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Finite Element Interpolation

This chapter introduces the concept of finite elements along with the corre-
sponding interpolation techniques. As an introductory example, we study how
to interpolate functions in one dimension. Finite elements are then defined in
arbitrary dimension, and numerous examples of scalar- and vector-valued fi-
nite elements are presented. Next, the concepts underlying the construction
of meshes, approximation spaces, and interpolation operators are thoroughly
investigated. The last sections of this chapter are devoted to the analysis of
interpolation errors and inverse inequalities.

1.1 One-Dimensional Interpolation

The scope of this section is the interpolation theory of functions defined on an
interval ]a, b[. For an integer k ≥ 0, Pk denotes the space of the polynomials
in one variable, with real coefficients and of degree at most k.

1.1.1 The mesh

A mesh of Ω = ]a, b[ is an indexed collection of intervals with non-zero measure
{Ii = [x1,i, x2,i]}0≤i≤N forming a partition of Ω, i.e.,

Ω =
N⋃

i=0

Ii and
◦

Ii ∩
◦

Ij = ∅ for i 6= j. (1.1)

The simplest way to construct a mesh is to take (N +2) points in Ω such that

a = x0 < x1 < ... < xN < xN+1 = b, (1.2)

and to set x1,i = xi and x2,i = xi+1 for 0 ≤ i ≤ N . The points in the set
{x0, . . . , xN+1} are called the vertices of the mesh. The mesh may have a
variable step size
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hi = xi+1 − xi, 0 ≤ i ≤ N,

and we set
h = max

0≤i≤N
hi.

In the sequel, the intervals Ii are also called elements (or cells) and the mesh
is denoted by Th = {Ii}0≤i≤N . The subscript h refers to the refinement level.

1.1.2 The P1 Lagrange finite element

Consider the vector space of continuous, piecewise linear functions

P 1
h = {vh ∈ C0(Ω); ∀i ∈ {0, . . . , N}, vh|Ii

∈ P1}. (1.3)

This space can be used in conjunction with Galerkin methods to approximate
one-dimensional PDEs; see, e.g., Chapters 2 and 3. For this reason, P 1

h is
called an approximation space. Introduce the functions {ϕ0, . . . , ϕN+1} defined
elementwise as follows: For i ∈ {0, . . . , N + 1},

ϕi(x) =





1
hi−1

(x − xi−1) if x ∈ Ii−1,

1
hi

(xi+1 − x) if x ∈ Ii,

0 otherwise,

(1.4)

with obvious modifications if i = 0 or N +1. Clearly, ϕi ∈ P 1
h . These functions

are often called “hat functions” in reference to the shape of their graph; see
Figure 1.1.

Proposition 1.1. The set {ϕ0, . . . , ϕN+1} is a basis for P 1
h .

Proof. The proof relies on the fact that ϕi(xj) = δij , the Kronecker symbol,
for 0 ≤ i, j ≤ N + 1. Let (α0, . . . , αN+1)

T ∈ RN+2 and assume that the

continuous function w =
∑N+1

i=0 αiϕi vanishes identically in Ω. Then, for
0 ≤ i ≤ N + 1, αi = w(xi) = 0; hence, the set {ϕ0, . . . , ϕN+1} is linearly

independent. Furthermore, for all vh ∈ P 1
h , it is clear that vh =

∑N+1
i=0 vh(xi)ϕi

since, on each element Ii, the functions vh and
∑N+1

i=0 vh(xi)ϕi are affine and
coincide at two points, namely xi and xi+1. ⊓⊔

a x1 x2 xi−1 xi xi+1 xN b

1 ϕ1 ϕi ϕN+1

Fig. 1.1. One-dimensional hat functions.
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Fig. 1.2. Interpolation by continuous, piecewise linear functions.

Definition 1.2. Choose a basis {γ0, . . . , γN+1} for L(P 1
h ; R); henceforth, the

linear forms in this basis are called the global degrees of freedom in P 1
h . The

functions in the dual basis are called the global shape functions in P 1
h .

For i ∈ {0, . . . , N + 1}, choose the linear form

γi : C0(Ω) ∋ v 7−→ γi(v) = v(xi) ∈ R. (1.5)

The proof of Proposition 1.1 shows that a function vh ∈ P 1
h is uniquely defined

by the (N+2)-uplet (vh(xi))0≤i≤N+1. In other words, {γ0, . . . , γN+1} is a basis
for L(P 1

h ; R). Choosing the linear forms (1.5) as the global degrees of freedom
in P 1

h , the global shape functions are the functions {ϕ0, . . . , ϕN+1} defined in
(1.4) since γi(ϕj) = δij , 0 ≤ i, j ≤ N + 1.

Consider the so-called interpolation operator

I1
h : C0(Ω) ∋ v 7−→

N+1∑

i=0

γi(v)ϕi ∈ P 1
h . (1.6)

For a function v ∈ C0(Ω), I1
hv is the unique continuous, piecewise linear

function that takes the same value as v at all the mesh vertices; see Figure 1.2.
The function I1

hv is called the Lagrange interpolant of v of degree 1. Note that
the approximation space P 1

h is the codomain of I1
h.

When approximating PDEs using finite elements, it is important to inves-
tigate the properties of I1

h in Sobolev spaces; see Appendix B. In particular,
recall that for an integer m ≥ 1, Hm(Ω) denotes the space of square-integrable
functions over Ω whose distributional derivatives up to order m are square-
integrable. We use the following notation: ‖v‖0,Ω = ‖v‖L2(Ω), |v|1,Ω = ‖v′‖0,Ω ,

‖v‖1,Ω = (‖v‖2
0,Ω + ‖v′‖2

0,Ω)
1
2 , |v|2,Ω = ‖v′′‖0,Ω , etc.

Lemma 1.3. P 1
h ⊂ H1(Ω).

Proof. Let vh ∈ P 1
h . Clearly, vh ∈ L2(Ω). Furthermore, owing to the conti-

nuity of vh, its first-order distributional derivative is the piecewise constant
function wh such that
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∀Ii ∈ Th, wh|Ii
=

vh(xi+1) − vh(xi)

hi

. (1.7)

Clearly, wh ∈ L2(Ω); hence, vh ∈ H1(Ω). ⊓⊔

Proposition 1.4. I1
h is a linear continuous mapping from H1(Ω) to H1(Ω),

and ‖I1
h‖L(H1(Ω);H1(Ω)) is uniformly bounded with respect to h.

Proof. (1) In one dimension, a function in H1(Ω) is continuous. Indeed, for
v ∈ H1(Ω) and x, y ∈ Ω,

|v(y) − v(x)| ≤

∫ y

x

|v′(s)|ds ≤ |y − x|
1
2 |v|1,Ω , (1.8)

owing to the Cauchy–Schwarz inequality (this can be justified rigorously by a
density argument). Furthermore, taking x to be a point where |v| reaches its
minimum over Ω, the above inequality implies

‖v‖L∞(Ω) ≤ |b − a|−
1
2 ‖v‖0,Ω + |b − a|

1
2 |v|1,Ω , (1.9)

since |v(x)| ≤ |b − a|−
1
2 ‖v‖0,Ω . Therefore, I1

hv is well-defined for v ∈ H1(Ω).
Moreover, Lemma 1.3 implies I1

hv ∈ H1(Ω); hence, I1
h maps H1(Ω) to H1(Ω).

(2) Let Ii ∈ Th for 0 ≤ i ≤ N . Owing to (1.7), (I1
hv)′|Ii

= h−1
i (v(xi+1)−v(xi));

hence, using (1.8) yields the estimate |I1
hv|1,Ii

≤ |v|1,Ii
. Therefore, |I1

hv|1,Ω ≤

|v|1,Ω . Moreover, since ‖I1
hv‖0,Ω ≤ |b − a|

1
2 ‖I1

hv‖L∞(Ω) and ‖I1
hv‖L∞(Ω) ≤

‖v‖L∞(Ω), we deduce from (1.9) that ‖I1
hv‖0,Ω ≤ c ‖v‖1,Ω where c is indepen-

dent of h (assuming h bounded). The conclusion follows readily. ⊓⊔

Proposition 1.5. For all h and v ∈ H2(Ω),

‖v − I1
hv‖0,Ω ≤ h2|v|2,Ω and |v − I1

hv|1,Ω ≤ h|v|2,Ω . (1.10)

Proof. (1) Consider an interval Ii ∈ Th. Let w ∈ H1(Ii) be such that w van-
ishes at some point ξ in Ii. Then, owing to (1.8) we infer ‖w‖0,Ii

≤ hi|w|1,Ii
.

(2) Let v ∈ H2(Ω), let i ∈ {0, . . . , N}, and set wi = (v − I1
hv)′|Ii

. Note that

wi ∈ H1(Ii) and that wi vanishes at some point ξ in Ii owing to the mean-
value theorem. Applying the estimate derived in step 1 to wi and using the
fact that (I1

hv)′′ vanishes identically on Ii yields |v − I1
hv|1,Ii

≤ hi|v|2,Ii
. The

second estimate in (1.10) is then obtained by summing over the mesh inter-
vals. To prove the first estimate, observe that the result of step 1 can also be
applied to (v − I1

hv)|Ii
yielding

‖v − I1
hv‖0,Ii

≤ hi|v − I1
hv|1,Ii

≤ h2
i |v|2,Ii

.

Conclude by summing over the mesh intervals. ⊓⊔
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Remark 1.6.
(i) The bound on the interpolation error involves second-order derivatives

of v. This is reasonable since the larger the second derivative, the more the
graph of v deviates from the piecewise linear interpolant.

(ii) If the function to be interpolated is in H1(Ω) only, one can prove the
following results:

∀h, ‖v − I1
hv‖0,Ω ≤ h|v|1,Ω and lim

h→0
|v − I1

hv|1,Ω = 0. ⊓⊔

The proof of Proposition 1.5 shows that the operator I1
h is endowed with

local interpolation properties, i.e., the interpolation error is controlled ele-
mentwise before being controlled globally over Ω. This motivates the intro-
duction of local interpolation operators. Let Ii = [xi, xi+1] ∈ Th and let
Σi = {σi,0, σi,1} where σi,0, σi,1 ∈ L(P1; R) are such that, for all p ∈ P1,

σi,0(p) = p(xi) and σi,1(p) = p(xi+1). (1.11)

Note that Σi is a basis for L(P1; R). The triplet {Ii, P1, Σi} is called a (one-
dimensional) P1 Lagrange finite element, and the linear forms {σi,0, σi,1} are
the corresponding local degrees of freedom. The functions {θi,0, θi,1} in the
dual basis of Σi (i.e., σi,m(θi,n) = δmn for 0 ≤ m,n ≤ 1) are called the local
shape functions. One readily verifies that

θi,0(t) = 1 − t−xi

hi
and θi,1(t) = t−xi

hi
. (1.12)

Finally, introduce the family {I1
Ii
}Ii∈Th

of local interpolation operators such
that, for i ∈ {0, . . . , N},

I1
Ii

: C0(Ii) ∋ v 7−→
1∑

m=0

σi,m(v)θi,m. (1.13)

The proof of Propositions 1.4 and 1.5 can now be rewritten using the local
interpolation operators I1

Ii
. In particular, the key properties are, for 0 ≤ i ≤ N

and v ∈ H2(Ii),

‖v − I1
Ii

v‖0,Ii
≤ h2

i |v|2,Ii
and |v − I1

Ii
v|1,Ii

≤ hi|v|2,Ii
.

1.1.3 Pk Lagrange finite elements

The interpolation technique presented in §1.1.2 generalizes to higher-degree
polynomials. Consider the mesh Th = {Ii}0≤i≤N introduced in §1.1.1. Let

P k
h = {vh ∈ C0(Ω); ∀i ∈ {0, . . . , N}, vh|Ii

∈ Pk}. (1.14)

To investigate the properties of the approximation space P k
h and to construct

an interpolation operator with codomain P k
h , it is convenient to consider La-

grange polynomials. Recall the following:
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Definition 1.7 (Lagrange polynomials). Let k ≥ 1 and let {s0, . . . , sk} be
(k + 1) distinct numbers. The Lagrange polynomials {Lk

0 , . . . ,Lk
k} associated

with the nodes {s0, . . . , sk} are defined to be

Lk
m(t) =

∏
l 6=m(t − sl)∏

l 6=m(sm − sl)
, 0 ≤ m ≤ k. (1.15)

The Lagrange polynomials satisfy the important property

Lk
m(sl) = δml, 0 ≤ m, l ≤ k.

Figure 1.3 presents families of Lagrange polynomials with equi-distributed
nodes in the reference interval [0, 1] for k = 1, 2, and 3.

For i ∈ {0, . . . , N}, introduce the nodes ξi,m = xi + m
k

hi, 0 ≤ m ≤ k,
in the mesh interval Ii; see Figure 1.4. Let {Lk

i,0, . . . ,L
k
i,k} be the Lagrange

polynomials associated with these nodes. For j ∈ {0, . . . , k(N+1)} with j =
ki + m and 0 ≤ m ≤ k − 1, define the function ϕj elementwise as follows: For
1 ≤ m ≤ k − 1,

ϕki+m(x) =

{
Lk

i,m(x) if x ∈ Ii,

0 otherwise,

and for m = 0,

0 10.5

0

1

0.5

0 10.5

0

1

0.5

0 10.5

0

1

0.5

Fig. 1.3. Families of Lagrange polynomials with equi-distributed nodes in the ref-
erence interval [0, 1] and of degree k = 1 (left), 2 (center), and 3 (right).

mesh vertices

k = 1

k = 2

k = 3

Fig. 1.4. Mesh vertices and nodes for k = 1, 2, and 3.
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ϕki(x) =





Lk
i−1,k(x) if x ∈ Ii−1,

Lk
i,0(x) if x ∈ Ii,

0 otherwise,

with obvious modifications if i = 0 or N + 1. The functions ϕj are illustrated
in Figure 1.5 for k = 2. Note the difference between the support of the func-
tions associated with mesh vertices (two adjacent intervals) and that of the
functions associated with cell midpoints (one interval).

Lemma 1.8. ϕj ∈ P k
h .

Proof. Let j ∈ {0, . . . , k(N+1)} with j = ki + m. If 1 ≤ m ≤ k − 1, ϕj(xi) =
ϕj(xi+1) = 0; hence, ϕj ∈ C0(Ω). Moreover, the restrictions of ϕj to the
mesh intervals are in Pk by construction. Therefore, ϕj ∈ P k

h . Now, assume
m = 0 (i.e., j = ki) and 0 < i < N + 1. Clearly, ϕki is continuous at xi by
construction and ϕki(xi−1) = ϕki(xi+1) = 0; hence, ϕki ∈ P k

h . The cases i = 0
and i = N + 1 are treated similarly. ⊓⊔

Introduce the set of nodes {aj}0≤j≤k(N+1) such that aj = ξi,m where
j = ik + m. For j ∈ {0, . . . , k(N+1)}, consider the linear form

γj : C0(Ω) ∋ v 7−→ γj(v) = v(aj). (1.16)

Proposition 1.9. {ϕ0, . . . , ϕk(N+1)} is a basis for P k
h , and {γ0, . . . , γk(N+1)}

is a basis for L(P k
h ; R).

Proof. Similar to that of Proposition 1.1 since γj(ϕj′) = δjj′ for 0 ≤ j, j′ ≤
k(N + 1). ⊓⊔

The global degrees of freedom in P k
h are chosen to be the (k(N+1)+1)

linear forms defined in (1.16); hence, the global shape functions in P k
h are the

functions {ϕ0, . . . , ϕk(N+1)}.
The main advantage of using high-degree polynomials is that smooth func-

tions can be interpolated to high-order accuracy. Define the interpolation op-
erator Ik

h to be

a xi−1

ξi−1,1

xi

ξi,1

xi+1 xj

ξj,1

xj+1 b

1
ϕ2i ϕ2j+1

Fig. 1.5. Global shape functions in the approximation space P 2
h .
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Ik
h : C0(Ω) ∋ v 7−→

k(N+1)∑

j=0

γj(v)ϕj ∈ P k
h . (1.17)

Ik
hv is called the Lagrange interpolant of v of degree k. Clearly, Ik

h is a linear
operator, and Ik

hv is the unique function in P k
h that takes the same value as

v at all the mesh nodes. The approximation space P k
h is the codomain of Ik

h .

Lemma 1.10. P k
h ⊂ H1(Ω).

Proof. Similar to that of Lemma 1.3. ⊓⊔

To investigate the properties of Ik
h , it is convenient to introduce a family of

local interpolation operators. On Ii = [xi, xi+1] ∈ Th, choose the local degrees
of freedom to be the (k + 1) linear forms {σi,0, . . . , σi,k} defined as follows:

σi,m : Pk ∋ p 7−→ σi,m(p) = p(ξi,m), 0 ≤ m ≤ k. (1.18)

The triplet {Ii, Pk, Σi} is called a (one-dimensional) Pk Lagrange finite ele-
ment, and the points {ξi,0, . . . , ξi,k} are called the nodes of the finite element.
Clearly, the local shape functions {θi,0, . . . , θi,k} are the (k + 1) Lagrange
polynomials associated with the nodes {ξi,0, . . . , ξi,k}, i.e., θi,m = Lk

i,m for

0 ≤ m ≤ k. Finally, introduce the family {Ik
Ii
}Ii∈Th

of local interpolation
operators such that, for i ∈ {0, . . . , N},

Ik
Ii

: C0(Ii) ∋ v 7−→
k∑

m=0

σi,m(v)θi,m, (1.19)

i.e., for all 0 ≤ i ≤ N and v ∈ C0(Ω), (Ik
hv)|Ii

= Ik
Ii

(v|Ii
).

Let us show that the family {Ik
Ii
}Ii∈Th

can be generated from a single

reference interpolation operator. Let K̂ = [0, 1] be the unit interval, henceforth

referred to as the reference interval. Set P̂ = Pk, and define the (k + 1) linear
forms {σ̂0, . . . , σ̂k} as follows:

σ̂m : Pk ∋ p̂ 7−→ σ̂m(p̂) = p̂(ξ̂m), 0 ≤ m ≤ k, (1.20)

where ξ̂m = m
k

. Let {L̂k
0 , . . . , L̂k

k} be the Lagrange polynomials associated

with the nodes {ξ̂0, . . . , ξ̂k}; see Figure 1.3. Set θ̂m = L̂k
m, 0 ≤ m ≤ k, so that

σ̂m(θ̂n) = δmn for 0 ≤ m,n ≤ k. Then, {K̂, P̂ , Σ̂} is a Pk Lagrange finite
element, and the corresponding interpolation operator is

Ik
bK

: C0(K̂) ∋ v̂ 7−→
k∑

m=0

σ̂m(v̂)θ̂m.

{K̂, P̂ , Σ̂} is called the reference finite element and Ik
bK

the reference interpo-

lation operator. For i ∈ {0, . . . , N}, consider the affine transformations
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Ti : K̂ ∋ t 7−→ x = xi + thi ∈ Ii. (1.21)

Since Ti(K̂) = Ii, the mesh Th can be constructed by applying the affine

transformations Ti to the reference interval K̂. Moreover, owing to the fact
that Ti(ξ̂m) = ξi,m for 0 ≤ m ≤ k, it is clear that θi,m ◦ Ti = θ̂m and
σi,m(v) = σ̂m(v ◦ Ti) for all v ∈ C0(Ii). Hence, using

Ik
Ii

(v)(Ti(x̂)) =

k∑

m=0

σi,m(v)θi,m(Ti(x̂)) =

k∑

m=0

σi,m(v)θ̂m(x̂) =

=
k∑

m=0

σ̂m(v ◦ Ti)θ̂m(x̂) = Ik
bK
(v ◦ Ti)(x̂),

we infer
∀v ∈ C0(Ii), Ik

Ii
(v) ◦ Ti = Ik

bK
(v ◦ Ti). (1.22)

In other words, the family {Ik
Ii
}Ii∈Th

is entirely generated by the transfor-

mations {Ti}Ii∈Th
and the reference interpolation operator Ik

bK
. The property

(1.22) plays a key role when estimating the interpolation error; see the proof
of Proposition 1.12 below.

Proposition 1.11. Ik
h is a linear continuous mapping from H1(Ω) to H1(Ω),

and ‖Ik
h‖L(H1(Ω);H1(Ω)) is uniformly bounded with respect to h.

Proof. (1) To prove that Ik
h maps H1(Ω) to H1(Ω), use the argument of

step 1 in the proof of Proposition 1.4.
(2) Let v ∈ H1(Ω) and Ii ∈ Th. Since

∑k
m=0 θ′i,m = 0,

(Ik
Ii

v)′ =

k∑

m=0

[v(ξi,m) − v(xi)]θ
′
i,m.

Inequality (1.8) yields |v(ξi,m)−v(xi)| ≤ h
1
2

i |v|1,Ii
for 0 ≤ m ≤ k. Furthermore,

changing variables in the integral, it is clear that |θi,m|1,Ii
= h

− 1
2

i |θ̂m|1, bK
. Set

ck = max0≤m≤k |θ̂m|1, bK
and observe that this quantity is mesh-independent.

A straightforward calculation yields

|Ik
Ii

v|1,Ii
≤ (k + 1)ck|v|1,Ii

,

showing that |Ik
hv|1,Ω is controlled by |v|1,Ω uniformly with respect to h. In

addition, since
∑k

m=0 θi,m = 1,

Ik
Ii

v − v(xi) =

k∑

m=0

[v(ξi,m) − v(xi)]θi,m,
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implying, for x ∈ Ii, |I
k
Ii

v(x)| ≤ ‖v‖L∞(Ω) +(k +1)dkh
1
2

i |v|1,Ii
with the mesh-

independent constant dk = max0≤m≤k ‖θ̂m‖
L∞( bK). Then, using(1.9) yields

‖Ik
hv‖L∞(Ω) is controlled by ‖v‖1,Ω uniformly with respect to h. To conclude,

use the fact that ‖Ik
hv‖0,Ω ≤ |b − a|

1
2 ‖Ik

hv‖L∞(Ω). ⊓⊔

we

Proposition 1.12. Let 0 ≤ l ≤ k. Then, there exists c such that, for all h

and v ∈ H l+1(Ω),

‖v − Ik
hv‖0,Ω + h|v − Ik

hv|1,Ω ≤ c hl+1|v|l+1,Ω , (1.23)

and for l ≥ 1,

l+1∑

m=2

hm

(
N∑

i=0

|v − Ik
hv|2m,Ii

) 1
2

≤ c hl+1|v|l+1,Ω . (1.24)

Proof. Let 0 ≤ l ≤ k and 0 ≤ m ≤ l + 1. Let v ∈ H l+1(Ω).
(1) Consider a mesh interval Ii. Set v̂ = v ◦ Ti. Then, use (1.22) and change
variables in the integral to obtain

|v − Ik
Ii

v|m,Ii
= h

−m+ 1
2

i |v̂ − Ik
bK
v̂|

m, bK
.

Similarly, |v̂|
l+1, bK

= h
l+ 1

2

i |v|l+1,Ii
.

(2) Consider the linear mapping

F : H l+1(K̂) ∋ v̂ 7−→ v̂ − Ik
bK
v̂ ∈ Hm(K̂).

