
Part I, Chapter 1

Lebesgue spaces

The objective of the four chapters composing Part I is to recall (or gently
introduce) some elements of functional analysis that will be used throughout
the book: Lebesgue integration, weak derivatives, and Sobolev spaces. We
focus in this chapter on Lebesgue integration and Lebesgue spaces. Most of
the results are stated without proof, but we include various examples. We
refer the reader to Adams and Fournier [3], Bartle [16], Brezis [48], Demengel
and Demengel [88], Evans [99], Grisvard [110], Malý and Ziemer [138], Rudin
[169, Chap. 11], Rudin [170], Sobolev [180], Tartar [189], Yosida [202].

In this book, d is the space dimension, and D denotes a nonempty subset
of Rd. Vectors in Rd, d ≥ 2, and vector-valued functions are denoted in
bold font. We abuse the notation by denoting position vectors in Rd in bold
font as well. Moreover, ‖·‖ℓ2(Rd) denotes the Euclidean norm in Rd (we write
‖·‖ℓ2 when the context is unambiguous), and a·b denotes the Euclidean inner
product between two vectors a, b ∈ Rd. For every pair of integers m ≤ n, we
use the notation {m:n} := {p ∈ N | m ≤ p ≤ n}.

1.1 Heuristic motivation

If one restricts oneself to computational considerations, the Riemann integral
is the only notion of integration that is needed in numerical analysis, since the
objects that one manipulates in practice are piecewise smooth functions (e.g.,
polynomials) defined on meshes. However, the Riemann integral becomes
useless when one starts to investigate questions like passage to the limit.
For instance, assume that one has an interval I := (a, b), a sequence of finite
partitions of this interval, say (Ih)h∈H, and a sequence of real-valued functions
(vh)h∈H defined on I such that vh is smooth on each subinterval of Ih for all
h ∈ H. Here, H is a countable set with 0 as unique accumulation point. In
the context of finite elements, the index h refers to the size of the mesh that
is used to construct the function vh. Assume also that one can a priori prove



2 Chapter 1. Lebesgue spaces

that the sequence (vh)h∈H is Cauchy in the following sense: for every ǫ > 0,

there is h(ǫ) such that
∫ b

a
|vh1(x)−vh2 (x)| dx ≤ ǫ for all h1, h2 ∈ H∩

(
0, h(ǫ)

)
.

One may then wonder whether vh converges to some object with interesting
properties when h → 0. The answer to this question becomes very intricate
if one restricts oneself to the Riemann integral, but it becomes simple if one
adopts Lebesgue’s point of view. Since the above question arises constantly in
this book, we now take some time to recall the key ingredients of Lebesgue’s
theory.

1.2 Lebesgue measure

To define the Lebesgue integral of a function defined on a subset D of Rd, one
needs to measure the volume of sets in Rd. For every bounded rectangular
parallelepiped R := [a1, b1] × · · · × [ad, bd], with ai ≤ bi for all i ∈ {1:d},
we define the Lebesgue (outer) measure of R to be its volume, i.e., we set
|R| :=∏i∈{1:d}(bi − ai).

Definition 1.1 (Lebesgue’s outer measure). Let R(Rd) be the set of all
the rectangular parallelepipeds in Rd. Let E be a set in Rd. The Lebesgue’s
outer measure of E is defined as

|E|∗ := inf
{∑

i∈N

|Ri| | E ⊂
⋃

i∈N

Ri, Ri ∈ R(Rd)
}
. (1.1)

We expect |E|∗ to be a reasonable estimate of the volume of E if E is a
reasonable set. The outer Lebesgue measure has the following properties: (i)
|∅|∗ = 0; (ii) If E ⊂ F , then |E|∗ ≤ |F |∗; (iii) If {Ei}i∈N is a countable collec-
tion of subsets of Rd, then |⋃i∈NEi|∗ ≤∑i∈N |Ei|∗ (countable subadditivity
property; see [169, Thm. 11.8]).

