
Part I, Chapter 3

Traces and Poincaré inequalities

This chapter reviews two types of results on the Sobolev spaces W s,p(D)
introduced in the previous chapter. The first one concerns the notion of trace
(i.e., loosely speaking, the boundary values) of functions in W s,p(D). The
second one is about functional inequalities (due to Poincaré and Steklov)
essentially bounding the Lp-norm of a function by that of its gradient. The
validity of these results relies on some smoothness properties on the boundary
of the set D. In this book, we mainly focus on Lipschitz sets. For any subset
S ⊂ Rd, d ≥ 1, int(S) denotes the interior of S and S its closure.

3.1 Lipschitz sets and domains

Definition 3.1 (Domain). Let D be a nonempty subset of Rd. In this book,
D is called domain if it is open, bounded, and connected.

For instance, a domain in R is an open and bounded interval. At many
instances in this book we will need to say something on the smoothness of
the boundary ∂D of a domain D ⊂ Rd, d ≥ 2. To stay simple, we are going
to focus our attention on the class of Lipschitz domains. In simple words,
a Lipschitz domain D in Rd, d ≥ 2, is such that at every point x ∈ ∂D,
the boundary can be represented in a neighborhood of x as the graph of
a Lipschitz function. Equivalently there exists a cone with nonzero aperture
angle that can be moved in the neighborhood of x without changing direction
and without exiting D. Let us now give some precise definitions.

Definition 3.2 (Lipschitz set and domain). An open set D in Rd, d ≥ 2,
is said to be Lipschitz if for all x ∈ ∂D, there exists a neighborhood Vx of x
in Rd, a rotation Rx : Rd → Rd, and two real numbers α > 0, β > 0 (α and
β may depend on x) s.t. the following holds true:

(i) Vx = x+Rx(Bα×Iβ) with Bα := BRd−1(0, α), Iβ := (−β, β).
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(ii) There exists a Lipschitz function φx : Bα → R such that φx(0) = 0,
‖φx‖L∞(Bα) ≤ 1

2β and (see Figure 3.1)

D ∩ Vx = x+Rx({(y′, yd) ∈ Bα × Iβ | yd < φx(y
′)}), (3.1a)

∂D ∩ Vx = x+Rx({(y′, yd) ∈ Bα × Iβ | yd = φx(y
′)}). (3.1b)

We say that D is a Lipschitz domain if it is a domain and a Lipschitz set.
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Fig. 3.1 Lipschitz domain and mappings (Rx1 , φx1 ), (Rx2 , φx2 ).

Definition 3.3 (Cone property). Let D be an open set in Rd, d ≥ 2. We
say that D has the uniform cone property if for all x ∈ ∂D, there exists a
neighborhood Vx of x in Rd, a rotation Rx : Rd → Rd, positive real numbers
α, β, h, θ ∈ (0, π2 ] (which may depend on x) s.t. the following holds true:

(i) Vx = x+Rx(Bα×Iβ) with Bα := BRd−1(0, α), Iβ := (−β, β).
(ii) For all y ∈ (D ∩ Vx), we have y + Rx(C) ⊂ D with the cone C :=

{(y′, yd) ∈ Rd−1×R | − h < yd < − cot(θ)‖y′‖ℓ2(Rd−1)}.

Lemma 3.4 (Lipschitz domain and cone property). A domain in Rd,
d ≥ 2, has the (uniform) cone property iff it is Lipschitz.

Proof. See Grisvard [110, Thm. 1.2.2.2]. ⊓⊔

Remark 3.5 (Finite covering). Let D be a domain in Rd. Since ∂D is
compact, there is a finite set L ⊂ N and a finite covering

⋃
i∈L Vxi

of ∂D with
xi ∈ ∂D for all i ∈ L. Definition 3.2 and Definition 3.3 can be equivalently
reformulated for the finite set {xi}i∈L with coefficients {αi, βi, θi, hi}i∈L that
are bounded from below away from zero (the change of coordinates described
by the rotation Rxi

being fixed in each Vxi
). ⊓⊔

Remark 3.6 (Terminology). In the literature, the term “domain” is some-
times defined without requiring D to be bounded. We have incorporated this
requirement in our definition since we mostly consider bounded sets in this
book. Domains that are Lipschitz in the sense of Definition 3.2 are sometimes
called strongly Lipschitz. It is also possible to weaken this definition. For in-
stance, some authors say that a domain D in Rd is weakly Lipschitz if for
every x ∈ ∂D, there exists a neighborhood Vx ∋ x in Rd and a global bilips-
chitz mappingMx : Rd−1×R → Rd such that D∩Vx =Mx(Rd−1×R−)∩Vx
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and ∂D ∩ Vx =Mx(Rd−1×{0})∩ Vx. A strongly Lipschitz domain is weakly
Lipschitz (using the notation of Definition 3.2, it suffices to setMx(y

