
Appendix C

Bijective operators in Banach spaces

The goal of this appendix is to recall fundamental results on linear opera-
tors (that is, bounded linear maps) in Banach and Hilbert spaces, and in
particular, to state conditions allowing us to assert the bijectivity of these
operators. The results collected herein provide a theoretical framework for
the mathematical analysis of the finite element method. We refer the reader
to Aubin [22], Brezis [63], Lax [214], Rudin [260], Yosida [307], Zeidler [308]
for further reading.

C.1 Injection, surjection, bijection

Since we are interested in asserting the bijectivity of bounded linear maps in
Banach and Hilbert spaces, let us first recall some basic notions concerning
injectivity, surjectivity, and bijectivity, as well as left and right inverses.

Definition C.1 (Injection, surjection, bijection). Let E and G be two
nonempty sets. A function (or map) f : E → G is said to be injective if every
element of the codomain (i.e., G) is mapped to by at most one element of the
domain (i.e., E). The function is said to be surjective if every element of the
codomain is mapped to by at least one element of the domain. Finally f is
said to be bijective if every element of the codomain is mapped to by exactly
one element of the domain (i.e., f is both injective and surjective).

Definition C.2 (Left and right inverse). Let E and G be two nonempty
sets and let f : E → G be a function. We say that f ‡ : G → E is a left
inverse of f if (f ‡ ◦ f)(e) = e for all e ∈ E, and that f † : G → E is a right
inverse of f if (f ◦ f †)(g) = g for all g ∈ G.

A map with a left inverse is necessarily injective. Conversely, if the map
f : E → G is injective, the following holds true: (i) The map f̃ : E → f(E)
such that f̃(e) = f(e) for all e ∈ E has necessarily a unique left inverse;
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(ii) One can construct a left inverse f ‡ : G → E of f by setting f ‡(g) := e
(with e ∈ E arbitrary) if g 6∈ f(E) and f ‡(g) := (f̃)‡(g) otherwise; (iii) If
E,G are vector spaces and the map f is linear, the left inverse of f̃ is also
linear. A map with a right inverse is necessarily surjective. Conversely one
can construct right inverse maps for every surjective map by invoking the
axiom of choice.

C.2 Banach spaces

Basic properties of Banach and Hilbert spaces are collected in Appendix A. In
this section we recall these properties and give more details. To stay general
we consider complex vector spaces, i.e., vector spaces over the field C of
complex numbers. The case of real vector spaces is recovered by replacing
the field C by R, by removing the real part symbol ℜ(·) and the complex
conjugate symbol ·, and by interpreting |·| as the absolute value instead of
the complex modulus. Recall that a complex vector space V equipped with
a norm ‖·‖V is said to be a Banach space if every Cauchy sequence in V has
a limit in V .

Let V,W be complex vector spaces. The complex vector space composed
of the bounded linear maps from V to W is denoted L(V ;W ). Members of
L(V ;W ) are often called operators. This space is equipped with the norm

‖A‖L(V ;W ) := sup
v∈V

‖A(v)‖W
‖v‖V

<∞, ∀A ∈ L(V ;W ). (C.1)

In this book we systematically abuse the notation by implicitly assuming
that the argument in this type of supremum or infimum is nonzero. If W is a
Banach space, then L(V ;W ) equipped with the above norm is also a Banach
space (see Rudin [260, p. 87], Yosida [307, p. 111]).

Theorem C.3 (Banach–Steinhaus). Let V,W be Banach spaces and let
{Ai}i∈I be a family (not necessarily countable) in L(V ;W ). Assume that
supi∈I ‖Ai(v)‖W is a finite number for all v ∈ V . Then there is a real number
C such that

sup
i∈I

‖Ai(v)‖W ≤ C‖v‖V , ∀v ∈ V. (C.2)

Proof. See Brezis [63, p. 32], Lax [214, Chap. 10]. ⊓⊔

Corollary C.4 (Pointwise convergence). Let V,W be Banach spaces. Let
(An)n∈N be a sequence in L(V ;W ) such that for all v ∈ V , the sequence
(An(v))n∈N converges as n→ ∞ to a limit in W denoted A(v) (one says that
the sequence (An)n∈N converges pointwise to A). The following holds true:

(i) supn∈N ‖An‖L(V ;W ) <∞.
(ii) A ∈ L(V ;W ).
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(iii) ‖A‖L(V ;W ) ≤ lim infn→∞ ‖An‖L(V ;W ).

Proof. The statement (i) follows from Theorem C.3. Owing to (C.2), we infer
that ‖An(v)‖W ≤ C‖v‖V for all v ∈ V and all n ∈ N. Letting n → ∞, we
obtain ‖A(v)‖W ≤ C‖v‖V , and since A is obviously linear, we infer that the
statement (ii) holds true. Finally the statement (iii) results from the fact that
‖An(v)‖W ≤ ‖An‖L(V ;W )‖v‖V for all v ∈ V and all n ∈ N. ⊓⊔

Remark C.5 (Uniform convergence on compact sets). Corollary C.4
does not claim that (An)n∈N converges to A in L(V ;W ), i.e., uniformly on
bounded sets. A standard argument shows however that (An)n∈N converges
uniformly to A on compact sets. Let indeed K ⊂ V be a compact set. Let
ǫ > 0. Set C := supn∈N ‖An‖L(V ;W ). We notice that C is finite owing to Corol-
lary C.4(i). The set K being compact, there is a finite set of points {xi}i∈I
in K such that for all v ∈ K, there is i ∈ I such that ‖v − xi‖V ≤ (3C)−1ǫ.
Owing to the pointwise convergence of (An)n∈N to A, there is Ni such that
‖An(xi) − A(xi)‖W ≤ 1

3ǫ for all n ≥ Ni. Using the triangle inequality and
the statement (iii) above, we infer that

‖An(v)−A(v)‖W ≤ ‖An(v−xi)‖W +‖An(xi)−A(xi)‖W +‖A(v−xi)‖W ≤ ǫ,

for all v ∈ K and all n ≥ maxi∈I Ni. ⊓⊔

C.3 Hilbert spaces

Let V be a complex vector space equipped with an inner product (·, ·)V :
V × V → C. Recall that the inner product is linear w.r.t. its first argu-
ment and antilinear w.r.t. its second argument, i.e., (λv, w)V = λ(v, w)V
and (v, λw)V = λ(v, w)V for all λ ∈ C and all v, w ∈ V , and that Hermi-
tian symmetry means that (v, w)V = (w, v)V . The space V is said to be a
Hilbert space if it is a Banach space when equipped with the induced norm

‖v‖V := (v, v)
1
2

V for all v ∈ V . Recall the Cauchy–Schwarz inequality

|(v, w)V | ≤ ‖v‖V ‖w‖V , ∀v, w ∈ V. (C.3)

Notice that we obtain an equality in (C.3) iff v and w are collinear. This

follows from ‖v‖V ‖w‖V − ℜ(ξ(v, w)V ) = ‖v‖V ‖w‖V
2

∥∥ v
‖v‖V − ξ w

‖w‖V
∥∥2
V

for all

nonzero v, w ∈ V and all ξ ∈ C with |ξ| = 1.

Remark C.6 (Arithmetic-geometric and Young’s inequalities). Let
x1, . . . , xn be nonnegative real numbers. Using the convexity of the function
x 7→ ex, one can show the following arithmetic-geometric inequality:

(x1x2 . . . xn)
1
n ≤ 1

n
(x1 + . . .+ xn). (C.4)
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Moreover Young’s inequality states that for every positive real number γ > 0,

|(v, w)V | ≤
γ

2
‖v‖2V +

1

2γ
‖w‖2V , ∀v, w ∈ V. (C.5)

This follows from the Cauchy–Schwarz inequality and (C.4) with n = 2,

x1 = γ
1
2 ‖v‖V , and x2 = γ−

1
2 ‖w‖V . ⊓⊔

Definition C.7 (Hilbert basis). A sequence (en)n∈N in V is said to be a
Hilbert basis of V if it satisfies the following two properties:

(i) (em, en)V = δmn for all m,n ∈ N.
(ii) The linear space composed of all the finite linear combinations of the

vectors in (en)n∈N is dense in V .