Example 1.2 (Countable sets). The outer Lebesgue measure of a count-

able set A :=
⋃

k∈N{xk} is zero. Let indeed ǫ > 0.We have {xk} ⊂ R(xk, ǫ
1
d ),

where R(z, r) is the cube of side r centered at z. Hence, |{xk}|∗ ≤ ǫ, i.e.,
|{xk}|∗ = 0 since ǫ > 0 is arbitrary. Invoking subadditivity yields |A|∗ = 0.
For example, this implies that the outer measure of the set of the rational
numbers is zero, i.e., |Q|∗ = 0. ⊓⊔

Definition 1.3 (Lebesgue’s measure of a set). A set E ⊂ Rd is said to
be Lebesgue-measurable if |S|∗ = |S∩E|∗+|S∩Ec|∗ for every subset S ⊂ Rd,
where Ec is the complement of E in Rd.

It turns out that not all the sets of Rd are Lebesgue-measurable, but the class
of Lebesgue-measurable sets (in short, measurable sets) of Rd, say L(Rd), is
sufficiently vast that we will only encounter measurable sets in this book. In
particular, (i) If E is measurable, then Ec is also measurable; (ii) Open sets
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of Rd and closed sets of Rd are measurable (so that all the usual geometric
objects, e.g., parallelepipeds or balls, are measurable); (iii) Countable unions
and countable intersections of measurable sets are measurable.

Henceforth, the map |·| : L(Rd) → [0,∞] such that |E| := |E|∗ for all
E ∈ L(Rd) is called (d-dimensional) Lebesgue measure. Since the action of the
Lebesgue measure on measurable sets is simply the outer Lebesgue measure,
we infer that (i) |∅| = 0; (ii) If A,B ∈ L(Rd) and A ⊂ B, then |A| ≤ |B|; (iii)
The countable subadditivity property holds true on countable collections of
measurable sets. By restricting our attention to measurable sets, the property
we have gained is that |A1 ∪ A2| = |A1| + |A2| for disjoint measurable sets
(since (A1∪A2)∩A1 = A1 and (A1∪A2)∩Ac

1 = A2). Moreover, if {Ak}k∈N is a
countable family of measurable disjoint sets, the union

⋃
k∈NAk is measurable

and |⋃k∈NAk| =
∑

k∈N |Ak|; see [169, Thm. 11.10].

Example 1.4 (Null sets). Let A ⊂ Rd. If |A|∗ = 0, then A is measurable.
Let indeed S ⊂ Rd. Then |A ∩ S|∗ ≤ |A|∗ = 0, i.e., |A ∩ S|∗ = 0. Moreover,
|S|∗ ≥ |S∩Ac|∗ = |S∩Ac|∗+ |S∩A|∗, and the subadditivity property implies
that |S|∗ ≤ |S ∩ A|∗ + |S ∩ Ac|∗, whence the result. ⊓⊔

Example 1.5 (Cantor set). To define the Cantor ternary set, one starts
with the interval [0, 1], then one deletes the open middle third from [0, 1],
leaving two line segments: [0, 13 ] ∪ [ 23 , 1]. Next the open middle third of each
of the two remaining segments is deleted, leaving four line segments: [0, 19 ] ∪
[ 29 ,

1
3 ] ∪ [ 23 ,

7
9 ] ∪ [ 89 , 1]. This process is continued ad infinitum. Setting C0 :=

[0, 1] and Cn := 1
3Cn−1 ∪ (23 + 1

3Cn−1), the Cantor ternary set is defined
by C∞ := {x ∈ [0, 1] | x ∈ Ck, ∀k ∈ N}. Then C∞ is measurable (as the
complement of a countable union of measurable sets), |C∞| ≤ |Ck| for all
k ∈ N, so that |C∞| = 0, but it can be shown that C∞ is not countable. ⊓⊔

Definition 1.6 (Equality a.e.). Let D ⊂ Rd be a measurable set, i.e., D ∈
L(Rd). Let f : D → R and g : D → R be two functions. We say that f and g
are equal almost everywhere if |{x ∈ D | f(x) 6= g(x)}| = 0. Henceforth, we
write f(x) = g(x) for a.e. x ∈ D, or f = g a.e. in D.