′, yd) =
x+Rx(y

′, yd+φx(y′))), but a weakly Lipschitz domain may not be strongly
Lipschitz. For instance, the two-brick domain (see Example 3.7) and the log-
arithmic spiral {reiθ | r > 0, θ ∈ R, a1e−θ < r < a2e

−θ} ( R2 (with positive
real numbers a1, a2 s.t. e−2πa2 < a1 < a2 and i

2 = −1) are weakly Lipschitz
but are not strongly Lipschitz; see Axelsson and McIntosh [13]. These ex-
amples show that the image of a strongly Lipschitz domain by a bilipschitz
mapping is not necessarily strongly Lipschitz. A weakly Lipschitz domain
is strongly Lipschitz if the mapping Mx is continuously differentiable. The
source of the difficulty is that the implicit function theorem does not hold true
for Lipschitz functions; see [110, pp. 7–10] for more details. In this book, we
only consider strongly Lipschitz domains and, unless explicitly stated other-
wise, when we say “let D be a Lipschitz domain” we mean that D is strongly
Lipschitz in the sense of Definition 3.2. ⊓⊔

Lipschitz domains have many important properties:

(i) Outward normal: the outward-pointing unit normal n is well defined a.e.
on the boundary of a Lipschitz domain (this follows from Rademacher’s
theorem (Theorem 2.7)). For an interval in R, the outward unit normal
is conventionally set to be −1 at the left endpoint and +1 at the right
endpoint (in coherence with the conventional orientation of R from left
to right).

(ii) One-sided property: a Lipschitz domain is always located on one side of
its boundary, i.e., there cannot be slits or cuts; see Costabel and Dauge
[82], Grisvard [110, §1.7] for discussions on domains with cuts.

(iii) Convexity: any Lipschitz domain is quasiconvex (see Remark 2.12). Con-
versely every convex domain is Lipschitz (see [110, Cor. 1.2.2.3]).

Fig. 3.2 (Surprising) example of non-
Lipschitz domain: the two-brick assembly.
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Example 3.7 (Two-brick domain). Consider the bricks B1 := (−2, 0) ×
(−2, 2) × (0, 2) and B2 := (−2, 2) × (−2, 0) × (−2, 0), and the two-brick
assemblyD := int(B1∪B2) illustrated in Figure 3.2. Let us show thatD is not
a Lipschitz domain by using the uniform cone property. For any ǫ ∈ (0, 1), let
V0 be the ball of radius 3ǫ centered at 0. The points a := (ǫ,−ǫ, 0) and a′ :=
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(−ǫ, ǫ, 0) are both in V0 ∩D. Let us assume that the uniform cone property
holds, and let ζ := (ζx, ζy, ζz)

T := R0((0, 0,−1)T). Item (ii) in Definition 3.3
requires that a + 1

2hζ ∈ D, which in turn implies that ζz < 0. But also we
must have a′+ 1

2hζ ∈ D, which implies that ζz > 0. This contradiction implies
that Item (ii) from Definition 3.3 cannot hold true for any neighborhood of 0.
In other words, one cannot find a coordinate system such that the boundary
of D is described by the graph of a Lipschitz function in the neighborhood of
the origin. Incidentally, one can show that D is a weakly Lipschitz domain.
Letting ψ : S2 → S2 be a bilipschitz homeomorphism of the unit sphere in
R3 that maps the circle S2 ∩ R2 to the curve shown in bold in Figure 3.2,
a mapping M0 : R3 → R3 satisfying the definition from Remark 3.6 can
be defined by M0(x) := ‖x‖ℓ2ψ( x