The existence of Hilbert bases is not a natural consequence of the Hilbert
space structure, but the question of the existence of Hilbert bases can be
given a positive answer by introducing the notion of separability.

Definition C.8 (Separability). A Hilbert space V is said to be separable
if it admits a countable dense subset (vn)n∈N.

Not every Hilbert space is separable, but all the Hilbert spaces encountered
in this book are separable (or by default are always assumed to be separable).
The main motivation for the notion of separability is the following result.

Theorem C.9 (Separability and Hilbert basis). Every separable Hilbert
space has a Hilbert basis.

Proof. See [63, Thm. 5.11].

Lemma C.10 (Pareseval). Let (en)n∈N be a Hilbert basis of V . For all
u ∈ V , set un :=

∑
k∈{0:n}(u, ek)V ek. The following holds true:

lim
n→∞

‖u− un‖V = 0 and ‖u‖2V =
∑

k∈N

|(u, ek)V |2. (C.6)

Conversely let (αn)n∈N be a sequence in ℓ2(C) and set uα,n :=
∑

k∈{0:n} αkek.
Then the sequence (uα,n)n∈N converges to some uα in V such that (uα, en)V =
αn for all n ∈ N, and we have ‖uα‖2V = limn→∞

∑
k∈{0:n} α

2
k.

Proof. See Brezis [63, Thm. 5.9]. ⊓⊔

A striking consequence of Lemma C.10 is that all separable Hilbert spaces
are isomorphic and isometric with ℓ2(C).

Remark C.11 (Space VR). Let V be a complex vector space. By restricting
the scaling operation (λ, v) 7→ λv to (λ, v) ∈ R×V , V can also be equipped
with a vector space structure over R, which we denote VR (V and VR are
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the same sets, but they are equipped with different vector space structures).
For instance, if V = Cm, then dim(V ) = m but dim(VR) = 2m. Moreover
the canonical set {ek}k∈{1:m}, where the Cartesian components of ek in Cm

are ek,l = δkl (the Kronecker symbol) for all l ∈ {1:m}, is a basis of V ,
whereas the set {ek, iek}k∈{1:m} with i2 = −1 is a basis of VR. Finally, if V
is a complex Hilbert space with inner product (·, ·)V , then the space VR is a
real Hilbert space with inner product ℜ(·, ·)V . ⊓⊔

C.4 Duality, reflexivity, and adjoint operators

Let V be a complex Banach space. Its dual space V ′ is composed of all
the antilinear forms A : V → C that are bounded. The reason we consider
antilinear forms is that we employ the complex conjugate of test functions
in the weak formulation of complex-valued PDEs. The action of A ∈ V ′ on
v ∈ V is denoted 〈A, v〉V ′,V ∈ C (and sometimes also A(v)). Equipped with
the norm

‖A‖V ′ := sup
v∈V

|〈A, v〉V ′,V |
‖v‖V

, ∀A ∈ V ′, (C.7)

V ′ is a Banach space. In the real case the absolute value can be omitted from
the numerators since ±v can be considered in the supremizing set. In the
complex case the modulus can be replaced by the real part since v can be
multiplied by any unit complex number.

Remark C.12 (Linear vs. antilinear form). IfA : V → C is an antilinear
form, then A (defined by A(v) := A(v) ∈ C for all v ∈ V ) is a linear form. ⊓⊔

C.4.1 Fundamental results in Banach spaces

Theorem C.13 (Hahn–Banach). Let V be a normed vector space over C
and let W be a subspace of V . Let B ∈ W ′. There exists A ∈ V ′ that extends
B, i.e., A(w) = B(w) for all w ∈W , and such that ‖A‖V ′ = ‖B‖W ′ .

Proof. For the real case, see Brezis [63, p. 3], Lax [214, Chap. 3], Rudin [260,
p. 56], Yosida [307, p. 102]. The above statement is a simplified version of
the actual Hahn–Banach theorem. For the complex case, see Lax [214, p. 27],
Brezis [63, Prop. 11.23]. ⊓⊔

Corollary C.14 (Norm by duality). The following holds true:

‖v‖V = sup
A∈V ′

|A(v)|
‖A‖V ′

= sup
A∈V ′

|〈A, v〉V ′V |
‖A‖V ′

, (C.8)

for all v ∈ V , and the supremum is attained.



446 Appendix C. Bijective operators in Banach spaces

Proof. Assume v 6= 0 (the assertion is obvious for v = 0). We first observe

that supA∈V ′
|A(v)|
‖A‖V ′

≤ ‖v‖V since |A(v)| ≤ ‖A‖V ′‖v‖V . Let W := span(v)

and let B ∈W ′ be defined as B(λv) := λ‖v‖V for all λ ∈ C. By construction
B ∈ W ′ and ‖B‖W ′ = 1. Owing to the Hahn–Banach theorem, there exists
A ∈ V ′ such that ‖A‖V ′ = 1 and A(v) = B(v) = ‖v‖V . ⊓⊔

Corollary C.15 (Characterization of density). Let V be a normed vector
space over C and W be a subspace of V such that W 6= V (i.e., W is not
dense in V ). Then there exists f ∈ V ′\{0} such that f(w) = 0 for all w ∈W .

Proof. See Brezis [63, p. 8], Rudin [260, Thm. 5.19]. ⊓⊔

Definition C.16 (Double dual). The double dual of a Banach space V is
denoted V ′′ and is defined to be the dual space of its dual space V ′.

Proposition C.17 (Isometry into double dual). The bounded linear map
JV : V → V ′′ such that

〈JV (v), φ′〉V ′′,V ′ = 〈φ′, v〉V ′,V , ∀(v, φ′) ∈ V × V ′, (C.9)

is an isometry.

Proof. The claim follows from Corollary C.14 since

‖JV (v)‖V ′′ = sup
φ′∈V ′

|〈JV (v), φ′〉V ′′,V ′ |
‖φ′‖V ′

= sup
φ′∈V ′

|〈φ′, v〉V ′,V |
‖φ′‖V ′

= ‖v‖V . ⊓⊔

Definition C.18 (Reflexivity). A Banach space V is said to be reflexive if
JV is an isomorphism.

Remark C.19 (Map JV ). Since JV is an isometry, it is injective. Thus V
can be identified with the subspace JV (V ) ⊂ V ′′. It may happen that the
map JV is not surjective. In this case V is a proper subspace of V ′′. ⊓⊔

Example C.20 (Lebesgue spaces). One important consequence of The-
orem 1.37 is that the Lebesgue space Lp(D) is reflexive for all p ∈ (1,∞).
However L1(D) and L∞(D) are not reflexive. Indeed L∞(D) = L1(D)′, but
L1(D) ( L∞(D)′ with strict inclusion; see §1.4 and Brezis [63, p. 102]. ⊓⊔

Remark C.21 (Space VR). Let V be a complex vector space and let VR
be defined in Remark C.11. Let V ′

R
be the dual space of VR, i.e., the normed

real vector space composed of the bounded R-linear maps from V to R. Then
the map I : V ′ → V ′

R
s.t. for all ℓ ∈ V ′, I(ℓ)(v) := ℜ(ℓ(v)), for all v ∈ V , is a

bijective isometry; see [63, Prop. 11.22]. ⊓⊔

Definition C.22 (Weak convergence). Let V be a Banach space. The
sequence (vn)n∈N in V is said to converge weakly to v ∈ V if

〈A, vn〉V ′,V → 〈A, v〉V ′,V , ∀A ∈ V ′. (C.10)
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It is shown in Brezis [63, Prop. 3.5] that if the sequence (vn)n∈N converges
strongly to v (that is, in the norm topology, i.e., ‖vn − v‖V → 0 as n→ ∞),
then it also converges weakly to v. The converse is true if V is finite-
dimensional (see [63, Prop. 3.6]). Furthermore, if the sequence (vn)n∈N con-
verges weakly to v, then it is bounded and ‖v‖V ≤ lim infn→∞ ‖vn‖V . One
important result on weak convergence is the following (see [63, Thm. 3.18]).