Definition 1.7 (ess sup, ess inf). Let D ⊂ Rd be a measurable set and let
f : D → R be a function. We define

ess sup
x∈D

f(x) := inf{M ∈ R | f(x) ≤M for a.e. x ∈ D}, (1.2a)

ess inf
x∈D

f(x) := sup{m ∈ R | f(x) ≥ m for a.e. x ∈ D}. (1.2b)

Definition 1.8 (Measurable function). Let D ⊂ Rd be a measurable set.
A function f : D → R is said to be measurable if {x ∈ D | f(x) > r} is
measurable for all r ∈ R.

The meaning of the above definition is that a function is measurable if all its
upper level sets are (Lebesgue) measurable; see also [169, Def. 11.13].
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Lemma 1.9 (Characterization). Let D ⊂ Rd be a measurable set. Let
f : D → R. The function f is measurable iff any of the following statements
holds true:

(i) For all r ∈ R, the set {x ∈ D | f(x) > r} is measurable.
(ii) For all r ∈ R, the set {x ∈ D | f(x) ≥ r} is measurable.
(iii) For all r ∈ R, the set {x ∈ D | f(x) < r} is measurable.
(iv) For all r ∈ R, the set {x ∈ D | f(x) ≤ r} is measurable.

Proof. Item (i) is the definition of the measurability of f. The identity {x ∈
D | f(x) ≥ r} =

⋂
n∈N{x ∈ D | f(x) > r − 1

n+1} proves that (i) implies
(ii). {x ∈ D | f(x) < r} = D ∩ {x ∈ D | f(x) ≥ r}c proves that (ii) implies
(iii). {x ∈ D | f(x) ≤ r} =

⋂
n∈N{x ∈ D | f(x) < r − 1

n+1} proves that (iii)
implies (iv), and {x ∈ D | f(x) > r} = D ∩ {x ∈ D | f(x) ≤ r}c proves that
(iv) implies the measurability of f. (See also [169, Thm. 11.15].) ⊓⊔

For every subset A ⊂ R, let us denote by f−1(A) := {x ∈ D | f(x) ∈ A}
the inverse image of A by f. Since every open set in R is a countable union
of open intervals, the above result shows that f is measurable if and only if
f−1(U) = {x ∈ D | f(x) ∈ U} is measurable for every open set U of R.

Example 1.10 (Measurable functions). Functions that are piecewise
continuous and more generally all the functions that are integrable in the
Riemann sense are measurable. ⊓⊔

Corollary 1.11 (Measurability and equality a.e.). Let D ⊂ Rd be a
measurable set. Let f : D → R be a measurable function. Let g : D → R be a
function. If f = g a.e. in D, then g is measurable.

Proof. See Exercise 1.2. ⊓⊔

Theorem 1.12 (Pointwise limit of measurable functions). Let D be a
measurable set in Rd. Let fn : D → R for all n ∈ N be real-valued measurable
functions. Then

(i) lim supn∈N fn and lim infn∈N fn are both measurable.
(ii) Let f : D → R. Assume that fn(x) → f(x) for a.e. x ∈ D. Then f is

measurable.

Proof. See Exercise 1.5. ⊓⊔

Example 1.13 (Measurability). Let D := (0, 1). Let f : D → R be
defined by f(x) := x. Let C∞ be the Cantor set (see Example 1.5). Let
g : D → R be defined by g(x) := −2x if x ∈ C∞, and g(x) := x if x 6∈ C∞.
The function f is measurable since it is continuous. Recalling that |C∞| = 0,
g is also measurable by virtue of Corollary 1.11 since f = g a.e. in D. ⊓⊔

Theorem 1.14 (Composite functions). Let D be a measurable set in Rd.
Let g : D → R be a measurable function. Let f : R → R be continuous. Then
f ◦ g : D → R is measurable.
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Proof. For every subset A ⊂ R, we have (f ◦ g)−1(A) = g−1(f−1(A)). Let
U be an open set in R. Then (f ◦ g)−1(U) = g−1(f−1(U)). But f−1(U) is
an open set since f is continuous. Hence, g−1(f−1(U)) is measurable since
f−1(U) is open and g is measurable. As a result, (f ◦ g)−1(U) is measurable.

⊓⊔

Example 1.15 (Composite functions). Let g : D → R be a measurable
function. Then by virtue of Theorem 1.14, the functions |g|, g + |g|, g − |g|,
|g|p for every p > 0, eg, cos(g), sin(g) are also measurable. ⊓⊔

Theorem 1.16 (Operations on measurable functions). Let f : D → R
and g : D → R be two measurable functions and let λ ∈ R. Then the functions
λf , f + g , |f | and fg are measurable.