‖x‖ℓ2
) if x 6= 0 and M0(0) := 0. That

M0 is a bilipschitz mapping results from the identity ‖r1ω1 − r2ω2‖2ℓ2 =
|r1 − r2|2 + r1r2‖ω1 −ω2‖2ℓ2 with the notation ri := ‖xi‖ℓ2 , ωi :=

xi

‖xi‖ℓ2
. ⊓⊔

Remark 3.8 (Stronger smoothness). D is said to be of class Cm or
piecewise of class Cm,m ≥ 1, if all the local mappings φx in the Definition 3.2
are of class Cm or piecewise of class Cm, respectively. In this case, the outward
unit normal is well defined for all x ∈ ∂D and is of class Cm−1. ⊓⊔

3.2 Traces as functions at the boundary

Boundary values of functions in Lp(D), p ∈ [1,∞), are in general not well

defined. For instance, let D := (0, 1)2 and v(x1, x2) := x
−α

p

1 with α ∈ (0, 1).
Then v ∈ Lp(D) but v|x1=0 = ∞. The main idea of this section is to show
that it is possible to define the boundary value of a function v ∈ W s,p(D)
if s is large enough. But how large? A first possibility is to invoke Morrey’s
theorem (see (2.10)): if sp > d, one can consider the continuous representative
of v to define the boundary value of v. The purpose of the trace theory is to
give a meaning to boundary values under the weaker assumption sp > 1 (and
s ≥ 1 if p = 1) in every space dimension. In what follows, we consider Sobolev
spaces defined on ∂D by using the local mappings φx from the Definition 3.2:
letting ψx(ξ) := (ξ, φx(ξ)) for all ξ in the open ball B(0, α) in Rd−1, we say
that v is in W s,p(∂D) if v ◦ψx ∈ W s,p(B(0, α)) for all x ∈ ∂D. When D is
Lipschitz (resp., of class C1,1), this approach defines W s,p(∂D) up to s = 1
(resp., s = 2). We refer to Grisvard [110, §1.3.3] for more details.

3.2.1 The spaces W s,p
0 (D), W s,p(D) and their traces

Definition 3.9 (W s,p
0 (D)). Let s > 0 and p ∈ [1,∞). Let D be an open set

in Rd. We define

W s,p
0 (D) := C∞

0 (D)
W s,p(D)

, (3.2)
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i.e.,, W s,p
0 (D) is the closure of the subspace C∞

0 (D) in W s,p(D). For p = 2,
we write Hs

0(D) :=W s,2
0 (D).

We will see below in Theorem 3.19 that W s,p(D) = W s,p
0 (D) if sp ≤ 1

whereasW s,p
0 (D) is a proper subspace ofW s,p(D) if sp > 1 andD is bounded.

Theorem 3.10 (Trace). Let p ∈ [1,∞). Let s > 1
p if p > 1 or s ≥ 1 if

p = 1. Let D be a Lipschitz domain in Rd. There is a bounded linear map
γg :W s,p(D) → Lp(∂D) such that:

(i) γg(v) = v|∂D whenever v is smooth, e.g., v ∈ C0(D).
(ii) The kernel of γg is W s,p

0 (D).
(iii) If s = 1 and p = 1, or if s ∈ (12 ,

3
2 ) and p = 2, or if s ∈ ( 1p , 1] and

p 6∈ {1, 2}, then γg :W s,p(D) →W s− 1
p
,p(∂D) is bounded and surjective,

that is, there exists Cγg s.t. for every function g ∈W s− 1
p
,p(∂D), one can

find a function ug ∈W s,p(D), called a lifting of g, s.t.

γg(ug) = g and ‖ug‖W s,p(D) ≤ Cγgℓ
1
p

D‖g‖
W

s− 1
p
,p
(∂D)

, (3.3)

where ℓD is a characteristic length of D, e.g., ℓD := diam(D).

Proof. See Brezis [48, p. 315] (s = 1, p ∈ [1,∞)), Grisvard [110, Thm. 1.5.1.2
& Cor. 1.5.1.6], McLean [141, Thm. 3.38] (s ∈ (12 ,

3
2 ), p = 2); see Gagliardo

[104] for the original work with s = 1, p ∈ [1,∞). ⊓⊔
Remark 3.11 (Notation). The superscript g stands for “gradient” since
γg(v) is meaningful for v ∈ W 1,1(D), i.e., γg(v) makes sense if the weak
gradient of v is integrable. ⊓⊔
Example 3.12 (Elliptic PDEs). Theorem 3.10 (with s = 1 and p = 2) is
crucial in the analysis of elliptic PDEs, where a natural functional setting for
the solution is the spaceH1(D).Whenever a homogeneous Dirichlet condition
is enforced (prescribing to zero the value of the solution at the boundary),
Item (ii) shows that the solution is in H1

