applied with [ = k— % and p = oo
to obtain [[v — Zfv|| (o) < chk+1_%|v|k+17%’mﬂ for v € WhtL=5.20(().

Therefore, using the fact that H*1(02) ¢ WkH1=%:°() with continuous
embedding yields

Vh, Yo € H*"1(2), |lv—Tfv| gy < eB 5 ol 0.
Obviously, if v € WFH1:20(£2), (1.98) implies the sharper estimate

Vh, Yv € Wk+1’°o(ﬂ), HU 71}’?’0”[/00(9) < chk+1|v|k+1m7g. O

1.5.2 Interpolation in H (div; (2)

We analyze in this section the interpolation properties of the Raviart—Thomas
finite element introduced in §1.2.7.
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We assume that the mapping Tk : K — Kis linear, i.e., Tk (%) = JxT+bk
with Jx € R*? and bx € RY. For a vector-field v € [W*P(K)]4, set 0(z) =
det(Jg)J ' v(x), i.e., U = b (v) where ¢ is the Piola transformation defined
by (1.81).

Lemma 1.113. Let s > 0 and 1 < p < oo (with wtr =1 for all x > 0
if p = o0). Then, there is ¢ such that, for all K and w € [W*P(K)|? with
V-w e WP(K),

“1ys S T
wlspac < cllTic 131kl ldet (i) |77 [, s (1.104)

_ 1 —~
Vwlspie < el 13 |det(Tx)| 7 |V @] (1.105)

s,p. K

Proof. The proof is similar to that of Lemma 1.101; note however the different
factors appearing in (1.94) and (1.104) resulting from the fact that a different
mapping ¥k has been used. a

Let {K,RTg, X'} be the Raviart-Thomas finite element and let ZXT be the
associated local interpolation operator defined in (1.42).

Theorem 1.114. Let p >
with V-v € WHP(K),

d+2 There is ¢ such that, for all v € [W1P(K)]4

IZR v — vllop.x < corhilvlipk,
IV-(ZK 0 = 0)lop.x < chg|V-v

1,p,K-

Proof. Set V(K) = [W'?(K)]¢ with p > The operator

d+2
FWYWE) 5@ — @-I8% e [LP(K)),

is continuous. Since [Pg]? C RTy and F vanishes on [Pg]¢, it is clear that, for
all @ € V(E),

1@ —TE g, & = IF @)y, z = Sanf NF@ + D)l 7
0

< W lwoqye o 308, 10+ Pl &
<c 1nf w w ,
=5k || lepK clw ‘1pK

the last estimate resulting from the Deny—Lions Lemma applied component-
wise. Let v € [W1P(K)]4 and set © = 1k (v). Lemma 1.113 implies

e ~
lv = ZE vllo.p.rc < cllJxcllaldet(Jr)| ™% [0~ TE 0, &

< |||l |det(Jx)| 7 0y, &
< cll Tk lZ 15 a lvlip i
<c(IJxllallTg a) 1k la [v]1,p, -
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The estimate on |Z¥Tv — v||op x then results from (1.92). To prove the esti-
mate on the divergence of the interpolation error, use Lemma 1.41, yielding

IV-(ZK ) = Vollop.x = I7% V0] = Veullopx < chi|Volpk.

Since V-v is scalar-valued, the technique to prove the last inequality is iden-
tical to that used in the proof of Theorem 1.103. O

Corollary 1.115. Let the assumptions of Theorem 1.114 hold. Let {2 be a
polyhedron and let {T,}r~o be a shape-reqular family of affine meshes of (2.
Let IRT be the global Raviart-Thomas interpolation operator defined in (1.85).
Let p > dZ—fQ. Then, there is ¢ such that, for all h and v € [WP(02)]¢ with

Vv e Whp($2),
lv = Zivllop.2 + 1V (v = T 0)llop.e < chlllvllip.e +[[V-v]1p,0). (1.106)

1.5.3 Interpolation in H (curl; £2)

The purpose of this section is to analyze the interpolation properties of the
Nédélec finite element introduced in §1.2.8.

