
Part I, Chapter 4

Distributions and duality in Sobolev spaces

The dual space of a Sobolev space is not only composed of functions (defined
almost everywhere), but this space also contains more sophisticated objects
called distributions, which are defined by their action on smooth functions
with compact support. For instance, the function 1

x is not in L1(0, 1), but

the map ϕ 7→
∫ 1

0
1
xϕ(x) dx can be given a meaning for every smooth function

that vanishes at 0. Dual Sobolev spaces are useful to handle singularities
on the right-hand side of PDEs. They are also useful to give a meaning
to the tangential and the normal traces of Rd-valued fields that are not in
W s,p(D;Rd) with sp > 1. The extension is done in this case by invoking
integration by parts formulas involving the curl or the divergence operators.

4.1 Distributions

The notion of distribution is a powerful tool that extends the concept of
integrable functions and weak derivatives. In particular, we will see that every
distribution is differentiable in some reasonable sense.

Definition 4.1 (Distribution). Let D be an open set in Rd. A linear map

T : C∞
0 (D) ∋ ϕ 7−→ 〈T, ϕ〉 := T (ϕ) ∈ R or C, (4.1)

is called distribution in D if for every compact subset K of D, there exist an
integer p, called the order of T , and a real number c (both can depend on K)
s.t. for all ϕ ∈ C∞

0 (D) with supp(ϕ) ⊂ K, we have

|〈T, ϕ〉| ≤ c max
|α|≤p

(
ℓ
|α|
D ‖∂αϕ‖L∞(K)

)
. (4.2)

Let T be distribution of order p. We henceforth abuse the notation by using
the symbol T to denote the extension by density of T to Cp

0 (D).
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Example 4.2 (Locally integrable functions). Every function v in L1
loc(D)

can be identified with the following distribution:

Tv : C∞
0 (D) ∋ ϕ 7−→ 〈Tv, ϕ〉 :=

∫

D

vϕdx.

This identification is possible owing to Theorem 1.32, since two functions
v, w ∈ L1

loc(D) are such that v = w a.e. in D iff
∫
D vϕdx =

∫
D wϕdx for all

ϕ ∈ C∞
0 (D). We will abuse the notation by writing v instead of Tv. Notice

that the identification is also compatible with the Riesz–Fréchet theorem
(Theorem 1.41) in L2(D), which allows one to identify L2(D) with its dual
space by means of the L2-inner product. ⊓⊔

Example 4.3 (Dirac mass or measure). Let a be a point inD. The Dirac
mass (or Dirac measure) at a is the distribution defined by 〈δa, ϕ〉 := ϕ(a)
for all ϕ ∈ C∞

0 (D). There is no function f ∈ L1
loc(D) such that δa = Tf .

Otherwise, one would have 0 =
∫
D fϕdx for all ϕ ∈ C∞

0 (D\{a}), and owing
to Theorem 1.32, this would imply that f = 0 a.e. in D\{a}, i.e., f = 0 a.e. in
D. Hence, δa 6∈ T (L1

loc(D)). This example shows that there are distributions
that cannot be identified with functions in L1

loc(D). ⊓⊔

Definition 4.4 (Distributional derivative). Let T be a distribution in D
and let i ∈ {1:d}. The distributional derivative ∂iT is the distribution in D
such that 〈∂iT, ϕ〉 := −〈T, ∂iϕ〉 for all ϕ ∈ C∞

0 (D). More generally, for a
multi-index α ∈ Nd, the distributional derivative ∂αT is the distribution in
D acting as 〈∂αT, ϕ〉 := (−1)|α|〈T, ∂αϕ〉. We set conventionally ∂0T := T ,
and ∇T := (∂1T, . . . , ∂dT )

T.

Example 4.5 (Weak derivative). The notion of distributional derivative
extends the notion of weak derivative. Let v ∈ L1

loc(D) and assume that v
has a weak α-th partial derivative, say ∂αv ∈ L1

loc(D). Just like in Exam-
ple 4.2, we can identify v and ∂αv with the distributions Tv and T∂αv such
that 〈Tv, ψ〉 :=

∫
D vψ dx and 〈T∂αv, ϕ〉 := (−1)|α|

∫
D v∂

αϕdx. This implies

that 〈T∂αv, ϕ〉 = (−1)|α|〈Tv, ∂αϕ〉, which according to Definition 4.4 shows
that ∂αTv = T∂αv, i.e., the distributional derivative of Tv is equal to the
distribution associated with the weak derivative of v. ⊓⊔

Example 4.6 (Step function). Let D := (−1, 1). Let w ∈ L1(D) be
defined by w(x) := −1 if x < 0 and w(x) := 1 otherwise. For all ϕ ∈ C∞