0 (D). When the boundary condition

prescribes a nonzero value, the surjectivity of γg : H1(D) → H
1
2 (∂D) is

invoked to identify a proper functional setting (see Chapter 31). ⊓⊔
Remark 3.13 (W 1,∞(D)). The trace theory inW 1,∞(D) is not trivial since
C∞(D) is not dense in L∞(D); see Remark 1.39. The situation simplifies if D
is quasiconvex since W 1,∞(D) = C0,1(D) in this case (see Remark 2.12). ⊓⊔
Remark 3.14 (Trace of gradient). If v ∈ W s,p(D) with p ∈ [1,∞) and
s > 1+ 1

p if p > 1 or s ≥ 2 if p = 1, then ∇v ∈W s−1,p(D), and we can apply

Theorem 3.10 componentwise, i.e., γg(∇v) ∈W s−1− 1
p (∂D). ⊓⊔

Repeated applications of Theorem 3.10 lead to the following important
result to define the domain of various finite element interpolation operators
(for simplicity we only consider integrability on the manifold).
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Theorem 3.15 (Trace on low-dimensional manifolds). Let p ∈ [1,∞)
and let D be a Lipschitz domain in Rd. Let M be a smooth, or polyhedral,
manifold of dimension r in D, r ∈ {0:d}. Then there is a bounded trace
operator from W s,p(D) to Lp(M) provided sp > d− r (or s ≥ d− r if p = 1).

When solving boundary value problems, one sometimes has to enforce a
Neumann boundary condition which consists of prescribing the value of the
normal derivative ∂nu := n·∇u at the boundary; see Chapter 31. Enforcing
such a boundary condition is ambiguous if n is discontinuous. For instance,
irrespective of the smoothness of the function in question, the normal deriva-
tive on polygons and polyhedra cannot be continuous. Let us start to address
this problem by considering the simpler case where the boundary enjoys some
additional smoothness property.

Theorem 3.16 (Normal derivative). Let p ∈ (1,∞) and s − 1
p ∈ (1, 2).

Let D be a domain in Rd with a boundary of class Ck,1, with k := 1 if s ≤ 2
and k := 2 otherwise. There is a bounded linear map γ∂n : W s,p(D) →
W s−1− 1

p
,p(∂D) so that γ∂n(v) = (n·∇v)|∂D for all v ∈ C1(D), and letting

γ1 := (γg, γ∂n) :W s,p(D) →W s− 1
p
,p(∂D)×W s−1− 1

p
,p(∂D),

(i) The map γ1 is bounded and surjective.
(ii) The kernel of γ1 is W s,p

0 (D).

Proof. See Grisvard [110, Thm. 1.5.1.2] for the statement (i) and [110,
Cor. 1.5.1.6] for the statement (ii). ⊓⊔

The above theorem can be extended to polygons (d = 2) as detailed in
[110, Thm. 1.5.2.1]. The situation is more subtle when D is only Lipschitz.
An extension of the notion of the normal derivative in this case is introduced
in §4.3, and we refer the reader to Example 4.16 where n·∇u is defined by
duality.

3.2.2 The spaces W̃ s,p(D)

We have seen that a function v ∈ W s,p(D) has a trace at the boundary ∂D
if s is large enough. Another closely related question is whether the zero-
extension of v to the whole space Rd belongs to W s,p(Rd). For instance, the
zero-extension to Rd of a test function ϕ ∈ C∞

0 (D) is in C∞
0 (Rd). For every

function v ∈ L1(D), we denote by ṽ the extension by zero of v to Rd, i.e.,
ṽ(x) := v(x) if x ∈ D and ṽ(x) := 0 otherwise.