Note that Ik
bK
v̂ is meaningful since in one dimension, v̂ ∈ H l+1(K̂) with l ≥ 0

implies v̂ ∈ C0(K̂). Moreover, F is continuous from H l+1(K̂) to Hm(K̂).
Indeed, one can easily adapt the proof of Proposition 1.11 to prove that Ik

bK
is

continuous from H1(K̂) to Hs(K̂) for all s ≥ 1. Furthermore, it is clear that

Pk is invariant under F since, for all p̂ ∈ Pk with p̂ =
∑k

n=0 αnθ̂n,

I bK
p̂ =

k∑

m,n=0

αnσ̂m(θ̂n)θ̂m =
k∑

m,n=0

αnδmnθ̂m =
k∑

n=0

αnθ̂n = p̂.

(3) Since l ≤ k, Pl is invariant under F . As a result,

|v̂ − Ik
bK
v̂|

m, bK
= |F(v̂)|

m, bK
= inf

bp∈Pl

|F(v̂ + p̂)|
m, bK

≤ ‖F‖L(Hl+1( bK);Hm( bK)) inf
bp∈Pl

‖v̂ + p̂‖
l+1, bK

≤ c inf
bp∈Pl

‖v̂ + p̂‖
l+1, bK

≤ c |v̂|
l+1, bK

,



1.1. One-Dimensional Interpolation 13

the last estimate resulting from the Deny–Lions Lemma; see Lemma B.67.
The identities derived in step 1 yield

|v − Ik
Ii

v|m,Ii
= h

−m+ 1
2

i |v̂ − Ik
bK
v̂|

m, bK

≤ c h
−m+ 1

2

i |v̂|
l+1, bK

≤ c hl+1−m
i |v|l+1,Ii

.

(4) To derive the estimates (1.23) and (1.24), sum over the mesh intervals.
When m = 0 or 1, global norms over Ω can be used since P k

h ⊂ H1(Ω) owing
to Lemma 1.10. ⊓⊔

Remark 1.13.
(i) The proof of Proposition 1.12 shows that the interpolation properties

of Ik
h are local.
(ii) If the function to be interpolated is smooth enough, say v ∈ Hk+1(Ω),

the interpolation error is of optimal order. In particular, (1.23) yields

∀h, ∀v ∈ Hk+1(Ω), ‖v − Ik
hv‖0,Ω + h|v − Ik

hv|1,Ω ≤ c hk+1|v|k+1,Ω .

However, one should bear in mind that the order of the interpolation error
may not be optimal if the function to be interpolated is not smooth. For
instance, if v ∈ Hs(Ω) and v 6∈ Hs+1(Ω) with s ≥ 2, considering polynomials
of degree larger than s − 1 does not improve the interpolation error.

(iii) If the function to be interpolated is in H1(Ω) only, one can still prove
limh→0 |v −Ik

hv|1,Ω = 0. To this end, use the density of H2(Ω) in H1(Ω) and
(1.23); details are left as an exercise. ⊓⊔

1.1.4 Interpolation by discontinuous functions

Let
P k

d,h = {vh ∈ L1(Ω); ∀i ∈ {0, . . . , N}, vh|Ii
∈ Pk}.

Since the restriction of a function vh ∈ P k
d,h to an interval Ii can be chosen

independently of its restriction to the other intervals, P k
d,h is a vector space

of dimension (k + 1) × (N + 1). However, instead of taking the Lagrange
polynomials as local shape functions, it is often more convenient to consider
the Legendre polynomials or modifications thereof based on the concept of
hierarchical bases; see §1.1.5. Let K̂ = [0, 1] be the reference interval.

Definition 1.14 (Legendre polynomials). The Legendre polynomials on

the reference interval [0, 1] are defined to be Êk(t) = 1
k!

dk

dtk (t2 − t)k for k ≥ 0.

The Legendre polynomial Êk is of degree k, Êk(0) = (−1)k, Êk(1) = 1, and

its k roots are in K̂. The roots of the Legendre polynomials are called Gauß–
Legendre points and play an important role in the design of quadratures; see
§8.1. The first four Legendre polynomials are (see Figure 1.6)
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Fig. 1.6. Legendre polynomials of degree at most 3 on the reference interval [0, 1].

Ê0(t) = 1, Ê1(t) = 2t − 1,

Ê2(t) = 6t2 − 6t + 1, Ê3(t) = 20t3 − 30t2 + 12t − 1.

In the literature, the Legendre polynomials are sometimes defined using the
reference interval [−1,+1]. Up to rescaling, both definitions are equivalent. In
the context of finite elements, an important property of Legendre polynomials
is that ∫ 1

0

Êm(t)Ên(t) dt = 1
2m+1δmn. (1.25)

Introduce the functions {ϕi,m}0≤i≤N,0≤m≤k such that ϕi,m|Ij
= δij Êm ◦

T−1
i where the geometric transformation Ti is defined in (1.21). Clearly,

{ϕi,m}0≤i≤N,0≤m≤k is a basis for P k
d,h. The corresponding degrees of freedom

are the linear forms γi,m, 0 ≤ i ≤ N and 0 ≤ m ≤ k, such that

γi,m : L1(Ω) ∋ v 7−→ γi,m(v) = 2m+1
hi

∫

Ii

v(x) Êm ◦ T−1
i (x) dx,

since, for 0 ≤ i, i′ ≤ N and 0 ≤ m,m′ ≤ k,

γi,m(ϕi′,m′) = 2m+1
hi

∫

Ii

ϕi′,m′(x) Êm ◦ T−1
i (x) dx

= (2m + 1)δii′δmm′

∫

bK

Êm(t)2 dt = δii′δmm′ .

Define the interpolation operator Ik
d,h by

Ik
d,h : L1(Ω) ∋ v 7−→

N∑

i=0

k∑

m=0

γi,m(v)ϕi,m ∈ P k
d,h. (1.26)
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For instance, I0
d,hv is the unique piecewise constant function that takes the

same mean value as v over the mesh intervals.
Let Ii = [xi, xi+1] ∈ Th and choose for the local degrees of freedom in Pk

the set Σi = {γi,m}0≤m≤k. The triplet {Ii, Pk, Σi} is often called a modal finite
element; see §1.1.5 for further insight. The local shape functions are θi,m =

Êm ◦ T−1
i . Introduce the family {Ik

d,Ii
}Ii∈Th

of local interpolation operators
such that, for 0 ≤ i ≤ N ,

Ik
d,Ii

: L1(Ii) ∋ v 7−→
k∑

m=0

σi,m(v)θi,m. (1.27)

Then, it is clear that, for all v ∈ L1(Ω), (Ik
d,hv)|Ii

= Ik
d,Ii

(v|Ii
). Using the

family {Ik
d,Ii

}Ii∈Th
, one easily verifies the following results:

Proposition 1.15. Ik
d,h is a linear continuous mapping from L1(Ω) to L1(Ω),

and ‖Ik
d,h‖L(L1(Ω);L1(Ω)) is uniformly bounded with respect to h.

Proposition 1.16. Let k ≥ 0 and let 0 ≤ l ≤ k. Then, there exists c such
that, for all h and v ∈ H l+1(Ω),

‖v − Ik
d,hv‖0,Ω +

l+1∑

m=1

hm

(
N∑

i=0

|v − Ik
d,hv|2m,Ii

) 1
2

≤ c hl+1|v|l+1,Ω .

Proof. Use steps 1, 2, and 3 in the proof of Proposition 1.12. ⊓⊔

Example 1.17. Taking k = l = 0 in Proposition 1.16 yields, for all h and
v ∈ H1(Ω), ‖v − I0

d,hv‖0,Ω ≤ c h|v|1,Ω . ⊓⊔

1.1.5 Hierarchical polynomial bases

Although the emphasis in this book is set on h-type finite element methods
for which convergence is achieved by refining the mesh, it is also possible to
consider p-type finite element methods for which convergence is achieved by
increasing the polynomial degree of the interpolation in every element. The
hp-type finite element method is a combination of these two strategies. The
idea that the p version of the finite element method can be as efficient as the
h version is rooted in a series of papers by Babuška et al. [BaS81, BaD81].

When working with high-degree polynomials, it is important to select care-
fully the polynomial basis. The material presented herein is set at an intro-
ductory level; see, e.g., [KaS99b, pp. 31–59]. The following definition plays an
important role in the construction of polynomial bases:

Definition 1.18 (Hierarchical modal basis). A family {Bk}k≥0, where Bk

is a set of polynomials, is said to be a hierarchical modal basis if, for all k ≥ 0:

(i) Bk is a basis for Pk.
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(ii) Bk ⊂ Bk+1.

Example 1.19. The simplest example of hierarchical modal basis is Bk =
{1, x, . . . , xk}. ⊓⊔

So far, the local shape functions {θ̂0, . . . , θ̂k} we have used are the Lagrange

polynomials {L̂k
0 , . . . , L̂k

k} or the Legendre polynomials {Ê0, . . . , Êk}. Clearly,
the Legendre polynomial basis is a hierarchical modal basis. This is not the
case for the Lagrange polynomial basis, which instead has the remarkable
property that L̂k

l (ξ̂l′) = δll′ at the associated nodes {ξ̂0, . . . , ξ̂k}. Because of
this property, the Lagrange polynomial basis is said to be a nodal basis.

A first important criterion to select a high-degree polynomial basis is that
the basis is orthogonal or nearly orthogonal with respect to an appropriate
inner product. Let K̂ = [0, 1] be the reference interval and define the matrix
M bK

of order k + 1 with entries

∀m,n ∈ {0, . . . , k}, M bK,mn
=

∫

bK

θ̂m(t)θ̂n(t) dt. (1.28)

The matrix M bK
is symmetric positive definite and is called the elemental

mass matrix. The high-degree polynomial basis can be constructed so that
M bK

is diagonal or “almost” diagonal. Define the condition number of M bK
to

be the ratio between its largest and smallest eigenvalue; see §9.1. Instead of
diagonality, an alternative criterion to select a polynomial basis can be that
the condition number of M bK

does not increase “too much” as k grows; see
Remark 1.20(i).

A second important criterion is that interface conditions between adjacent
mesh elements can be imposed easily. For instance, imposing continuity at the
interfaces ensures that the codomain of the global interpolation operator is in
H1(Ω); see, e.g., Lemmas 1.3 and 1.10.

Remark 1.20.
(i) The conditioning of the elemental mass matrix has important conse-

quences on computational efficiency. For instance, in time-dependent problems
discretized with explicit time-marching algorithms, this matrix has to be in-
verted at each time step; see, e.g.,(6.27). Furthermore, for time-dependent
advection problems, explicit time step restrictions are less severe when the
elemental mass matrix is well-conditioned; see [KaS99b, p. 187] and also Ex-
ercises 6.7 and 6.9.

(ii) Instead of the elemental mass matrix, one can also consider the ele-
mental stiffness matrix A bK

defined by

∀m,n ∈ {0, . . . , k}, A bK,mn
=

∫

bK

d
dt

θ̂m(t) d
dt

θ̂n(t) dt.

This matrix, which is symmetric and positive, arises when approximating the
Laplace equation; see §3.1. The high-degree polynomial basis can then be
constructed so that A bK

remains relatively well-conditioned. ⊓⊔
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The Legendre polynomial basis satisfies the first criterion above. Owing
to (1.25), the mass matrix is diagonal and its condition number is (2k + 1).

However, Legendre polynomials do not vanish at the boundary of K̂, making it
cumbersome to enforce C0-continuity between adjacent mesh intervals. On the
other hand, the Lagrange polynomial basis satisfies the C0-continuity criterion
provided the nodal points contain the interval endpoints, but the mass matrix
is dense and its condition number explodes exponentially with k; see [OlD95]
for a proof and [KaS99b, p. 44] for an illustration. We now discuss appropriate
modifications of the above bases designed to better fulfill the above criteria.

Modal (C0-continuous) basis. We first define the Jacobi polynomials.

Definition 1.21 (Jacobi polynomials). Let α > −1 and β > −1. The

Jacobi polynomials {J α,β
k }k≥0 are defined by

J α,β
k (t) = (−1)k

k! 2−α−β(1 − t)−αt−β dk

dtk

(
(1 − t)α+ktβ+k

)
. (1.29)

The Jacobi polynomials satisfy the important orthogonality property

∫

bK

(1 − t)αtβJ α,β
m (t)J α,β

n (t) dt = cm,α,βδmn, (1.30)

with constant cm,α,β = 1
2m+α+β+1

Γ (m+α+1)Γ (m+β+1)
m!Γ (m+α+β+1) . The first Jacobi poly-

nomials for α = β = 1 are J 1,1
0 (t) = 1, J 1,1

1 (t) = 4t − 2, and J 1,1
2 (t) =

15t2 − 15t + 3. Note that the Legendre polynomials introduced in Defini-
tion 1.14 are Jacobi polynomials with parameters α = β = 0. For more details
on Jacobi polynomials, see [AbS72, Chap. 22] and [KaS99b, p. 350].

The modal (C0-continuous) basis is the set of functions {θ̂0, . . . , θ̂k} such
that

θ̂l(t) =





1 − t if l = 0,

(1 − t)tJ 1,1
l−1(t) if 0 < l < k,

t if l = k.

(1.31)

This basis possesses several attractive features:

(i) It is a hierarchical modal basis according to Definition 1.18.
(ii) C0-continuity at element endpoints can be easily enforced since only the

first and last basis functions do not vanish at the endpoints.
(iii) Owing to the use of Jacobi polynomials with parameters α = β = 1, the

elemental mass matrix M bK
is such that M bK,mn

= 0 for |m − n| > 2
and 0 ≤ m,n ≤ k, unless m = k and n ≤ 2 or n = k and m ≤ 2.
Furthermore, this matrix remains relatively well-conditioned. A precise
result in arbitrary dimension d using tensor products of modal hierar-
chical bases is that the condition number of the elemental mass matrix
(resp., stiffness matrix) is equivalent to 4kd (resp., 4k(d−1)) uniformly in
k; see [HuG98].
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Fig. 1.7. Left: Modal (C0-continuous) basis functions of degree at most 4 on the
reference interval [0, 1]. Right: Nodal (C0-continuous) basis functions of degree at
most 3 on the same interval.

The modal (C0-continuous) basis functions are shown in the left panel of
Figure 1.7 for k = 5.

Remark 1.22. Note that in the present case the degrees of freedom have
no evident definition. It is more natural to define directly the local shape
functions without resorting to the notion of degrees of freedom. ⊓⊔

Nodal (C0-continuous) basis. Nodal basis functions are interesting in the
context of quadratures; see §8.1 for an introduction to these techniques. The
principle of quadratures is to approximate the integral of a function over K̂

by a linear combination of the values it takes at (k + 1) points in K̂, say

{ξ̂0, . . . , ξ̂k}, in the form

∫

bK

f(t) dt ≃
k∑

l=0

ω̂lf(ξ̂l). (1.32)

The points {ξ̂0, . . . , ξ̂k} are called the quadrature nodes and the numbers
{ω̂0, . . . , ω̂k} the quadrature weights. For k ≥ 2, the Gauß–Lobatto quadra-

ture nodes are defined to be the two endpoints of K̂ and the (k − 1) roots of

Ê ′
k. The resulting quadrature rule is exact for polynomials up to degree 2k−1.

Define the local degrees of freedom {σ̂0, . . . , σ̂k} such that, for 0 ≤ i ≤ k,

σ̂i : Pk ∋ p̂ 7−→ σ̂i(p̂) = p(ξ̂i) ∈ R.

Then, the local shape functions {θ̂0, . . . , θ̂k} are the Lagrange polynomials

associated with the nodes {ξ̂0, . . . , ξ̂k}. Using standard induction relations on
the Legendre polynomials, it is possible to show that the local shape functions
{θ̂0, . . . , θ̂k} are given by
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∀m ∈ {0 . . . , k}, θ̂m(t) =
(t − 1)tÊ ′

k(t)

k(k + 1)Êk(ξ̂m)(t − ξ̂m)
. (1.33)

These functions are shown in the right panel of Figure 1.7 for k = 4. Although
these nodal basis functions are not hierarchical, they present attractive fea-
tures in the context of spectral element methods; see [KaS99b, p. 51] and [Pat84]
for more details. If the quadrature (1.32) is used to evaluate M bK

in (1.28), the
elemental mass matrix becomes diagonal, and each diagonal entry is equal to
the row-wise sum of the entries of the exact elemental matrix. Summing row-
wise the entries of the mass matrix and using the result as diagonal entries is
often referred to as lumping.

1.2 Finite Elements: Definitions and Examples

The purpose of this section is to give a general definition of finite elements and
local interpolation operators. Numerous two- and three-dimensional examples
are listed.

1.2.1 Main definitions

Following Ciarlet, a finite element is defined as a triplet {K,P,Σ}; see, e.g.,
[Cia91, p. 93].

Definition 1.23. A finite element consists of a triplet {K,P,Σ} where:

(i) K is a compact, connected, Lipschitz subset of Rd with non-empty inte-
rior.

(ii) P is a vector space of functions p : K → Rm for some positive integer m

(typically m = 1 or d).
(iii) Σ is a set of nsh linear forms {σ1, . . . , σnsh

} acting on the elements of
P , and such that the linear mapping

P ∋ p 7−→
(
σ1(p), . . . , σnsh

(p)
)
∈ Rnsh , (1.34)

is bijective, i.e., Σ is a basis for L(P ; R). The linear forms {σ1, . . . , σnsh
}

are called the local degrees of freedom.

Proposition 1.24. There exists a basis {θ1, . . . , θnsh
} in P such that

σi(θj) = δij , 1 ≤ i, j ≤ nsh.

Proof. Direct consequence of the bijectivity of the mapping (1.34). ⊓⊔

Definition 1.25. {θ1, . . . , θnsh
} are called the local shape functions.
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Remark 1.26. Condition (iii) in Definition 1.23 amounts to proving that

∀(α1, . . . , αnsh
) ∈ Rnsh , ∃!p ∈ P, σi(p) = αi for 1 ≤ i ≤ nsh,

which, in turn, is equivalent to

{
dimP = cardΣ = nsh,

∀p ∈ P, (σi(p) = 0, 1 ≤ i ≤ nsh) =⇒ (p = 0).

This property is usually referred to as unisolvence. In the literature, the bijec-
tivity of the mapping (1.34) is sometimes not included in the definition and,
if this property holds, the finite element is said to be unisolvent. ⊓⊔

Definition 1.27 (Lagrange finite element). Let {K,P,Σ} be a finite ele-
ment. If there is a set of points {a1, . . . , ansh

} in K such that, for all p ∈ P ,
σi(p) = p(ai), 1 ≤ i ≤ nsh, {K,P,Σ} is called a Lagrange finite element.
The points {a1, . . . , ansh

} are called the nodes of the finite element, and the
local shape functions {θ1, . . . , θnsh

} (which are such that θi(aj) = δij for
1 ≤ i, j ≤ nsh) are called the nodal basis of P .

Example 1.28. See §1.1.2 and §1.1.3 for one-dimensional examples of La-
grange finite elements. ⊓⊔

Remark 1.29. In the literature, Lagrange finite elements as defined above
are also called nodal finite elements. ⊓⊔

1.2.2 Local interpolation operator

Let {K,P,Σ} be a finite element. Assume that there exists a normed vector
space V (K) of functions v : K → Rm, such that:

(i) P ⊂ V (K).
(ii) The linear forms {σ1, . . . , σnsh

} can be extended to V (K)′.

Then, the local interpolation operator IK can be defined as follows:

IK : V (K) ∋ v 7−→
nsh∑

i=1

σi(v)θi ∈ P. (1.35)

V (K) is the domain of IK and P is its codomain. Note that the term “in-
terpolation” is used in a broad sense since IKv is not necessarily defined by
matching point values of v.

Proposition 1.30. P is invariant under IK , i.e., ∀p ∈ P , IKp = p.

Proof. Letting p =
∑nsh

j=1 αjθj yields IKp =
∑nsh

i,j=1 αjσi(θj)θi = p. ⊓⊔



1.2. Finite Elements: Definitions and Examples 21

Example 1.31.
(i) For Lagrange finite elements, one may choose V (K) = [C0(K)]m or

V (K) = [Hs(K)]m with s > d
2 . The local Lagrange interpolation operator is

defined as follows:

IK : V (K) ∋ v 7−→ IKv =

nsh∑

i=1

v(ai)θi, (1.36)

i.e., the Lagrange interpolant is constructed by matching the point values at
the Lagrange nodes.

(ii) For the modal finite elements discussed in §1.1.4, an admissible choice
is V (K) = L1(K). ⊓⊔

Remark 1.32. It may seem more appropriate to define a finite element as a
quadruplet {K,P,Σ, V (K)}, where the triplet {K,P,Σ} complies with Def-
inition 1.23 and V (K) satisfies properties (i)–(ii). However, for the sake of
simplicity, we hereafter employ the well-established triplet-based definition,
and always implicitly assume that there exists a normed vector space V (K)
satisfying properties (i)–(ii). In many textbooks, V (K) is implicitly assumed
to be of the form Cs(K) for some integer s ≥ 0; see, e.g., [Cia91, p. 96] or
[BrS94, p. 79]. ⊓⊔

1.2.3 Simplicial Lagrange finite elements

Simplices and barycentric coordinates. Let {a0, . . . , ad} be a family a
points in Rd, d ≥ 1. Assume that the vectors {a1−a0, . . . , ad−a0} are linearly
independent. Then, the convex hull of {a0, . . . , ad} is called a simplex, and the
points {a0, . . . , ad} are called the vertices of the simplex. The unit simplex of
Rd is the set

{
x ∈ Rd; xi ≥ 0, 1 ≤ i ≤ d, and

d∑

i=1

xi ≤ 1

}
.

A simplex can be equivalently defined to be the image of the unit simplex by
a bijective affine transformation. For 0 ≤ i ≤ d, define Fi to be the face of K

opposite to ai, and define ni to be the outward normal to Fi. Note that in
dimension 2 a face is also called an edge, but this distinction will not be made
unless necessary.

Given a simplex K in Rd, it is often convenient to consider the associated
barycentric coordinates {λ0, . . . , λd} defined as follows: For 0 ≤ i ≤ d,

λi : Rd ∋ x 7−→ λi(x) = 1 −
(x − ai) · ni

(aj − ai) · ni

∈ R, (1.37)

where aj is an arbitrary vertex in Fi (the definition of λi is clearly independent
of the choice of the vertex in Fi). The barycentric coordinate λi is an affine
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function; it is equal to 1 at ai and vanishes at Fi. Furthermore, its level-sets are
hyperplanes parallel to Fi. Note that the barycenter G of K has barycentric
coordinates ( 1

d+1 , . . . , 1
d+1 ). The barycentric coordinates satisfy the following

properties: For all x ∈ K, 0 ≤ λi(x) ≤ 1, and for all x ∈ Rd,

d+1∑

i=1

λi(x) = 1 and

d+1∑

i=1

λi(x)(x − ai) = 0.

See Exercise 1.4 for further properties in dimension 2 and 3.

Example 1.33. In the unit simplex, λ0 = 1− x1 − x2, λ1 = x1, and λ2 = x2

in dimension 2, and λ0 = 1 − x1 − x2 − x3, λ1 = x1, λ2 = x2, λ3 = x3 in
dimension 3. ⊓⊔

The polynomial space Pk. Let x = (x1, . . . , xd) and let Pk be the space
of polynomials in the variables x1, . . . , xd, with real coefficients and of global
degree at most k,

Pk =





p(x) =
∑

0≤i1,...,id≤k

i1+...+id≤k

αi1...id
xi1

1 . . . xid

d ; αi1...id
∈ R





.