0 (D),

we have −
∫
D w∂xϕdx =

∫ 0

−1 ∂xϕdx −
∫ 1

0 ∂xϕdx = 2ϕ(0) = 2〈δ0, ϕ〉. This
shows that the distributional derivative of w is twice the Dirac mass at 0, i.e.,
we write ∂xw = 2δ0. As established in Example 4.3, δ0 cannot be identified
with any function in L1

loc(D). Hence, w does not have a weak derivative
but w has a distributional derivative. Consider now the function v(x) :=
1 − |x| in L1(D). By proceeding as in Example 2.5, one shows that v has a
weak derivative and ∂xv(x) = 1 if x < 0, and ∂xv(x) = −1 otherwise. As
established in Example 4.5, the distributional derivative of v and its weak
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derivative coincide. Notice though that the distributional second derivative
of v is ∂xxv = −2δ0 which is not a weak derivative. ⊓⊔

Example 4.7 (Dirac measure on the unit sphere). (i) Let a ∈ Rd.
Definition 4.4 implies that 〈∂αδa, ϕ〉 = (−1)|α|∂αϕ(a). (ii) Let u : Rd → R
be such that u(x) := 1 if ‖x‖ℓ2 ≤ 1 and u(x) := 0 otherwise. Let B(0, 1)
and S(0, 1) be the unit ball and unit sphere in Rd. We define the Dirac
measure supported in S(0, 1) by 〈δS(0,1), ϕ〉 :=

∫
S(0,1) ϕds. Let ei be one

of the canonical unit vectors of Rd. Then 〈∂iu, ϕ〉 = −
∫
B(0,1) ∂iϕdx =

−
∫
B(0,1)∇·(ϕei) dx, which proves that 〈∂iu, ϕ〉 = −

∫
S(0,1)n·eiϕds. Hence,

∇u = −δS(0,1)n. ⊓⊔

Definition 4.8 (Distributional convergence). Let D be an open set in
Rd. We say that a sequence of distributions {Tn}n∈N converges in the distri-
bution sense if one has limn→∞〈Tn, ϕ〉 = 〈T, ϕ〉 for all ϕ ∈ C∞

0 (D).

Example 4.9 (Oscillating functions). Let D := (0, 1) and fn(x) :=
sin(nx) for all n ≥ 1. This sequence does not converge in L1(D), but

〈Tfn , ϕ〉 =
∫ 1

0
sin(nx)ϕdx =

∫ 1

0
1
n cos(nx)ϕ′ dx, so that limn→∞〈Tfn , ϕ〉 = 0

for all ϕ ∈ C∞
0 (D), i.e., Tfn → 0 in the sense of distributions. Up to an

abuse of notation we say that fn converges to 0 in the sense of distribu-
tions. Likewise one can show that cos(nx) → 0 in the sense of distributions.
Let us now consider gn(x) := sin2(nx) for all n ≥ 1. Using the identity
sin2(nx) = 1

2 − 1
2 cos(2nx) and the above results, we conclude that gn → 1

2
in the sense of distributions. ⊓⊔

4.2 Negative-order Sobolev spaces

Equipped with the notion of distributions we can now define Sobolev spaces
of negative order by duality using W s,p

0 (D).

Definition 4.10 (W−s,p(D)). Let s > 0 and p ∈ (1,∞). Let D be an open

set in Rd. We define the space W−s,p(D) :=
(
W s,p′

0 (D)
)′

with 1
p + 1

p′ = 1

(for p = 2, we write H−s(D) :=W−s,2(D)), equipped with the norm

‖T ‖W−s,p(D) := sup
w∈W s,p′

0 (D)

|〈T,w〉|
‖w‖W s,p′(D)

. (4.3)

Identifying Lp(D) with the dual space of Lp′

(D) (see Theorem 1.41), we
infer that Lp(D) →֒ W−s,p(D) (and both spaces coincide for s = 0 since

W 0,p′

0 (D) = Lp′

(D) by Theorem 1.38). Moreover, any element T ∈W−s,p(D)
is a distribution since, assuming s = m ∈ N, we have
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|〈T, ϕ〉| ≤ ‖T ‖W−m,p(D)|D| 1
p′

(
m+ d

d

) 1
p′

max
|α|≤m

(
ℓ
|α|
D ‖∂αϕ‖L∞(K)

)
, (4.4)

for all compact subset K ( D and all ϕ ∈ C∞
0 (D) with supp(ϕ) ⊂ K. The

argument can be adapted to the case where s = m+ σ, σ ∈ (0, 1).

Example 4.11 (Dirac measure). Some of the objects inW−s,p(D) are not
functions but distributions. For instance, the Dirac mass at a point a ∈ D is
in W−s,p(D) if sp′ > d. ⊓⊔

Theorem 4.12 (W−1,p(D)). Let p ∈ (1,∞). Let D be an open, bounded set
in Rd. For all f ∈ W−1,p(D), there are functions {gi}i∈{0:d}, all in Lp′

(D),
s.t. ‖f‖W−1,p(D) = maxi∈{0:d} ‖gi‖Lp′(D) and

〈f, v〉 =
∫

D

g0v dx+
∑

i∈{1:d}

∫

D

gi∂iv dx, ∀v ∈ W 1,p
0 (D). (4.5)

More generally, for all m ∈ N, one has v ∈ W−m,p(D) if and only if v =∑
|α|≤m ∂αgα where gα ∈ Lp′

(D).