Theorem C.23 (Reflexivity and weak compactness). Let V be a re-
flexive Banach space. Then from every bounded sequence (vn)n∈N of V , there
exists a subsequence (vnk)k∈N that is weakly convergent.

C.4.2 Further results in Hilbert spaces

Theorem C.24 (Riesz–Fréchet). The operator Jrf
V : V → V ′ such that

〈Jrf

V (v), w〉V ′,V := (v, w)V , ∀v, w ∈ V, (C.11)

is a linear isometric isomorphism.

Proof. See Brezis [63, Thm. 5.5], Lax [214, p. 56], Yosida [307, p. 90], or
Exercise 25.1. ⊓⊔

Remark C.25 (Riesz–Fréchet representation). Theorem C.24 is often
called Riesz–Fréchet representation theorem. It states that for every antilin-
ear form v′ ∈ V ′, there exists a unique vector v ∈ V such that v′ = Jrf

V (v).
The vector (Jrf

V )−1(v′) ∈ V is called Riesz–Fréchet representative of the an-
tilinear form v′ ∈ V ′. The action of v′ on V is represented by (Jrf

V )−1(v′)
with the identity 〈v′, w〉V ′,V =

(
(Jrf
V )−1(v′), w

)
V

for all w ∈ V . ⊓⊔

Remark C.26 (Linear vs. antilinear). Notice that Jrf
V is a linear oper-

ator. If we had adopted the convention that dual spaces were composed of
linear forms, we would have had to define Jrf

V by setting 〈Jrf
V (v), w〉V ′,V :=

(v, w)V for all v, w ∈ V , or equivalently 〈v′, w〉V ′,V := ((Jrf
V )−1(v′), w)V for

all w ∈ V and v′ ∈ V ′. In this case Jrf
V would have been antilinear. ⊓⊔

Corollary C.27 (Reflexivity). Hilbert spaces are reflexive.

Owing to the Riesz–Fréchet theorem, the notion of weak convergence (see
Definition C.22) notion can be reformulated as follows in Hilbert spaces.

Definition C.28 (Weak convergence). Let V be a Hilbert space. The se-
quence (vn)n∈N in V is said to converge weakly to v ∈ V if (w, vn)V →
(w, v)V as n→ ∞, for all w ∈ V .

A useful connection between weak and strong convergence in Hilbert spaces
is that if the sequence (vn)n∈N converges weakly to v ∈ V and if additionally,
‖vn‖V → ‖v‖V as n → ∞, then the sequence (vn)n∈N converges strongly to
v, i.e., ‖vn − v‖V → 0 as n→ ∞ (see, e.g., Brezis [63, Prop. 3.32]).
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C.4.3 Adjoint

Definition C.29 (Adjoint operator). Let V,W be complex Banach spaces.
Let A ∈ L(V ;W ). The adjoint operator of A is the bounded linear operator
A∗ ∈ L(W ′;V ′) such that

〈A∗(w′), v〉V ′,V := 〈w′, A(v)〉W ′,W , ∀(v, w′) ∈ V ×W ′. (C.12)

Note that (λA)∗ = λA∗ for all λ ∈ C.

Lemma C.30 (Norm of adjoint). Let A ∈ L(V ;W ) and let A∗ ∈ L(W ′;V ′)
be its adjoint. Then ‖A∗‖L(W ′;V ′) = ‖A‖L(V ;W ).

Proof. We have

‖A∗‖L(W ′;V ′) = sup
w′∈W ′

‖A∗(w′)‖V ′

‖w′‖W ′

= sup
w′∈W ′

sup
v∈V

|〈A∗(w′), v〉V ′,V |
‖v‖V ‖w′‖W ′

= sup
v∈V

sup
w′∈W ′

|〈w′, A(v)〉W ′,W |
‖v‖V ‖w′‖W ′

= sup
v∈V

‖A(v)‖W
‖v‖V

= ‖A‖L(V ;W ),

where we used that supw′∈W ′ supv∈V = supv∈V supw′∈W ′ , the definition of
A∗, and Corollary C.14. ⊓⊔

Definition C.31 (Self-adjoint operator). Let V be a reflexive Banach
space. Let A ∈ L(V ;V ′), so that A∗ ∈ L(V ′′;V ′). The operator A is said to
be self-adjoint if A = A∗ ◦ JV , i.e., if the following holds true:

〈A(v), w〉V ′,V = 〈A(w), v〉V ′,V , ∀v, w ∈ V. (C.13)

In particular, 〈A(v), v〉V ′,V takes real values if A is self-adjoint. If the spaces
V and V ′′ are actually identified, we write A∗ ∈ L(V ;V ′) and say that A is
self-adjoint if A = A∗.

Remark C.32 (Hermitian transpose). If V andW are finite-dimensional
and after choosing one basis for V and one for W, A can be represented by
a matrix with complex-valued entries. Then A∗ is represented in the same
bases by the Hermitian transpose of this matrix. Self-adjoint operators are
represented by Hermitian matrices. ⊓⊔

C.5 Open mapping and closed range theorems

Let V,W be complex Banach spaces. For A ∈ L(V ;W ), we denote by ker(A)
its kernel and by im(A) its range. The operator A being bounded, ker(A) is
closed in V . Hence the quotient of V by ker(A), V/ker(A), can be defined.
This space is composed of equivalence classes v̌ such that v and w are in the
same class v̌ if and only if v − w ∈ ker(A), i.e., A(v) = A(w).
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Theorem C.33 (Quotient space). The space V/ker(A) is a Banach space
when equipped with the norm ‖v̌‖ := infv∈v̌ ‖v‖V . Moreover the operator Ǎ :
V/ker(A) → im(A) s.t. Ǎ(v̌) := A(v), for all v in v̌, is an isomorphism.

Proof. See Brezis [63, §11.2], Yosida [307, p. 60]. ⊓⊔

For subspaces M ⊂ V and N ⊂ V ′, we define the annihilators of M and
N as follows:

M⊥ := {v′ ∈ V ′ | ∀m ∈M, 〈v′,m〉V ′,V = 0}, (C.14a)

N⊥ := {v ∈ V | ∀n′ ∈ N, 〈n′, v〉V ′,V = 0}. (C.14b)

Let M denote the closure of the subspace M in V . A characterization of
ker(A) and im(A) is given by the following result.

Lemma C.34 (Kernel and range). Let A ∈ L(V ;W ). The following holds
true:

(i) ker(A) = (im(A∗))⊥.
(ii) ker(A∗) = (im(A))⊥.
(iii) im(A) = (ker(A∗))⊥.
(iv) im(A∗) ⊂ (ker(A))⊥.

Proof. See Brezis [63, Cor. 2.18], Yosida [307, pp. 202-209]. ⊓⊔

Showing that the range of an operator is closed is a crucial step towards
proving that this operator is surjective. This is the purpose of the following
fundamental theorem.

Theorem C.35 (Banach or closed range). Let A ∈ L(V ;W ). The fol-
lowing statements are equivalent:

(i) im(A) is closed.
(ii) im(A∗) is closed.
(iii) im(A) = (ker(A∗))⊥.
(iv) im(A∗) = (ker(A))⊥.

Proof. See Brezis [63, Thm. 2.19], Yosida [307, p. 205]. ⊓⊔

We now put in place the second keystone of the edifice.

Theorem C.36 (Open mapping). If A ∈ L(V ;W ) is surjective and U is
an open set in V , then A(U) is an open set in W .