The space dimension is d = 2 or 3. The results are stated for d = 3,
those for d = 2 being similar. As in the previous section, we assume that the
mapping Tk : K — K is linear, i.e., Tk (%) = JxT + bx with Jg € R*? and
b € RZ For a vector-field v € [W*P(K)]® with s > 0 and p > 1, we set
v(Z) = Jrv(Tk(z)), i.e., ¥ = Y (v) where 1k is the transformation defined
in (1.86). Denote by || - ||gs the Euclidean vector norm in R? and by || - ||gs.s
the associated matrix norm.

Lemma 1.116. Let s > 0 and 1 < p < oo (with ¥y =1 for all x > 0 if
p = o). There is ¢ such that, for all K and w € [W*P(K)]? with Vxw €
[W=P(K)]?,

— 1, o
wlsp i < | I3231det (Jx)| 7 |@], , 7.
1 —~
(Vxwlspi < cllJ5 53 Idet(Jx) P [Vxal, |, 7.

Proof. The proof is similar to that of Lemma 1.101 and uses Lemma 1.89. Let
us prove the second inequality with s = 1. Observe that

||8w¢VXUHpr(K)]3 = ||vx(8I'iU)||I[)LP(K)]3 = Hc(awiv)Hpr(K)]&s»

3 p
— |det(JK)|/A 30,35 (ST C0s,9) (TR
K j=1 R3.3
P P
3 2 3
< et (i) ol s | 210535 | [ |3 1os, 901
j=1 K\ j=1
Then, since ||(Ji") |lpss = [[J5" lrss and 377 102,352 < [T [3ss, the

desired result is obtained. O
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Fig. 1.23. Non-affine transformation mapping the unit square to a quadrangle.

Let {K, Ny, X'} be the Nédélec finite element and let ZX be the associated
local interpolation operator defined in (1.48).

Theorem 1.117. Let p > 2. There is ¢ such that, for allv € [WHP(K)]® with
Vxv € [WHP(K)]3,

IZRv = vllop.x < corhi|v]ip

IVx(Zkv = )llopx < chi|Vxvlip K.
Proof. The proof is similar to that of Theorem 1.114. O

Corollary 1.118. Let the assumptions of Theorem 1.117 hold. Let {2 be a
polyhedron and let {Tp o be a shape-reqular family of affine meshes of £2.
Let I;I:I be the global Nédélec interpolation operator defined in (1.90). Let p >
2. Then, there is ¢ such that, for all h and v € [W'P(2)]® with Vxv €
(WhP(2)]%,

lo=Zivllop.e+ VX0 =Ty0)lope < ch(lv]ip.e + 1Vxvlp.0)- (1.107)

1.5.4 Interpolation in W*P?({2) on non-affine meshes

Interpolation on general quadrangles. This section contains a brief in-
troduction to error estimates applicable to finite elements on quadrangles. For
the sake of simplicity, we assume that {2 is a polygonal domain in R? and that
the reference cell K is the unit square. For proofs and further insight, see, e.g.,
[GiR86, p. 104].

Let K be a non-degenerate, convex quadrangle in RZ. We readily see
that there exists a unique bijective transformation Tx € [Q;(K)]? such that
TK(I?) = K (see Figure 1.23); Tx maps the edges of K to the edges of K,
but unless K is a parallelogram Tk is not affine.

In this section, we assume again that ¥k (v) = v o Tk.

Lemma 1.119. Let K be a convex quadrangle in R? and let Ty be the unique
bijective transformation in [Qy(K)]? mapping the unit square K to K. Let Ji
be the Jacobian matriz of Tx. Then, there exists ¢ such that
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||det(JK)||LQC(I?) < Ch%{7 ||det(JI_(1)HL°°(K) < C$7
||JK||[LOC(I?)]2,2 S ChK7 HJI_(1||[L°°(K)]2'2 S CZT;(’

where hyx = diam(K) and px = mini<;<4 p;, p; being the diameter of the
circle inscribed in the triangle formed by the three vertices (a;);-i of K.

Theorem 1.120 (Local interpolation). Let {K, P, X} be the reference fi-
nite element with K = [0,1)? and associated normed vector space V(K). As-
sume that there exists an integer k such that Qi C P and H**Y(K) C V(K).

Let K be a quadrangle in R? and let ¥ be the local interpolation operator in
K defined in (1.59). Then, setling ox = Z—K, there exists ¢ such that, for all

K

m € {0,...,k+1} and v € H*(K),

lv = Zivllo.x < corhid M olksx, (1.108)

0= Thv|m ke < cop REFIT 0] K
Definition 1.121 (Shape-regularity). Let px be as in Lemma 1.119. A
family {Tn}nso of quadrangular meshes is said to be shape-regular if there
exists og such that

Vh, VK € Ty, aKzg—ggao.