Definition 3.17 (W̃ s,p(D)). Let s > 0 and p ∈ [1,∞]. Let D be an open
subset of Rd. We define

W̃ s,p(D) := {v ∈W s,p(D) | ṽ ∈W s,p(Rd)}. (3.4)

For p = 2, we write H̃s(D) := W̃ s,2(D).
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Theorem 3.18 (Completion). W̃ s,p(D) is a Banach space equipped with
the norm ‖v‖

W̃ s,p(D)
:= ‖ṽ‖W s,p(Rd). Moreover, ‖v‖

W̃ s,p(D)
= ‖v‖W s,p(D) if

s ∈ N. If s 6∈ N and D is a Lipschitz domain in Rd, ‖v‖
W̃ s,p(D)

is equivalent to

the norm (‖v‖pW s,p(D)+ℓ
sp
D

∑
|α|=m

∫
D(ρ(x))−σp|∂αv|p dx) 1

p , where m := ⌊s⌋,
σ := s−m, and ρ is the distance to ∂D, i.e., ρ(x) := infy∈∂D ‖x− y‖ℓ2 .

Proof. See Grisvard [110, Lem. 1.3.2.6], Tartar [189, Lem. 37.1]. ⊓⊔

Theorem 3.19 (W s,p(D), W s,p
0 (D), W̃ s,p(D)). Let s > 0 and p ∈ (1,∞).

Let D be a Lipschitz domain in Rd. The following holds true:

W s,p(D) =W s,p
0 (D) = W̃ s,p(D) (sp < 1), (3.5a)

W s,p(D) =W s,p
0 (D) 6= W̃ s,p(D) (sp = 1), (3.5b)

W s,p(D) 6=W s,p
0 (D) = W̃ s,p(D) (sp > 1, s− 1

p
6∈ N). (3.5c)

For all sp > 1, W s,p
0 (D) is a proper subspace of W s,p(D). (The above equali-

ties mean that the sets coincide and the associated norms are equivalent, i.e.,
the topologies are identical.)

Proof. See Grisvard [110, Thm. 1.4.2.4, Cor. 1.4.4.5], Tartar [189, Chap. 33],
Lions and Magenes [135, Thm. 11.1]; see also Exercise 3.4 for a proof of the

fact that W̃ 1,p(D) →֒ W 1,p
0 (D). ⊓⊔

Remark 3.20 (D = Rd). We have W s,p
0 (Rd) = W s,p(Rd) = W̃ s,p(Rd) for

all s > 0 and all p ∈ [1,∞); see [110, p. 24], [189, Lem. 6.5]. ⊓⊔

Remark 3.21 (Embedding of W̃ s,p(D)). The same conclusions as in The-

orems 2.31 and 2.35 hold true for W̃ s,p(D) since the (s, p)-extension property
is available. ⊓⊔

Remark 3.22 (Density). Let D be a Lipschitz domain in Rd, s > 0,

p ∈ (1,∞). Then C∞
0 (D) is dense in W̃ s,p(D); see [110, Thm. 1.4.2.2]. ⊓⊔

Remark 3.23 (Interpolation). Let p ∈ [1,∞), s ∈ (0, 1). We have
W s,p(D) = [Lp(D),W 1,p(D)]s,p with equivalent norms; see Remark 2.20 and
[189, Lem. 36.1]. Let us now define

W s,p
00 (D) := [Lp(D;Rq),W 1,p

0 (D)]s,p. (3.6)

It is established in Chandler-Wilde et al. [65, Cor. 4.10] that for p = 2,

H̃s(D) = Hs
00(D). (3.7)

(More generally, we conjecture that W̃ s,p(D) =W s,p
00 (D).) The equality (3.7)

together with Theorem 3.19 implies that Hs
00(D) = Hs

0(D) if s 6= 1
2 . ⊓⊔
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3.3 Poincaré–Steklov inequalities

We list here a series of functional inequalities that will be used repeatedly
in the book; see Remark 3.32 for some historical background and some com-
ments on the terminology.

Lemma 3.24 (Poincaré–Steklov). Let D be a Lipschitz domain in Rd. Let
ℓD := diam(D). Let p ∈ [1,∞]. There is Cps,p (the subscript p is omitted when
p = 2) s.t.