Proof. See Brezis [63, Thm. 2.6], Lax [214, p. 168], Rudin [260, p. 47], Yosida
[307, p. 75]. ⊓⊔

Theorem C.36, also due to Banach, has far-reaching consequences. In partic-
ular it leads to the following characterization of the closedness of im(A).
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Lemma C.37 (Characterization of closed range). Let A ∈ L(V ;W ).
The following statements are equivalent:

(i) im(A) is closed in W .
(ii) A has a bounded right inverse map A† : im(A) → V , i.e., (A ◦A†)(w) =

w for all w ∈ im(A), and there exists α > 0 such that α‖A†(w)‖V ≤
‖w‖W for all w ∈ im(A) (A† is not necessarily linear).

Proof. (i) ⇒ (ii). Since im(A) is closed in W , im(A) is a Banach space.
Applying the open mapping theorem to A : V → im(A) and U = BV (0, 1)
(the open unit ball in V ) proves that A(BV (0, 1)) is open in im(A). Since
0 ∈ A(BV (0, 1)), there is γ > 0 s.t. BW (0, γ) ⊂ A(BV (0, 1)). Let w ∈ im(A).
Since γ

2
w

‖w‖W ∈ BW (0, γ), there is z ∈ BV (0, 1) s.t. A(z) =
γ
2

w
‖w‖W . Setting

A†(w) := 2‖w‖W
γ z leads to A(A†(w)) = w and γ

2‖A†(w)‖V ≤ ‖w‖W .

(ii) ⇒ (i). Let (wn)n∈N be a sequence in im(A) that converges to some w ∈ W .
The sequence (vn := A†(wn))n∈N in V is such that A(vn) = wn and α‖vn‖V ≤
‖wn‖W . Then (vn)n∈N is a Cauchy sequence in V . Since V is a Banach space,
(vn)n∈N converges to a certain v ∈ V . Owing to the boundedness of A,
(A(vn))n∈N converges to A(v). Hence w = A(v) ∈ im(A). ⊓⊔

Corollary C.38 (Bounded inverse). If A ∈ L(V ;W ) is bijective, then
A−1 ∈ L(W ;V ).

Proof. Since A is bijective, im(A) =W is closed. Moreover the right inverse
A† is necessarily equal to A−1 (apply A−1 to A ◦A† = IW ). Lemma C.37(ii)
shows that A−1 ∈ L(W ;V ) with ‖A−1‖L(W ;V ) ≤ α−1. ⊓⊔

C.6 Characterization of surjectivity

As a consequence of the closed range theorem and of the open mapping
theorem, we deduce two characterizations of surjective operators.

Lemma C.39 (Surjectivity of A∗). Let A ∈ L(V ;W ). The following state-
ments are equivalent:

(i) A∗ :W ′ → V ′ is surjective.
(ii) A : V →W is injective and im(A) is closed in W .
(iii) There exists α > 0 such that

‖A(v)‖W ≥ α‖v‖V , ∀v ∈ V, (C.15)

or, equivalently, there exists α > 0 such that

inf
v∈V

sup
w′∈W ′

|〈w′, A(v)〉W ′ ,W |
‖w′‖W ′‖v‖V

≥ α. (C.16)
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Proof. (i)⇒ (iii). Since the map A∗ is surjective, Lemma C.37 implies that A∗

has a bounded right inverse map A∗† : V ′ →W ′. In particular A∗(A∗†(v′)) =
v′ for all v′ ∈ V ′, and there is α > 0 such that α‖A∗†(v′)‖W ′ ≤ ‖v′‖V ′ . Let
now v ∈ V . We infer that

|〈v′, v〉V ′,V |
‖v′‖V ′

=
|〈A∗(A∗†(v′)), v〉V ′,V |

‖v′‖V ′

≤ α−1 |〈A∗†(v′), A(v)〉W ′ ,W |
‖A∗†(v′)‖W ′

≤ α−1 sup
w′∈W ′

|〈w′, A(v)〉W ′,W |
‖w′‖W ′

.

Since ‖v‖V = supv′∈V ′
|〈v′,v〉V ′,V |

‖v′‖V ′
, taking the supremum with respect to v′ ∈

V ′ in the above bound proves (C.16).
(iii) ⇒ (ii). The bound (C.15) implies that A is injective. Consider a sequence
(vn)n∈N such that (A(vn))n∈N is a Cauchy sequence inW . Then (C.15) implies
that (vn)n∈N is a Cauchy sequence in V . Let v be its limit. A being bounded
implies that A(vn) → A(v). Hence im(A) is closed.
(ii) ⇒ (i). Since im(A) is closed, we use Theorem C.35(iv) together with the
injectivity of A to infer that im(A∗) = (ker(A))⊥ = {0}⊥ = V ′. ⊓⊔

Lemma C.40 (Surjectivity of A). Let A∈L(V ;W ). The following state-
ments are equivalent:

(i) A : V →W is surjective.
(ii) A∗ :W ′ → V ′ is injective and im(A∗) is closed in V ′.
(iii) There exists α > 0 such that

‖A∗(w′)‖V ′ ≥ α‖w′‖W ′ , ∀w′ ∈ W ′, (C.17)

or, equivalently, there exists α > 0 such that

inf
w′∈W ′

sup
v∈V

|〈A∗(w′), v〉V ′,V |
‖w′‖W ′‖v‖V

≥ α. (C.18)

Proof. We only detail the proof that (i) ⇒ (iii) since the other two impli-
cations are shown as above. Since the map A is surjective, Lemma C.37
implies that A has a bounded right inverse map A† : W → V . In par-
ticular A(A†(w)) = w for all w ∈ W , and there is α > 0 such that
α‖A†(w)‖V ≤ ‖w‖W . Then for all w′ ∈W ′, we have

‖A∗(w′)‖V ′ = sup
v∈V

|〈A∗(w′), v〉V ′,V |
‖v‖V

≥ sup
w∈W

|〈A∗(w′), A†(w)〉V ′,V |
‖A†(w)‖V

= sup
w∈W

|〈w′, w〉W ′,W |
‖A†(w)‖V

≥ α sup
w∈W

|〈w′, w〉W ′,W |
‖w‖W

= α‖w′‖W ′ . ⊓⊔

Remark C.41 (Lions’ theorem). The assertion (i) ⇔ (iii) in Lemma C.40
is sometimes called Lions’ theorem. It means that establishing the a priori
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estimate (C.17) is a necessary and sufficient condition to prove that the prob-
lem A(u) = f has at least one solution u ∈ V for all f ∈W . ⊓⊔

Lemma C.42 (Right inverse). Let V,W be Banach spaces and let A ∈
L(V ;W ) be a surjective operator. Assume that V is reflexive. Then A has a
bounded right inverse A† : W → V satisfying α‖A†(w)‖V ≤ ‖w‖W , where α
is the same constant as in the equivalent statements (C.17) and (C.18).