Corollary 1.122 (Global interpolation). Let the assumptions of Theo-
rem 1.120 hold. Let 2 be a polygonal domain in R?. Let {7, }n>o0 be a family
of quadrangular meshes of 2 and assume that {Tp}r>0 is shape-reqular ac-
cording to Definition 1.121. Denote by th the approximation space based on
Ty, and {K,P,X}. Let I}’f be the corresponding interpolation operator. Then,
there exists ¢ such that, for all h and v € H*T1(£2),

1

k+1 2
o Zeolon+ 3" ( S e —z,wn,K) < e olesn
m=1 KeTy,

In particular, if Vi¥ is H'-conforming,
Vh, Yo € H*Y(2), |v—Tfv|1.0 < chFlolgiio-

Remark 1.123.

(i) In Theorem 1.120, the exponent on o is larger than that obtained in
(1.96) for affine meshes.

(ii) We deduce from Lemma 1.119 that for a shape-regular family of quad-
rangular meshes, the condition number of Jg is controlled uniformly with
respect to h and K € 7p,. O
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Interpolation on domains with curved boundary. The goal of this sec-
tion is to highlight an important practical result, namely that using a high-
order reference finite element on a domain with curved boundary only pays
off if the boundary is accurately represented. In particular, if a domain with
curved boundary is approximated geometrically with affine meshes, using fi-
nite elements of degree larger than one is not asymptotically more accurate
than using first-order finite elements.

For the sake of simplicity, we restrict the discussion to Lagrange geometric
finite elements on simplices (see §1.3.2), and we consider isoparametric inter-
polation. For proofs and further insight, see [Ber89, BrS94, Cia91, CiR72°,
Len86, Z1473, Z1474].

Let {ﬁ}h>0 be a family of affine meshes of 2 and set ), = Uf(eﬁ K. Let

kgeo > 2 and let F}, : 2, — 2, = Fh(f)h) be a mapping such that VK € ’fh,
Fh‘ 7 € [P 4, Using the mapping F},, a new triangulation is constructed

from 7, by setting 75, = {Fj(K)} &7, The concept of shape-regular family
of meshes can be extended as follows:

geo]

Definition 1.124. The family of meshes {Tp}n>0 is said to be shape-regular
if the affine family (Tp,)y, is shape-reqular according to Definition 1.107 and if
the mappings {Fp}n>o0 satisfy the following properties:
(i) Fy, is the identity away from 082y that is, Fh\f( =Tif OK Moy, = 0.
(ii) sup,eqp dist(z,002),) < ¢ hF=eot1 with ¢ independent of h.
(iii) The norm of the Jacobian matriz of Fy, and the norm of its inverse are
bounded uniformly in [W ks> (£2;,)]%4 with respect to h.

Theorem 1.125. Let {I?, ]3, ZA]} be a Lagrange finite element of degree k with
k+1> g. Let 2 be a domain in R? and let {7}, } >0 be a shape-regular family
of meshes according to Definition 1.124 with kgeo = k. Let

Vit = {v e C%(2y); vo Fy € VF},

where 17,1’3 is the approximation space based on the mesh ’ZN'h and the reference

finite element {IA(,ﬁ, 2’} Let I}’f be the interpolation operator on th. Then,
there exists ¢ such that

Vh, Yo € H* (), o = Tyvllo,e, + bl = Tivlie, < ch™Holiia,.

Moreover,

Yo € H'(12y,), 1im< inf |U—Uh1.,!2h> =0.

—0 \ vy eVyf

Proof. See, e.g., [BrS94, p. 117]. O
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Remark 1.126. A different approach to extend the concept of shape-regula-
rity is presented in [Cia91, p. 227]. Assume, for instance, that the geometric
finite element is the Lagrange finite element Py. Let a;, 0 < i < d, be the
vertices of K and let a;, d+1 <1 < %d(d + 3), be the other nodes. Consider
a similar notation for the nodes a; and a; of K. Let K° be the convex hull of
the (d + 1) vertices of K and denote by a7, d + 1 <1 < 3d(d + 3), the nodes
located at the midpoints of the edges of K°. The shape-regularity criterion
considered in [Cia91, p. 241] involves two conditions:

(i) The family of meshes formed by the simplices K° is shape-regular ac-
cording to Definition 1.107.
(ii) There exists ¢ such that, for all I € {d + 1,..., 3d(d + 3)},

Vh, VK, o] —ai]la < ch?.