One readily verifies that Pk is a vector space of dimension

dim Pk =

(
d + k

k

)
=





k + 1 if d = 1,

1
2 (k + 1)(k + 2) if d = 2,

1
6 (k + 1)(k + 2)(k + 3) if d = 3.

Proposition 1.34. Let K be a simplex in Rd. Let k ≥ 1, let P = Pk, and let
nsh = dim Pk. Consider the set of nodes {ai}1≤i≤nsh

with barycentric coordi-
nates (

i0
k

, . . . , id

k

)
, 0 ≤ i0, . . . , id ≤ k, i0 + . . . + id = k.

Let Σ = {σ1, . . . , σnsh
} be the linear forms such that σi(p) = p(ai), 1 ≤ i ≤

nsh. Then, {K,P,Σ} is a Lagrange finite element.

Proof. See Exercise 1.3. ⊓⊔

Table 1.1 presents examples for k = 1, 2, and 3 in dimension 2 and 3. For
k = 1, the (d + 1) local shape functions are the barycentric coordinates

θi = λi, 0 ≤ i ≤ d.

For k = 2, the local shape functions are
{

λi(2λi − 1), 0 ≤ i ≤ d,

4λiλj , 0 ≤ i < j ≤ d,
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P1 P2 P3

Table 1.1. Two- and three-dimensional P1, P2, and P3 Lagrange finite elements; in
three dimensions, only visible degrees of freedom are shown.

and for k = 3,





1
2λi(3λi − 1)(3λi − 2), 0 ≤ i ≤ d,

9
2λi(3λi − 1)λj , 0 ≤ i, j ≤ d, i 6= j,

27λiλjλk, 0 ≤ i < j < k ≤ d.

1.2.4 Tensor product Lagrange finite elements

Cuboids. Given a set of d intervals {[ci, di]}1≤i≤d, all with non-zero measure,

the set K =
∏d

i=1[ci, di] is called a cuboid. For x ∈ K, there exists a unique
vector (t1, . . . , td) ∈ [0, 1]d such that, for all 1 ≤ i ≤ d, xi = ci + ti(di − ci).
The vector (t1, . . . , td) is called the local coordinate vector of x in K.

The polynomial space Qk. Let Qk be the polynomial space in the variables
x1, . . . , xd, with real coefficients and of degree at most k in each variable. In
dimension 1, Qk = Pk; in dimension d ≥ 2,

Qk =



q(x) =

∑

0≤i1,...,id≤k

αi1...id
xi1

1 . . . xid

d ; αi1...id
∈ R



 .

One readily verifies that Qk is a vector space of dimension
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Table 1.2. Two- and three-dimensional Q1, Q2, and Q3 Lagrange finite elements;
in three dimensions, only visible degrees of freedom are shown.

dim Qk = (k + 1)d =

{
(k + 1)2 if d = 2,

(k + 1)3 if d = 3.

Note the inclusions Pk ⊂ Qk ⊂ Pkd.

Proposition 1.35. Let K be a cuboid in Rd. Let k ≥ 1, let P = Qk, and let
nsh = dim Qk. Consider the set of nodes {ai}1≤i≤nsh

with local coordinates
(

i1
k

, . . . , id

k

)
, 0 ≤ i1, . . . , id ≤ k.

Let Σ = {σ1, . . . , σnsh
} be the linear forms such that σi(p) = p(ai), 1 ≤ i ≤

nsh. Then, {K,P,Σ} is a Lagrange finite element.

Table 1.2 presents examples for k = 1, 2, and 3 in dimension 2 and 3.
For 1 ≤ i ≤ d, set ξi,l = ci + l

k
(di − ci), 0 ≤ l ≤ k, and let {Lk

i,0, . . . ,L
k
i,k}

be the Lagrange polynomials in the variable xi associated with the nodes
{ξi,0, . . . , ξi,k}; see Definition 1.7. Then, the local shape functions are

θi1...id
(x) = Lk

1,i1
(x1) . . .Lk

d,id
(xd), 0 ≤ i1, . . . , id ≤ k.

1.2.5 Prismatic Lagrange finite elements

Prisms. For x ∈ Rd, set x′ = (x1, . . . , xd−1). Let K ′ be a simplex in Rd−1

and let [a, b] be an interval with non-zero measure. Then, the set K = {x ∈
Rd; x′ ∈ K ′; xd ∈ [a, b]} is called a prism. Let (λ0, . . . , λd−1) be the barycentric
coordinates of x′ in K ′ and let t ∈ [0, 1] be such that xd = a + t(b− a). Then,
the prismatic coordinates of x ∈ K are defined to be (λ0, . . . , λd−1; t).
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PR1 PR2 PR3

Table 1.3. Prismatic Lagrange finite elements of degree 1, 2, and 3; only visible
degrees of freedom are shown.

Prismatic polynomials. Let Pk[x′] (resp., Pk[xd]) be the set of polynomials
with real coefficients in the variable x′ (resp., xd) of global degree at most k.
Set

PRk = {p(x) = p1(x
′) p2(xd); p1 ∈ Pk[x′], p2 ∈ Pk[xd]}.

Clearly, Pk ⊂ PRk and dim PRk = 1
2 (k + 1)2(k + 2) in dimension 3.

Proposition 1.36. Let K be a prism in Rd. Let k ≥ 1, let P = PRk, and let
nsh = dim PRk. Consider the set of nodes {ai}1≤i≤nsh

with prismatic coordi-
nates

(
i0
k

, . . . ,
id−1

k
; id

k

)
, 0 ≤ i0, . . . , id−1, id ≤ k, i0 + . . . + id−1 = k.

Let Σ = {σ1, . . . , σnsh
} be the linear forms such that σi(p) = p(ai), 1 ≤ i ≤

nsh. Then, {K,P,Σ} is a Lagrange finite element.

Table 1.3 presents examples for k = 1, 2, and 3. The local shape functions
can be expressed in tensor product form using the local shape functions on
the simplex K ′ and the Lagrange polynomials in xd.

1.2.6 The Crouzeix–Raviart finite element

Let K be a simplex in Rd, set P = P1, and take for the local degrees of
freedom the mean-value over the (d + 1) faces of K, i.e., for 0 ≤ i ≤ d,

σi(p) =
1

meas(Fi)

∫

Fi

p.

Proposition 1.37. Let Σ = {σi}0≤i≤d. Then, {K, P1, Σ} is a finite element.

Using the barycentric coordinates {λ0, . . . , λd} defined in (1.37), the local
shape functions are

θi(x) = d
(1

d
− λi(x)

)
, 0 ≤ i ≤ d. (1.38)
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Fig. 1.8. Crouzeix–Raviart finite element in two (left) and three (right) dimensions;
in three dimensions, only visible degrees of freedom are shown.

Indeed, θi ∈ P1 and σj(θi) = δij for 0 ≤ i, j ≤ d. Note that θi|Fi
= 1 and

θi(ai) = 1 − d.
A conventional representation of the Crouzeix–Raviart finite element is

shown in Figure 1.8. The dot means that the mean-value is taken over the
corresponding face. This finite element has been introduced by Crouzeix and
Raviart; see [CrR73] and also [BrF91b, pp. 107–109].

An admissible choice for the domain of the local interpolation operator
is V (K) = W 1,1(K). Indeed, owing to the Trace Theorem B.52 applied with
p = 1, the trace of a function in W 1,1(K) is in L1(∂K). The local Crouzeix–
Raviart interpolation operator is then defined as follows:

ICR
K : V (K) ∋ v 7−→ ICR

K v =
d∑

i=0

(
1

meas Fi

∫

Fi

v

)
θi ∈ P1. (1.39)

Remark 1.38.
(i) Since a polynomial in P is linear, its mean-value over a face is equal to

the value it takes at the barycenter. Therefore, another possible choice for the
degrees of freedom is to take the value at the face barycenters. The resulting
finite element is a Lagrange finite element according to Definition 1.27. The
only difference with the Crouzeix–Raviart finite element is that it is no longer
possible to take W 1,1(K) for the domain of the local interpolation operator;
an admissible choice is, for instance, V (K) = C0(K).

(ii) Another choice for the local degrees of freedom is σi(p) =
∫

Fi
p for

0 ≤ i ≤ d; then, the local shape functions are θi = d
meas(Fi)

(
1
d
− λi

)
. ⊓⊔

1.2.7 The Raviart–Thomas finite element

Let K be a simplex in Rd. Consider the vector space of Rd-valued polynomials

RT0 = [P0]
d ⊕ x P0. (1.40)

Clearly, the dimension of RT0 is d + 1. For p ∈ RT0, the local degrees of
freedom are chosen to be the value of the flux of the normal component of p

across the faces of K, i.e., for 0 ≤ i ≤ d,
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Fig. 1.9. Raviart–Thomas finite element in two (left) and three (right) dimensions;
in three dimensions, only visible degrees of freedom are shown.

σi(p) =

∫

Fi

p·ni.

Proposition 1.39. Let Σ = {σi}0≤i≤d. Then, {K, RT0, Σ} is a finite ele-
ment.

The local shape functions are

θi(x) =
1

d meas(K)
(x − ai), 0 ≤ i ≤ d. (1.41)

Indeed, θi ∈ RT0 and σj(θi) = δij for 0 ≤ i, j ≤ d. Note that the normal
component of a local shape function is constant on the face with which it is
associated and is zero on the other faces.

A conventional representation of the degrees of freedom of the Raviart–
Thomas finite element is shown in Figure 1.9. An arrow means that the flux
of the normal component is taken over the corresponding face. This finite
element has been introduced by Raviart and Thomas and is often referred
to as the RT0 finite element [RaT77]. It is used, for instance, in applications
related to fluid mechanics where the functions to be interpolated are velocities.

The domain of the local interpolation operator can be taken to be
V div(K) = {v ∈ [Lp(K)]d; ∇·v ∈ Ls(K)} for p > 2, s ≥ q, 1

q
= 1

p
+ 1

d
.

Note that V div(K) = W 1,t(K) with t > 2d
d+2 is also an admissible choice.

Indeed, one can show that for v ∈ V div(K) and for a face Fi of K, the quan-
tity

∫
Fi

v·ni is meaningful. The local Raviart–Thomas interpolation operator
is then defined as follows:

IRT
K : V div(K) ∋ v 7−→ IRT

K v =
d∑

i=0

(∫

Fi

v·ni

)
θi ∈ RT0. (1.42)

Remark 1.40.
(i) See Exercise 1.5 for the proofs of the above results and for an alternative

expression of the local shape functions in terms of barycentric coordinates.
Further results can be found in [BrF91b, p. 113] and [QuV97, p. 82].

(ii) In the spirit of Remark 1.38, the Raviart–Thomas finite element can
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be defined as a Lagrange finite element. Another choice for the degrees of
freedom is σi(p) = 1

meas(Fi)

∫
Fi

p·ni; then, the local shape functions are θi =
meas (Fi)
d meas(K) (x − ai). ⊓⊔

Lemma 1.41. Let IRT
K be defined in (1.42). Let π0

K be the orthogonal projec-
tion from L2(K) to P0. The following diagram commutes:

V div(K)
∇·

- L2(K)

RT0

IRT
K

? ∇·
- P0

π0
K

?

Proof. Left as an exercise. ⊓⊔

1.2.8 The Nédélec (or edge) finite element

Let K be a simplex in Rd, d = 2 or 3. Define the polynomial space of dimension
1
2d(d + 1),

N0 = [P0]
d ⊕R1, R1 = {p ∈ [P1]

d; x·p = 0}. (1.43)

Introducing the mapping R : R2 → R2 such that R(x1, x2) = (x2,−x1), the
following equivalent definition of N0 holds in dimension 2:

N0 = [P0]
2 ⊕ (R(x)P0). (1.44)

In dimension 3, the following equivalent definition of N0 holds:

N0 = [P0]
3 ⊕ (x × [P0]

3). (1.45)

For p ∈ N0, the local degrees of freedom are chosen to be the integral of
the tangential component of p along the three (resp., six) edges of K in two
(resp., three) dimensions. Set ne = 3 if d = 2 and ne = 6 if d = 3. Denote by
{ei}1≤i≤ne

the set of edges of K and, for each edge ei, let ti be one of the two
unit vectors parallel to ei. For 1 ≤ i ≤ ne, the local degrees of freedom are

σi(p) =

∫

ei

p·ti.

Proposition 1.42. Let Σ = {σi}1≤i≤ne
. Then, {K, N0, Σ} is a finite ele-

ment.

In two dimensions, the local shape function associated with the edge ei,
1 ≤ i ≤ 3, is

θi(x) =
R(x − ai)

ti·
[
R(

ai1
+ai2

2 − ai)
]
meas(ei)

, i1, i2 6= i. (1.46)
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Fig. 1.10. Edge finite element in dimension 2 (left) and 3 (right); in three dimen-
sions, only visible degrees of freedom are shown.

In three dimensions, define the mapping j : {1, . . . , 6} → {1, . . . , 6} such that
j(i) is the index of the edge opposite to ei, i.e., ei does not intersect ej(i). Note
that j = j−1. Let mi be the midpoint of ei. Then, the local shape function
associated with the edge ei, 1 ≤ i ≤ 6, is

θi(x) =
(x − mj(i)) × tj(i)

ti·
[
(mi − mj(i)) × tj(i)

]
meas(ei)

. (1.47)

In both cases, the tangential component of a local shape function is constant
along the edge with which it is associated and vanishes along the other edges.

A conventional representation of the edge finite element is shown in Fig-
ure 1.10. An arrow means that the integral of the component parallel to this
direction is taken over the corresponding edge. This finite element has been in-
troduced by Nédélec [Néd80, Néd86]; see also [Whi57]. It is used, for instance,
in electromagnetism and in magneto-hydrodynamics; see [Bos93, Chap. 3].

In two dimensions, the domain of the local interpolation operator can be
taken to be V curl(K) = {v = (v1, v2) ∈ [Lp(K)]2; ∂2v1 − ∂1v2 ∈ Lp(K)} for
p > 2. Indeed, one can show that for v ∈ V curl(K) and for an edge ei of K,
the quantity

∫
ei

v·ti is meaningful. In three dimensions, a suitable choice is

V curl(K) = {v ∈ [Hs(K)]3; ∇×v ∈ [Lp(K)]3} for s > 1
2 and p > 2; see, e.g.,

[AmB98]. The local Nédélec interpolation operator is then defined as follows:

IN
K : V curl(K) ∋ v 7−→ IN

Kv =

ne∑

i=1

(∫

ei

v·ti

)
θi ∈ N0. (1.48)

Remark 1.43.
(i) See Exercise 1.6 for the proofs of the above results and for an alternative

expression of the local shape functions in terms of barycentric coordinates.
(ii) In the spirit of Remark 1.38, the Nédélec finite element can be defined

as a Lagrange finite element. Another choice for the degrees of freedom is
σi(p) = 1

meas(ei)

∫
ei

p·ti for 1 ≤ i ≤ ne; the local shape functions are then

readily derived from (1.46) and (1.47). ⊓⊔

Lemma 1.44. Assume d = 3. Let IRT
K and IN

K be defined in (1.42) and (1.48),
respectively. The following diagram commutes:
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V curl(K)
∇×

- V div(K)

N0

IN
K

? ∇×
- RT0

IRT
K

?

Proof. Let v ∈ V curl(K). It is clear that ∇×IN
Kv ∈ [P0]

3 ⊂ RT0. Let F be a
face of K and nF be the corresponding outward normal. Then,

∫

F

(∇×(IN
Kv))·nF =

∑

e⊂∂F

∫

e

IN
Kv·te =

∑

e⊂∂F

∫

e

v·te

=

∫

F

(∇×v)·nF =

∫

F

(IRT
K (∇×v))·nF ,

where te is a unit vector parallel to the edge e so that the edge integrals
are taken anti-clockwise along ∂F . The above equality implies IRT

K (∇×v) =
∇×(IN

Kv), since these two functions are in RT0 and their fluxes across the
faces of K are identical. ⊓⊔

Lemma 1.45. Assume d = 2 or 3. Let I1
K be the interpolation operator as-

sociated with the P1 Lagrange finite element and let V 1(K) = Hs(K) be its
domain, s > d

2 . The following diagram commutes:

V 1(K)
∇

- V curl(K)

P1

I1
K

? ∇
- N0

IN
K

?

Proof. Le v ∈ V 1(K). Let e be an edge of K and denote by a1, a2 the two
vertices of e. Set t = a2−a1

‖a2−a1‖d
to obtain

∫

e

∇(I1
Kv)·t = I1

Kv(a2) − I1
Kv(a1) = v(a2) − v(a1)

=

∫

e

(∇v)·t =

∫

e

IN
K(∇v)·t.

Conclude using the fact that both IN
K(∇v) and ∇(I1

Kv) belong to N0. ⊓⊔

1.2.9 High-order finite elements

As in the one-dimensional case, basis functions must be selected carefully
when working with high-degree polynomials.
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Nodal finite elements. When K is a simplex in Rd and P = Pk with k large,
it is possible to define sets of quadrature points with near optimal interpolation
properties: the so-called Fekete points; see [ChB95, TaW00]. Then, these points
can be used as Lagrange nodes to define nodal bases. Finite element methods
using the Fekete points as Lagrange nodes when k is large are often referred
to as spectral element methods; see, e.g., [KaS99b].

When K is a cuboid in Rd and P = Qk, one can use the tensor product of
Gauß–Lobatto nodes instead of equi-distributing the Lagrange nodes in each
space direction. Then, the local shape functions are

θi1,...,id
(x1, . . . , xd) = θi1(x1) . . . θid

(xd), 0 ≤ i1, . . . , id ≤ k, (1.49)

where the functions {θi}0≤i≤k are the images by suitable mappings of the
nodal (C0-continuous) basis functions defined in (1.33). An interesting prop-
erty of the Gauß–Lobatto points is that they are the Fekete points for the
d-dimensional cuboid, i.e., these points have near optimal interpolation prop-
erties; see [BoT01].

Modal finite elements. When K is a cuboid, hierarchical modal bases can
be constructed using tensor products of one-dimensional hierarchical modal
bases. For instance, we can consider the basis functions defined in (1.49),
where the functions {θi}0≤i≤k are now the images by suitable mappings of
the modal (C0-continuous) basis functions defined in (1.31).

When K is a simplex or a prism, the construction of hierarchical bases is
more technical. The idea is to introduce a nonlinear transformation mapping
K to a square or a cube and to use tensor products of one-dimensional bases.
See [KaS99b, pp. 70–94] for a detailed presentation.

1.3 Meshes: Basic Concepts

This section presents the general principles governing the construction of a
mesh. Implementation aspects are investigated in Chapter 7.

1.3.1 Domains and meshes

Throughout this book, we shall use the following:

Definition 1.46 (Domain). In dimension 1, a domain is an open, bounded
interval. In dimension d ≥ 2, a domain is an open, bounded, connected set
in Rd such that its boundary ∂Ω satisfies the following property: There are
α > 0, β > 0, a finite number R of local coordinate systems xr = (xr′, xr

d),
1 ≤ r ≤ R, where xr′ ∈ Rd−1 and xr

d ∈ R, and R local maps φr that are
Lipschitz on their definition domain {xr′ ∈ Rd−1; |xr′| < α} and such that



32 Chapter 1. Finite Element Interpolation

∂Ω =

R⋃

r=1

{(xr′, xr
d); xr

d = φr(xr′); |xr′| < α},

{(xr′, xr
d); φr(xr′) < xr

d < φr(xr′) + β; |xr′| < α} ⊂ Ω, ∀r,

{(xr′, xr
d); φr(xr′) − β < xr

d < φr(xr′); |xr′| < α} ⊂ Rd\Ω, ∀r,

where |xr′| ≤ α means that |xr′
i | ≤ α for all 1 ≤ i ≤ d − 1. For m ≥ 1, Ω is

said to be of class Cm (resp., piecewise of class Cm) if all the local maps Φr

are of class Cm (resp., piecewise of class Cm).

Definition 1.47 (Polygon, polyhedron). In dimension 2, a polygon is a
domain whose boundary is a finite union of segments. In dimension 3, a poly-
hedron is a domain whose boundary is a finite union of polygons. When the
distinction is not relevant, the term polyhedron is also employed for polygons.

Remark 1.48.
(i) Definition 1.46 implies that a domain is necessarily located on one side

of its boundary ∂Ω, i.e., it excludes sets with slits. This assumption can be
weakened, but this involves technical complexities that go beyond the scope
of this book; see, e.g., [CoD02].

(ii) For a domain Ω in Rd with d ≥ 2, the outward normal, say n, is defined
for a.e. x ∈ ∂Ω. For a domain of class Cm, m ≥ 1, n is defined for all x ∈ ∂Ω

and is a function of class Cm−1.
(iii) Definition 1.47 can be extended to arbitrary dimension d by induction:

a polyhedron in Rd is a domain whose boundary is a finite union of polyhedra
in Rd−1. ⊓⊔

Definition 1.49 (Mesh). Let Ω be a domain in Rd. A mesh is a union of
a finite number Nel of compact, connected, Lipschitz sets Km with non-empty
interior such that {Km}1≤m≤Nel

forms a partition of Ω, i.e.,

Ω =

Nel⋃

m=1

Km and
◦

Km ∩
◦

Kn = ∅ for m 6= n. (1.50)

The subsets Km are called mesh cells or mesh elements (or simply elements
when there is no ambiguity).

Figure 1.11 presents an example of a mesh of the unit square in R2 involv-
ing triangles and quadrangles. In the sequel, a mesh {Km}1≤m≤Nel

is denoted
by Th. The subscript h refers to the level of refinement of the mesh. Setting

∀K ∈ Th, hK = diam(K) = max
x1,x2∈K

‖x1 − x2‖d,

where ‖ · ‖d is the Euclidean norm in Rd, the parameter h is defined by

h = max
K∈Th

hK .

A sequence of successively refined meshes is denoted by {Th}h>0.
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Fig. 1.11. Example of a mesh of the unit square in R2.

1.3.2 Mesh generation

In practice, a mesh is generated from a reference cell, say K̂, and a set of ge-
ometric transformations mapping K̂ to the actual mesh cells. We shall hence-
forth assume that the geometric transformations are C1-diffeomorphisms. For
K ∈ Th, denote by TK : K̂ → K the corresponding transformation. Usu-
ally TK is specified using a Lagrange finite element {K̂, P̂geo, Σ̂geo}. Let

ngeo = card(Σ̂geo), let {ĝ1, . . . , ĝngeo
} be the nodes of K̂ associated with Σ̂geo,

and let {ψ̂1, . . . , ψ̂ngeo
} be the local shape functions.

Definition 1.50. {K̂, P̂geo, Σ̂geo} is called the geometric (reference) finite ele-

ment, {ĝ1, . . . , ĝngeo
} the geometric (reference) nodes, and {ψ̂1, . . . , ψ̂ngeo

} the
geometric (reference) shape functions.

For the sake of simplicity, assume that all the mesh cells are generated
using the same geometric reference finite element. This assumption can be
easily lifted. When K̂ is a simplex, Th is called a simplicial mesh.