Proof. The proof is inspired from ideas by P. Azerad (private communica-
tion). Lemma C.34(ii) shows that the adjoint operator A∗ :W ′ → V ′ is injec-
tive. Let us equip the subspace R := im(A∗) ⊂ V ′ with the norm ‖·‖V ′ . The
injectivity of A∗ implies the existence of a linear left inverse A∗‡ : R → W ′.
Consider its adjoint A∗‡∗ : W ′′ → R′. Let EHB

R′V ′′ be one Hahn–Banach ex-
tension operator from R′ to V ′′ (see Theorem C.13). Let us set

A† := J−1
V ◦ EHB

R′V ′′ ◦A∗‡∗ ◦ JW :W → V,

and let us verify that A† satisfies the expected properties. Note that we
used here the reflexivity of V to invoke the inverse of the canonical isometry
JV : V → V ′′. We have for all (w′, w) ∈W ′ ×W ,

〈w′,A(A†(w))〉W ′,W = 〈A∗(w′), A†(w)〉V ′,V

= 〈EHB
R′V ′′(A∗‡∗(JW (w))), A∗(w′)〉V ′′,V ′

= 〈A∗‡∗(JW (w)), A∗(w′)〉R′,R = 〈JW (w), A∗‡(A∗(w′))〉W ′′,W ′

= 〈JW (w), w′〉W ′′,W ′ = 〈w′, w〉W ′,W ,

where to pass from the first to the second line we used that A∗(w′) ∈ R.
Moreover we observe that for all w ∈W ,

‖A†(w)‖V = ‖A∗‡∗(JW (w))‖R′ = sup
w′∈W ′

|〈A∗‡∗(JW (w)), A∗(w′)〉R′,R|
‖A∗(w′)‖V ′

= sup
w′∈W ′

|〈JW (w), w′〉W ′′,W ′ |
‖A∗(w′)‖V ′

≤ sup
w′∈W ′

‖w′‖W ′

‖A∗(w′)‖V ′

‖w‖W .

We conclude from (C.17) that ‖A†(w)‖V ≤ α−1‖w‖W . ⊓⊔

Remark C.43 (Counterexample). The assumption that V be reflex-
ive in Lemma C.42 cannot be removed if one insists on having the bound
α sup‖w‖W=1 ‖A†(w)‖V ≤ 1. Let us consider the real sequence spaces ℓp,

p ∈ [1,∞]. Since V := ℓ1 is not reflexive, there exists a linear form A : ℓ1 →
W := R that does not attain its norm on the unit ball of V (this is James’s
theorem [197, Thm. 1]). Using ℓ2 as pivot space, it is well known that ℓ∞ can
be identified with the dual of V (see e.g., Brezis [63, Thm. 4.14]). Let t be the
nonzero sequence in ℓ∞ such that A(v) = (v, t)ℓ2 :=

∑
i≥1 viti for all v ∈ V .

A simple computation shows that the adjoint A∗ : R→ V ′ ≡ ℓ∞ is such that
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A∗(s) = st for all s ∈ R. Let us define α := infw′∈R supv∈ℓ1
|(A∗(w′),v)ℓ2 |

|w′|‖v‖ℓ1
. We

have α = supv∈ℓ1
|(t,v)ℓ2 |
‖v‖ℓ1

= ‖A‖V ′ . Let A† be a right inverse of A. Then for

all s ∈ R, we have s = (A ◦A†)(s) = (t, A†(s))ℓ2 . For all s ∈ R\{0}, A†(s)
‖A†(s)‖V

is in the unit ball of V . Since A does not attain its norm on this ball by

assumption, we infer that |A( A†(s)
‖A†(s)‖V )| < α. Since A( A†(s)

‖A†(s)‖V ) =
1

‖A†(s)‖V s,

we can rewrite the above bound as 1
α |s| < ‖A†(s)‖V for all s ∈ R\{0}, that

is, 1 < α sup‖w‖W=1 ‖A†(w)‖V . ⊓⊔

We observe that nothing is said in Lemma C.42 on the linearity of the right
inverse A†. A slightly different construction of A† that guarantees linearity
is possible in the Hilbertian setting.

Lemma C.44 (Right inverse in Hilbert spaces). Let Y , Z be two non-
trivial Hilbert spaces. Let B : Y → Z ′ be a bounded linear operator such that
there exists β > 0 s.t.

‖B(y)‖Z′ ≥ β‖y‖Y , ∀y ∈ Y. (C.19)

Then B∗ : Z → Y ′ has a linear right inverse B∗† : Y ′ → Z such that
‖B∗†‖L(Y ′;Z) ≤ β−1.

Proof. Owing to Lemma C.39, the assumption (C.19) is equivalent to B∗ :
Z → Y ′ being surjective. Let us set M := ker(B∗)⊥ ⊂ Z, where the or-
thogonality is defined using the inner product of Z (note that M 6= {0}
since otherwise Y = {0} would be trivial). Let J : M → Z be the canonical
injection, and note that J∗ : Z ′ →M ′ is s.t. for all z′ ∈ Z ′ and all m ∈M ,

〈J∗(z′),m〉M ′,M = 〈z′, J(m)〉Z′,Z = 〈z′,m〉Z′,Z .

Let us set S := J∗ ◦ B : Y → M ′. Let y′ ∈ Y ′. The surjectivity of B∗

together with the definition of M implies that there is z := m + m⊥ ∈
M ⊕ M⊥ = Z s.t. y′ = B∗(z) = B∗(m) = B∗(J(m)) = S∗(m), which
proves that S∗ is surjective. Let m ∈ M := ker(B∗)⊥ and assume that
0 = S∗(m) = B∗(J(m)) = B∗(m). Then m ∈ ker(B∗) ∩ ker(B∗)⊥, i.e.,
m = 0, which proves that S∗ : M → Y ′ is injective. Hence S∗ and S are
isomorphisms. Moreover we have

‖(S∗)−1‖−1
L(Y ′;M) = inf

m∈M
‖S∗(m)‖Y ′

‖m‖Z
= inf

m∈M
sup
y∈Y

|〈S∗(m), y〉Y ′,Y |
‖m‖Z‖y‖Y

= inf
y∈Y

sup
m∈M

|〈S(y),m〉M ′,M |
‖y‖Y ‖m‖Z

= inf
y∈Y

sup
m∈M

|〈B(y),m〉Z′,Z |
‖y‖Y ‖m‖Z

,

where the first equality on the second line follows from (C.25) below and the
bijectivity of S. Using that Z =M ⊕M⊥, we obtain
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‖(S∗)−1‖−1
L(Y ′;M) = inf

y∈Y
sup
m∈M

|〈B(y),m〉Z′,Z |
‖y‖Y ‖m‖Z

≥ inf
y∈Y

sup
m+m⊥∈M⊕M⊥

|〈B(y),m+m⊥〉Z′,Z |
‖y‖Y (‖m‖2Z + ‖m⊥‖2Z)1/2

= β,

which proves that ‖(S∗)−1‖L(Y ′;M) ≤ β−1. (Note that we actually have

‖(S∗)−1‖L(Y ′;M) = β−1, since supm∈M
|〈B(y),m〉Z′,Z |

‖m‖Z ≤ supz∈Z
|〈B(y),z〉Z′,Z |

‖z‖Z .)

Let us now set

B∗† := J ◦ (B∗ ◦ J)−1 = J ◦ (S∗)−1 : Y ′ → Z.

Then B∗ ◦ B∗† = B∗ ◦ J ◦ (S∗)−1 = IY ′ , which proves that B∗† is in-
deed a right inverse of B∗. Moreover ‖B∗†‖L(Y ′,Z) = ‖J ◦ (S∗)−1‖L(Y ′,Z) ≤
‖(S∗)−1‖L(Y ′,Z) = β−1. ⊓⊔
Remark C.45 (Lemma C.44 vs. Lemma C.42). Without the state-
ment on the linearity of B∗†, Lemma C.44 would be a direct consequence
of Lemma C.42 applied with A := B∗, V := Z, and W := Y ′. Indeed the
condition (C.19) implies that A is a surjective operator satisfying the inf-sup
condition (C.18) with constant β. ⊓⊔
Remark C.46 (Left inverse). The operator B∗‡ := (J∗ ◦ B)−1 ◦ J∗ =
S−1 ◦ J∗ : Z ′ → Y is a left inverse of B s.t. ‖B∗‡‖L(Z′;Y ) ≤ β−1. ⊓⊔

Finally let us recall that compactness can be invoked to give a sufficient
condition for the range of an injective operator to be closed.