This definition can be extended to the Lagrange finite element P3 [Cia9l,
p. 247]. A general theory is presented in [CiR72°]. O

1.6 Interpolation of Non-Smooth Functions

This section is concerned with the problem of interpolating non-smooth func-
tions, e.g., functions that are too rough to be in the domain of the Lagrange
interpolation operator. This situation occurs, for instance, when interpolat-
ing discontinuous functions, e.g., in L?(§2) or in H(£2) in dimension d > 2.
Throughout this section, {2 is a polyhedron and {73 },>0 is a shape-regular
family of affine, simplicial, geometrically conforming meshes.

1.6.1 Clément interpolation

An interpolation technique to handle functions in L! using H'-conforming
Lagrange finite elements was first analyzed by Clément [Clé75]. The main
ingredient is a regularization operator based on macroelements consisting of
element patches. Let Pk be the H'-conforming approximation space based
on the P, Lagrange ﬁnlte element; see (1.76). Let {a1,...,an} be the La-
grange nodes and let {1, .. .,(pN} be the global shape functions in Pclfh.
Associate with each node a; the macroelement A; consisting of the simplices
containing a;. Examples of macroelements are shown in Figure 1.24. Clearly,
the macroelements can only assume a finite number of configurations, say
ner. Denote by {An}i1<n<n,, the list of reference configurations. Define the
application j : {1,...,N} — {1,...,nc} such that j(i) is the index of the
reference conﬁguratlon associated w1th the macroelement A;. Define a Co-
diffeomorphism Fjy, from A (i) to A; such that VK € AJ(Z Ai‘ 7 is affine.

The Clément interpolation operator Cj, is then defined by local L2—projgctions
onto the macroelements. More precisely, for a reference macroelement A,, and
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Fig. 1.24. Examples of macroelements A; (top) and reference configuration EZ
(bottom) associated with a node a;.

a function v € L! (A\n), let C,D be the unique polynomial in Py such that

N (?,ﬁ —)p = 0 for all p € Pg. Then, the Clément interpolation operator
A
is defined as follows:

N
Chi L' ()30 — Cho = Cipy(voFa,)(Fy'(a:) i € PF,.  (1.109)

=1

The stability and interpolation properties of the Clément operator are stated
in the following:

Lemma 1.127 (Clément). Under the above assumptions, the following prop-
erties hold:

(i) Stability: Let 1 < p < 400 and 0 < m < 1. There is ¢ such that
Vh, VU € mep(g), HC}LUHWm,p(Q) S C||'U||W'm,p(n). (1110)

(ii) Approximation: For K € Ty, denote by Ak the set of elements in Ty,
sharing at least one vertex with K. Let F be an interface between two
elements of Tp,, and denote by Ap the set of elements in T, sharing at
least one vertex with F'; see Figure 1.25. Let [, m, and p satisfy 1 < p <
400 and 0 < m <1 < k+ 1. Then, there is c such that

Vh, VK € Ty, Yv € WP (Ak),  [|v — Chvllmpx < ch™[0]l1pAx-

Similarly, if m + % <I<k+1,

l-m—1
Vh, VK € T, Yo € W'P(Ap), v = Chvllmp.r <chp 7 lvllipan.
Proof. See [C1675, Ber89, BeG9s]. O

An easy consequence of this result is the following;:
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Fig. 1.25. Left: the shaded zone illustrates the set Ax of simplices sharing at least
one vertex with the simplex K. Right: the shaded zone illustrates the set Ap of
simplices sharing at least one vertex with the interface F'.

Corollary 1.128. Let the assumptions of Lemma 1.127 hold, let 0 <[ < k+1,
and let 0 < m < min(1,1). Then, there is ¢ such that

Vh, Yv € WHP(0), inf}C v = vhllmp.2 < ™ 0]lip.0- (1.111)
v EP,

c,h

Remark 1.129.