A mesh generator usually provides a list of ngeo-uplets

{gm
1 , . . . , gm

ngeo
}1≤m≤Nel

,

where gm
i ∈ Rd and Nel is the number of mesh elements. The points

{gm
1 , . . . , gm

ngeo
} are called the geometric nodes of the m-th element. For

1 ≤ m ≤ Nel, define the geometric transformation

Tm : K̂ ∋ x̂ 7−→ Tm(x̂) =

ngeo∑

i=1

gm
i ψ̂i(x̂) ∈ Rd, (1.51)

so that Tm(ĝi) = gm
i for 1 ≤ i ≤ ngeo, and set Km = Tm(K̂).

Remark 1.51. The hypothesis that the geometric transformation Tm is a C1-
diffeomorphism requires that the numbering of the nodes {gm

1 , . . . , gm
ngeo

} and
that employed in the reference element are compatible; see Figure 1.12. An
usual convention is to impose the additional requirement that the numbering
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Tm

bK

Km
K′

m

T ′

m

1
1

1
2

2

2

3
3

3

4

4
4

5
5

5
6

6

6

Fig. 1.12. The numbering of the nodes of Km (right) is compatible with that of bK;
the numbering in K′

m (left) is not.

Fig. 1.13. Examples of geometric transformations: P1 transformation of a triangle
(left); P2 transformation of a triangle (center); Q1 transformation of a quadrangle
(right).

is such that the Jacobian determinant of the transformation Tm is positive.
For instance, in two dimensions, there are three compatible ways of numbering
the nodes of a triangle, and there are four compatible ways of numbering the
nodes of a square. In three dimensions, there are 3 × 4 compatible ways of
numbering the nodes of a tetrahedron, and there are 4 × 6 compatible ways
of numbering the nodes of a cube. ⊓⊔

Example 1.52. Figure 1.13 presents three examples in dimension 2:
(i) A transformation based on the Lagrange finite element P1 maps the

unit simplex to a non-degenerate triangle.
(ii) A transformation based on the Lagrange finite element P2 maps the

unit simplex to a curved triangle.
(iii) A transformation based on the Lagrange finite element Q1 maps the

unit square to a non-degenerate quadrangle. ⊓⊔

Definition 1.53 (Affine meshes). When the transformations {Tm}1≤m≤Nel

are affine, the mesh is said to be affine. In dimension 2, when the reference cell
K̂ is a simplex, an affine mesh is also called a triangulation. This terminology
is used henceforth in any dimension for an affine, simplicial mesh.

Examples of affine meshes include the following:

(i) When the geometric reference finite element is the Lagrange finite ele-
ment P1, all the mesh elements are triangles in dimension 2 and tetra-
hedra in dimension 3.

(ii) When the geometric reference finite element is the Lagrange finite ele-
ment Q1, all the mesh elements are parallelograms in dimension 2 and
parallelepipeds in dimension 3.
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bg1 bg2

bg3

bg4

bg5

bg6

TK

K

b1

b2

b3 b4

g4

b5

b6

∂Ω

bK

Fig. 1.14. Geometric construction of a curved triangle.

Domains with curved boundary. For domains with curved boundary, the
use of affine meshes generates an interpolation error in the neighborhood of
the boundary. Hence, when high-order accuracy is required, it is necessary to
generate the mesh with geometric transformations of degree kgeo larger than
one; the mesh then contains curved elements.

A relatively straightforward way to proceed is the following:

(i) Construct an affine mesh T̃h so that all the vertices of the resulting
polyhedron lie on the curved boundary ∂Ω.

(ii) For each element K̃ ∈ T̃h having a non-empty intersection with ∂Ω, de-
sign a polynomial transformation (of degree larger than 1) that approx-
imates the boundary more accurately than the first-order interpolation.
The resulting element K replaces K̃ in the mesh.

Example 1.54. The following example illustrates a simple technique relying
on P2 Lagrange finite elements to approximate a curved boundary in R2 (see
Figure 1.14):

(i) Let K̃ be an element having an edge whose vertices lie on ∂Ω. Let

{b1, . . . , bngeo
} be the geometric nodes of K̃ (ngeo = 6).

(ii) For each bi, 1 ≤ i ≤ ngeo, construct a new node gi as follows:
• If bi is located on an edge whose vertices lie on ∂Ω, gi is defined as

the intersection with ∂Ω of the line normal to the corresponding edge
and passing through bi.

• Otherwise, set gi = bi.
(iii) Replace {b1, . . . , bngeo

} by {g1, . . . , gngeo
} in the list of ngeo-uplets pro-

vided by the mesh generator. In other words, replace K̃ by the curved
triangle K = TK(K̂) where

∀x̂ ∈ K̂, TK(x̂) =

ngeo∑

i=1

giψ̂i(x̂),

and {ψ̂1, . . . , ψ̂ngeo
} are the P2 Lagrange local shape functions. ⊓⊔



36 Chapter 1. Finite Element Interpolation

Fig. 1.15. Examples of reference elements.

Note that a mesh consisting of curved triangles may not necessarily cover
the domain Ω; see Figure 1.14. In other words, the open set Ωh such that

Ωh =
⋃

K∈Th

K, (1.52)

does not necessarily coincide with Ω; the domain Ωh is called a geometric
interpolation of Ω. For the sake of simplicity, Th is said to be a mesh of Ω

even though it may happen that Ω 6= Ωh.

1.3.3 Geometrically conforming meshes

Henceforth we assume that the reference element K̂ used to generate the mesh
is a polyhedron. Classical examples include the following (see Figure 1.15):

(i) K̂ is the unit interval [0, 1] in dimension 1.

(ii) K̂ is either the unit simplex with vertices (0, 0), (1, 0), (0, 1) or the unit
square [0, 1]2 in dimension 2.

(iii) K̂ is either the unit simplex with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), or the unit cube [0, 1]3, or the unit prism with vertices (0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) in dimension 3.

For a given mesh cell K = TK(K̂), the vertices, edges, and faces are defined
to be the image by the geometric transformation TK of the vertices, edges,
and faces of the reference element K̂.

Definition 1.55 (Geometrically conforming meshes). Let Ω be a do-
main in Rd and let Th = {Km}1≤m≤Nel

be a mesh of Ω. The mesh Th is said
to be geometrically conforming if the following matching criterion is satisfied:
For all Km and Kn having a non-empty (d− 1)-dimensional intersection, say

F = Km ∩ Kn, there is a face F̂ of K̂ and renumberings of the geometric
nodes of Km and Kn such that F = Tm(F̂ ) = Tn(F̂ ) and

T
m| bF

= T
n| bF

. (1.53)

If more than one geometric reference element is used to generate the mesh,
say K̂1 and K̂2, (1.53) is replaced by the following statement: T−1

m|F (F ) is a face

of K̂1, T−1
n|F (F ) is a face of K̂2, and there is a bijective affine transformation

mapping T−1
m|F (F ) to T−1

n|F (F ).
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Fig. 1.16. Example and counterexample of a geometrically conforming mesh.

Remark 1.56. If Ωh is connected, Definition 1.55 implies that for any cell
pair {Km,Kn} with m 6= n, the intersection Km ∩ Kn is:

(i) either empty or a common vertex in dimension 1;
(ii) either empty, or a common vertex, or a common edge in dimension 2;
(iii) either empty, or a common vertex, or a common edge, or a common face

in dimension 3.

An example and a counterexample of a geometrically conforming mesh are
shown in Figure 1.16. ⊓⊔

Geometrically conforming meshes form a particular class of meshes that
are convenient to generate H1-conforming approximation spaces; see §1.4.5.
Moreover, on such meshes, the Euler relations provide useful means to count
global degrees of freedom.

Lemma 1.57 (Euler relations). Let Th be a geometrically conforming mesh
and let Ωh be defined in (1.52).

(i) In dimension 2, let I be the degree of multiple-connectedness1 of Ωh, Nel

the number of cells (or elements), Ned the number of edges, Nv the num-
ber of vertices, N∂

ed the number of boundary edges, and N∂
v the number

of boundary vertices; then,

{
Nel − Ned + Nv = 1 − I,

N∂
v − N∂

ed = 0.

Furthermore, if the mesh cells are polygons with ν vertices,

2Ned − N∂
ed = νNel.

In particular, 2Ned − N∂
ed = 3Nel for triangles and 2Ned − N∂

ed = 4Nel

for quadrangles.
(ii) In dimension 3, let I be the degree of multiple-connectedness of Ωh, J the

number of connected components of the boundary of Ωh, Nel the number
of elements, Nf the number of faces, Ned the number of edges, Nv the

1 I is the number of holes in Ωh.
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number of vertices, N∂
f the number of boundary faces, N∂

ed the number
of boundary edges, and N∂

v the number of boundary vertices; then,
{

Nel − Nf + Ned − Nv = −1 + I − J,

N∂
f − N∂

ed + N∂
v = 2(J − I).

Furthermore, if the mesh cells are polyhedra with ν faces,

2Nf − N∂
f = νNel.

In particular, 2Nf − N∂
f = 4Nel for tetrahedra and 2Nf − N∂

f = 6Nel for
hexahedra.

1.3.4 Faces, edges, and jumps

Henceforth, we denote by F i
h the set of interior faces (or interfaces), i.e.,

F ∈ F i
h if F is a (d−1)-manifold and there are K1, K2 ∈ Th such that

F = K1 ∩ K2. We denote by F∂
h the set of the faces that separate the mesh

from the exterior of Ωh, i.e., F ∈ F∂
h if F is a (d−1)-manifold and there

is K ∈ Th such that F = K ∩ ∂Ωh. Finally, we set Fh = F i
h ∪ F∂

h . In all
dimensions we refer to the elements of Fh as faces. In dimension 2, faces
are also called edges, but this distinction will not be made unless necessary.
In dimension d ≥ 3, we define E i

h, E∂
h , and Eh = E i

h ∪ E∂
h to be the sets of

internal edges (i.e., one-dimensional manifolds), boundary edges, and edges,
respectively.

Let F ∈ F i
h with F = K1 ∩ K2, and denote by n1 and n2 the outward

normal to K1 and K2, respectively. Let v be a scalar-valued function defined
on all cells K of the mesh. Assume that v is smooth enough to have limits on
both sides of F (these limits being not necessarily the same). Set v1 = v|K1

and v2 = v|K2
. Then, the jump of v across F is defined to be

[[v]]F = v1n1 + v2n2. (1.54)

Note that [[v]]F is an Rd-valued function defined on F . When there is no
ambiguity, the subscript F is dropped. When v is an Rd-valued function, we
use the notation

[[v·n]]F = v1·n1 + v2·n2, (1.55)

for the jump of the normal component of v. In dimension 3, we also use the
notation

[[v×n]]F = v1×n1 + v2×n2, (1.56)

for the jump of the tangential component of v.

1.4 Approximation Spaces and Interpolation Operators

This section reviews approximation spaces and global interpolation operators
that can be used in conjunction with Galerkin methods to approximate PDEs.
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1.4.1 Finite element generation

Let {K̂, P̂ , Σ̂} be a fixed finite element. Denote by {σ̂1, . . . , σ̂nsh
} the local de-

grees of freedom and by {θ̂1, . . . , θ̂nsh
} the local (Rm-valued) shape functions.

Let V (K̂) be the domain of the local interpolation operator I bK
associated with

{K̂, P̂ , Σ̂}, i.e.,

I bK
: V (K̂) ∋ v̂ 7−→

nsh∑

i=1

σ̂i(v̂) θ̂i ∈ P̂ . (1.57)

Definition 1.58. {K̂, P̂ , Σ̂} is called the reference finite element and I bK
the

reference interpolation operator.

Let Th be a mesh generated as described in §1.3.2. Recall that a cell K ∈ Th

is constructed using the C1-diffeomorphism TK : K̂ → K defined in (1.51).

Definition 1.59 (Iso- and subparametric interpolation). Let {K̂, P̂ , Σ̂}

be the reference finite element and let {K̂, P̂geo, Σ̂geo} be the geometric ref-
erence finite element used to define TK . When the two finite elements are
identical, the interpolation is said to be isoparametric, whereas it is said to be
subparametric whenever P̂geo ( P̂ .

Example 1.60. For scalar-valued finite elements, the most common example
of subparametric interpolation is P1 ⊂ P̂geo 6= P2 ⊂ P̂ . ⊓⊔

Elementary generation of finite elements. For all K ∈ Th, one must
first define the counterpart of V (K̂), i.e., a Banach space V (K) of Rm-valued
functions and a linear bijective mapping

ψK : V (K) −→ V (K̂).

Then, a set of Th-based finite elements can be defined as follows:

Proposition 1.61. For K ∈ Th, the triplet {K,PK , ΣK} defined by





K = TK(K̂);

PK = {ψ−1
K (p̂); p̂ ∈ P̂};

ΣK = {{σK,i}1≤i≤nsh
; σK,i(p)=σ̂i(ψK(p)), ∀p ∈ PK};

(1.58)

is a finite element. The local shape functions are θK,i = ψ−1
K (θ̂i), 1 ≤ i ≤ nsh,

and the associated local interpolation operator is

IK : V (K) ∋ v 7−→ IKv =

nsh∑

i=1

σK,i(v) θK,i ∈ PK . (1.59)

Proof. Left as an exercise. ⊓⊔
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Proposition 1.62. Let IK be defined in (1.59). Then, the following diagram
commutes:

V (K)
ψK

- V (K̂)

PK

IK
? ψK

- P̂

I bK
?

Proof. Let v in V (K). The definition (1.58) for {K,PK , ΣK} implies

I bK
(ψK(v)) =

nsh∑

i=1

σ̂i(ψK(v)) θ̂i =

nsh∑

i=1

σK,i(v)ψK(θK,i) = ψK(IK(v)),

owing to the linearity of ψK . ⊓⊔

Proposition 1.62 plays an important role in the analysis of the interpolation
error; see, e.g., the proof of Theorem 1.103. This result is the main motivation
for the construction (1.58).

Example 1.63.
(i) Let {K̂, P̂ , Σ̂} be a Lagrange finite element. Then, one may choose

V (K̂) = [C0(K̂)]m. Defining V (K) similarly and setting

ψK : V (K) ∋ v 7−→ ψK(v) = v ◦ TK ∈ V (K̂), (1.60)

yields a linear bijective mapping. Then, for all K ∈ Th, the finite element
{K,PK , ΣK} constructed in Proposition 1.61 is a Lagrange finite element.
Indeed, owing to

σi(v) = σ̂i(ψK(v)) = ψK(v)(âi) = v ◦ TK(âi),

and setting aK,i = TK(âi) for 1 ≤ i ≤ nsh, we infer that {aK,i}1≤i≤nsh
are the

nodes of {K,PK , ΣK}.

(ii) For the Raviart–Thomas finite element (see §1.2.7), set V (K̂) = {v ∈

[Lp(K̂)]d; ∇·v ∈ Ls(K̂)} for p > 2, s ≥ q, 1
q

= 1
p

+ 1
d
, and define V (K)

similarly. The transformation p 7→ p ◦ TK does not map V (K) to V (K̂). A
suitable choice for ψK is the so-called Piola transformation; see §1.4.7. ⊓⊔

Remark 1.64. In the literature the notation ψK(v) = v̂ is often used. Then,
the relation I bK

(ψK(v)) = ψK(IK(v)) resulting from Proposition 1.62 can be

rewritten in the form I bK
v̂ = ÎK(v). This notation can sometimes be mislead-

ing; in particular, it must not be confused with the notation x̂ = T−1
K (x). ⊓⊔
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Finite element generation with rescaling. The technique described in
Proposition 1.61 to generate finite elements is generally sufficient to construct
approximation spaces. However, in the most general situation, a more sophis-
ticated technique must be designed. To understand the nature of the problem,
observe that the degrees of freedom in Σ̂ are constrained only locally by unisol-
vence. When constructing approximation spaces, one often wishes to enforce
interface conditions between adjacent elements, thus introducing a new con-
straint on the degrees of freedom. Accordingly, we allow for a rescaling of the
degrees of freedom in ΣK .

Proposition 1.65. For K ∈ Th, let αK ∈ Rnsh be such that αK,i 6= 0 for all
1 ≤ i ≤ nsh. Define the triplet {K,PK , Σα

K} by taking K and PK as in (1.58)
and by choosing the local degrees of freedom Σα

K = {σK,1, . . . , σK,nsh
} such

that, for all 1 ≤ i ≤ nsh,

σK,i : PK ∋ p 7−→ σK,i(p) = αK,iσ̂i(ψK(p)). (1.61)

Then, {K,PK , Σα
K} is a finite element. Furthermore, the local shape functions

on K are given by θK,i = 1
αK,i

ψ−1
K (θ̂i), 1 ≤ i ≤ nsh, and the associated local

interpolation operator Iα
K is defined as in (1.59).

Proof. Left as an exercise. ⊓⊔

Proposition 1.66. Let Iα
K be the local interpolation operator associated with

{K,PK , Σα
K}. Then, the diagram in Proposition 1.62 commutes.

Proof. Straightforward verification. ⊓⊔

Example 1.67. An example where a rescaling of the degrees of freedom
is needed is the Hermite finite element discussed in §1.4.6; see also Re-
mark 1.72(i), Remark 1.88, and Remark 1.94 for further examples. ⊓⊔

1.4.2 Global interpolation operator

Using the Th-based family of finite elements {K,PK , ΣK}K∈Th
generated in

Proposition 1.61 or Proposition 1.65, a global interpolation operator Ih can
be constructed as follows: First, choose its domain to be

D(Ih) = {v ∈ [L1(Ωh)]m; ∀K ∈ Th, v|K ∈ V (K)}, (1.62)

where Ωh is the geometric interpolation of Ω defined in (1.52). For a function
v ∈ D(Ih), the quantities σK,i(v|K) are meaningful on all the mesh elements
and for all 1 ≤ i ≤ nsh. Then, the global interpolant Ihv can be specified
elementwise using the local interpolation operators defined in (1.59), i.e.,

∀K ∈ Th, (Ihv)|K = IK(v|K) =

nsh∑

i=1

σK,i(v|K)θK,i.
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Note that the function Ihv is defined on Ωh. It may happen that Ihv is multi-
valued at the interfaces of the elements. This is not a major difficulty since
Fh is of zero Lebesgue measure. The global interpolation operator is defined
as follows:

Ih : D(Ih) ∋ v 7−→
∑

K∈Th

nsh∑

i=1

σK,i(v|K)θK,i ∈ Wh, (1.63)

where Wh, the codomain of Ih, is

Wh = {vh ∈ [L1(Ωh)]m; ∀K ∈ Th, v|K ∈ PK}. (1.64)

The space Wh is called an approximation space. In (1.63), we abuse the nota-
tion by implicitly extending θK,i by zero outside K.

One often wishes to impose additional regularity properties on the func-
tions of Wh. At this stage, we only state the following general definition:

Definition 1.68 (Conforming approximation). Let Wh be defined in
(1.64) and let V be a Banach space. Wh is said to be V -conforming if Wh ⊂ V .

Practical examples are investigated in §1.4.5, §1.4.6, §1.4.7, and §1.4.8.

1.4.3 Totally discontinuous spaces

Totally discontinuous spaces play an important role in the so-called Discon-
tinuous Galerkin (DG) method; see §3.2.4, §5.6, and §6.3.2. Functions in such
spaces only satisfy the simplest regularity requirement, namely to be inte-
grable over Ωh.

For the sake of simplicity, assume that {K̂, P̂ , Σ̂} is such that the local
degrees of freedom are of the form

σ̂i : V (K̂) ∋ v̂ 7−→ σ̂i(v̂) = 1

meas( bK)

∫

bK

v̂ K̂i, 1 ≤ i ≤ nsh,

where nsh = dim(P̂ ) and K̂i is a smooth function on K̂; hence, V (K̂) = L1(K̂)
is an admissible choice. Define V (K) similarly and choose the mapping defined
in (1.60), i.e., ψK(v) = v ◦ TK . Construct the family {K,PK , ΣK}K∈Th

using

Proposition 1.61. Then, for each K ∈ Th, setting KK,i = K̂i ◦ T−1
K , we infer

σK,i(v) = σ̂i(ψK(v)) = 1
meas(K)

∫

K

vKK,i.

The local shape functions are θK,i = θ̂i◦T
−1
K , 1 ≤ i ≤ nsh, where {θ̂1, . . . , θ̂nsh

}
are the local shape functions associated with {σ̂1, . . . , σ̂nsh

}.
Consider the approximation space

Ztd,h = {vh ∈ L1(Ωh); ∀K ∈ Th, v|K ∈ PK}. (1.65)
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Because local degrees of freedom can be taken independently on each mesh
cell, Ztd,h is of dimension Nel × nsh where Nel is the number of mesh cells.
For v ∈ L1(Ωh), the quantities σK,i(v|K) are meaningful for K ∈ Th and
1 ≤ i ≤ nsh. Then, the global interpolation operator is constructed as follows:

Itd,h : L1(Ωh) ∋ v 7−→
∑

K∈Th

nsh∑

i=1

1
meas(K)

(∫

K

vKK,i

)
θK,i ∈ Ztd,h. (1.66)

Example 1.69.
(i) Choosing P̂ = Pk and assuming that the mesh is affine, we infer PK =

Pk, so that the approximation space defined in (1.65) is

P k
td,h = {vh ∈ L1(Ωh); ∀K ∈ Th, vh|K ∈ Pk}. (1.67)

For instance, the space P 0
td,h = {vh ∈ L1(Ωh); ∀K ∈ Th, vh|K ∈ P0} is of di-

mension Nel and spanned by {1K}K∈Th
where 1K is the characteristic function

of K. The global interpolation operator associated with P 0
td,h is

I0
td,h : L1(Ωh) ∋ v 7−→ I0

td,hv =
∑

K∈Th

(
1

meas(K)

∫

K

v

)
1K ∈ P 0

td,h.

(ii) A similar construction is possible with Qk polynomials. For instance,
on quadrangular meshes, the local shape functions can be taken to be tensor
products of Legendre polynomials, i.e.,

θ̂l1...ld(x̂) = Êl1(x̂1) . . . Êld(x̂d), 0 ≤ l1, . . . , ld ≤ k.

This choice naturally yields hierarchical bases; see, e.g., §1.1.5 and §1.2.9. ⊓⊔

1.4.4 Discontinuous spaces with patch-test

In this section, we assume that Th is a simplicial, affine, and geometrically
conforming mesh.

The Crouzeix–Raviart approximation space. Let {K̂, P̂ , Σ̂} be the

Crouzeix–Raviart finite element introduced in §1.2.6. Set V (K̂) = W 1,1(K̂),
define V (K) similarly, and choose the mapping defined in (1.60), i.e., ψK(v) =
v ◦TK . Construct the family {K,PK , ΣK}K∈Th

using Proposition 1.61. Then,

for each K ∈ Th, letting FK,i = TK(F̂i), 0 ≤ i ≤ d, where {F̂0, . . . , F̂d} are

the faces of K̂, the local degrees of freedom are

σK,i(v) = σ̂i(ψK(v)) = 1

meas( bFi)

∫

bFi

ψK(v) = 1
meas(FK,i)

∫

FK,i

v. (1.68)

In addition, since the mesh is affine, PK = P1. As a result, {K,PK , ΣK} is a
Crouzeix–Raviart finite element.
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Fig. 1.17. Global shape function for the Crouzeix–Raviart approximation space.
The support is materialized by thick lines and the graph by thin lines.