Proof. See Exercise 1.6. ⊓⊔

1.3 Lebesgue integral

We say that g : D → R is a simple nonnegative function if there exist m ∈ N,
a collection of disjoint measurable sets {Ak}k∈{1:m} in D, and a collection
of nonnegative numbers {vk}k∈{1:m} such that g =

∑
k∈{1:m} vk1Ak

(where

1Ak
(x) := 1 if x ∈ Ak and 1Ak

(x) := 0 otherwise). The Lebesgue integral of
g over D is defined by

∫
D
g(x) dx :=

∑
k∈{1:m} vk|Ak|.

Theorem 1.17 (Simple functions). Let D ∈ L(Rd). Let f : D → [0,∞] be
a nonnegative measurable function. Then there exist simple functions {gk}k∈N

s.t. 0 ≤ g1 ≤ g2 . . . ≤ f and limk→∞ gk(x) = f(x) for all x ∈ D.

Proof. See [170, Thm. 1.17]. ⊓⊔

Definition 1.18 (Lebesgue integral). Let f be a nonnegative measurable
function. The Lebesgue integral of f over D is defined in [0,∞] as follows:

∫

D

f(x) dx := sup
{∫

D

g(x) dx | g is simple nonnegative and g ≤ f
}
.

Let f be measurable but not necessarily nonnegative. If either
∫
D
f+(x) dx or∫

D f
−(x) dx is finite, where f± := max(±f, 0), the Lebesgue integral of f is

defined by ∫

D

f(x) dx :=

∫

D

f+(x) dx−
∫

D

f−(x) dx. (1.3)

We say that f is (Lebesgue-)integrable on D if both terms in (1.3) are finite.

This definition agrees with the Riemann integral of f if f is Riemann-
integrable. Moreover, since

∫
D |f(x)| dx =

∫
D f

+(x) dx +
∫
D f

−(x) dx, we
have by construction

∣∣∫
D
f(x) dx

∣∣ ≤
∫
D
|f(x)| dx.
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An important property of the Lebesgue integral is that if f is integrable
on D, then

∫
D |f(x)| dx = 0 if and only if f vanishes everywhere on D up

to a set of zero measure. This leads us to introduce a notion of equivalence
classes. Two functions are said to belong to the same class if they coincide
almost everywhere (henceforth, a.e.), i.e., everywhere but on a set of zero
Lebesgue measure. Elements of Lebesgue spaces are, strictly speaking, equiv-
alence classes, although we refer to them simply as functions that are defined
almost everywhere. For instance, the function φ : (0, 1) → {0, 1} that is 1 on
the rational numbers and is zero otherwise is in the same equivalence class
as the zero function. Hence, φ = 0 a.e. on (0, 1). Integrals are always under-
stood in the Lebesgue sense throughout this book. Whenever the context is
unambiguous, we simply write

∫
D
f dx instead of

∫
D
f(x) dx. We refer the

reader to [170, Chap. 1] for more elaborate notions on the measure theory.

Example 1.19 (Cantor set). Let f : [0, 1] → R be such that f(x) := 1 if
x is in C∞ (see Example 1.5) and f(x) := 0 otherwise. Then f is measurable

(see Corollary 1.11) and
∫ 1

0 f(x) dx = 0. ⊓⊔
Remark 1.20 (Literature). It is reported in Denjoy et al. [89, p. 15] that
Lebesgue explained his approach to integration as follows: “I have to pay a
certain sum, which I have collected in my pocket. I take the bills and coins
out of my pocket and give them to the creditor in the order I find them until
I have reached the total sum. This is the Riemann integral. But I can proceed
differently. After I have taken all the money out of my pocket, I order the
bills and coins according to identical values and then I pay the several heaps
one after the other to the creditor. This is my integral.” To get a clearer
connection with the integration process, one could say that Lebesgue went to
a grocery store every day in a month, bought items, and asked for credit until

the end of the month. His debt at the end of a 30-day month is
∫ 30

0
f(t) dt,

where f(t) is the amount of money he owes per day. What Lebesgue has

described above are two different ways to compute
∫ 30

0 f(t) dt. ⊓⊔

1.4 Lebesgue spaces

This section introduces the Lebesgue spaces and reviews their key properties.