(i) One difficulty with the Clément interpolation operator is that it does
not preserve homogeneous boundary conditions, i.e., if v vanishes at the
boundary, this is generally not the case for Cpv. This problem is usually solved
by setting boundary nodal values to zero. It can be shown that the Clément
interpolant thus modified satisfies the estimates of Lemma 1.127.

(ii) The technique presented above can be generalized to other finite ele-
ments and to domains with curved boundaries; see, e.g., [Ber89, BeG98]. O

1.6.2 Scott—Zhang interpolation

Besides the fact that the Clément operator does not preserve boundary con-
ditions, another difficulty is that it is not a projection. In [ScZ90], Scott and
Zhang have addressed these two issues and defined an alternative interpolation
operator.

Consider the notation and assumptions of the previous section. With each
node a; in the approximation space Pcl’fh we associate either a d-simplex or a
(d—1)-simplex, say =;, as follows: If a; is in the interior of a d-simplex, say K,
we simply set =; = K. If a; is on a face, i.e., a (d — 1)-simplex, say F, we set
Z; = F. Whenever q; is at the boundary and in the intersection of many faces,
it is important to pick the one face such that F' C 0f2. Let n; be the number of
nodes belonging to =; and denote by {; ¢ }1<q<n, the restrictions to =; of the
local shape functions associated with the nodes lying in =;; see Figure 1.26.
Conventionally set ;1 = ;. We now construct a family {7; 4}1<q<n; as
follows: For an integer ¢, 1 < ¢ < n;, define 7, 4 € span{g; 1,...,¥in,} to be
the unique function such that
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Fig. 1.26. Example of a node a; with associated (d — 1)-simplex =; (d = 2) con-
taining n; = 3 nodes.

/ Yi,qPir = 5(17’7 1<q,r<mn,. (1.112)

=

Then, the Scott—Zhang interpolation operator is defined as follows:

=i

N
SZy WP (2) 3 v — SZpu(x) = Z%/ Yiav € PE. (1.113)
i=1 =

It is clear that SZ), preserves homogeneous boundary conditions, i.e., vjgo = 0
implies SZ,vj9 = 0. Furthermore, (1.112) implies SZpvp, = vy, for all vy, €
Péh. The interpolation properties of the Scott—Zhang interpolation operator
are stated in the following:

Lemma 1.130 (Scott—Zhang). Let p andl satisfy 1 < p < 400 andl > 1 if
p=1,andl > % otherwise. Then, there is ¢ such that the following properties
hold:

(i) Stability: for all 0 < m < min(1,1),
Vh, Yo € WHP(02),  ISZhvllmp.0 < c|v]lip.o- (1.114)
(ii) Approxzimation: provided I < k+ 1, for all 0 < m <1,
Vh, VK € Tp,, Vv € W'P(Ag), v = SZhvllmp.rc < ch ™ 0)ip AL,

where Ak is defined in Lemma 1.127.

1.6.3 Orthogonal projections

Projection onto H'-conforming spaces. Let Pclfh be the H'-conforming
approximation space based on the P, Lagrange finite element; see (1.76). The
results presented in this section also hold for tensor product finite element
spaces, e.g., the approximation space Q’;h defined in (1.77). Consider the
following orthogonal projection operators:
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Ho’}]f:LQ(_Q) — PF, and Hl”,]f CHY () — Plfh,

c, c, c c

with scalar products (u,v)o,0 = [,uv and (u,v)1,0 = [,uv + [, Vu-Vo,
respectively. Recall that

Yoy, € Pck,hv (Hf,}’f(u),vh)o,n = (u,1)0,02;

Yo, € PEy, (IT5F(w), vn) 1.0 = (u,vn)1,0,

c,h

and that Hg’fv (resp., Hcl’;fv) is the closest function to v in Pfih for the L2-
&

norm (resp., H'-norm). The operator Hcl’h is often called the elliptic projector
or the Riesz projector.