Consider the so-called Crouzeix–Raviart approximation space

P 1
pt,h = {vh ∈ L1(Ωh); ∀K ∈ Th, vh|K ∈ P1;

∀F ∈ F i
h,

∫

F

[[vh]] = 0}. (1.69)

Recall that F i
h denotes the set of interior faces (interfaces) in the mesh and

[[vh]] the jump of vh across interfaces. For F ∈ Fh, consider the function ϕF

with support consisting of the one or two simplices to which F belongs and
such that on each of these simplices, say K, the function ϕF |K is the local
shape function of {K,PK , ΣK} associated with the face F . The graph of a
function ϕF is shown in Figure 1.17.

Lemma 1.70. ϕF ∈ P 1
pt,h.

Proof. Let F ∈ F i
h, say F = K1 ∩K2. Since ϕF |K1

is the local shape function
of {K1, PK1

, ΣK1
} associated with F , (1.68) implies

∫

F

ϕF |K1
= meas(F ).

Similarly,
∫

F
ϕF |K2

= meas(F ), proving that
∫

F
[[ϕF ]] = 0. Use the same

argument to prove
∫

F ′ [[ϕF ]] = 0 for all faces F ′ 6= F . Since the restriction
of ϕF to any mesh element is in P1, ϕF ∈ P 1

pt,h. ⊓⊔

For F ∈ Fh, define the linear form γF : P 1
pt,h ∋ vh 7→ 1

meas(F )

∫
F

vh.

Although vh ∈ P 1
pt,h may be multi-valued at F , the quantity γF (vh) is single-

valued since
∫

F
[[vh]] = 0.

Proposition 1.71. {ϕF }F∈Fh
is a basis for P 1

pt,h, and {γF }F∈Fh
is a basis

for L(P 1
pt,h; R).
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Proof. The proof is based on the fact that (with obvious notation) γF ′(ϕF ) =
δFF ′ for F, F ′ ∈ Fh. Consider a set of real numbers {αF }F∈Fh

, and as-
sume that the function w =

∑
F∈Fh

αF ϕF vanishes identically. Then, αF =

γF (w) = 0; hence, the set {ϕF }F∈Fh
is linearly independent. Let vh ∈ P 1

pt,h

and set

wh =
∑

F∈Fh

(
1

meas(F )

∫

F

vh

)
ϕF .

Then, for all K ∈ Th, vh|K and wh|K are in PK , and for all σ ∈ ΣK , σ(vh|K) =
σ(wh|K). Unisolvence implies vh|K = wh|K . This shows that {ϕF }F∈Fh

is a
basis for P 1

pt,h. The proof is easily completed. ⊓⊔

Proposition 1.71 implies that P 1
pt,h is a space of dimension Ned in two

dimensions and Nf in three dimensions. The linear forms {γF }F∈Fh
are called

the global degrees of freedom in P 1
pt,h, and {ϕF }F∈Fh

are called the global
shape functions.

For a function v ∈ W 1,1(Ωh), the quantity γF (v) is meaningful (and single-
valued) for all F ∈ Fh. The so-called global Crouzeix–Raviart interpolation
operator is constructed as follows:

ICR
h : W 1,1(Ωh) ∋ v 7−→ ICR

h v =
∑

F∈Fh

(
1

meas(F )

∫

F

v

)
ϕF ∈ P 1

pt,h. (1.70)

Note that P 1
pt,h is the codomain of ICR

h .

Remark 1.72.
(i) If the degrees of freedom in {K̂, P̂ , Σ̂} are chosen to be the integral over

the faces instead of the mean-value (see Remark 1.38(ii)), Proposition 1.65
must be used to generate the family {K,PK , ΣK}K∈Th

. Indeed, taking αK,i =
meas(FK,i)

meas( bFi)
for 0 ≤ i ≤ d in (1.61) yields σK,i(v) =

∫
FK,i

v. Then, constructing

ϕF as before, Lemma 1.70 holds. If Proposition 1.61 had been used instead,

then σK,i(v) = meas( bFi)
meas(FK,i)

∫
FK,i

v, yielding θK,i = 1

meas( bFi)
(1− λK,i

d
) where λK,i

is the i-th barycentric coordinate of K. Then, θK,i = 1

meas( bFi)
on FK,i; hence,

∫
F
[[ϕF ]] 6= 0, i.e., ϕF 6∈ P 1

pt,h (unless K̂ is equilateral).

(ii) Since [[vh]]F : F ∋ x 7→ [[vh]](x) ∈ R is linear, the condition
∫

F
[[vh]] = 0

in (1.69) is equivalent to the continuity of vh at the center of gravity of F . ⊓⊔

Extension to high-degree polynomials. The extension of the Crouzeix–
Raviart approximation space P 1

pt,h to higher-degree polynomials is somewhat
technical. When approximating PDEs, one often wishes to impose the con-
tinuity of the moments, up to order k − 1, of the functions in P k

pt,h on any
interface of the mesh. This condition is known as the patch-test; see [IrR72].
The space P k

pt,h is thus defined as follows:
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Fig. 1.18. Continuity points for functions in P k
pt,h: k = 1 (left); k = 2 (center); and

k = 3 (right). For k = 2, the six points lie on an ellipse.

P k
pt,h = {vh ∈ L1(Ωh); ∀K ∈ Th, vh|K ∈ Pk;

∀F ∈ F i
h, ∀q ∈ Pk−1,

∫

F

[[vh]] q = 0}. (1.71)

In two dimensions, the patch-test is equivalent to the continuity of vh at
the k Gauß points located on each face of K; see Figure 1.18 and Definition 8.1.
These points (completed with internal points for k ≥ 3) can be used to define
local Lagrange degrees of freedom, say Σ, on the simplex K if k is odd, but
this construction is not possible if k is even. For instance, if k = 2, the six
Gauß points lie on the ellipse of equation 2 − 3(λ2

0,K + λ2
1,K + λ2

2,K) = 0,
where {λ0,K , λ1,K , λ2,K} are the barycentric coordinates of the simplex K.
This means that the so-called Fortin–Soulié bubble

bK = 2 − 3(λ2
0,K + λ2

1,K + λ2
2,K), (1.72)

vanishes at these six Gauß points. Then, because bK ∈ P2, the linear mapping
(1.34) associated with the triplet {K, P2, Σ} is not bijective; hence, {K, P2, Σ}
is not a finite element.

In the three-dimensional case, a similar construction is possible. However,
the patch-test no longer implies point-continuity except for k = 1.

Remark 1.73. The space P 2
pt,h can be used to approximate PDEs owing to a

decomposition involving H1-conforming quadratics and Fortin-Soulié bubbles;
see [FoS83] and Exercise 1.12. ⊓⊔

1.4.5 H1-conforming spaces based on Lagrange finite elements

The goal of this section is to construct a H1-conforming subspace of the
approximation space Wh defined in (1.64). We assume that the mesh is geo-
metrically conforming (but not necessarily affine) and that the reference finite

element is a Lagrange finite element. Hence, setting V (K̂) = [C0(K̂)]m, defin-
ing V (K) similarly, and choosing the mapping ψK defined in (1.60), the family
{K,PK , ΣK}K∈Th

constructed as in Proposition 1.61 is a family of Lagrange
finite elements; see Example 1.63(i).

Consider the space
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Vh = {vh ∈ Wh; ∀F ∈ F i
h, [[vh]]F = 0}. (1.73)

The main motivation for introducing Vh is the following:

Proposition 1.74. Vh ⊂ [H1(Ωh)]m.

Proof. Assume m = 1. For vector-valued functions, the proof below is simply
applied component by component. Let vh ∈ Vh. Since its restriction to every
K ∈ Th is a polynomial, it is differentiable in the classical sense. For 1 ≤ j ≤ d,
consider the function wj ∈ L2(Ωh) defined on K ∈ Th by wj|K = ∂j

(
vh|K

)
.

Let φ ∈ D(Ωh). Using the Green formula yields

∫

Ωh

wjφ =
∑

K∈Th

∫

K

wjφ = −
∑

K∈Th

∫

K

vh|K ∂jφ +
∑

K∈Th

∫

∂K

φvh|KnK,j ,

where ∂K is the boundary of K and nK,j is the j-th component of the outer
normal to K. Use the fact that φ vanishes at the boundary of Ωh, regroup
interface terms, and employ the notation of §1.3.4 to infer

∫

Ωh

wjφ = −

∫

Ωh

vh∂jφ +
∑

F∈F i
h

∫

F

φej ·[[vh]]F ,

where {e1, . . . , ed} is the canonical basis of Rd. Owing to [[vh]]F = 0,
∫

Ωh
wjφ =

−
∫

Ωh
vh∂jφ. Therefore, for 1 ≤ j ≤ d, the distributional derivative of vh with

respect to the j-th coordinate is wj . Since wj ∈ L2(Ωh), vh ∈ H1(Ωh). ⊓⊔

The next question is to determine how the zero-jump condition in (1.73)
can be enforced using the local degrees of freedom of adjacent cells. For K ∈
Th, denote by {aK,1, . . . , aK,nsh

} the Lagrange nodes (not to be confused with
the geometric nodes of K). Assume that:

(sc1) All the faces of K̂ have the same number of nodes, say n∂
nsh

.

(sc2) Consider a face F̂ of K̂ and let {a1, bF
, . . . , a

n∂
nsh

, bF
} be its nodes. Define

P̂ bF
= {q̂; ∃p̂ ∈ P̂ , q̂ = p̂| bF

} and Σ bF
= {σ̂1, . . . , σ̂n∂

nsh

} such that σ̂i(q̂) =

q̂(a
i, bF

) for q̂ ∈ P̂ bF
and 1 ≤ i ≤ n∂

nsh
. Then, {F̂ , P̂ bF

, Σ̂ bF
} is a finite

element.
(sc3) For all F ∈ F i

h with F = K1 ∩K2, assume that there are renumberings
of the Lagrange nodes of K1 and K2 such that (see Figure 1.19):

∀i ∈ {1, . . . , n∂
nsh

}, aK1,i = aK2,i.

Lemma 1.75. Assume (sc1)–(sc3). Let vh ∈ Wh. Then, [[vh]]F = 0 for all
F ∈ F i

h if and only if, for all F ∈ F i
h such that F = K1 ∩ K2,

∀i ∈ {1, . . . , n∂
nsh

}, vh|K1
(aK1,i) = vh|K2

(aK2,i). (1.74)
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Fig. 1.19. Compatible (left) and incompatible (right) position of nodes at an in-
terface for a geometrically conforming mesh.

Proof. The direct statement is evident. To prove the converse, let vh ∈ Wh,
let F ∈ F i

h with F = K1 ∩ K2, and assume (1.74). Let T1 and T2 be the
geometric transformations associated with K1 and K2, respectively. Set v1 =
vh|K1

and v2 = vh|K2
. Since the mesh is geometrically conforming, there are

renumberings of the geometric nodes of K1 and K2 such that (1.53) holds.
Owing to (sc3), â

i, bF
= T−1

1|F (aK1,i) = T−1
2|F (aK2,i) for 1 ≤ i ≤ n∂

nsh
. Define

v̂1| bF
= v1|F ◦ T1|F and v̂2| bF

= v2|F ◦ T2|F . Then, (1.74) implies

∀i ∈ {1, . . . , n∂
nsh

}, v̂1| bF
(â

i, bF
) = v̂2| bF

(â
i, bF

).

Owing to (sc2), v̂1| bF
= v̂2| bF

, and since the geometric transformations are

bijective, this readily implies v1|F = v2|F . ⊓⊔

Remark 1.76. All the Lagrange finite elements introduced in §1.2.3–§1.2.5
satisfy assumption (sc2). This is not the case for the Crouzeix–Raviart finite
element considered as a Lagrange finite element. ⊓⊔

Let {a1, . . . , aN} =
⋃

K∈Th
{aK,1, . . . , aK,nsh

} be the set of all the Lagrange
nodes. For K ∈ Th and m ∈ {1, . . . , nsh}, let j(K,m) ∈ {1, . . . , N} be the
corresponding index of the Lagrange node. Let {ϕ1, . . . , ϕN} be the set of
functions in Wh defined elementwise by ϕi|K(aK,m) = δmn if there is n ∈
{1, . . . , nsh} such that i = j(K,n) and 0 otherwise. This implies ϕi(aj) = δij

for 1 ≤ i, j ≤ N .

Lemma 1.77. Under the assumptions of Lemma 1.75, ϕi ∈ Vh.

Proof. Use the converse statement in Lemma 1.75. ⊓⊔

For 1 ≤ i ≤ N , define the linear form γi : Vh ∋ vh 7→ vh(ai) ∈ R.

Proposition 1.78. {ϕ1, . . . , ϕN} is a basis for Vh, and {γ1, . . . , ϕN} is a basis
for L(Vh; R).

Proof. The family {ϕ1, . . . , ϕN} is linearly independent; indeed, if the func-

tion
∑N

j=1 αjϕj vanishes identically, evaluating it at the node ai yields αi = 0.
Now, let vh ∈ Vh. Owing to the direct statement of Lemma 1.75, vh is single-
valued at all the Lagrange nodes. Set wh =

∑N
i=1 vh(ai)ϕi. Then, for all

K ∈ Th, vh|K and wh|K are in PK and coincide at the nodes {aK,1, . . . , aK,nsh
}.

Unisolvence implies vh|K = wh|K . Hence, {ϕ1, . . . , ϕN} is a basis for Vh. Prov-
ing that {γ1, . . . , ϕN} is a basis for L(Vh; R) is then straightforward. ⊓⊔
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dim. k = 1 k = 2 k = 3

P k
c,h 2 Nv Nv + Ned Nv + 2Ned + Nel

Qk
c,h 2 Nv Nv + Ned + Nel Nv + 2Ned + 4Nel

P k
c,h 3 Nv Nv + Ned Nv + 2Ned + Nf

Qk
c,h 3 Nv Nv + Ned + Nf + Nel Nv + 2Ned + 4Nf + 8Nel

Table 1.4. Dimension of H1-conforming spaces constructed using a geometrically
conforming mesh and various Lagrange finite elements. The second column indicates
the space dimension. Nel denotes the number of cells in the mesh, Nf the number of
faces, Ned the number of edges, and Nv the number of vertices.

Proposition 1.78 implies that Vh is a space of dimension N . The lin-
ear forms {γ1, . . . , γN} are called the global degrees of freedom in Vh, and
{ϕ1, . . . , ϕN} are called the global shape functions. The global Lagrange inter-
polation operator is defined as follows:

Ih : C0(Ωh) ∋ v 7−→
N∑

i=1

v(ai)ϕi ∈ Vh. (1.75)

Note that the domain of Ih can also be taken to be Hs(Ωh) for s > d
2 .

We shall often consider the approximation spaces

P k
c,h = {vh ∈ C0(Ωh); ∀K ∈ Th, vh ◦ TK ∈ Pk}, (1.76)

Qk
c,h = {vh ∈ C0(Ωh); ∀K ∈ Th, vh ◦ TK ∈ Qk}. (1.77)

The dimension of these spaces is given in Table 1.4 for the first values of k.
The subscript ‘c’ refers to the continuity condition across mesh interfaces (for
simplicity, it was not used in the one-dimensional cases treated in §1.1).

Example 1.79. Assume that Th is composed of triangles in dimension 2.
(i) Let {S1, . . . , SNv

} be the mesh vertices. For 1 ≤ i ≤ Nv, the global
shape functions in P 1

c,h satisfy ϕi(Sj) = δij for 1 ≤ i, j ≤ Nv; see the left
panel of Figure 1.20. Owing to Proposition 1.78, the set {ϕ1, . . . , ϕNv

} is a
basis for P 1

c,h.
(ii) Let {T1, . . . , TNed

} be the edge midpoints. For 1 ≤ i ≤ Nv, let ϕi,0 ∈
P 2

c,h be such that ϕi,0(Sj) = δij and ϕi,0(Tj) = 0. In addition, for 1 ≤ i ≤ Ned,

let ϕi,1 ∈ P 2
c,h be such that ϕi,1(Sj) = 0 and ϕi,1(Tj) = δij . The functions ϕi,0

and ϕi,1 are illustrated in the central and right panels of Figure 1.20. Owing
to Proposition 1.78, {ϕ1,0, . . . , ϕNv,0, ϕ1,1, . . . , ϕNed,1} is a basis for P 2

c,h. ⊓⊔

Remark 1.80. Lemma 1.77 can be easily extended to Rm-valued functions
by considering the functions ϕi,n for 1 ≤ i ≤ N and 1 ≤ n ≤ m, such that
ϕi,n(aj) = δijen, where en is the n-th vector of the canonical basis of Rm. ⊓⊔
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Fig. 1.20. Global shape functions for H1-conforming spaces in two dimensions: P 1
c,h

(left) and P 2
c,h (center and right).

0 10.5

0

1

0.5

Fig. 1.21. Local shape functions for the Hermite finite element in the reference
interval [0, 1].

1.4.6 H2-conforming spaces

In dimension 1, a H2-conforming space can be constructed using Hermite
finite elements. Let K̂ = [0, 1] be the reference interval, set P̂ = P3, and

define the local degrees of freedom Σ̂ = {σ̂1, σ̂2, σ̂3, σ̂4} to be

σ̂1(p̂) = p̂(0), σ̂2(p̂) = p̂′(0), σ̂3(p̂) = p̂(1), σ̂4(p̂) = p̂′(1).

One readily verifies that {K̂, P̂ , Σ̂} is a finite element; it is called a Hermite

finite element. The local shape functions {θ̂1, θ̂2, θ̂3, θ̂4} are (see Figure 1.21)

θ̂1(t) = (2t + 1)(t − 1)2, θ̂2(t) = t(t − 1)2,

θ̂3(t) = (3 − 2t)t2, θ̂4(t) = (t − 1)t2.

Owing to the choice of the local degrees of freedom, an admissible choice for
V (K̂) is C1(K̂) (or Hs(K̂) with s > 3

2 ).
Let Ω = ]a, b[ and let Th = {Ii}0≤i≤N be the one-dimensional mesh

of Ω introduced in §1.1.1. Consider the affine transformation Ti defined in



1.4. Approximation Spaces and Interpolation Operators 51

(1.21), i.e., Ti : K̂ ∋ t 7→ x = xi + th ∈ Ii. The goal is to generate a
family of Hermite finite elements over the mesh intervals. To this end, one
must use Proposition 1.65 since the degrees of freedom in Σ̂ are of dif-
ferent dimensionality. Specifically, set V (Ii) = C1(Ii) and choose the map-

ping ψIi
: V (Ii) ∋ v 7→ ψIi

(v) = v ◦ Ti ∈ V (K̂). Set αi,1 = αi,3 = 1,
αi,2 = αi,4 = 1

hi
, and αi = (αi,1, αi,2, αi,3, αi,4). Using Proposition 1.65 to

generate the family {Ii, Pi, Σi}0≤i≤N , we infer Pi = P3 and that the local
degrees of freedom are

σi,1(p) = p(xi), σi,2(p) = p′(xi),

σi,3(p) = p(xi+1), σi,4(p) = p′(xi+1).

The local shape functions are

θi,1 = θ̂1 ◦ T−1
i , θi,2 = hiθ̂2 ◦ T−1

i ,

θi,3 = θ̂3 ◦ T−1
i , θi,4 = hiθ̂4 ◦ T−1

i ,

and the local Hermite interpolation operator is defined as follows:

IH
Ii

: C1(Ii) ∋ v 7−→
4∑

m=1

σi,m(v)θi,m ∈ P3. (1.78)

Consider the so-called Hermite approximation space

Hh = {vh ∈ C1(Ω); ∀i ∈ {0, . . . , N}, vh|Ii
∈ P3}. (1.79)

The main motivation for introducing Hh is the following:

Proposition 1.81. Hh ⊂ H2(Ω).

Proof. Adapt the proof of Lemma 1.3. ⊓⊔

Introduce the functions {ϕ0,0, . . . , ϕN+1,0, ϕ0,1, . . . , ϕN+1,1} such that

ϕi,0(x) =





θi−1,3(x) if x ∈ Ii−1,

θi,1(x) if x ∈ Ii,

0 otherwise,

ϕi,1(x) =





θi−1,4(x) if x ∈ Ii−1,

θi,2(x) if x ∈ Ii,

0 otherwise,

with obvious modifications if i = 0 or N + 1.

Lemma 1.82. ϕi,0 ∈ Hh and ϕi,1 ∈ Hh.

Proof. Left as an exercise. ⊓⊔

For i ∈ {0, . . . , N}, consider the linear forms

γi,0 : C1(Ω) ∋ v 7−→ γi,0(v) = v(xi),

γi,1 : C1(Ω) ∋ v 7−→ γi,1(v) = v′(xi).
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Proposition 1.83. {ϕi,l}0≤i≤N,0≤l≤1 is a basis for Hh, and {γi,l}0≤i≤N,0≤l≤1

is a basis for L(Hh; R).

Proof. Use the fact that γi,l(ϕi′l′) = δii′δll′ and that on each interval Ii, a
function in Hh is a polynomial of degree at most 3 and is, therefore, uniquely
determined by its value and that of its first derivative at the endpoints xi and
xi+1; details are left as an exercise. ⊓⊔

Proposition 1.83 implies that Hh is a space of dimension 2(N + 2). The
linear forms {γi,l}0≤i≤N,0≤l≤1 are called the global degrees of freedom in Hh,
and the functions {ϕi,l}0≤i≤N,0≤l≤1 are called the global shape functions.

Define the global Hermite interpolation operator IH
h with codomain Hh as

follows:

IH
h : C1(Ω) ∋ v 7−→

N+1∑

i=0

γi,0(v)ϕi,0 +

N+1∑

i=0

γi,1(v)ϕi,1 ∈ Hh. (1.80)

IH
h is a linear operator, and IH

h v is the unique function in Hh that coincides
with v and its derivatives at all the mesh points.

In dimension 2, the construction of H2-conforming spaces is more techni-
cal. A classical example uses Argyris finite elements; see, e.g., [Cia91, p. 88].

1.4.7 H(div)-conforming spaces

Let {K̂, P̂ , Σ̂} be the Raviart–Thomas finite element introduced in §1.2.7.

Choose V (K̂) = {v ∈ [Lp(K̂)]d; ∇·v ∈ Ls(K̂)}, with p > 2 and s ≥ q,
1
q

= 1
p

+ 1
d
, and define V (K) similarly. Since ψK(v) = v ◦ TK does not map

V (K) to V (K̂), one introduces the so-called Piola transformation

ψK : V (K) ∋ v 7−→ ψK(v)(x̂) = det(JK)J−1
K

[
v ◦ TK(x̂)

]
∈ V̂ (K̂), (1.81)

where JK is the Jacobian matrix of TK .

Lemma 1.84. Let v ∈ V (K) and set v̂ = ψK(v). Then, whenever the left-
hand sides are meaningful, the following identities hold:

(i) ∇xv = 1
det(JK)JK

[
∇bxψK(v)

]
J−1

K and
∫

F
v·n =

∫
bF

v̂·n̂.

(ii)
∫

K
q∇x·v =

∫
bK

q̂∇bx·v̂ and
∫

K
v·∇xq =

∫
bK

v̂·∇bxq̂ with q̂ = q ◦ TK .