Cps,p‖v − vD‖Lp(D) ≤ ℓD|v|W 1,p(D), ∀v ∈W 1,p(D), (3.8)

where vD := 1
|D|
∫
D v dx. The following holds true when D is convex:

Cps,1 = 2, Cps := Cps,2 = π, Cps,p ≥ 1

2

(
2

p

) 1
p

, p > 1. (3.9)

Remark 3.25 (Best constant). The values in (3.9) are proved in Acosta
and Durán [2] for p = 1, in Bebendorf [17] for p = 2 (see also Payne and Wein-
berger [157] for the general idea), and in Chua and Wheeden [72, Thm. 1.2]
for general p. The constants given in (3.9) for p ∈ {1, 2} are the best possi-
ble. Uniform bounds on the Poincaré–Steklov constant for possibly nonconvex
sets are a delicate issue; see Exercise 22.3 and Veeser and Verfürth [194]. ⊓⊔

Lemma 3.26 (Fractional Poincaré–Steklov). Let p ∈ [1,∞) and s ∈
(0, 1). Let D be a Lipschitz domain in Rd. Let ℓD := diam(D). Let us set
vD := 1

|D|
∫
D
v dx. The following holds true:

‖v − vD‖Lp(D) ≤ ℓsD

(
ℓdD
|D|

) 1
p

|v|W s,p(D). (3.10)

We also have |v − vD|W r,p(D) = |v|W r,p(D) ≤ ℓs−r
D |v|W s,p(D) for all r ∈ (0, s].

Proof. A direct proof is proposed in Exercise 3.3 following [97, Lem. 7.1]. See

also Dupont and Scott [92, Prop. 6.1] and Heuer [116]. The factor
ℓdD
|D| is often

called eccentricity of D. ⊓⊔

Lemma 3.27 (Poincaré–Steklov). Let p ∈ [1,∞] and let D be a Lipschitz
domain. Let ℓD := diam(D). There is Cps,p > 0 (the subscript p is omitted
when p = 2) such that

Cps,p‖v‖Lp(D) ≤ ℓD‖∇v‖Lp(D), ∀v ∈W 1,p
0 (D). (3.11)

Proof. See Brezis [48, Cor. 9.19], Evans [99, Thm. 3, §5.6]. ⊓⊔

Remark 3.28 (Unit). The Poincaré–Steklov constant Cps,p is a dimen-
sionless number. Its value remains unchanged if D is translated or rotated.



Part I. Elements of functional analysis 33

Moreover, assuming 0 ∈ D, if D̃ = λ−1D with λ > 0, the two domains D
and D̃ have the same Poincaré–Steklov constant. ⊓⊔

Remark 3.29 (Norm equivalence). The Poincaré–Steklov inequality im-
plies that the seminorm |·|W 1,p(D) is a norm equivalent to ‖·‖W 1,p(D) in

W 1,p
0 (D). For instance, for the H1-norm ‖v‖2H1(D) = ‖v‖2L2(D) + ℓ2D|v|2H1(D)

(recall that |v|H1(D) = ‖∇v‖L2(D)), we obtain

Cps

(1 + C2
ps)

1
2

‖v‖H1(D) ≤ ℓD|v|H1(D) ≤ ‖v‖H1(D), ∀v ∈ H1
0 (D). ⊓⊔

Lemma 3.30 (Extended Poincaré–Steklov). Let p ∈ [1,∞) and let D
be a Lipschitz domain in Rd. Let ℓD := diam(D). Let f be a bounded linear
form on W 1,p(D) whose restriction on constant functions is not zero. There
is Čps,p > 0 (the subscript p is omitted when p = 2) such that

Čps,p‖v‖Lp(D) ≤ ℓD‖∇v‖Lp(D) + |f(v)|, ∀v ∈W 1,p(D). (3.12)

In particular, letting ker(f) := {v ∈W 1,p(D) | f(v) = 0}, we have

Čps,p‖v‖Lp(D) ≤ ℓD‖∇v‖Lp(D), ∀v ∈ ker(f). (3.13)

Moreover, if f(1D) = 1 (where 1D is the indicator function of D), we have

Čps,p‖v − f(v)1D‖Lp(D) ≤ ℓD‖∇v‖Lp(D), ∀v ∈W 1,p(D). (3.14)

Proof. We use the Peetre–Tartar lemma (Lemma A.20) to prove (3.12). Let
X :=W 1,p(D), Y := Lp(D)×R, Z := Lp(D), and A : X ∋ v 7→ (∇v, f(v)) ∈
Y. Owing to Lemma 2.11 and the hypotheses on f , A is continuous and
injective. Moreover, the embedding X →֒ Z is compact owing to Theo-
rem 2.35. This proves (3.12), and (3.13) is a direct consequence of (3.12).
To prove (3.14), we apply (3.12) to the function ṽ := v − f(v)1D. This func-
tion is in ker(f) since f(1D) = 1 and it satisfies ∇ṽ = ∇v. ⊓⊔