Lemma C.47 (Peetre–Tartar). Let X, Y , Z be Banach spaces. Let A ∈
L(X ;Y ) be injective and let T ∈ L(X ;Z) be compact. Assume that there is
c > 0 such that c‖x‖X ≤ ‖A(x)‖Y + ‖T (x)‖Z for all x ∈ X. Then im(A) is
closed. Equivalently there is α > 0 such that

α‖x‖X ≤ ‖A(x)‖Y , ∀x ∈ X. (C.20)

Proof. Owing to Lemma C.39 and since A is injective, im(A) is closed
iff (C.20) holds true. This inequality has already been proved in Lemma A.20
(see (A.6)). ⊓⊔
Theorem C.48 (Schauder). A bounded linear operator between Banach
spaces is compact if and only if its adjoint is compact.

Proof. See Brezis [63, Thm. 6.4]. ⊓⊔

C.7 Characterization of bijectivity

The following theorem provides the theoretical foundation of the BNB theo-
rem stated in §25.3 and which is often invoked in this book.
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Theorem C.49 (Bijectivity of A). Let A ∈ L(V ;W ). The following state-
ments are equivalent:

(i) A : V →W is bijective.
(ii) A is injective, im(A) is closed, and A∗ :W ′ → V ′ is injective.
(iii) A∗ is injective and there exists α > 0 such that

‖A(v)‖W ≥ α‖v‖V , ∀v ∈ V, (C.21)

or, equivalently, A∗ is injective and

inf
v∈V

sup
w′∈W ′

|〈w′, A(v)〉W ′,W |
‖w′‖W ′‖v‖V

=: α > 0. (C.22)

Proof. (1) The statements (ii) and (iii) are equivalent since (C.21) is equiva-
lent to A injective and im(A) closed owing to Lemma C.39.
(2) Let us first prove that (i) implies (ii). Since A is surjective, ker(A∗) =
im(A)⊥ = {0}, i.e., A∗ is injective. Since im(A) = W is closed and A is
injective, this yields (ii). Finally, to prove that (ii) implies (i), we only need
to prove that (ii) implies the surjectivity of A. The injectivity of A∗ implies
im(A) = (ker(A∗))⊥ = W . Since im(A) is closed, im(A) = W , i.e., A is sur-
jective. ⊓⊔

Corollary C.50 (Self-adjoint bijective operator). Assume that V is re-
flexive. Let A ∈ L(V ;V ′) be a self-adjoint operator. Then A is bijective iff
there is a real number α > 0 such that

‖A(v)‖V ′ ≥ α‖v‖V , ∀v ∈ V. (C.23)

Proof. Owing to Theorem C.49, the bijectivity of A implies that A satisfies
the inequality (C.23). Conversely (C.23) means that A is injective. It follows
that A∗ is injective since A∗ = A ◦ J−1

V owing to the reflexivity hypothesis.
The bijectivity of A then follows from Theorem C.49(iii). ⊓⊔

Let A ∈ L(V ;W ) be a bijective operator. We have seen in Corollary C.38
that A−1 ∈ L(W ;V ). We can now characterize more precisely the constants
associated with the boundedness of A−1 and the closedness of its range.

Lemma C.51 (Bounds on A−1). Let A ∈ L(V ;W ) be a bijective operator.
Then ‖A−1‖L(W ;V ) = α−1 with α defined in (C.22), and

inf
w∈W

‖A−1(w)‖V
‖w‖W

= inf
w∈W

sup
v′∈V ′

|〈v′, A−1(w)〉V ′,V |
‖v′‖V ′‖w‖W

= ‖A‖−1
L(V ;W ). (C.24)

Proof. (1) Using the bijectivity of A, we have
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(
sup
w∈W

‖A−1(w)‖V
‖w‖W

)−1

=

(
sup
v∈V

‖v‖V
‖A(v)‖W

)−1

= inf
v∈V

‖A(v)‖W
‖v‖V

= inf
v∈V

sup
w′∈W ′

|〈w′, A(v)〉W ′,W |
‖w′‖W ′‖v‖V

,

which shows using (C.22) that ‖A−1‖L(W ;V ) = α−1.
(2) Similarly we have

(
inf
w∈W

‖A−1(w)‖V
‖w‖W

)−1

= sup
v∈V

‖A(v)‖W
‖v‖V

= ‖A‖L(V ;W ),

which leads to the inf-sup condition (C.24) once we observe that ‖A−1(w)‖V =

supv′∈V ′

|〈v′,A−1(w)〉V ′,V |
‖v′‖V ′

owing to Corollary C.14. ⊓⊔

Let us finish this section with some useful results concerning the bijectivity
of the adjoint operator and some bounds on its inverse.

Corollary C.52 (Bijectivity of A∗). Let A ∈ L(V ;W ) and consider its
adjoint A∗ ∈ L(W ′;V ′). Then A is bijective if and only if A∗ is bijective.

Proof. We observe that the statement (ii) in Theorem C.49 is equivalent to
A∗ injective and A∗ surjective owing to the equivalence of the statements (i)
and (ii) from Lemma C.39. ⊓⊔

Lemma C.53 (Inf-sup condition). Let A ∈ L(V ;W ) be a bijective opera-
tor. Assume that V is reflexive. The following holds true:

inf
v∈V

sup
w′∈W ′

|〈w′, A(v)〉W ′,W |
‖w′‖W ′‖v‖V

= inf
w′∈W ′

sup
v∈V

|〈w′, A(v)〉W ′,W |
‖w′‖W ′‖v‖V

. (C.25)

In other words the inf-sup constant of A ∈ L(V ;W ) on V ×W ′ is equal to
the inf-sup constant of A∗ ∈ L(W ′;V ′) on W ′ × V .

Proof. The left-hand side, l, and the right-hand side, r, of (C.25) are two
positive finite numbers since A is a bijective bounded operator. The left-
hand side being equal to l means that l is the largest number such that
‖A(v)‖W ≥ l ‖v‖V for all v in V . Let w′ ∈ W ′ and w ∈ W . Since A is
surjective, we can consider its right inverse A†, and the previous statement
regarding l implies that l ‖A†(w)‖V ≤ ‖w‖W . Since A(A†(w)) = w, this
implies that

‖w′‖W ′ = sup
w∈W

|〈w′, w〉W ′,W |
‖w‖W

= sup
w∈W

|〈A∗(w′), A†(w)〉V ′,V |
‖w‖W

≤ ‖A∗(w′)‖V ′ sup
w∈W

‖A†(w)‖V
‖w‖W

≤ 1

l
‖A∗(w′)‖V ′ ,
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so that l ≤ r. The other inequality r ≤ l is proved similarly by working with
W ′ in lieu of V , V ′ in lieu of W and A∗ in lieu of A, leading to

inf
w′∈W ′

sup
v′′∈V ′′

|〈v′′, A∗(w′)〉V ′′,V ′ |
‖v′′‖V ′′‖w′‖W ′

≤ inf
v′′∈V ′′

sup
w′∈W ′

|〈v′′, A∗(w′)〉V ′′,V ′ |
‖v′′‖V ′′‖w′‖W ′

,

and we conclude by using the reflexivity of V . ⊓⊔
Remark C.54 (Counterexample). The identity (C.25) can fail if A 6= 0
is not bijective. For instance, if A : (x1, x2, x3 . . .) 7→ (0, x1, x2, x3, . . .) is the
right shift operator in ℓ2, then A∗ : (x1, x2, x3 . . .) 7→ (x2, x3, x4, . . .) is the
left shift operator. It can be verified that A is injective but not surjective,
whereas A∗ is surjective but not injective. Using the notation of the proof of
Lemma C.53, it can also be shown that l = 1 and r = 0. ⊓⊔
Lemma C.55 (Bounds on A−∗). Let A ∈ L(V ;W ) be a bijective operator.
Assume that V is reflexive. Let A∗ ∈ L(W ′;V ′) be the adjoint of A and
let A−∗ ∈ L(V ′;W ′) denote its inverse. Then ‖A−∗‖L(V ′;W ′) = α−1 with α
defined in (C.22), and

inf
v′∈V ′

‖A−∗(v′)‖W ′

‖v′‖V ′

= inf
v′∈V ′

sup
w∈W

|〈A−∗(v′), w〉W ′,W |
‖v′‖V ′‖w‖W

=
1

‖A‖L(V ;W )
. (C.26)

Proof. Notice that the notation A−∗ is meant to reflect that (A−1)∗ =
(A∗)−1. Combining the results from Lemma C.30 and Lemma C.51, we infer
that ‖A−∗‖L(V ′;W ′) = ‖A−1‖L(W ;V ) = α−1. Moreover (C.26) follows from
(C.24) since 〈A−∗(v′), w〉W ′,W = 〈v′, A−1(w)〉V ′,V . ⊓⊔

C.8 Coercive operators

We now focus on the more specific class of coercive operators. The notion of
coercivity plays a central role in the analysis of PDEs involving the Laplace
operator, and more generally elliptic operators (see Chapter 31).