Lemma 1.131 (Stability). Let k > 1. The following estimates hold:

o e L2(2), 1% v]o.0 < [v]o.0. (1.115)
voe H(Q), I5vwe < vl (1.116)

Moreover, if the family {Tn}h>o is quasi-uniform, there exists ¢ such that
Vh, Vv € H'(2), [ 5v|h,0 < c|vll,e. (1.117)

Proof. The stability estimates (1.115)—(1.116) directly follow from the defini-
tion of orthogonal projections. Indeed, using the Pythagoras identity yields

Yo € L2(92), |v|

0,k 0,k
0,2 = [l pvllo,e+ llv— I 40|

0,025

and a similar identity holds for IT Cl,]f The proof of (1.117) is the subject of
Exercise 1.17. O

Remark 1.132. Under reasonable assumptions, the stability estimate (1.116)
can be substantially improved. In particular, the elliptic projector is stable in
WhP(£2); see Theorem 3.21 and [BrS94, p. 170]. O

For s > 1 and v € L?({2), we define the so-called negative-norm

ol v = s wloa
wEH (2)NHL(2) wlls,e

Note that this is not the norm considered to define the dual space H*({2),
except in the particular case s = 1. Here, the norm || - || _s,, is simply used as
a quantitative measure for functions in L?(2).

Proposition 1.133. Let k> 1 and 1 < s < k+ 1. Then, there is ¢ such that

Vh, Yo € L*(2), o= T30l 50 <ch® inf [v—vioe  (1.118)
’ UhGPC’h
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Proof. Let v € L?(2) and w € H*(2)NHE(£2). Since s < k+1, Lemma 1.127
implies
[w = Crwllo, < ch’|wls .

. 0k, -
Furthermore, since v — II_; v is L?-orthogonal to P¥,

(v — I Fv,w)o,0 = (v— Y pv,w—Chw)o,g < ch®llv — 23 vlo. [w]s 0

c,
The result follows easily. O
Finally, we state approximation properties for smooth functions.
Proposition 1.134. Let k> 1 and 1 <[ < k.
(i) There exists ¢ such that, for all h and v € H'*($2),

lo = T2 (W)lo,0 < ek olia,o, (1.119)

C

v — Hcl,’;lf(v)Hl,n < ch'olisr.a. (1.120)
(ii) If £2 is convex, there exists ¢ such that, for all h and v € H'T1($2),

lo — TEF@)loe < eh ol o (1.121)

C

(iil) If the family {Tp >0 s quasi-uniform, there exists ¢ such that, for all h
and v € H'TY(0),

lv = IR ()10 < ch'vlip10- (1.122)

c

Proof. See Exercise 1.18. a

Projection onto totally discontinuous spaces. Let £ > 0 and consider
the L2-orthogonal projection Htod’kh from L?(£2) to the space P}, defined in
(1.67). Clearly, for v € L*(2) and K € 7y,

k
(Htod,h”)lK € P,

1.123
/(Htofhv—v)qz(), Vg € Pg. ( )
K

In particular, Hto(iohv is the piecewise constant function equal to m f K
on all cells K € 7. The approximation properties of Htoékh are stated in the
following:
Proposition 1.135. There exists ¢, independent of h, such that, for all 0 <
I<k+1,1<p<oo, andv € WhP(£2),

v — Hgi]th”O,p,Q < Chl|v‘l,p79~ (1.124)
Proof. Straightforward verification. O

Remark 1.136.

(i) The shape-regularity assumption on the mesh is not required for
(1.124).

(ii) An estimate similar to (1.118) holds for Htofhv. O
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1.6.4 The discrete commutator property

The so-called discrete commutator property is a powerful tool to analyze
nonlinear problems; see Bertoluzza [Ber99] and [JoS87]. As a corollary of
Lemma 1.130, we infer the following:

Lemma 1.137 (Bertoluzza). Let the hypotheses of Lemma 1.130 hold.
Then, there is ¢ such that, for all h, v, in P(fh, ¢ in WstLeo(02), and
0<m<s<1,

lgvn — SZu(¢vn)llmp.2 < 7" onlsp2lldlls+1.00.0-

Proof. We prove the result locally. Let K be a cell in the mesh 7;. Denote
by xx some point in K, say the barycenter of K. Let ¢ be a function in
Wetheo((2). Define R = ¢ — ¢(z ). It is clear that R € W1°(£2) and
||RK||0,OO,AK < ChK”(rb”l,oo,Qv
IRk ll1,00.ax < cll@ll1.00.02-

Let 75, be the mean value of v, on Ax. Then, one readily verifies that

[Pnllo.p,ax < cllvnllop,as-
lvn = Ohllmp.ar < chig " lonllspax, 0<m<s<l
Furthermore, observe that