Proof. Observe that ∇xq = (J−1
K )T∇bxq̂ and ∇x·v(x) = 1

det(JK)∇bx·v̂(x̂). ⊓⊔

Construct the family {K,PK , ΣK}K∈Th
using Proposition 1.61. Then, for

each K ∈ Th, letting FK,i = TK(F̂i) with 0 ≤ i ≤ d where {F̂0, . . . , F̂d} are

the faces of K̂, Lemma 1.84(i) implies that the local degrees of freedom are

σK,i(v) =

∫

FK,i

v·ni, (1.82)
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Xd3d 7.86 (2/09/2002)
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Fig. 1.22. Global shape functions associated with the Raviart–Thomas (left) and
the Nédélec (right) finite elements in dimension 2. The normal (resp., tangential)
component of the Raviart–Thomas (resp., Nédélec) global shape function is contin-
uous across the interface, but since the triangles are not isosceles, the tangential
(resp., normal) component is not antisymmetric.

where ni is the outward normal to FK,i. Furthermore, since the mesh is affine,
TK(x̂) = JK x̂ + bK where JK ∈ Rd,d and bK ∈ Rd. Hence, for p ∈ PK ,
ψK(p) = x̂0 + αx̂, where x̂0 ∈ [P0]

d and α ∈ R, yielding p = ψ−1
K (x̂0 + αx̂) =

1
det(JK)JK(x̂0 +αx̂). Then, using x̂ = J−1

K (x−bK) yields p ∈ RT0. As a result,

PK = RT0 and {K,PK , ΣK} is a Raviart–Thomas finite element.
Consider the so-called Raviart–Thomas approximation space

Dh = {vh ∈ [L1(Ωh)]d; ∀K ∈ Th, vh|K ∈ RT0,

∀F ∈ F i
h, [[vh·n]]F = 0}, (1.83)

where [[vh·n]]F denotes the jump of the normal component of vh across the
interface F . The main motivation for introducing Dh is the following:

Proposition 1.85. Dh ⊂ H(div;Ωh) = {v ∈ [L2(Ωh)]d; ∇·v ∈ L2(Ωh)}.

Proof. Proceed as in the proof of Proposition 1.74. ⊓⊔

Now, let us specify the global shape functions in Dh. For F ∈ Fh, let nF

be a normal unit vector to F (its direction is irrelevant). Consider the function
ϕF with support consisting of the one or two simplices to which F belongs
and such that on one simplex, say K, the function ϕF |K is the local shape
function of {K,PK , ΣK} associated with the face F and on the other simplex,
say K ′, ϕF |K′ is the opposite of the local shape function associated with F

on K ′; see the left panel of Figure 1.22.

Lemma 1.86. ϕF ∈ Dh.

Proof. Adapt the proof of Lemma 1.70 and use the fact that ϕ·nF is constant
on F . ⊓⊔
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Proposition 1.87. {ϕF }F∈Fh
is a basis for Dh, and defining the linear forms

γF : Dh ∋ vh 7→
∫

F
vh·nF ∈ R, {γF }F∈Fh

is a basis for L(Dh; R).

Proof. Left as an exercise. ⊓⊔

Proposition 1.87 implies that Dh is a space of dimension Ned in two di-
mensions and Nf in three dimensions. The linear forms {γF }F∈Fh

are called
the global degrees of freedom in Dh, and {ϕF }F∈Fh

the global shape functions.
For a function v in the space

V div = {v ∈ [Lp(Ωh)]d; ∇·v ∈ Ls(Ωh)}, (1.84)

with p > 2 and s ≥ q, 1
q

= 1
p
+ 1

d
, the quantity γF (v) is meaningful (and single-

valued) for all F ∈ Fh. The so-called global Raviart–Thomas interpolation
operator is constructed as follows:

IRT
h : V div ∋ v 7−→ IRT

h v =
∑

F∈Fh

(∫

F

v·nF

)
ϕF ∈ Dh. (1.85)

Note that Dh is the codomain of IRT
h . See [BrF91b, RaT77] for further results

on H(div)-conforming spaces.

Remark 1.88. If the degrees of freedom in {K̂, P̂ , Σ̂} are chosen to be the
mean-value of the flux (see Remark 1.40(ii)), Proposition 1.65 must be used
to construct the family {K,PK , ΣK}K∈Th

; see Remark 1.72(i). ⊓⊔

1.4.8 H(curl)-conforming spaces

We consider a three-dimensional setting, but a similar construction is possible
in two dimensions. Let {K̂, P̂ , Σ̂} be the Nédélec finite element introduced in

§1.2.8. Choose V (K̂) = {v ∈ [Lp(K̂)]3; ∇×v ∈ [Ls(K̂)]3} with p > 2 and
s > 1

2 , and define V (K) similarly. Introduce the mapping

ψK : V (K) ∋ v 7−→ ψK(v)(x̂) = JT
K [v ◦ TK(x̂)] ∈ V̂ (K̂). (1.86)

Lemma 1.89. Let C(v) = ∇v − (∇v)T . For all v ∈ V (K), the following
identities hold:

(i) For all β ∈ R3, C(v)·β = (∇×v)×β.
(ii) ‖C(v)‖R3,3 = ‖∇×v‖R3 .
(iii) C[ψK(v)] = (JK)TC(v)JK .

Construct the family {K,PK , ΣK}K∈Th
using Proposition 1.61. Denote

by {ê1, . . . , ê6} the edges of K̂ and, for 1 ≤ i ≤ 6, let eK,i = TK(êi) be the
corresponding edge of K. Let t̂i (resp. tK,i) be one of the two unit vectors

parallel to êi (resp. eK,i). Since JK t̂i =
meas(eK,i)
meas(bei)

tK,i,
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σi(v) =

∫

bei

ψK(v)·t̂i =

∫

eK,i

v·tK,i. (1.87)

Furthermore, since the mesh is affine, TK(x̂) = JK x̂ + bK where JK ∈ Rd,d

and bK ∈ Rd. Hence, for p ∈ PK , ψK(p) = JT
K [p ◦ TK ] = α + β×x̂, yielding

p = α′ + (JT
K)−1[β×J−1

K x]. Then, it is clear that ((JT
K)−1[β×J−1

K x])·x =
(β×J−1

K x)·J−1
K x = 0, i.e., p ∈ N0. As a result, PK = N0 and {K,PK , ΣK} is

a Nédélec finite element.
Consider the so-called Nédélec approximation space

Rh = {vh ∈ [L1(Ωh)]3; ∀K ∈ Th, vh|K ∈ N0;

∀F ∈ F i
h, [[vh×n]]F = 0}, (1.88)

where [[vh×n]]F denotes the jump of the tangential component of vh across
the interface F . The main motivation for introducing Rh is the following:

Proposition 1.90. Rh ⊂ H(curl;Ωh) = {v ∈ [L2(Ωh)]3; ∇×v ∈ [L2(Ωh)]3}.

Proof. Proceed as in the proof of Proposition 1.74. ⊓⊔

To derive the global shape functions in Rh, we first state the following:

Lemma 1.91. Let F = K1 ∩ K2 and let vh be such that vh|K1
∈ N0 and

vh|K2
∈ N0. Then, [[vh×n]]F = 0 if and only if

∫
e
vh|K1

·te =
∫

e
vh|K2

·te for the
three edges of F .

Proof. Write vh|K1
= α1 + β1×x and vh|K2

= α2 + β2×x. Let nF be one of
the two unit vectors that are normal to F . Clearly, vh|K1

×nF = α1×nF +
(β1·nF )x− (x·nF )β1. Since x·nF is constant on F , vh|K1

×nF = s + tx where
s ∈ R3 and t ∈ R; that is to say, vh|K1

×nF ∈ RT0; see (1.40). Let e1, e2, and
e3 be the three edges of F . Denote by n1, n2, and n3 the three unit vectors
that are parallel to F , are normal to e1, e2, and e3, and point outward. It is
clear that ti = nF × ni is a unit vector parallel to the edge ei. Let {θ1, θ2, θ3}
be the two-dimensional Raviart-Thomas shape functions on F . It is readily
checked that

vh|K1
×nF =

3∑

i=1

(∫

ei

(vh|K1
×nF )·ni

)
θi =

3∑

i=1

(∫

ei

vh|K1
·ti

)
θi.

Since the set {θ1, θ2, θ3} is linearly independent, it is clear that [[vh×n]]F = 0
if and only if

∫
ei

vh|K1
·ti =

∫
ei

vh|K2
·ti for all i ∈ {1, 2, 3}. ⊓⊔

For an edge e ∈ Eh, choose one of the two unit vectors parallel to e, say te.
Consider the function ϕe with support consisting of the simplices to which e

belongs and such that on each of these simplices, say K, the function ϕe|K is
the local shape function of {K,PK , ΣK} associated with the edge e oriented
by te; see the right panel of Figure 1.22.
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Lemma 1.92. ϕe ∈ Rh.

Proof. Let e ∈ Eh.
(1) Let K1 and K2 be two elements sharing the edge e. Then, owing to (1.87),∫

e
ϕe|K1

·te = 1 =
∫

e
ϕe|K2

·te and for e′ 6= e,
∫

e′ ϕe|K1
·te′ = 0 =

∫
e′ ϕe|K2

·te′ .
(2) Let F ∈ F i

h, say F = K1 ∩ K2. Owing to step 1, the converse statement
of Lemma 1.91 implies [[ϕe×n]]F = 0. The conclusion follows easily. ⊓⊔

Proposition 1.93.

(i) For all e ∈ Eh, the linear form γe : Rh ∋ vh 7→
∫

e
vh·te is single-valued.

(ii) {ϕe}e∈Eh
is a basis for Rh, and {γe}e∈Eh

is a basis for L(Rh; R).

Proof. (1) Let e ∈ Eh and let K1 and K2 be two elements sharing the edge
e. Then, there exists a finite family of elements {Kj1 , . . . ,KjJ

} such that
Kj1 = K1, KjJ

= K2, and Kjl
∩ Kjl+1

is a face containing e. Owing to
the direct statement of Lemma 1.91 for each pair {Kjl

,Kjl+1
}, the quantity∫

e
vh·te is single-valued for all edge e ∈ Eh and all vh ∈ Rh.

(2) The family {ϕe}e∈Eh
is linearly independent since γe′(ϕe) = δee′ (with

obvious notation). Let vh ∈ Rh. Owing to step 1, it is legitimate to consider
the function

wh =
∑

e∈Eh

(∫

e

vh·te

)
ϕe.

Then, it is clear that for all K ∈ Th, vh|K and wh|K are in N0 and that∫
e
vh|K ·te =

∫
e
wh|K ·te for all edge e ∈ ∂K. Unisolvence implies vh|K = wh|K .

Hence, {ϕe}e∈Eh
is a basis for Rh. Proving that {γe}e∈Eh

is a basis for L(Rh; R)
is then straightforward. ⊓⊔

Proposition 1.93 implies that Rh is a space of dimension Ned. The linear
forms {γe}e∈Eh

are called the global degrees of freedom in Rh, and {ϕe}e∈Eh

are called the global shape functions.
For a function v in the space

V curl = {v ∈ [Lp(Ωh)]3; ∇×v ∈ [Ls(Ωh)]3}, (1.89)

with p > 2 and s > 1
2 , the quantity γe(v) is meaningful (and single-valued) for

all e ∈ Eh. The so-called global Nédélec interpolation operator is constructed
as follows:

IN
h : V curl ∋ v 7−→ IN

h v =
∑

e∈Eh

(∫

e

v·te

)
ϕe ∈ Rh. (1.90)

Note that Rh is the codomain of IN
h . For further results on H(curl)-conforming

spaces, see, e.g., [Néd80, Néd86, Mon92, Bos93].

Remark 1.94. If the degrees of freedom in {K̂, P̂ , Σ̂} are chosen to be the
mean-value of the integral over the edges (see Remark 1.43(ii)), Proposi-
tion 1.65 must be used to construct the family {K,PK , ΣK}K∈Th

; see Re-
mark 1.72(i). ⊓⊔
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1.4.9 A link between H1-, H(curl)-, and H(div)-conforming spaces

When the mesh Th consists of affine simplices, an interesting relation exists
between the spaces P 1

c,h, Rh, and Dh in three dimensions. To formalize this
relation, we introduce the concept of exact sequence; see, e.g., [God71]. Let
{Ej}j∈J be a sequence of vector spaces on the same field and indexed by an
interval J of N. For j ∈ J such that j + 1 ∈ J , let hj : Ej → Ej+1 be a
homomorphism.

Definition 1.95. The sequence

. . .
hj−1

−→ Ej

hj
−→ Ej+1

hj+1

−→ Ej+2
hj+2

−→ . . .

is said to be exact if for all j ∈ J such that j + 2 ∈ J , Ker(hj+1) = Im(hj).

Consider a domain Ω in R3. Let H0(curl;Ω) be the subspace of H(curl;Ω)
consisting of the vector fields whose tangential components vanish at ∂Ω. Let
also H0(div;Ω) be the subspace of H(div;Ω) consisting of the vector fields
whose normal component vanishes at ∂Ω. Let i be the canonical injection and
let m be the averaging operator over Ω.

Proposition 1.96. If Ω is simply connected and ∂Ω is connected, the follow-
ing sequence is exact:

{0}
i

−→ H1
0 (Ω)

∇
−→ H0(curl;Ω)

∇×
−→ H0(div;Ω)

∇·
−→ L2(Ω)

m
−→ span{1}.

Let Ωh be a geometric interpolate of the domain Ω based on a mesh
Th. Define the approximation spaces P 1

c,h,0 = P 1
c,h ∩ H1

0 (Ωh), Rh,0 = Rh ∩

H0(curl;Ωh), and Dh,0 = Dh ∩ H0(div;Ωh). Let also P 0
td,h be the space of

piecewise constant functions on the mesh Th. As a discrete counterpart of
Proposition 1.96, one easily proves the following:

Proposition 1.97. If Ωh is simply connected and ∂Ωh is connected, the fol-
lowing sequence is exact:

{0}
i

−→ P 1
c,h,0

∇
−→ Rh,0

∇×
−→ Dh,0

∇·
−→ P 0

td,h

m
−→ span{1}.

Assume Ωh ⊂ Ω for the sake of simplicity. Set V 1 = Hs(Ω) with s > d
2

and V 0 = L1(Ω). Let V div and V curl be defined in (1.84) and (1.89), respec-
tively. Let I1

h, IN
h , IRT

h , and I0
td,h the interpolation operators associated with

the finite element spaces P 1
c,h, Rh, Dh, and P 0

td,h, respectively. The following
striking property holds:

Proposition 1.98. The following diagram commutes:

V 1 ∇
- V curl ∇×

- V div ∇·
- V 0

P 1
c,h

I1
h

?
∇

- Rh

IN
h

? ∇×
- Dh

IRT
h

? ∇·
- P 0

td,h

I0
td,h

?
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Proof. This is a simple corollary of Lemmas 1.41, 1.44, and 1.45. ⊓⊔

Remark 1.99.
(i) Propositions 1.97 and 1.98 can be extended to higher-order finite ele-

ment spaces; see the de Rham diagram theory developed in [DeM00, Bof01].
(ii) Proposition 1.97 provides an efficient means of constructing all the

fields in Rh,0 with vanishing curl and all the solenoidal fields in Dh,0. For
further results, see [Bos93]. ⊓⊔

1.5 Interpolation of Smooth Functions

Letting Ih be one of the interpolation operators constructed in §1.4, the goal
of this section is to estimate the interpolation error v−Ihv assuming that the
function v is smooth enough to be in the domain of Ih. First, we investigate
thoroughly the interpolation of scalar- and vector-valued functions on affine
meshes. Then, we briefly discuss non-affine transformations.

1.5.1 Interpolation in W s,p(Ω)

In this section, we establish local and global interpolation error estimates
on affine meshes for scalar-valued functions living in Sobolev spaces; see Ap-
pendix B for a definition of these spaces and the corresponding norms. Inter-
polation error estimates in vector-valued Sobolev spaces are readily derived
by applying the scalar-valued interpolation error estimates componentwise.

Since the mesh is affine, the transformation TK takes the form

TK : K̂ ∋ x̂ 7−→ JK x̂ + bK ∈ K, (1.91)

where JK ∈ Rd,d and bK ∈ Rd. The Jacobian matrix JK is invertible since TK

is bijective. Let ‖ · ‖d be the Euclidean norm in Rd as well as the associated
matrix norm. Throughout this section, we assume that the mapping ψK :
V (K) → V̂ (K̂) in Proposition 1.62 is ψK(v) = v ◦ TK , and we set v̂ = v ◦ TK .

Lemma 1.100. Let ρK be the diameter of the largest ball that can be inscribed
in K. Then,

|det(JK)| = meas(K)

meas( bK)
, ‖JK‖d ≤ hK

ρcK

, and ‖J−1
K ‖d ≤

hcK

ρK
. (1.92)

Proof. The first property in (1.92) is classical. Furthermore,

‖JK‖d = sup
bx6=0

‖JK x̂‖d

‖x̂‖d

=
1

ρ bK

sup
‖bx‖d=ρcK

‖JK x̂‖d.

Write x̂ = x̂1−x̂2 with x̂1 and x̂2 in K̂ and use JK x̂ = TK x̂1−TK x̂2 = x1−x2

to obtain ‖JK x̂‖d ≤ hK . This proves the first inequality in (1.92). The second

inequality is obtained by exchanging the roles of K and K̂. ⊓⊔
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Lemma 1.101. Let s ≥ 0 and let 1 ≤ p ≤ ∞. There exists c such that, for
all K and w ∈ W s,p(K),

|ŵ|
s,p, bK

≤ c ‖JK‖s
d |det(JK)|−

1
p |w|s,p,K , (1.93)

|w|s,p,K ≤ c ‖J−1
K ‖s

d |det(JK)|
1
p |ŵ|

s,p, bK
, (1.94)

with ŵ = w ◦ TK and with the convention that, for p = ∞ and any positive

real x, x± 1
p = 1.

Proof. Let α be a multi-index with length |α| = s. Use the chain-rule and the
fact that the transformation TK is affine to obtain

‖∂αŵ‖
Lp( bK) ≤ c ‖JK‖s

d

∑

|β|=s

‖∂βw ◦ TK‖
Lp( bK).

Changing variables in the right-hand side yields

‖∂αŵ‖
Lp( bK) ≤ c ‖JK‖s

d |det(JK)|−
1
p |w|s,p,K .

We deduce (1.93) upon summing over α. The proof of (1.94) is similar. ⊓⊔

Remark 1.102. The upper bounds in (1.93) and (1.94) involve only semi-
norms because affine transformations are considered. ⊓⊔

Theorem 1.103 (Local interpolation). Let {K̂, P̂ , Σ̂} be a finite element

with associated normed vector space V (K̂). Let 1 ≤ p ≤ ∞ and assume that
there exists an integer k such that

Pk ⊂ P̂ ⊂ W k+1,p(K̂) ⊂ V (K̂). (1.95)

Let TK : K̂ → K be an affine bijective mapping and let Ik
K be the local

interpolation operator on K defined in (1.59). Let l be such that 0 ≤ l ≤ k

and W l+1,p(K̂) ⊂ V (K̂) with continuous embedding. Then, setting σK = hK

ρK
,

there exists c > 0 such that, for all m ∈ {0, . . . , l + 1},

∀K, ∀v ∈ W l+1,p(K), |v − Ik
Kv|m,p,K ≤ c hl+1−m

K σm
K |v|l+1,p,K . (1.96)

Proof. Let Ik
bK

be the local interpolation operator on K̂ defined in (1.57). Let

ŵ ∈ W l+1,p(K̂). Since W l+1,p(K̂) ⊂ V (K̂) with continuous embedding, the
linear operator

F : W l+1,p(K̂) ∋ ŵ 7−→ ŵ − Ik
bK
ŵ ∈ Wm,p(K̂),

is continuous from W l+1,p(K̂) to Wm,p(K̂) for all m ∈ {0, . . . , l+1}. Since l ≤

k, Pl ⊂ P̂ and, therefore, Pl is invariant under Ik
bK

owing to Proposition 1.30.
Hence, F vanishes on Pl. As a consequence,
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|ŵ − Ik
bK
ŵ|

m,p, bK
= |F(ŵ)|

m,p, bK
= inf

bp∈Pl

|F(ŵ + p̂)|
m,p, bK

≤ ‖F‖L(W l+1,p( bK);W m,p( bK)) inf
bp∈Pl

‖ŵ + p̂‖
l+1,p, bK

≤ c inf
bp∈Pl

‖ŵ + p̂‖
l+1,p, bK

≤ c |ŵ|
l+1,p, bK

,

the last estimate resulting from the Deny–Lions Lemma; see Lemma B.67.
Now let v ∈ W l+1,p(K) and set v̂ = ψK(v) = v ◦ TK . Owing to Proposi-
tion 1.62, [Ik

Kv] ◦ TK = Ik
bK
v̂. Using Lemma 1.101 yields

|v − Ik
Kv|m,p,K ≤ c ‖J−1

K ‖m
d |det(JK)|

1
p |v̂ − Ik

bK
v̂|

m,p, bK

≤ c ‖J−1
K ‖m

d |det(JK)|
1
p |v̂|

l+1,p, bK

≤ c ‖J−1
K ‖m

d ‖JK‖l+1
d |v|l+1,p,K

≤ c (‖JK‖d ‖J
−1
K ‖d)

m ‖JK‖l+1−m
d |v|l+1,p,K .

Conclude using (1.92). ⊓⊔

Definition 1.104 (Degree of a finite element). The largest integer k such

that (1.95) holds is called the degree of the finite element {K̂, P̂ , Σ̂}.

Remark 1.105. If the interpolated function is in W k+1,p(K), one can take
l = k in Theorem 1.103. The resulting error estimate is optimal, i.e., for
m ∈ {0, . . . , k + 1},

∀K, ∀v ∈ W k+1,p(K), |v − Ik
Kv|m,p,K ≤ c hk+1−m

K σm
K |v|k+1,p,K . ⊓⊔

Example 1.106.
(i) For a Lagrange finite element of degree k, V (K̂) = C0(K̂); hence,

the condition on l in Theorem 1.103 is d
p
− 1 < l ≤ k. Indeed, owing to

Theorem B.46, W l+1,p(K̂) ⊂ V (K̂) provided l + 1 > d
p
. More generally, for a

finite element with V (K̂) = Ct(K̂) (for instance, t = 1 for the Hermite finite
element), the condition on l is d

p
− 1 + t < l ≤ k; see also [BrS94, p. 104].

(ii) For the Crouzeix–Raviart finite element, k = 1 and V (K̂) = W 1,1(K̂);
as a result, the condition on l is 0 ≤ l ≤ k = 1. ⊓⊔

To obtain global interpolation error estimates on Ω and to prove that these
estimates converge to zero as h → 0, the quantity σK appearing in (1.96) must
be controlled independently of K and h. This leads to the following:

Definition 1.107 (Shape-regularity). A family of meshes {Th}h>0 is said
to be shape-regular if there exists σ0 such that

∀h, ∀K ∈ Th, σK = hK

ρK
≤ σ0.
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Remark 1.108.
(i) Let K be a triangle and denote by θK the smallest of its angles. One

readily sees that
hK

ρK
≤ 2

sin θK
.

Therefore, in a shape-regular family of triangulations, the triangles cannot
become too flat as h → 0.