1.4.1 Lebesgue space L1(D)

Definition 1.21 (Space L1). Let D be an open set in Rd. L1(D) is the
vector space composed of all the real-valued measurable functions that are
Lebesgue-integrable on D, and we equip L1(D) with the norm ‖f‖L1(D) :=∫
D |f | dx to make it a normed space.

Theorem 1.22 (Monotone convergence, Beppo Levi). Let D be an
open set in Rd. Let (fn)n∈N be a sequence of functions in L1(D) such that
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0 ≤ f0 ≤ f1 ≤ . . . ≤ fn ≤ fn+1 ≤ . . . a.e. on D and supn∈N

∫
D
fn dx < ∞.

Then fn(x) converges to a finite limit for a.e. x in D. Denoting by f(x) the
limit in question, f is in L1(D) and limn∈N ‖fn − f‖L1(D) = 0.

Proof. See [48, Thm. 4.1] or [170, Thm. 1.26]. ⊓⊔

Theorem 1.23 (Lebesgue’s dominated convergence). Let (fn)n∈N be a
sequence of functions in L1(D) such that:

(i) fn(x) → f(x) a.e. in D.
(ii) There is g ∈ L1(D) such that |fn(x)| ≤ g(x) a.e. in D for all n ∈ N.

Then f ∈ L1(D) and fn → f in L1(D).

Proof. See [16, p. 123], [48, Thm. 4.2], [170, Thm. 1.34]. ⊓⊔

Example 1.24 (Application). Let fn : D := (0, 1) → R, n ∈ N, with
fn(x) := 1 if x < 1

n and fn(x) := x otherwise. We have fn(x) → x a.e. in D
and fn(x) ≤ g := 1 a.e. in D. Hence, fn → x in L1(D). ⊓⊔

Theorem 1.25 (Fischer–Riesz). L1(D) equipped with the L1-norm from
Definition 1.33 is a Banach space.

Proof. See [3, Thm. 2.16], [16, p. 142], [48, Thm. 4.8], [170, Thm. 3.11]. ⊓⊔

Remark 1.26 (Lebesgue vs. Riemann). The two key results the notion
of Lebesgue integration gave us that were missing in the Riemann integration
are Lebesgue’s dominated convergence theorem and the fact that L1(D) is
now complete, i.e., it is a Banach space. This answers the question raised
in §1.1. ⊓⊔

Theorem 1.27 (Pointwise convergence). Let (fn)n∈N be a sequence in
L1(D) and assume that f ∈ L1(D) is such that ‖fn−f‖L1(D) → 0. Then there
exist a subsequence (fnk

)k∈N and a function g ∈ L1(D) such that fnk
(x) →

f(x) a.e. in D and |fnk
(x)| ≤ g(x) a.e. in D for all k ∈ N.

Proof. See [48, Thm. 4.9], [170, Thm. 3.12]. ⊓⊔

Example 1.28 (Dirac mass). The assumption that there exists some
g ∈ L1(D) s.t. |fn(x)| ≤ g(x) a.e. in D for all n ∈ N, is crucial to ap-
ply Lebesgue’s dominated convergence theorem. For instance, consider the
sequence of functions in L1(R) s.t. fn(x) := 0 if |x| > 1

n and fn(x) := n
2

otherwise. We have fn(x) → 0 for a.e. x in R and
∫
R
|fn(x)| dx = 1, but fn

does not converge in L1(R). Reasoning by contradiction, let us assume that
fn → f in L1(R). Theorem 1.27 implies that there is a subsequence (fnk

)k∈N

s.t. fnk
(x) → f(x) for a.e. x in R. For all x 6= 0, we have fnk

(x) = 0 for all nk

such that nk >
1
|x| . This implies that f(x) = 0 for a.e. x in R. This argument

shows that
∫
R
|f(x)| dx = 0, but since we assumed that fn → f in L1(R),

we also have
∫
R
|f(x)| dx = 1, which is a contradiction. Actually (fn)∈N con-

verges to the Dirac mass at 0 in the distribution sense; see Example 4.3. ⊓⊔
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Definition 1.29 (Space L1
loc(D)). Let D be an open set in Rd. The elements

of the following space are called locally integrable functions:

L1
loc(D) := {v measurable | ∀ compact K ⊂ D, v|K ∈ L1(K)}. (1.4)

Definition 1.30 (Support). Let D be a measurable set in Rd. The support
in D of a function ϕ : D → R, henceforth denoted by supp(ϕ), is defined to
be the closure in D of the subset {x ∈ D | ϕ(x) 6= 0}.