H(bvh - Szh(dwh)”m,p,f( < H(I - SZ}L)((bEh)HthK
+1(Z = SZ1)(¢(vn = Tn)) llm.p. 5

and denote by R; and Ry the two residuals in the right-hand side. Since s > 0,
1+32%ifp:1and1+s> Lif p > 1; moreover, s <1 < k. As a result,
one can use Lemma 1.130 to control R; as follows:

Ry < chid ™ 60nllss1p.a5 < chid " Tnllop.arl@llsr1,00.0
< chig* " onllop,axl@llsr1,00.0-

For the other residual, use the fact that SZ}, is linear, Pclf ,, is invariant under
SZp, and SZ5(v),) = vp, on K to obtain

(Z—821)(¢(vn —Tn)) = (T —SZ1)((¢ — d(zk))(vn —Tn)).
As a result,
Ry = [[(Z — S21) (R (vn = Tn)) llm.p,
< ehye ™| Ric (vn = Tn)|1,p,ak
< chy ™ ([ Rillo,00,ak [0 = Tnl1p,ax
+ Rk 1,004 [vn = Vnllop,ax)

< chy ™ (hiclon = Tnl1p.ax + lvn — Onllop,ax )¢
< chi " vy

1,00,

37P14K||¢”1,oo,9-
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Then, the desired result follows easily from the shape-regularity of the mesh,
which implies that supy. ez, (card{K € Tp; K’ C Ag}) is a fixed constant
independent of h. O

1.7 Inverse Inequalities

The goal of this section is to compare various functional norms on approxi-
mation spaces. Such spaces being finite-dimensional, all the norms therein are
equivalent. The purpose of inverse inequalities is to specify how the equiva-
lence constants depend on h. For the sake of simplicity, we restrict ourselves
to affine meshes and to finite elements for which ¢ i (v) = v o Tk.

Lemma 1.138 (Local inverse inequalities). Let {I/(\',ﬁ7§} be a finite el-
ement. Let | > 0 be such that P C W%°(K). Let {T}n>0 be a shape-
reqular family of affine meshes in R® with h < 1. Let 0 < m < | and
1 < p,q < oo. Then, there is c, independent of h, K, p, and q, such that,
forallv € Px = {poTx"; p € P},

ml+(

[vllip,c < chp IIvllmq,K (1.125)

Proof. (1) Since all the norms in P C Wl’oo(l/(\' ) are equivalent, there exists
¢, only depending on K and [, such that, for all v € P, |0 < c||v

hence,

Hz o, B = H0,1f{5

Voe P, o,z < clblly,z- (1.126)

(2) Let v € Px and 0 < j <. Using (1.93), (1.94), (1.126), and the shape-
regularity of the family {7} }r>o yields

_ 1 1
ol < ehid [det(Ti)|F 101l & < chid ldet(T)l7 3], 2
g 1_ +d(
< chid [det(Jx)| 77 vllogx < chy [0l]o.q.1-
Since hx < h <1 by assumption,
. —j+d(%
Vv e Pk, Vj € {07 s 7l}7 ”UHJ,P,K < h H HO,q’

Taking j = [ yields (1.125) for m = 0.
(3) Let 0 < m <. Let a be a multi-index such that 0 < |a] <. If |a] < l—m

m— l+( m— l+d(

||U||o g K Schy

10%0]l0,p, & <I|Vlli—mp, i <Py T

If I —m < |a| <, one can find two multi-indices § and v such that « = B+
and || =1 — m. Hence,

10°v]lo 5.5 = [107(7v )IIOpK < N0 0l1—m.p. 1

m—l+d(: m—l+d(1—1)

< chg 70 0l < ch [[V]lm.q, 5
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since |y| < m. This proves that for all multi-index « such that 0 < |a| <[,

0%lopx < chm G m.a.k- The conclusion follows readil a
[ D, .4, Y

Example 1.139. For p = ¢, =1 and m = 0, Lemma 1.138 yields ||[v||1p,x <
chi|vllop i for all b, K € Ty, and v € Pk. O

To obtain global inverse inequalities, the quantity h}l must be controlled.
This observation leads to the following:

Definition 1.140 (Quasi-uniformity). A family of meshes {Tp, }r~0 is said
to be quasi-uniform if and only if it is shape-regular and there is ¢ such that