(ii) In dimension 1, hK = ρK ; hence, any mesh family is shape-regular.
(iii) Lemma 1.100 shows that for a shape-regular family of meshes, there

is c such that, for all h and K ∈ Th, ‖JK‖d‖J
−1
K ‖d ≤ c. The quantity

‖JK‖d‖J
−1
K ‖d is called the Euclidean condition number of JK . ⊓⊔

Corollary 1.109 (Global interpolation). Let p, k, and l satisfy the as-
sumptions of Theorem 1.103. Let Ω be a polyhedron and let {Th}h>0 be a
shape-regular family of affine meshes of Ω. Denote by V k

h the approximation

space based on Th and {K̂, P̂ , Σ̂}. Let Ik
h be the corresponding global interpo-

lation operator. Then, there exists c such that, for all h and v ∈ W l+1,p(Ω),

‖v − Ik
hv‖Lp(Ω) +

l+1∑

m=1

hm

(
∑

K∈Th

|v − Ik
hv|pm,p,K

) 1
p

≤ c hl+1|v|l+1,p,Ω , (1.97)

for p < ∞, and for p = ∞

‖v − Ik
hv‖L∞(Ω) +

l+1∑

m=1

hm max
K∈Th

|v − Ik
hv|m,∞,K ≤ c hl+1|v|l+1,∞,Ω . (1.98)

Furthermore, for p < ∞ and v ∈ Lp(Ω), the following density result holds:

lim
h→0

(
inf

vh∈V k
h

‖v − vh‖Lp(Ω)

)
= 0. (1.99)

Proof. Since the family {Th}h>0 is shape-regular, estimates (1.97) and (1.98)
result from (1.96). Let v ∈ Lp(Ω) and ǫ > 0. Since W l+1,p(Ω) is dense in
Lp(Ω) for p < ∞, there is vǫ ∈ W l+1,p(Ω) such that ‖v − vǫ‖Lp(Ω) ≤ ǫ.

Furthermore, (1.97) yields ‖vǫ − Ik
hvǫ‖Lp(Ω) ≤ chl+1|vǫ|l+1,p,Ω . Hence,

inf
vh∈V k

h

‖v − vh‖Lp(Ω) ≤ ‖v − Ik
hvǫ‖Lp(Ω) ≤ ‖v − vǫ‖Lp(Ω) + ‖vǫ − Ik

hvǫ‖Lp(Ω).

That is to say, lim suph→0(infvh∈V k
h
‖v − vh‖Lp(Ω)) ≤ ǫ, and (1.99) follows

from the fact that ǫ is arbitrary. ⊓⊔

Corollary 1.110 (Interpolation in W s,p(Ω)). Let the hypotheses of Corol-
lary 1.109 hold and assume that V k

h is W 1,p-conforming. Then, there is c such
that, for all h and v ∈ W l+1,p(Ω),
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|v − Ik
hv|1,p,Ω ≤ c hl|v|l+1,p,Ω . (1.100)

For p < ∞, the following density result holds:

∀v ∈ W 1,p(Ω), lim
h→0

(
inf

vh∈V k
h

|v − vh|1,p,Ω

)
= 0. (1.101)

Example 1.111.
(i) Consider a Lagrange finite element of degree k. Take p = 2 and assume

d ≤ 3. Then, owing to Example 1.106(i), one can take 1 ≤ l ≤ k, and (1.97)
yields, for all v ∈ H l+1(Ω),

‖v − Ik
hv‖0,Ω + h|v − Ik

hv|1,Ω ≤ c hl+1|v|l+1,Ω . (1.102)

This estimate is optimal if v is smooth enough, i.e., v ∈ Hk+1(Ω). However,
if v is in Hs(Ω) and not in Hs+1(Ω) for some s ≥ 2, increasing the degree
of the finite element beyond s − 1 does not improve the interpolation error.
This phenomenon is illustrated in §3.2.5. Note also that the same asymptotic
order is obtained for Pk and Qk Lagrange finite elements. For Qk Lagrange
finite elements, a sharper interpolation error estimate can be derived using a
different norm for v in the right-hand side of (1.97); see, e.g., [BrS94, p. 112].

(ii) Consider the Hermite finite element; see §1.4.6. Take p = 2; since d = 1
and k = 3, Example 1.106(i) shows that one can take 2 ≤ l ≤ 3. Owing to
(1.97), we infer, for all v ∈ H l+1(Ω),

‖v − Ik
hv‖0,Ω + h|v − Ik

hv|1,Ω + h2|v − Ik
hv|2,Ω ≤ c hl+1|v|l+1,Ω . (1.103)

If l = 3, i.e., if v ∈ H4(Ω), the error estimate is optimal. ⊓⊔

Remark 1.112. Estimate (1.97) also applies when the parameter l is not an
integer. As a simple example, consider a Lagrange finite element of degree k ≥
1 in dimension d ≤ 3. Since W k+1− d

2
,∞(K̂) ⊂ C0(K̂) = V (K̂) with continuous

embedding (i.e., k+1− d
2 > 0), (1.98) can be applied with l = k− d

2 and p = ∞

to obtain ‖v − Ik
hv‖L∞(Ω) ≤ c hk+1− d

2 |v|k+1− d
2

,∞,Ω for v ∈ W k+1− d
2

,∞(Ω).

Therefore, using the fact that Hk+1(Ω) ⊂ W k+1− d
2

,∞(Ω) with continuous
embedding yields

∀h, ∀v ∈ Hk+1(Ω), ‖v − Ik
hv‖L∞(Ω) ≤ c hk+1− d

2 |v|k+1,Ω .

Obviously, if v ∈ W k+1,∞(Ω), (1.98) implies the sharper estimate

∀h, ∀v ∈ W k+1,∞(Ω), ‖v − Ik
hv‖L∞(Ω) ≤ c hk+1|v|k+1,∞,Ω . ⊓⊔

1.5.2 Interpolation in H(div;Ω)

We analyze in this section the interpolation properties of the Raviart–Thomas
finite element introduced in §1.2.7.
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We assume that the mapping TK : K̂ → K is linear, i.e., TK(x̂) = JK x̂+bK

with JK ∈ Rd,d and bK ∈ Rd. For a vector-field v ∈ [W s,p(K)]d, set v̂(x̂) =
det(JK)J−1

K v(x), i.e., v̂ = ψK(v) where ψK is the Piola transformation defined
by (1.81).

Lemma 1.113. Let s ≥ 0 and 1 ≤ p ≤ ∞ (with x± 1
p = 1 for all x > 0

if p = ∞). Then, there is c such that, for all K and w ∈ [W s,p(K)]d with
∇·w ∈ W s,p(K),

|w|s,p,K ≤ c ‖J−1
K ‖s

d ‖JK‖d |det(JK)|−
1
p′ |ŵ|

s,p, bK
, (1.104)

|∇·w|s,p,K ≤ c ‖J−1
K ‖s

d |det(JK)|−
1
p′ |∇·ŵ|

s,p, bK
. (1.105)

Proof. The proof is similar to that of Lemma 1.101; note however the different
factors appearing in (1.94) and (1.104) resulting from the fact that a different
mapping ψK has been used. ⊓⊔

Let {K, RT0, Σ} be the Raviart–Thomas finite element and let IRT
K be the

associated local interpolation operator defined in (1.42).

Theorem 1.114. Let p > 2d
d+2 . There is c such that, for all v ∈ [W 1,p(K)]d

with ∇·v ∈ W 1,p(K),

‖IRT
K v − v‖0,p,K ≤ c σKhK |v|1,p,K ,

‖∇·(IRT
K v − v)‖0,p,K ≤ c hK |∇·v|1,p,K .

Proof. Set V (K̂) = [W 1,p(K̂)]d with p > 2d
d+2 . The operator

F : [W 1,p(K̂)]d ∋ ŵ 7−→ ŵ − IRT
bK

ŵ ∈ [Lp(K̂)]d,

is continuous. Since [P0]
d ⊂ RT0 and F vanishes on [P0]

d, it is clear that, for

all ŵ ∈ V (K̂),

‖ŵ − IRT
bK

ŵ‖0,p, bK
= ‖F(ŵ)‖0,p, bK

= inf
bp∈[P0]d

‖F(ŵ + p̂)‖0,p, bK

≤ ‖F‖[W 1,p( bK)]d,[Lp( bK)]d inf
bp∈[P0]d

‖ŵ + p̂‖1,p, bK

≤ c inf
bp∈[P0]d

‖ŵ + p̂‖1,p, bK
≤ c |ŵ|1,p, bK

,

the last estimate resulting from the Deny–Lions Lemma applied component-
wise. Let v ∈ [W 1,p(K)]d and set v̂ = ψK(v). Lemma 1.113 implies

‖v − IRT
K v‖0,p,K ≤ c ‖JK‖d |det(JK)|−

1
p′ ‖v̂ − IRT

bK
v̂‖0,p, bK

≤ c ‖JK‖d |det(JK)|−
1

p′ |v̂|1,p, bK

≤ c ‖JK‖2
d ‖J

−1
K ‖d |v|1,p,K

≤ c (‖JK‖d ‖J
−1
K ‖d) ‖JK‖d |v|1,p,K .
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The estimate on ‖IRT
K v − v‖0,p,K then results from (1.92). To prove the esti-

mate on the divergence of the interpolation error, use Lemma 1.41, yielding

‖∇·(IRT
K v) −∇·v‖0,p,K = ‖π0

K [∇·v] −∇·v‖0,p,K ≤ c hK |∇·v|1,p,K .

Since ∇·v is scalar-valued, the technique to prove the last inequality is iden-
tical to that used in the proof of Theorem 1.103. ⊓⊔

Corollary 1.115. Let the assumptions of Theorem 1.114 hold. Let Ω be a
polyhedron and let {Th}h>0 be a shape-regular family of affine meshes of Ω.
Let IRT

h be the global Raviart–Thomas interpolation operator defined in (1.85).
Let p > 2d

d+2 . Then, there is c such that, for all h and v ∈ [W 1,p(Ω)]d with

∇·v ∈ W 1,p(Ω),

‖v−IRT
h v‖0,p,Ω + ‖∇·(v−IRT

h v)‖0,p,Ω ≤ c h(‖v‖1,p,Ω + ‖∇·v‖1,p,Ω). (1.106)

1.5.3 Interpolation in H(curl;Ω)

The purpose of this section is to analyze the interpolation properties of the
Nédélec finite element introduced in §1.2.8.

The space dimension is d = 2 or 3. The results are stated for d = 3,
those for d = 2 being similar. As in the previous section, we assume that the
mapping TK : K̂ → K is linear, i.e., TK(x̂) = JK x̂ + bK with JK ∈ Rd,d and
bK ∈ Rd. For a vector-field v ∈ [W s,p(K)]3 with s ≥ 0 and p ≥ 1, we set
v̂(x̂) = JKv(TK(x)), i.e., v̂ = ψK(v) where ψK is the transformation defined
in (1.86). Denote by ‖ · ‖R3 the Euclidean vector norm in R3 and by ‖ · ‖R3,3

the associated matrix norm.

Lemma 1.116. Let s ≥ 0 and 1 ≤ p ≤ ∞ (with x± 1
p = 1 for all x > 0 if

p = ∞). There is c such that, for all K and w ∈ [W s,p(K)]3 with ∇×w ∈
[W s,p(K)]3,

|w|s,p,K ≤ c ‖J−1
K ‖s+1

R3,3 |det(JK)|
1
p |ŵ|

s,p, bK
,

|∇×w|s,p,K ≤ c ‖J−1
K ‖s+2

R3,3 |det(JK)|
1
p |∇×ŵ|

s,p, bK
.

Proof. The proof is similar to that of Lemma 1.101 and uses Lemma 1.89. Let
us prove the second inequality with s = 1. Observe that

‖∂xi
∇×v‖p

[Lp(K)]3 = ‖∇×(∂xi
v)‖p

[Lp(K)]3 = ‖C(∂xi
v)‖p

[Lp(K)]3,3

= |det(JK)|

∫

bK

∥∥∥∥∥

3∑

j=1

∂xi
x̂j (J−1

K )TC(∂bxj
v̂) (J−1

K )

∥∥∥∥∥

p

R3,3

≤ |det(JK)|‖(J−1
K )T ‖p

R3,3‖J
−1
K ‖p

R3,3




3∑

j=1

|∂xi
x̂j |

2




p
2∫

bK




3∑

j=1

‖∂bxj
∇×v̂‖2

R3




p
2

.

Then, since ‖(J−1
K )T ‖R3,3 = ‖J−1

K ‖R3,3 and
∑3

j=1 |∂xi
x̂j |

2 ≤ ‖J−1
K ‖2

R3,3 , the
desired result is obtained. ⊓⊔
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ba1

ba2 ba3

ba4

bK

TK

a1

a2

a3

a4

K

Fig. 1.23. Non-affine transformation mapping the unit square to a quadrangle.

Let {K, N0, Σ} be the Nédélec finite element and let IN
K be the associated

local interpolation operator defined in (1.48).

Theorem 1.117. Let p > 2. There is c such that, for all v ∈ [W 1,p(K)]3 with
∇×v ∈ [W 1,p(K)]3,

‖IN
Kv − v‖0,p,K ≤ c σKhK |v|1,p,K ,

‖∇×(IN
Kv − v)‖0,p,K ≤ c hK |∇×v|1,p,K .

Proof. The proof is similar to that of Theorem 1.114. ⊓⊔

Corollary 1.118. Let the assumptions of Theorem 1.117 hold. Let Ω be a
polyhedron and let {Th}h>0 be a shape-regular family of affine meshes of Ω.
Let IN

h be the global Nédélec interpolation operator defined in (1.90). Let p >

2. Then, there is c such that, for all h and v ∈ [W 1,p(Ω)]3 with ∇×v ∈
[W 1,p(Ω)]3,

‖v−IN
h v‖0,p,Ω + ‖∇×(v−IN

h v)‖0,p,Ω ≤ c h(‖v‖1,p,Ω + ‖∇×v‖1,p,Ω). (1.107)

1.5.4 Interpolation in W s,p(Ω) on non-affine meshes

Interpolation on general quadrangles. This section contains a brief in-
troduction to error estimates applicable to finite elements on quadrangles. For
the sake of simplicity, we assume that Ω is a polygonal domain in R2 and that
the reference cell K̂ is the unit square. For proofs and further insight, see, e.g.,
[GiR86, p. 104].

Let K be a non-degenerate, convex quadrangle in R2. We readily see
that there exists a unique bijective transformation TK ∈ [Q1(K̂)]2 such that

TK(K̂) = K (see Figure 1.23); TK maps the edges of K̂ to the edges of K,
but unless K is a parallelogram TK is not affine.

In this section, we assume again that ψK(v) = v ◦ TK .

Lemma 1.119. Let K be a convex quadrangle in R2 and let TK be the unique
bijective transformation in [Q1(K̂)]2 mapping the unit square K̂ to K. Let JK

be the Jacobian matrix of TK . Then, there exists c such that
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‖det(JK)‖
L∞( bK) ≤ c h2

K , ‖det(J−1
K )‖L∞(K) ≤ c 1

ρ2
K

,

‖JK‖[L∞( bK)]2,2 ≤ c hK , ‖J−1
K ‖[L∞(K)]2,2 ≤ c hK

ρ2
K

,

where hK = diam(K) and ρK = min1≤i≤4 ρi, ρi being the diameter of the
circle inscribed in the triangle formed by the three vertices (aj)j 6=i of K.

Theorem 1.120 (Local interpolation). Let {K̂, P̂ , Σ̂} be the reference fi-

nite element with K̂ = [0, 1]2 and associated normed vector space V (K̂). As-

sume that there exists an integer k such that Qk ⊂ P̂ and Hk+1(K̂) ⊂ V (K̂).
Let K be a quadrangle in R2 and let Ik

K be the local interpolation operator in
K defined in (1.59). Then, setting σK = hK

ρK
, there exists c such that, for all

m ∈ {0, . . . , k + 1} and v ∈ Hk+1(K),

{
‖v − Ik

Kv‖0,K ≤ c σKhk+1
K |v|k+1,K ,

|v − Ik
Kv|m,K ≤ c σ4m−1

K hk+1−m
K |v|k+1,K .

(1.108)

Definition 1.121 (Shape-regularity). Let ρK be as in Lemma 1.119. A
family {Th}h>0 of quadrangular meshes is said to be shape-regular if there
exists σ0 such that

∀h, ∀K ∈ Th, σK = hK

ρK
≤ σ0.

Corollary 1.122 (Global interpolation). Let the assumptions of Theo-
rem 1.120 hold. Let Ω be a polygonal domain in R2. Let {Th}h>0 be a family
of quadrangular meshes of Ω and assume that {Th}h>0 is shape-regular ac-
cording to Definition 1.121. Denote by V k

h the approximation space based on

Th and {K̂, P̂ , Σ̂}. Let Ik
h be the corresponding interpolation operator. Then,

there exists c such that, for all h and v ∈ Hk+1(Ω),

‖v − Ik
hv‖0,Ω +

k+1∑

m=1

hm

(
∑

K∈Th

‖v − Ik
hv‖2

m,K

) 1
2

≤ c hk+1|v|k+1,Ω .

In particular, if V k
h is H1-conforming,

∀h, ∀v ∈ Hk+1(Ω), |v − Ik
hv|1,Ω ≤ c hk|v|k+1,Ω .

Remark 1.123.
(i) In Theorem 1.120, the exponent on σK is larger than that obtained in

(1.96) for affine meshes.
(ii) We deduce from Lemma 1.119 that for a shape-regular family of quad-

rangular meshes, the condition number of JK is controlled uniformly with
respect to h and K ∈ Th. ⊓⊔
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Interpolation on domains with curved boundary. The goal of this sec-
tion is to highlight an important practical result, namely that using a high-
order reference finite element on a domain with curved boundary only pays
off if the boundary is accurately represented. In particular, if a domain with
curved boundary is approximated geometrically with affine meshes, using fi-
nite elements of degree larger than one is not asymptotically more accurate
than using first-order finite elements.

For the sake of simplicity, we restrict the discussion to Lagrange geometric
finite elements on simplices (see §1.3.2), and we consider isoparametric inter-
polation. For proofs and further insight, see [Ber89, BrS94, Cia91, CiR72b,
Len86, Zlá73, Zlá74].

Let {T̃h}h>0 be a family of affine meshes of Ω and set Ω̃h =
⋃

eK∈eTh
K̃. Let

kgeo ≥ 2 and let Fh : Ω̃h → Ωh = Fh(Ω̃h) be a mapping such that ∀K̃ ∈ T̃h,
F

h| eK
∈ [Pkgeo

]d. Using the mapping Fh, a new triangulation is constructed

from T̃h by setting Th = {Fh(K̃)} eK∈eTh
. The concept of shape-regular family

of meshes can be extended as follows:

Definition 1.124. The family of meshes {Th}h>0 is said to be shape-regular

if the affine family (T̃h)h is shape-regular according to Definition 1.107 and if
the mappings {Fh}h>0 satisfy the following properties:

(i) Fh is the identity away from ∂Ωh; that is, F
h| eK

= I if ∂K̃ ∩ ∂Ω̃h = ∅.

(ii) supx∈∂Ω dist(x, ∂Ωh) ≤ c hkgeo+1 with c independent of h.
(iii) The norm of the Jacobian matrix of Fh and the norm of its inverse are

bounded uniformly in [W kgeo,∞(Ωh)]d,d with respect to h.

Theorem 1.125. Let {K̂, P̂ , Σ̂} be a Lagrange finite element of degree k with
k+1 > d

2 . Let Ω be a domain in Rd and let {Th}h>0 be a shape-regular family
of meshes according to Definition 1.124 with kgeo = k. Let

V k
h = {v ∈ C0(Ωh); v ◦ Fh ∈ Ṽ k

h },

where Ṽ k
h is the approximation space based on the mesh T̃h and the reference

finite element {K̂, P̂ , Σ̂}. Let Ik
h be the interpolation operator on V k

h . Then,
there exists c such that

∀h, ∀v ∈ Hk+1(Ωh), ‖v − Ik
hv‖0,Ωh

+ h |v − Ik
hv|1,Ωh

≤ c hk+1|v|k+1,Ωh
.

Moreover,

∀v ∈ H1(Ωh), lim
h→0

(
inf

vh∈V k
h

|v − vh|1,Ωh

)
= 0.

Proof. See, e.g., [BrS94, p. 117]. ⊓⊔



68 Chapter 1. Finite Element Interpolation

Remark 1.126. A different approach to extend the concept of shape-regula-
rity is presented in [Cia91, p. 227]. Assume, for instance, that the geometric
finite element is the Lagrange finite element P2. Let âi, 0 ≤ i ≤ d, be the
vertices of K̂ and let âl, d + 1 ≤ l ≤ 1

2d(d + 3), be the other nodes. Consider
a similar notation for the nodes ai and al of K. Let K◦ be the convex hull of
the (d + 1) vertices of K and denote by a◦

l , d + 1 ≤ l ≤ 1
2d(d + 3), the nodes

located at the midpoints of the edges of K◦. The shape-regularity criterion
considered in [Cia91, p. 241] involves two conditions:

(i) The family of meshes formed by the simplices K◦ is shape-regular ac-
cording to Definition 1.107.

(ii) There exists c such that, for all l ∈ {d + 1, . . . , 1
2d(d + 3)},

∀h, ∀K, ‖a◦
l − al‖d ≤ c h2.

This definition can be extended to the Lagrange finite element P3 [Cia91,
p. 247]. A general theory is presented in [CiR72b]. ⊓⊔

1.6 Interpolation of Non-Smooth Functions

This section is concerned with the problem of interpolating non-smooth func-
tions, e.g., functions that are too rough to be in the domain of the Lagrange
interpolation operator. This situation occurs, for instance, when interpolat-
ing discontinuous functions, e.g., in L2(Ω) or in H1(Ω) in dimension d ≥ 2.
Throughout this section, Ω is a polyhedron and {Th}h>0 is a shape-regular
family of affine, simplicial, geometrically conforming meshes.

1.6.1 Clément interpolation

An interpolation technique to handle functions in L1 using H1-conforming
Lagrange finite elements was first analyzed by Clément [Clé75]. The main
ingredient is a regularization operator based on macroelements consisting of
element patches. Let P k

c,h be the H1-conforming approximation space based
on the Pk Lagrange finite element; see (1.76). Let {a1, . . . , aN} be the La-
grange nodes and let {ϕ1, . . . , ϕN} be the global shape functions in P k

c,h.
Associate with each node ai the macroelement Ai consisting of the simplices
containing ai. Examples of macroelements are shown in Figure 1.24. Clearly,
the macroelements can only assume a finite number of configurations, say
ncf. Denote by {Ân}1≤n≤ncf

the list of reference configurations. Define the
application j : {1, . . . , N} → {1, . . . , ncf} such that j(i) is the index of the
reference configuration associated with the macroelement Ai. Define a C0-
diffeomorphism FAi

from Âj(i) to Ai such that ∀K̂ ∈ Âj(i), F
Ai| bK

is affine.