Definition C.56 (Coercive operator). Let V be a complex Banach space.
The operator A ∈ L(V ;V ′) is said to be a coercive if there exist a real number
α > 0 and a complex number ξ ∈ C with |ξ| = 1 such that

ℜ (ξ〈A(v), v〉V ′,V ) ≥ α ‖v‖2V , ∀v ∈ V. (C.27)

In the real case we have either ξ = 1 or ξ = −1.

Remark C.57 (Self-adjoint case). Let A be a coercive operator and as-
sume that A is self-adjoint (see Definition C.31), so that 〈A(v), v〉V ′,V is real
for all v ∈ V . Then coercivity means that ℜ(ξ)〈A(v), v〉V ′,V ≥ α ‖v‖2V . Hence
up to rescaling α, one can always take either ξ = 1 or ξ = −1 when A is
self-adjoint. ⊓⊔
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The coercivity condition is sometimes defined as follows: There exists a real
number α > 0 such that |〈A(v), v〉V ′,V | ≥ α‖v‖2V for all v ∈ V . Although this
variant looks slightly more general since ℜ (ξ〈A(v), v〉V ′,V ) ≤ |〈A(v), v〉V ′,V |,
it is equivalent to (C.27). More precisely we have the following result.

Lemma C.58 (Real part vs. module). Let α > 0 and let V be a Hilbert
space. The following two statements are equivalent:
(i) |〈A(v), v〉V ′,V | ≥ α‖v‖2V for all v ∈ V .
(ii) There is ξ ∈ C with |ξ| = 1 s.t. (C.27) holds true.

Proof. Let us prove the claim in the real case. It suffices to show that the
statement (i) implies that 〈A(v), v〉V ′,V has always the same sign for all
nonzero v ∈ V . Reasoning by contradiction, if there are nonzero v, w ∈ V such
that 〈A(v), v〉V ′,V < 0 and 〈A(w), w〉V ′,V > 0, then the second-order polyno-
mial R ∋ λ 7→ 〈A(v+λw), v+λw〉V ′,V ∈ R has at least one root λ∗ ∈ R. The
statement (i) yields v + λ∗w = 0, so that 〈A(v), v〉V ′,V = λ2∗〈A(w), w〉V ′,V >
0, which contradicts 〈A(v), v〉V ′,V < 0. We refer the reader to Brezis [63,
p. 366] for the proof in the complex case (see also Exercise 45.10 for a proof
of the Hausdorff–Toeplitz theorem). ⊓⊔
It turns out that the notion of coercivity is relevant only in Hilbert spaces.

Proposition C.59 (Hilbert structure). Let V be a Banach space. V can
be equipped with a Hilbert structure with the same topology if and only if there
is a coercive operator in L(V ;V ′).

Proof. Setting ((v, w))V := 1
2 (ξ〈A(v), w〉V ′,V + ξ〈A(w), v〉V ′,V ), we define a

sesquilinear form on V×V that is Hermitian. The coercivity and boundedness
of A imply that

α ‖v‖2V ≤ ((v, v))V ≤ ‖A‖L(V ;V ′) ‖v‖2V ,

for all v ∈ V . This shows positive definiteness (so that ((·, ·))V is an inner
product in V ) and that the induced norm is equivalent to ‖·‖V . ⊓⊔

Let us now examine the connections between coercivity and bijectivity.

Corollary C.60 (Coericivty as a sufficient condition). If the operator
A ∈ L(V ;V ′) is coercive, then it is bijective.

Proof. This is the Lax–Milgram lemma which is proved in §25.2. ⊓⊔
Definition C.61 (Monotone operator). The operator A ∈ L(V ;V ′) is
said to be monotone if

ℜ(〈A(v), v〉V ′,V ) ≥ 0, ∀v ∈ V. (C.28)

Corollary C.62 (Coercivity as a necessary and sufficient condition).
Assume that V is reflexive. Let A ∈ L(V ;V ′) be a monotone self-adjoint
operator. Then A is bijective iff it is coercive (with ξ = 1).
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Proof. See Exercise 25.7. ⊓⊔
If the operator A ∈ L(V ;V ′) is coercive (and therefore bijective), its in-

verse A−1 ∈ L(V ′;V ) turns out to be coercive as well. Indeed using the
coercivity of A and the lower bound on A−1 resulting from (C.24), we infer
that for all φ ∈ V ′,

ℜ(ξ〈φ,A−1(φ)〉V ′,V ) = ℜ(ξ〈A(A−1(φ)), A−1(φ)〉V ′,V )

≥ α ‖A−1(φ)‖2V ≥ α

‖A‖2 ‖φ‖
2
V ′ , (C.29)

with the shorthand notation ‖A‖ := ‖A‖L(V ;V ′). The following results provide
more precise characterizations of the coercivity constant of A−1.

Lemma C.63 (Coercivity of A−1, self-adjoint case). Let A ∈ L(V ;V ′)
be a self-adjoint coercive operator (i.e., (C.27) holds true with either ξ = 1
or ξ = −1 according to Remark C.57). Then A−1 is coercive with coercivity
constant ‖A‖−1, and we have more precisely

inf
φ∈V ′

ξ〈φ,A−1(φ)〉V ′,V

‖φ‖2V ′

=
1

‖A‖ . (C.30)

Proof. Assume that ξ = 1 (the case ξ = −1 is identical). The coercivity of
A together with A = A∗ implies that ((v, w))A := 〈A(v), w〉V ′,V is an inner
product on V . Let v ∈ V and φ ∈ V ′. Since 〈φ, v〉V ′,V = ((A−1(φ), v))A, the
Cauchy–Schwarz inequality implies that

ℜ(〈φ, v〉V ′,V ) ≤ ((v, v))
1
2

A((A
−1(φ), A−1(φ)))

1
2

A

= 〈A(v), v〉
1
2

V ′,V 〈φ,A−1(φ)〉
1
2

V ′,V

≤ ‖A‖ 1
2 ‖v‖V 〈φ,A−1(φ)〉

1
2

V ′,V ,

where we used the boundedness of A. This implies that

‖φ‖V ′ = sup
v∈V

|〈φ, v〉V ′,V |
‖v‖V

≤ ‖A‖ 1
2 〈φ,A−1(φ)〉

1
2

V ′,V .