Vh, VK € T, hg > ch. (1.127)

Corollary 1.141 (Global inverse inequalities). Along with the hypotheses
of Lemma 1.138, assume that the family {Tn}rh>o s quasi-uniform. Set W, =
{vp; VK € Ty, vp 0 Tk € ﬁ} Then, using the usual convention if p = oo or
q = 00, there is ¢, independent of h, such that, for allvy, € Wy, and 0 < m <,

1 1
q
<Z ||vh||f’,p,;<> < cpmtmin ) ( > Ivhllqu> - (1.128)

KeT, KeT,

Proof. Let v, € Wy. Assume p # co and g # oo (these two cases are treated
similarly).
(1) Assume p > q. Then, (1.125) implies

I+d(2-1
ST ol i < PTG N Yo 1P
KeTy, KeTy,

To conclude, use the inequality (>, ; af)% < (Qiera 1)é which holds for
p > g > 0 and for all finite sequence of non-negative numbers {a;};cr; see
Exercise 1.20. (2) Assume p < q. Then, (1.125) implies

> enll s < el 50 BT funll

KeTy, KeTy,
a—p P
l ) a q q
<ehrm =l (37 pptte S onlf g
KeT, KeT,

ngﬂmme<thmQ. 0

KeTy,
The following result is often used when dealing with nonlinear problems:

Lemma 1.142. Along with the hypotheses of Lemma 1.138, assume that the
family {Tn}n>o is quasi-uniform. Set Wy, = {vp; VK € Tp, vy o Tk € P}.
Then, there is c, independent of h, such that, for all v, € Wj, N H(£2),
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c(1+ |logh|)||lvnlli,e n dimension 2,

Jonllzmqey < 4 <L F M8 lonllan dimens (1120)
ch™z2||vp|l1,0 in dimension 3.

Proof. See Exercise 1.21 for a proof in dimension 3. ad

Remark 1.143.

(i) A simple consequence of Corollary 1.141 is that for all v;, € Wj, N
WEP(Q2), lvall1p,e < ch™Hvnllop,0-

(ii) A necessary and sufficient condition for quasi-uniformity is that there
exists 7 such that px > 7h for all h and K € T7p,. Indeed, if {7}, },~¢ satisfies
the above property, then % < 77t < 771 for all h and K € 7p, thus
showing that the family {7} }x~¢ is shape-regular. Furthermore, hyx > px >
7 h implies (1.127). Conversely, if {7} }r>0 is a quasi-uniform mesh family,
pKZ%thghforallh>OandK€’]71.

(iii) In two dimensions, one can construct a finer triangulation from an
initial triangulation by connecting all the edge midpoints. Repeating this pro-
cedure yields a quasi-uniform family of meshes; see [Zha95].

(iv) See, e.g., [GiR86, p. 103] and [BrS94, p. 109] for further insight. O

1.8 Exercises

Exercise 1.1. Let Z} be the one-dimensional P; Lagrange interpolation op-
erator defined in (1.6).

(i) Prove that for all h and v € C°(£2), HZ,%UHCO@) < vlleo(m)-
(ii) Prove that for all h and v € C1(£2), |jv — I}LUHCO@) < hl|vller ). (Hint:
Use the mean-value theorem.)

Exercise 1.2 (Hermite finite element).

(i) Prove Lemma 1.82 and Proposition 1.83.

(ii) Prove (1.103) for v € H*(£2) without using the results of §1.5. (Hint:
Adapt the proof of Proposition 1.5 by showing that on a mesh interval
I;, (v —Zftv|;,)"” vanishes at least at one point of I;.)

Exercise 1.3 (P, Lagrange finite element).

(i) Let p € P with k > 1. Assume that p vanishes on the R%hyperplane of
equation A = 0. Prove that there is ¢ € P;r_; such that p = Aq. Then,
prove Proposition 1.34. (Hint: By induction on k.)

(ii) Prove that if k¥ < d and p € Py, vanishes at all the faces of K, then p = 0.

(iii) Prove that the number of nodes of a P, Lagrange finite element located
on any edge of K is (k + 1) in arbitrary dimension d > 2. Prove that
the number of nodes located on any face of K is the dimension of P in
dimension (d — 1). Justify Remark 1.76.