Example 3.31 (Zero mean-value). Lemma 3.30 can be applied with
f(v) := |U |−1

∫
U
v dx, where U is a subset of D of nonzero measure (the

boundedness of f follows from |f(v)| ≤ |U |− 1
p ‖v‖Lp(D) by Hölder’s inequal-

ity). One can also apply Lemma 3.30 with f(v) := |∂D1|−1
∫
∂D1

v ds, where

∂D1 is a subset of ∂D of nonzero (d − 1)-measure (the boundedness of f is
a consequence of Theorem 3.10). ⊓⊔

Remark 3.32 (Terminology). The inequality (3.8) is often called Poincaré
inequality in the literature, and it is sometimes associated with other names
like Wirtinger or Friedrichs. It turns out that Poincaré proved (3.8) for a con-
vex domain in 1890 in [158] (the problem is formulated at the bottom of page
252, and the theorem is given at the bottom of page 258). Poincaré refined



34 Chapter 3. Traces and Poincaré inequalities

his estimates of Cps in 1894 in [159, p. 76] and gave Cps ≥ 16
9 for a three-

dimensional convex domain. Without invoking the convexity assumption, he
has also showed in [158] that the best constant C2

ps in the inequality

C2
ps‖v‖2L2(D) ≤ ℓ2D(α‖v‖2L2(∂D) + |v|2H1(D)), ∀v ∈ H1(D), (3.15)

is the smallest eigenvalue of the Laplacian supplemented with the Robin
boundary condition (αv + ∂nv)|∂D = 0 (cf. statement in the middle of page
240: “and we must conclude that k1 is the minimum of the ratio B/A” (in
French)). The simplest form of (3.8) on an interval with p = 2 can be traced
to the work of Steklov (see [184, Lem. 2, p. 156] for the Russian version pub-
lished in 1897 with Cps ≥

√
2 and [182, pp. 294–295] for the 1901 French

version with Cps = π for functions that are either zero at both ends of the
interval or are of zero mean). Steklov makes ample references to the work of
Poincaré in each paper. He revisited the work of Poincaré on the spectrum
of the Laplacian in [183, 185]. He proved in [183, Thm. VII, p. 66] and in
[185, Thm. XIV, p. 107] that C2

ps in (3.11) is the smallest eigenvalue of the
Laplacian supplemented with homogeneous Dirichlet boundary conditions.
He reproved that C2

ps in (3.8) is the smallest eigenvalue of the Laplacian sup-
plemented with homogeneous Neumann boundary conditions in [185, Thm.
XV, p. 110]. A detailed survey of the literature on the best constant in (3.8)
can be found in Kuznetsov and Nazarov [130]. Note that [183] is cited in [130]
for the work of Steklov on the Laplacian with Neumann boundary condition,
whereas the paper in question only deals with Dirichlet boundary conditions.
For mysterious reasons, the paper by Friedrichs, Eine invariante Formulierung
des Newtonschen Gravititationsgesetzes und des Grenzüberganges vom Ein-
steinschen zum Newtonschen Gesetz.Math. Ann. 98 (1927), 566–575, is some-
times cited in the literature in relation to Poincaré’s inequalities, including in
[130], but the topic of this paper is not even remotely related to the Poincaré
inequality. One early work of Friedrichs related to Poincaré’s inequalities is
a semi-discrete version of (3.15) published in Courant et al. [85, Eq. (13)].
Finally, it seems that the name of Wirtinger has been attached for the first
time in 1916 to the inequality ‖f‖L2(0,2π) ≤ |f |H1(0,2π) for periodic functions
by Blaschke in his book [24, p. 105] without any specific reference. A little
bit at odd with the rest of the literature, we henceforth adopt the Poincaré–
Steklov terminology to refer to inequalities like (3.8) and (3.11). ⊓⊔

Exercises

Exercise 3.1 (Scaling). Let D ⊂ Rd be a Lipschitz domain. Let λ > 0 and
D̃ := λ−1D. (i) Show that D and D̃ have the same Poincaré–Steklov constant
in (3.8). (ii) Same question for (3.11).
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Exercise 3.2 (Poincaré–Steklov, 1D). Let D := (0, 1) and u ∈ C1(D;R).
Prove the following bounds: (i) ‖u‖2L2(D) ≤ 1