Definition 1.31 (Space C∞
0 (D)). We denote by C∞

0 (D) the space com-
posed of the functions from D to R that are C∞ and whose support in D is
compact. The members of C∞

0 (D) are called test functions.

Theorem 1.32 (Vanishing integral). Let D be an open set in Rd. Let
v ∈ L1

loc(D). Then
∫
D vϕdx = 0 for all ϕ ∈ C∞

0 (D) iff v = 0 a.e. in D.

Proof. See [48, Cor. 4.24], [138, p. 6]. ⊓⊔

1.4.2 Lebesgue spaces Lp(D) and L∞(D)

Definition 1.33 (Lp spaces). Let D be an open set in Rd. For all p ∈ [1,∞],
let Lp(D) := {f measurable | ‖f‖Lp(D) <∞}, where

‖f‖Lp(D) :=

(∫

D

|f |p dx
) 1

p

, if p ∈ [1,∞), (1.5a)

‖f‖L∞(D) := ess sup
x∈D

|f(x)| := inf{M ∈ R | |f(x)| ≤M a.e. x ∈ D}. (1.5b)

We write Lp(D;Rq), q ≥ 1, for the space composed of Rq-valued functions
whose components are all in Lp(D), and we use the Euclidean norm in Rq,
‖f‖ℓ2(Rq), instead of |f |, to evaluate the norms in (1.5). When q = d, we

write Lp(D) := Lp(D;Rd).

Lebesgue’s dominated convergence theorem extends to all the Lp spaces,
p ∈ [1,∞), i.e., if the dominating function g is in Lp(D), the convergence of
fn to f occurs in Lp(D).

Theorem 1.34 (Pointwise convergence). Let p ∈ [1,∞]. Let (fn)n∈N be a
sequence in Lp(D) and let f ∈ Lp(D) such that ‖fn−f‖Lp(D) → 0. Then there
exist a subsequence (fnk

)k∈N and a function g ∈ Lp(D) such that fnk
(x) →

f(x) a.e. in D and |fnk
(x)| ≤ g(x) a.e. in D for all k ∈ N.

Proof. See [48, Thm. 4.9], [170, Thm. 3.12]. ⊓⊔

Theorem 1.35 (Fischer–Riesz). For all p ∈ [1,∞], Lp(D) equipped with
the Lp-norm from Definition 1.33 is a Banach space.

Proof. See [3, Thm. 2.16], [16, p. 142], [48, Thm. 4.8], [170, Thm. 3.11]. ⊓⊔
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Among all the Lebesgue spaces, L2(D) plays a particular role owing to the
following important consequence of the Fischer–Riesz theorem.

Theorem 1.36 (L2 space). L2(D;R) is a Hilbert space when equipped with
the inner product (f, g)L2(D) :=

∫
D
fg dx. Similarly, L2(D;C) is a Hilbert

space when equipped with the inner product (f, g)L2(D) :=
∫
D
fg dx.

Remark 1.37 (Continuous embedding on bounded sets). Assume
that D is bounded. For all p, q ∈ [1,∞] with p ≤ q, Hölder’s inequality
implies that

‖f‖Lp(D) ≤ |D| 1p− 1
q ‖f‖Lq(D), ∀f ∈ Lq(D), (1.6)

meaning that Lq(D) →֒ Lp(D) (this notation means that Lq(D) is con-
tinuously embedded into Lp(D)). One can show that limp→∞ ‖f‖Lp(D) =
‖f‖L∞(D) for all f ∈ L∞(D). Moreover, if f ∈ Lp(D) for all p ∈ [1,∞)
and if there is c, uniform w.r.t. p, s.t. ‖f‖Lp(D) ≤ c, then f ∈ L∞(D) and
‖f‖L∞(D) ≤ c; see [3, Thm. 2.14]. ⊓⊔

Theorem 1.38 (Density of C∞
0 (D)). Let D be an open set in Rd. Then

C∞
0 (D) is dense in Lp(D) for all p ∈ [1,∞).