Taking the supremum over φ ∈ V ′, we infer that

1

‖A‖ ≤ inf
φ∈V ′

〈φ,A−1(φ)〉V ′,V

‖φ‖2V ′

≤ inf
φ∈V ′

sup
ψ∈V ′

|〈ψ,A−1(φ)〉V ′,V |
‖ψ‖V ′‖φ‖V ′

=
1

‖A‖ ,

where the last equality follows from (C.24). Thus all the terms are equal, and
this concludes the proof. ⊓⊔
Let us now consider the case where the operator A ∈ L(V ;V ′) is not nec-
essarily self-adjoint. Since Hilbert spaces are reflexive, the adjoint of A is
A∗ ∈ L(V ;V ′), and we have 〈A∗(v), w〉V ′,V = 〈A(w), v〉V ′,V .
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Lemma C.64 (Coercivity of A−1, general case). Let A ∈ L(V ;V ′) be
a coercive operator with parameters α > 0 and ξ ∈ C with |ξ| = 1. Let the
self-adjoint part of ξA be defined as (ξA)s :=

1
2 (ξA+ (ξA)∗) = 1

2 (ξA+ ξA∗).
The following holds true:

α

‖A‖2 ≤ inf
φ∈V ′

ℜ(ξ〈φ,A−1(φ)〉V ′,V )

‖φ‖2V ′

≤ 1

‖(ξA)s‖
, (C.31)

and the upper bound is attained if and only if ξA is self-adjoint (and the value
of the upper bound is then 1

‖A‖).

Proof. The lower bound in (C.31) is a restatement of (C.29). To establish the
upper bound, let us set B := ξA. Then B are Bs are coercive (and therefore
invertible) operators, since

〈Bs(v), v〉V ′,V = ℜ(〈B(v), v〉V ′,V ) = ℜ(ξ〈A(v), v〉V ′,V ) ≥ α ‖v‖2V ,

for all v ∈ V . A direct calculation shows that

B−1(B −Bs)B
−1
s (B∗ −Bs)B

−∗

= (B−1
s −B−1)(I −BsB

−∗) = B−1
s −B−1 −B−∗ +B−1BsB

−∗

= B−1
s −B−1 −B−∗ +

1

2
B−1(B +B∗)B−∗ = B−1

s − 1

2
(B−1 +B−∗).

This implies that for all φ ∈ V ′,

〈φ,B−1
s (φ)〉V ′,V

=
1

2
〈φ, (B−1 +B−∗)(φ)〉V ′,V + 〈φ,B−1(B −Bs)B

−1
s (B∗ −Bs)B

−∗(φ)〉V ′,V

= ℜ(〈φ,B−1(φ)〉V ′,V ) + 〈ψ,B−1
s (ψ)〉V ′,V ≥ ℜ(〈φ,B−1(φ)〉V ′,V ),

with ψ := (B∗ − Bs)B
−∗(φ) and where we used that 〈ψ,B−1

s (ψ)〉V ′,V ≥ 0.
Applying Lemma C.63 to Bs which is coercive and self-adjoint, we conclude
that

1

‖Bs‖
= inf

φ∈V ′

〈φ,B−1
s (φ)〉V ′,V

‖φ‖2V ′

≥ inf
φ∈V ′

ℜ(〈φ,B−1(φ)〉V ′,V )

‖φ‖2V ′

.

Since 〈φ,B−1(φ)〉V ′,V = (ξ)−1〈φ,A−1(φ)〉V ′,V and (ξ)−1 = ξ, this proves the
upper bound in (C.31). Let us finally show that A being self-adjoint is a
necessary and sufficient condition for attaining the upper bound. If A is self-
adjoint, Lemma C.63 proves that the upper bound is attained. Conversely,
if the upper bound is attained, the above identity relating B−1

s and B−1,
together with the coercivity of B−1

s , implies that ψ = 0, that is, (B∗ −
Bs)B

−∗(φ) = 0 for all φ ∈ V ′. Since B−∗ is invertible, this means that
B∗ = Bs, i.e., B = Bs, proving that B is self-adjoint. ⊓⊔
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[30] I. Babuška and J. Osborn. Analysis of finite element methods for second order boundary
value problems using mesh dependent norms. Numer. Math., 34(1):41–62, 1980. pages
150
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[60] S. C. Brenner. Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J.
Numer. Anal., 41(1):306–324, 2003. pages 256

[61] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods,
volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
pages 39

[62] S. C. Brenner and L.-Y. Sung. Linear finite element methods for planar linear elasticity.
Math. Comp., 59(200):321–338, 1992. pages 333

[63] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Uni-
versitext. Springer, New York, 2011. pages 167, 383, 386, 387, 389, 441, 442, 444, 445,
446, 447, 449, 452, 454, 458

[64] F. Brezzi, G. Manzini, L. D. Marini, P. Pietra, and A. Russo. Discontinuous Galerkin
approximations for elliptic problems. Numer. Methods Partial Differential Equations,
16(4):365–378, 2000. pages 260

[65] W. L. Briggs. A multigrid tutorial. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1987. pages 81

[66] A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spaces and applications.
IMA J. Numer. Anal., 4(29):827–855, 2009. pages 256, 262

[67] A. Buffa, P. Ciarlet Jr, and E. Jamelot. Solving electromagnetic eigenvalue problems in
polyhedral domains with nodal finite elements. Numer. Math., 113:497–518, 2009. pages
377

[68] E. Burman. Robust error estimates in weak norms for advection dominated transport
problems with rough data. Math. Models Methods Appl. Sci., 24(13):2663–2684, 2014.
pages 137

[69] E. Burman and A. Ern. Discrete maximum principle for Galerkin approximations of the
Laplace operator on arbitrary meshes. C. R. Math. Acad. Sci. Paris, 338(8):641–646,
2004. pages 170

[70] E. Burman and A. Ern. Stabilized Galerkin approximation of convection-diffusion-reaction
equations: discrete maximum principle and convergence. Math. Comp., 74(252):1637–
1652, 2005. pages 170



464 References

[71] E. Burman and A. Ern. Discontinuous Galerkin approximation with discrete variational
principle for the nonlinear Laplacian. C. R. Math. Acad. Sci. Paris, 346(17–18):1013–
1016, 2008. pages 262

[72] E. Burman and P. Zunino. A domain decomposition method for partial differential equa-
tions with non-negative form based on interior penalties. SIAM J. Numer. Anal., 44:
1612–1638, 2006. pages 306

[73] E. Burman, H. Wu, and L. Zhu. Linear continuous interior penalty finite element method
for Helmholtz equation with high wave number: one-dimensional analysis. Numer. Meth-
ods Partial Differential Equations, 32(5):1378–1410, 2016. pages 215

[74] V. Calo, M. Cicuttin, Q. Deng, and A. Ern. Spectral approximation of elliptic operators
by the hybrid high-order method. Math. Comp., 88(318):1559–1586, 2019. pages 435

[75] C. Canuto. Eigenvalue approximations by mixed methods. RAIRO Anal. Numér., 12(1):
27–50, 1978. pages 435

[76] S. Caorsi, P. Fernandes, and M. Raffetto. On the convergence of Galerkin finite element
approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal., 38(2):580–607
(electronic), 2000. pages 370

[77] C. Carstensen and S. A. Funken. Constants in Clément-interpolation error and residual
based a posteriori error estimates in finite element methods. East-West J. Numer. Math.,
8(3):153–175, 2000. pages 185

[78] C. Carstensen and J. Gedicke. Guaranteed lower bounds for eigenvalues. Math. Comp.,
83(290):2605–2629, 2014. doi: 10.1090/S0025-5718-2014-02833-0. pages 435

[79] C. Carstensen and F. Hellwig. Low-order discontinuous Petrov-Galerkin finite element
methods for linear elasticity. SIAM J. Numer. Anal., 54(6):3388–3410, 2016. pages 333

[80] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. A posteriori error control for DPG
methods. SIAM J. Numer. Anal., 52(3):1335–1353, 2014. pages 36

[81] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput.
Math. Appl., 67(6):1195–1253, 2014. pages 192, 195

[82] K. L. Cascavita, J. Bleyer, X. Chateau, and A. Ern. Hybrid discretization methods with
adaptive yield surface detection for Bingham pipe flows. J. Sci. Comput., 77(3):1424–1443,
2018. doi: 10.1007/s10915-018-0745-3. URL https://doi.org/10.1007/s10915-018-0745-3.
pages

[83] J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal convergence
rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–2550,
2008. pages 192, 194, 195
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