2‖u′‖2L2(D) if u(0) = 0. (Hint :

u(x) =
∫ x

0 u
′(t) dt.) (ii) ‖u‖2L2(D) ≤ 1√

8
‖u′‖2L2(D) if u(0) = u(1) = 0. (Hint :

as above, but distinguish whether x ∈ (0, 12 ) or x ∈ (12 , 1).) (iii) ‖u‖2L2(D) ≤
1
6‖u′‖2L2(D) + u2 with u :=

∫ 1

0 u dx. (Hint : square the identity u(x)− u(y) =∫ y

x u
′(t) dt.) (iv) maxx∈D |u(x)|2 ≤ 2u(1)2+2‖u′‖2L2(D). (Hint : square u(x) =

u(1) +
∫ x

1 u
′(t) dt.) (v) maxx∈D |u(x)|2 ≤ 2(‖u‖2L2(D) + ‖u′‖2L2(D)). (Hint :

prove that u(x)2 ≤ 2u(y)2 + 2‖u′‖2L2(D) and integrate over y ∈ D.)

Exercise 3.3 (Fractional Poincaré–Steklov). (i) Prove (3.10). (Hint :
write

∫
D
|v(x)− vD|pdx =

∫
D
|D|−p

∣∣∫
D
(v(x)− v(y)) dy

∣∣pdx.) (ii) Prove that
|v − vD|W r,p(D) ≤ ℓs−r

D |v|W s,p(D) for all r ∈ (0, s] and all s ∈ (0, 1).

Exercise 3.4 (Zero-extension in W 1,p
0 (D)). Let p ∈ [1,∞). Let D be

an open set in Rd. Show that W 1,p
0 (D) →֒ W̃ 1,p(D) and ‖ũ‖W 1,p(Rd) ≤

‖u‖W 1,p(D) for all u ∈W 1,p
0 (D).

Exercise 3.5 (Integral representation). Let v : [0,∞) −→ R be a con-
tinuous function with bounded derivative, and let w : [0,∞) −→ R be
such that w(x) := 1

x

∫ x

0
(v(t) − v(x)) dt. (i) Show that |w(x)| ≤ Mx

2 where
M := supx∈[0,∞) |∂xv(x)|. (ii) Estimate w(0). (iii) Show that ∂t(tw(t)) =

−t∂tv(t). (iv) Prove that v(x)−v(0) = −w(x)−
∫ x

0
w(t)
t dt. (Hint : observe that

v(x) − v(0) =
∫ x

0
1
t (t∂tv(t)) dt, use (iii), and integrate by parts.) (v) Prove

the following integral representation formula (see Grisvard [110, pp. 29-30]):

v(0) = v(x) +
1

x

∫ x

0

(v(t)− v(x)) dt +

∫ x

0

1

y2

∫ y

0

(v(t)− v(y)) dt dy.

Exercise 3.6 (Trace inequality in W s,p, sp > 1). Let s ∈ (0, 1), p ∈
[1,∞), and sp > 1. Let a > 0 and F be an open bounded subset of Rd−1. Let
D := F×(0, a). Let v ∈ C1(D) ∩ C0(D). (i) Let y ∈ F . Using the integral
representation from Exercise 3.5, show that there are c1(s, p) and c2(s, p)
such that

|v(y, 0)| ≤ a−
1
p ‖v(y, .)‖Lp(0,a) + (c1(s, p) + c2(s, p))a

s− 1
p |v(y, .)|W s,p(0,a).

(ii) Accept as a fact that there is c (depending on s and p) such that

∫

F

∫ a

0

∫ a

0

|v(xd−1, xd)− v(xd−1, yd)|p
|xd − yd|sp+1

dx1 . . . dxd−1 dxd dyd ≤ c |v|W s,p(D).

Prove that ‖v(., 0)‖Lp(F ) ≤ c′ (a−
1
p ‖v‖Lp(D) + as−

1
p |v|W s,p(D)). Note: this

shows that the trace operator γg : C1(D) ∩ C0(D) → Lp(F ) is bounded
uniformly w.r.t. the norm of W s,p(D) when sp > 1. This means that γg can
be extended to W s,p(D) since C1(D) ∩ C0(D) is dense in W s,p(D).