Proof. See [170, Thm. 3.14]. ⊓⊔

Remark 1.39 (The case of L∞(D)). C∞
0 (D) is not dense in L∞(D). If D

is bounded, the completion of C∞(D) in L∞(D) is C0(D), and the completion
of C∞

0 (D) is {v ∈ C0(D) | v|∂D = 0}. ⊓⊔

1.4.3 Duality

Lemma 1.40 (Conjugate, Hölder’s inequality). Let p ∈ [1,∞] be a real
number. The real number p′ ∈ [1,∞] such that 1

p+
1
p′ = 1, with the convention

that p′ := 1 if p = ∞ and p′ := ∞ if p = 1, is called conjugate of p. Let
f ∈ Lp(D) and g ∈ Lp′

(D). Then fg ∈ L1(D) and

∫

D

|fg| dx ≤ ‖f‖Lp(D)‖g‖Lp′(D). (1.7)

Proof. See [3, Thm. 2.4], [16, p. 404], [48, Thm. 4.6], [170, Thm. 3.8]. ⊓⊔

For p = p′ = 2, Hölder’s inequality becomes
∫
D
|fg| dx ≤ ‖f‖L2(D)‖g‖L2(D)

for all f, g ∈ L2(D), which is nothing but the Cauchy–Schwarz inequality in
L2(D). This inequality is useful to bound |(f, g)L2(D)| since |(f, g)L2(D)| ≤∫
D
|fg| dx.

Theorem 1.41 (Riesz–Fréchet). Let p ∈ [1,∞). The dual space of Lp(D)
can be identified with Lp′

(D).

Proof. See [3, pp. 45–49], [48, Thm. 4.11&4.14], [170, Thm. 6.16]. ⊓⊔
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Remark 1.42 (L∞(D)). Theorem 1.41 fails for p = ∞. Indeed, the dual of
L∞(D) strictly contains L1(D) (see [48, p. 102]). ⊓⊔
Corollary 1.43 (Interpolation inequality). Let p, q ∈ [1,∞] with p ≤ q.
For all r ∈ [p, q], letting θ ∈ [0, 1] be s.t. 1

r
:= θ

p + 1−θ
q , we have

‖f‖Lr(D) ≤ ‖f‖θLp(D)‖f‖1−θ
Lq(D), ∀f ∈ Lp(D) ∩ Lq(D). (1.8)

Recall from §A.2 that for two Banach spaces V and W, L(V ;W ) is composed
of the linear operators that map V boundedly to W, and that the norm
‖·‖L(V ;W ) is defined in (A.2).

Theorem 1.44 (Riesz–Thorin). Let p0, p1, q0, q1 be four real numbers
such that 1 ≤ p0 ≤ p1 ≤ ∞, 1 ≤ q0 ≤ q1 ≤ ∞. Let T : Lp0(D) + Lp1(D) −→
Lq0(D)+Lq1(D) be a linear operator that maps Lp0(D) and Lp1(D) boundedly
to Lq0(D) and Lq1(D), respectively. Then the operator T maps Lpθ (D) bound-
edly to Lqθ (D) for all θ ∈ (0, 1), where pθ and qθ are defined by 1

pθ
:= 1−θ

p0
+ θ

p1
,

1
qθ

:= 1−θ
q0

+ θ
q1
. Moreover, ‖T ‖L(Lpθ ;Lqθ ) ≤ ‖T ‖θL(Lp0 ;Lq0)‖T ‖1−θ

L(Lp1 ;Lq1).

Proof. See [189, Thm. 21.2], Bergh and Löfström [18, Chap. 1]. ⊓⊔
Remark 1.45 (Interpolation). Corollary 1.43 and Theorem 1.44 are re-
lated to the interpolation theory between Banach spaces (see §A.5). For in-
stance, Lp(D) can be defined for all p ∈ (1,∞), up to equivalent norm, by
interpolating between L1(D) and L∞(D), i.e., Lp(D) = [L1(D), L∞(D)] 1

p′
,p;

see Tartar [189, p. 111]. ⊓⊔

1.4.4 Multivariate functions

The following results on multivariate functions are useful in many situations.