The Clément interpolation operator Ch is then defined by local L2-projections
onto the macroelements. More precisely, for a reference macroelement Ân and
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aiaiai

Fig. 1.24. Examples of macroelements Ai (top) and reference configuration bAi

(bottom) associated with a node ai.

a function v̂ ∈ L1(Ân), let Ĉnv̂ be the unique polynomial in Pk such that∫
bAn

(Ĉnv̂ − v̂)p = 0 for all p ∈ Pk. Then, the Clément interpolation operator
is defined as follows:

Ch : L1(Ω) ∋ v 7−→ Chv =

N∑

i=1

Ĉj(i)(v ◦ FAi
)(F−1

Ai
(ai))ϕi ∈ P k

c,h. (1.109)

The stability and interpolation properties of the Clément operator are stated
in the following:

Lemma 1.127 (Clément). Under the above assumptions, the following prop-
erties hold:

(i) Stability: Let 1 ≤ p < +∞ and 0 ≤ m ≤ 1. There is c such that

∀h, ∀v ∈ Wm,p(Ω), ‖Chv‖W m,p(Ω) ≤ c ‖v‖W m,p(Ω). (1.110)

(ii) Approximation: For K ∈ Th, denote by ∆K the set of elements in Th

sharing at least one vertex with K. Let F be an interface between two
elements of Th, and denote by ∆F the set of elements in Th sharing at
least one vertex with F ; see Figure 1.25. Let l, m, and p satisfy 1 ≤ p <

+∞ and 0 ≤ m ≤ l ≤ k + 1. Then, there is c such that

∀h, ∀K ∈ Th, ∀v ∈ W l,p(∆K), ‖v − Chv‖m,p,K ≤ c hl−m
K ‖v‖l,p,∆K

.

Similarly, if m + 1
p
≤ l ≤ k + 1,

∀h, ∀K ∈ Th, ∀v ∈ W l,p(∆F ), ‖v − Chv‖m,p,F ≤ c h
l−m− 1

p

F ‖v‖l,p,∆F
.

Proof. See [Clé75, Ber89, BeG98]. ⊓⊔

An easy consequence of this result is the following:
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K F

Fig. 1.25. Left: the shaded zone illustrates the set ∆K of simplices sharing at least
one vertex with the simplex K. Right: the shaded zone illustrates the set ∆F of
simplices sharing at least one vertex with the interface F .

Corollary 1.128. Let the assumptions of Lemma 1.127 hold, let 0 ≤ l ≤ k+1,
and let 0 ≤ m ≤ min(1, l). Then, there is c such that

∀h, ∀v ∈ W l,p(Ω), inf
vh∈P k

c,h

‖v − vh‖m,p,Ω ≤ c hl−m‖v‖l,p,Ω . (1.111)

Remark 1.129.
(i) One difficulty with the Clément interpolation operator is that it does

not preserve homogeneous boundary conditions, i.e., if v vanishes at the
boundary, this is generally not the case for Chv. This problem is usually solved
by setting boundary nodal values to zero. It can be shown that the Clément
interpolant thus modified satisfies the estimates of Lemma 1.127.

(ii) The technique presented above can be generalized to other finite ele-
ments and to domains with curved boundaries; see, e.g., [Ber89, BeG98]. ⊓⊔

1.6.2 Scott–Zhang interpolation

Besides the fact that the Clément operator does not preserve boundary con-
ditions, another difficulty is that it is not a projection. In [ScZ90], Scott and
Zhang have addressed these two issues and defined an alternative interpolation
operator.

Consider the notation and assumptions of the previous section. With each
node ai in the approximation space P k

c,h we associate either a d-simplex or a
(d−1)-simplex, say Ξi, as follows: If ai is in the interior of a d-simplex, say K,
we simply set Ξi = K. If ai is on a face, i.e., a (d − 1)-simplex, say F , we set
Ξi = F . Whenever ai is at the boundary and in the intersection of many faces,
it is important to pick the one face such that F ⊂ ∂Ω. Let ni be the number of
nodes belonging to Ξi and denote by {ϕi,q}1≤q≤ni

the restrictions to Ξi of the
local shape functions associated with the nodes lying in Ξi; see Figure 1.26.
Conventionally set ϕi,1 = ϕi. We now construct a family {γi,q}1≤q≤ni

as
follows: For an integer q, 1 ≤ q ≤ ni, define γi,q ∈ span{ϕi,1, . . . , ϕi,ni

} to be
the unique function such that
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ai

Ξi

Fig. 1.26. Example of a node ai with associated (d − 1)-simplex Ξi (d = 2) con-
taining ni = 3 nodes.

∫

Ξi

γi,qϕi,r = δqr, 1 ≤ q, r ≤ ni. (1.112)

Then, the Scott–Zhang interpolation operator is defined as follows:

SZh : W l,p(Ω) ∋ v 7−→ SZhv(x) =

N∑

i=1

ϕi

∫

Ξi

γi,1v ∈ P k
c,h. (1.113)

It is clear that SZh preserves homogeneous boundary conditions, i.e., v|∂Ω = 0
implies SZhv|∂Ω = 0. Furthermore, (1.112) implies SZhvh = vh for all vh ∈

P k
c,h. The interpolation properties of the Scott–Zhang interpolation operator

are stated in the following:

Lemma 1.130 (Scott–Zhang). Let p and l satisfy 1 ≤ p < +∞ and l ≥ 1 if
p = 1, and l > 1

p
otherwise. Then, there is c such that the following properties

hold:

(i) Stability: for all 0 ≤ m ≤ min(1, l),

∀h, ∀v ∈ W l,p(Ω), ‖SZhv‖m,p,Ω ≤ c ‖v‖l,p,Ω . (1.114)

(ii) Approximation: provided l ≤ k + 1, for all 0 ≤ m ≤ l,

∀h, ∀K ∈ Th, ∀v ∈ W l,p(∆K), ‖v − SZhv‖m,p,K ≤ c hl−m
K |v|l,p,∆K

,

where ∆K is defined in Lemma 1.127.

1.6.3 Orthogonal projections

Projection onto H1-conforming spaces. Let P k
c,h be the H1-conforming

approximation space based on the Pk Lagrange finite element; see (1.76). The
results presented in this section also hold for tensor product finite element
spaces, e.g., the approximation space Qk

c,h defined in (1.77). Consider the
following orthogonal projection operators:
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Π
0,k
c,h : L2(Ω) −→ P k

c,h and Π
1,k
c,h : H1(Ω) −→ P k

c,h,

with scalar products (u, v)0,Ω =
∫

Ω
uv and (u, v)1,Ω =

∫
Ω

uv +
∫

Ω
∇u·∇v,

respectively. Recall that

∀vh ∈ P k
c,h, (Π0,k

c,h (u), vh)0,Ω = (u, vh)0,Ω ,

∀vh ∈ P k
c,h, (Π1,k

c,h (u), vh)1,Ω = (u, vh)1,Ω ,

and that Π
0,k
c,h v (resp., Π

1,k
c,h v) is the closest function to v in P k

c,h for the L2-

norm (resp., H1-norm). The operator Π
1,k
c,h is often called the elliptic projector

or the Riesz projector.

Lemma 1.131 (Stability). Let k ≥ 1. The following estimates hold:

∀v ∈ L2(Ω), ‖Π0,k
c,h v‖0,Ω ≤ ‖v‖0,Ω , (1.115)

∀v ∈ H1(Ω), ‖Π1,k
c,h v‖1,Ω ≤ ‖v‖1,Ω . (1.116)

Moreover, if the family {Th}h>0 is quasi-uniform, there exists c such that

∀h, ∀v ∈ H1(Ω), ‖Π0,k
c,h v‖1,Ω ≤ c ‖v‖1,Ω . (1.117)

Proof. The stability estimates (1.115)–(1.116) directly follow from the defini-
tion of orthogonal projections. Indeed, using the Pythagoras identity yields

∀v ∈ L2(Ω), ‖v‖0,Ω = ‖Π0,k
c,h v‖0,Ω + ‖v − Π

0,k
c,h v‖0,Ω ,

and a similar identity holds for Π
1,k
c,h . The proof of (1.117) is the subject of

Exercise 1.17. ⊓⊔

Remark 1.132. Under reasonable assumptions, the stability estimate (1.116)
can be substantially improved. In particular, the elliptic projector is stable in
W 1,p(Ω); see Theorem 3.21 and [BrS94, p. 170]. ⊓⊔

For s ≥ 1 and v ∈ L2(Ω), we define the so-called negative-norm

‖v‖−s,Ω = sup
w∈Hs(Ω)∩H1

0 (Ω)

(v, w)0,Ω

‖w‖s,Ω

.

Note that this is not the norm considered to define the dual space H−s(Ω),
except in the particular case s = 1. Here, the norm ‖ · ‖−s,Ω is simply used as
a quantitative measure for functions in L2(Ω).

Proposition 1.133. Let k ≥ 1 and 1 ≤ s ≤ k + 1. Then, there is c such that

∀h, ∀v ∈ L2(Ω), ‖v − Π
0,k
c,h v‖−s,Ω ≤ c hs inf

vh∈P k
c,h

‖v − vh‖0,Ω . (1.118)
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Proof. Let v ∈ L2(Ω) and w ∈ Hs(Ω)∩H1
0 (Ω). Since s ≤ k+1, Lemma 1.127

implies
‖w − Chw‖0,Ω ≤ c hs|w|s,Ω .

Furthermore, since v − Π
0,k
c,h v is L2-orthogonal to P k

c,h,

(v − Π
0,k
c,h v, w)0,Ω = (v − Π

0,k
c,h v, w − Chw)0,Ω ≤ c hs‖v − Π

0,k
c,h v‖0,Ω ‖w‖s,Ω .

The result follows easily. ⊓⊔

Finally, we state approximation properties for smooth functions.

Proposition 1.134. Let k ≥ 1 and 1 ≤ l ≤ k.

(i) There exists c such that, for all h and v ∈ H l+1(Ω),

‖v − Π
0,k
c,h (v)‖0,Ω ≤ c hl+1|v|l+1,Ω , (1.119)

‖v − Π
1,k
c,h (v)‖1,Ω ≤ c hl|v|l+1,Ω . (1.120)

(ii) If Ω is convex, there exists c such that, for all h and v ∈ H l+1(Ω),

‖v − Π
1,k
c,h (v)‖0,Ω ≤ c hl+1|v|l+1,Ω . (1.121)

(iii) If the family {Th}h>0 is quasi-uniform, there exists c such that, for all h

and v ∈ H l+1(Ω),

‖v − Π
0,k
c,h (v)‖1,Ω ≤ c hl|v|l+1,Ω . (1.122)

Proof. See Exercise 1.18. ⊓⊔

Projection onto totally discontinuous spaces. Let k ≥ 0 and consider
the L2-orthogonal projection Π

0,k
td,h from L2(Ω) to the space P k

td,h defined in

(1.67). Clearly, for v ∈ L2(Ω) and K ∈ Th,




(Π0,k
td,hv)|K ∈ Pk,

∫

K

(Π0,k
td,hv − v)q = 0, ∀q ∈ Pk.

(1.123)

In particular, Π
0,0
td,hv is the piecewise constant function equal to 1

meas(K)

∫
K

v

on all cells K ∈ Th. The approximation properties of Π
0,k
td,h are stated in the

following:

Proposition 1.135. There exists c, independent of h, such that, for all 0 ≤
l ≤ k + 1, 1 ≤ p ≤ ∞, and v ∈ W l,p(Ω),

‖v − Π
0,k
td,hv‖0,p,Ω ≤ c hl|v|l,p,Ω . (1.124)

Proof. Straightforward verification. ⊓⊔

Remark 1.136.
(i) The shape-regularity assumption on the mesh is not required for

(1.124).

(ii) An estimate similar to (1.118) holds for Π
0,k
td,hv. ⊓⊔
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1.6.4 The discrete commutator property

The so-called discrete commutator property is a powerful tool to analyze
nonlinear problems; see Bertoluzza [Ber99] and [JoS87]. As a corollary of
Lemma 1.130, we infer the following:

Lemma 1.137 (Bertoluzza). Let the hypotheses of Lemma 1.130 hold.
Then, there is c such that, for all h, vh in P k

c,h, φ in W s+1,∞(Ω), and
0 ≤ m ≤ s ≤ 1,

‖φvh − SZh(φvh)‖m,p,Ω ≤ c h1+s−m‖vh‖s,p,Ω‖φ‖s+1,∞,Ω .

Proof. We prove the result locally. Let K be a cell in the mesh Th. Denote
by xK some point in K, say the barycenter of K. Let φ be a function in
W s+1,∞(Ω). Define RK = φ − φ(xK). It is clear that RK ∈ W 1,∞(Ω) and

‖RK‖0,∞,∆K
≤ c hK‖φ‖1,∞,Ω ,

‖RK‖1,∞,∆K
≤ c ‖φ‖1,∞,Ω .

Let vh be the mean value of vh on ∆K . Then, one readily verifies that

‖vh‖0,p,∆K
≤ c ‖vh‖0,p,∆K

,

‖vh − vh‖m,p,∆K
≤ c hs−m

K ‖vh‖s,p,∆K
, 0 ≤ m ≤ s ≤ 1.

Furthermore, observe that

‖φvh − SZh(φvh)‖m,p,K ≤ ‖(I − SZh)(φvh)‖m,p,K

+ ‖(I − SZh)
(
φ(vh − vh)

)
‖m,p,K ,

and denote by R1 and R2 the two residuals in the right-hand side. Since s ≥ 0,
1 + s ≥ 1

p
if p = 1 and 1 + s > 1

p
if p > 1; moreover, s ≤ 1 ≤ k. As a result,

one can use Lemma 1.130 to control R1 as follows:

R1 ≤ c h1+s−m
K ‖φvh‖s+1,p,∆K

≤ c h1+s−m
K ‖vh‖0,p,∆K

‖φ‖s+1,∞,Ω

≤ c h1+s−m
K ‖vh‖0,p,∆K

‖φ‖s+1,∞,Ω .

For the other residual, use the fact that SZh is linear, P k
c,h is invariant under

SZh, and SZh(vh) = vh on K to obtain

(I − SZh)
(
φ(vh − vh)

)
= (I − SZh)

(
(φ − φ(xK))(vh − vh)

)
.

As a result,

R2 = ‖(I − SZh)
(
RK(vh − vh)

)
‖m,p,K

≤ c h1−m
K |RK(vh − vh)|1,p,∆K

≤ c h1−m
K (‖RK‖0,∞,∆K

|vh − vh|1,p,∆K

+ |RK |1,∞,∆K
‖vh − vh‖0,p,∆K

)

≤ c h1−m
K (hK |vh − vh|1,p,∆K

+ ‖vh − vh‖0,p,∆K
)‖φ‖1,∞,Ω

≤ c h1+s−m
K ‖vh‖s,p,∆K

‖φ‖1,∞,Ω .
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Then, the desired result follows easily from the shape-regularity of the mesh,
which implies that supK′∈Th

(card{K ∈ Th; K ′ ⊂ ∆K}) is a fixed constant
independent of h. ⊓⊔

1.7 Inverse Inequalities

The goal of this section is to compare various functional norms on approxi-
mation spaces. Such spaces being finite-dimensional, all the norms therein are
equivalent. The purpose of inverse inequalities is to specify how the equiva-
lence constants depend on h. For the sake of simplicity, we restrict ourselves
to affine meshes and to finite elements for which ψK(v) = v ◦ TK .

Lemma 1.138 (Local inverse inequalities). Let {K̂, P̂ , Σ̂} be a finite el-

ement. Let l ≥ 0 be such that P̂ ⊂ W l,∞(K̂). Let {Th}h>0 be a shape-
regular family of affine meshes in Rd with h ≤ 1. Let 0 ≤ m ≤ l and
1 ≤ p, q ≤ ∞. Then, there is c, independent of h, K, p, and q, such that,
for all v ∈ PK = {p̂ ◦ T−1

K ; p̂ ∈ P̂},

‖v‖l,p,K ≤ c h
m−l+d( 1

p
− 1

q
)

K ‖v‖m,q,K . (1.125)

Proof. (1) Since all the norms in P̂ ⊂ W l,∞(K̂) are equivalent, there exists

c, only depending on K̂ and l, such that, for all v̂ ∈ P̂ , ‖v̂‖
l,∞, bK

≤ c‖v̂‖0,1, bK
;

hence,
∀v̂ ∈ P̂ , ‖v̂‖

l,p, bK
≤ c ‖v̂‖0,q, bK

. (1.126)

(2) Let v ∈ PK and 0 ≤ j ≤ l. Using (1.93), (1.94), (1.126), and the shape-
regularity of the family {Th}h>0 yields

|v|j,p,K ≤ c h
−j
K |det(JK)|

1
p ‖v̂‖

j,p, bK
≤ c h

−j
K |det(JK)|

1
p ‖v̂‖0,q, bK

≤ c h
−j
K |det(JK)|

1
p
− 1

q ‖v‖0,q,K ≤ c h
−j+d( 1

p
− 1

q
)

K ‖v‖0,q,K .

Since hK ≤ h ≤ 1 by assumption,

∀v ∈ PK , ∀j ∈ {0, . . . , l}, ‖v‖j,p,K ≤ c h
−j+d( 1

p
− 1

p
)

K ‖v‖0,q,K .

Taking j = l yields (1.125) for m = 0.
(3) Let 0 ≤ m ≤ l. Let α be a multi-index such that 0 ≤ |α| ≤ l. If |α| < l−m,

‖∂αv‖0,p,K ≤‖v‖l−m,p,K ≤ch
m−l+d( 1

p
− 1

p
)

K ‖v‖0,q,K ≤ch
m−l+d( 1

p
− 1

p
)

K ‖v‖m,q,K .

If l−m ≤ |α| ≤ l, one can find two multi-indices β and γ such that α = β +γ

and |β| = l − m. Hence,

‖∂αv‖0,p,K = ‖∂β(∂γv)‖0,p,K ≤ ‖∂γv‖l−m,p,K

≤ c h
m−l+d( 1

p
− 1

q
)

K ‖∂γv‖0,q,K ≤ c h
m−l+d( 1

p
− 1

q
)

K ‖v‖m,q,K ,
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since |γ| ≤ m. This proves that for all multi-index α such that 0 ≤ |α| ≤ l,

‖∂αv‖0,p,K ≤ c h
m−l+d( 1

p
− 1

q
)

K ‖v‖m,q,K . The conclusion follows readily. ⊓⊔

Example 1.139. For p = q, l = 1 and m = 0, Lemma 1.138 yields ‖v‖1,p,K ≤
c h−1

K ‖v‖0,p,K for all h, K ∈ Th, and v ∈ PK . ⊓⊔

To obtain global inverse inequalities, the quantity h−1
K must be controlled.

This observation leads to the following:

Definition 1.140 (Quasi-uniformity). A family of meshes {Th}h>0 is said
to be quasi-uniform if and only if it is shape-regular and there is c such that

∀h, ∀K ∈ Th, hK ≥ c h. (1.127)

Corollary 1.141 (Global inverse inequalities). Along with the hypotheses
of Lemma 1.138, assume that the family {Th}h>0 is quasi-uniform. Set Wh =

{vh; ∀K ∈ Th, vh ◦ TK ∈ P̂}. Then, using the usual convention if p = ∞ or
q = ∞, there is c, independent of h, such that, for all vh ∈ Wh and 0 ≤ m ≤ l,

(
∑

K∈Th

‖vh‖
p
l,p,K

) 1
p

≤ c hm−l+min(0, d
p
− d

q
)

(
∑

K∈Th

‖vh‖
q
m,q,K

) 1
q

. (1.128)

Proof. Let vh ∈ Wh. Assume p 6= ∞ and q 6= ∞ (these two cases are treated
similarly).
(1) Assume p ≥ q. Then, (1.125) implies

∑

K∈Th

‖vh‖
p
l,p,K ≤ c hp(m−l+d( 1

p
− 1

q
))

∑

K∈Th

‖vh‖
p
m,q,K .

To conclude, use the inequality (
∑

i∈I a
p
i )

1
p ≤ (

∑
i∈I a

q
i )

1
q which holds for

p ≥ q ≥ 0 and for all finite sequence of non-negative numbers {ai}i∈I ; see
Exercise 1.20. (2) Assume p ≤ q. Then, (1.125) implies

∑

K∈Th

‖vh‖
p
l,p,K ≤ c hp(m−l)

∑

K∈Th

h
dp( 1

p
− 1

q
)

K ‖vh‖
p
m,q,K

≤ c hp(m−l)

(
∑

K∈Th

h
dp( 1

p
− 1

q
) q

q−p

K

) q−p
q

(
∑

K∈Th

‖vh‖
q
m,q,K

) p
q

≤ c hp(m−l) meas(Ω)
q−p

q

(
∑

K∈Th

‖vh‖
q
m,q,K

) p
q

. ⊓⊔

The following result is often used when dealing with nonlinear problems:

Lemma 1.142. Along with the hypotheses of Lemma 1.138, assume that the
family {Th}h>0 is quasi-uniform. Set Wh = {vh; ∀K ∈ Th, vh ◦ TK ∈ P̂}.
Then, there is c, independent of h, such that, for all vh ∈ Wh ∩ H1(Ω),
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‖vh‖L∞(Ω) ≤

{
c (1 + |log h|)‖vh‖1,Ω in dimension 2,

c h− 1
2 ‖vh‖1,Ω in dimension 3.

(1.129)

Proof. See Exercise 1.21 for a proof in dimension 3. ⊓⊔

Remark 1.143.
(i) A simple consequence of Corollary 1.141 is that for all vh ∈ Wh ∩

W 1,p(Ω), ‖vh‖1,p,Ω ≤ c h−1‖vh‖0,p,Ω .
(ii) A necessary and sufficient condition for quasi-uniformity is that there

exists τ such that ρK ≥ τh for all h and K ∈ Th. Indeed, if {Th}h>0 satisfies
the above property, then hK

ρK
≤ τ−1 hK

h
≤ τ−1 for all h and K ∈ Th, thus

showing that the family {Th}h>0 is shape-regular. Furthermore, hK ≥ ρK ≥
τ h implies (1.127). Conversely, if {Th}h>0 is a quasi-uniform mesh family,
ρK ≥ 1

σ
hK ≥ c

σ
h for all h > 0 and K ∈ Th.

(iii) In two dimensions, one can construct a finer triangulation from an
initial triangulation by connecting all the edge midpoints. Repeating this pro-
cedure yields a quasi-uniform family of meshes; see [Zha95].

(iv) See, e.g., [GiR86, p. 103] and [BrS94, p. 109] for further insight. ⊓⊔

1.8 Exercises

Exercise 1.1. Let I1
h be the one-dimensional P1 Lagrange interpolation op-

erator defined in (1.6).

(i) Prove that for all h and v ∈ C0(Ω), ‖I1
hv‖C0(Ω) ≤ ‖v‖C0(Ω).

(ii) Prove that for all h and v ∈ C1(Ω), ‖v − I1
hv‖C0(Ω) ≤ h‖v‖C1(Ω). (Hint:

Use the mean-value theorem.)

Exercise 1.2 (Hermite finite element).

(i) Prove Lemma 1.82 and Proposition 1.83.
(ii) Prove (1.103) for v ∈ H4(Ω) without using the results of §1.5. (Hint:

Adapt the proof of Proposition 1.5 by showing that on a mesh interval
Ii, (v − IH

h v|Ii
)′′′ vanishes at least at one point of Ii.)

Exercise 1.3 (Pk Lagrange finite element).

(i) Let p ∈ Pk with k ≥ 1. Assume that p vanishes on the Rd-hyperplane of
equation λ = 0. Prove that there is q ∈ Pk−1 such that p = λq. Then,
prove Proposition 1.34. (Hint: By induction on k.)

(ii) Prove that if k ≤ d and p ∈ Pk vanishes at all the faces of K, then p = 0.
(iii) Prove that the number of nodes of a Pk Lagrange finite element located

on any edge of K is (k + 1) in arbitrary dimension d ≥ 2. Prove that
the number of nodes located on any face of K is the dimension of Pk in
dimension (d − 1). Justify Remark 1.76.