Theorem 1.46 (Tonelli). Let f : D1×D2 → R be a measurable function
such that the function D1 ∋ x1 7→

∫
D2

|f(x1,x2)| dx2 is finite a.e. in D1 and

is in L1(D1). Then f ∈ L1(D1 ×D2).

Proof. See [48, Thm. 4.4]. ⊓⊔
Theorem 1.47 (Fubini). Let f ∈ L1(D1×D2). Then the function D2 ∋
x2 7→ f(x1,x2) is in L1(D2) for a.e. x1 ∈ D1, and the function D1 ∋ x1 7→∫
D2
f(x1,x2) dx2 is in L1(D1). Similarly, the function D1 ∋ x1 7→ f(x1,x2)

is in L1(D1) for a.e. x2 ∈ D2, and the function D2 ∋ x2 7→
∫
D1
f(x1,x2) dx1

is in L1(D2). Moreover, we have

∫

D1

(∫

D2

f(x1,x2) dx2

)
dx1 =

∫

D2

(∫

D1

f(x1,x2) dx1

)
dx2, (1.9)

and both quantities are equal to
∫
D1×D2

f(x1,x2) dx1 dx2, where dx1 dx2 is
the product measure on the Cartesian product D1×D2.
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Exercises

Exercise 1.1 (Measurability). Let W be a nonmeasurable subset of D :=
(0, 1). Let f : W → R be defined by f(x) := 1 if x ∈ D\W and
f(x) := 0 if x ∈ W. (i) Is f measurable? (ii) Assume that there is a mea-
surable subset V ⊂ W s.t. |V | > 0. Compute supx∈D f(x), ess supx∈D f(x),
infx∈D f(x), ess infx∈D f(x). (iii) Is f a member of L∞(D)? (iv) Assume now
that W has zero measure (hence, W is measurable). Compute infx∈D f(x)
and ess infx∈D f(x).

Exercise 1.2 (Measurability and equality a.e.). Prove Corollary 1.11.
(Hint : consider the sets Ar := {x ∈ D | f(x) > r} and Br := {x ∈
D | g(x) > r} for all r ∈ R, and show that Br = (Ar ∩ (Ar\Br)

c)∪ (Br\Ar).)

Exercise 1.3 (Lebesgue’s theorem). Let D := (−1, 1). Let (fn)n∈N be a
sequence of functions in L1(D) and let g ∈ L1(D). Assume that fn → f a.e.
in D. Propose a counterexample to show that the assumption “|fn| ≤ g a.e.
for all n ∈ N” cannot be replaced by “fn ≤ g a.e. for all n ∈ N” in Lebesgue’s
dominated convergence theorem.

Exercise 1.4 (Compact support). Let D := (0, 1) and f(x) := 1 for all
x ∈ D. What is the support of f in D? Is the support compact?

Exercise 1.5 (Pointwise limit of measurable functions). Let D be a
measurable set in Rd. Let fn : D → R for all n ∈ N be real-valued mea-
surable functions. (i) Show that lim supn∈N fn and lim infn∈N fn are both
measurable. (Hint : recall that lim supn∈N fn(x) := infn∈N supk≥n fk(x) and
lim infn∈N fn(x) := supn∈N infk≥n fk(x) for all x ∈ D). (ii) Let f : D → R.
Assume that fn(x) → f(x) for every x ∈ D. Show that f is measurable. (iii)
Let f : D → R. Assume that fn(x) → f(x) for a.e. x ∈ D. Show that f is
measurable.

Exercise 1.6 (Operations on measurable functions). The objective of
this exercise is to prove Theorem 1.6. Let f : D → R and g : D → R be two
measurable functions and let λ ∈ R. (i) Show that λf is measurable. (Hint :
use Lemma 1.9). (ii) Idem for |f |. (iii) Idem for f+g. (iv) Idem for fg. (Hint :
observe that fg = 1

2 (f + g)2 − 1
2 (f − g)2.)