Proof. See Brezis [48, Prop. 9.20] for the casem = 1 and Adams and Fournier
[3, Thm. 3.9]. ⊓⊔

Example 4.13 (Gradient). Let s ∈ (0, 1), p ∈ (1,∞), and sp 6= 1. If D is a
Lipschitz domain in Rd, then the linear operator∇ mapsW s,p(D) boundedly
toW s−1,p(D), i.e., we have ∇ ∈ L(W s,p(D);W s−1,p(D)); see Grisvard [110,
Thm. 1.4.4.6]. ⊓⊔

Remark 4.14 (Interpolation). Assuming that D is a Lipschitz domain,
an alternative definition of negative-order spaces relies on the interpolation
theory between Banach spaces (see §A.5). Let p ∈ (1,∞) and s ∈ (0, 1).
Recalling the space W−1,p(D) from Definition 4.10, let us set

W̌−s,p(D) := [W−1,p(D), Lp(D)]1−s,p.

Theorem A.30 and the definition (3.6) of W s,p′

00 (D) imply that

W̌−s,p(D) = [Lp′

(D),W 1,p′

0 (D)]′s,p′ =
(
W s,p′

00 (D)
)′
.

The arguments from Remark 3.23 imply that Ȟ−s(D) = H−s(D) if s 6= 1
2

since Hs
00(D) = Hs

0(D) in this case (see (3.7)). (One can also infer that

W̌−s,p(D) =W−s,p(D) for sp 6= 1, if W̃ s,p(D) =W s,p
00 (D), as conjectured in

Remark 3.23.) ⊓⊔
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4.3 Normal and tangential traces

The goal of this section is to give a meaning to the normal or tangential
component of Rd-valued fields for which we only have integrability properties
on the divergence or the curl, respectively, but not on the whole gradient.
The underlying idea is quite general and consists of defining the traces in
a Sobolev space of negative order at the boundary by extending a suitable
integration by parts formula valid for smooth functions. Recall that for any
field v = (vi)i∈{1:d} ∈ L1

loc(D) := L1
loc(D;Rd), the divergence is defined by

∇·v :=
∑

i∈{1:d}
∂ivi, (4.6)

and for d = 3, the curl ∇×v is the column vector in R3 with components
(∇×v)i :=

∑
j,k∈{1:3} εijk∂jvk for all i ∈ {1:3}, where εijk denotes the Levi-

Civita symbol (εijk := 0 if at least two indices take the same value, ε123 =
ε231 = ε312 := 1 (i.e., for even permutations), and ε132 = ε213 = ε321 := −1
(i.e., for odd permutations)). In component form, we have

∇×v := (∂2v3 − ∂3v2, ∂3v1 − ∂1v3, ∂1v2 − ∂2v1)
T. (4.7)

Recall also that the following integration by parts formulas hold true for all
v,w ∈ C1(D) and all q ∈ C1(D):

∫

∂D

(v×n)·w ds =

∫

D

v·∇×w dx−
∫

D

(∇×v)·w dx, (4.8a)

∫

∂D

(v·n)q ds =
∫

D

v·∇q dx+

∫

D

(∇·v)q dx. (4.8b)

Let p ∈ (1,∞) and let us consider the following Banach spaces:

Zc,p(D) := {v ∈ Lp(D) | ∇×v ∈ Lp(D)}, (4.9a)

Zd,p(D) := {v ∈ Lp(D) | ∇·v ∈ Lp(D)}. (4.9b)

For p = 2, we write

H(curl;D) := Zc,2(D), H(div;D) := Zd,2(D). (4.10)

Let 〈·, ·〉∂D denote the duality pairing betweenW− 1
p
,p(∂D) andW

1
p
,p′

(∂D).

The trace operator γg : W 1,p′

(D) −→ W
1
p
,p′

(∂D) being surjective (see The-

orem 3.10), we infer that there is cγc such that for all l ∈W 1
p
,p′

(∂D), there

is w(l) ∈W 1,p′

(D) s.t. γg(w(l)) = l and ‖w(l)‖W 1,p′ (D) ≤ cγc‖l‖
W

1
p
,p′

(∂D)
.

We then define the linear map γc : Zc,p(D) →W− 1
p
,p(∂D) by
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〈γc(v), l〉∂D :=

∫

D

v·∇×w(l) dx −
∫

D

(∇×v)·w(l) dx, (4.11)

for all v ∈ Zc,p(D) and all l ∈ W
1
p
,p′

(∂D). Note that (4.8a) shows that
γc(v) = v|∂D×n when v is smooth. A direct verification invoking Hölder’s
inequality shows that the map γc is bounded. Moreover, the definition (4.11)
is independent of the choice of w(l); see Exercise 4.5.

We also define the linear map γd : Zd,p(D) →W− 1
p
,p(∂D) by

〈γd(v), l〉∂D :=

∫

D

v·∇q(l) dx+

∫

D

(∇·v)q(l) dx, (4.12)

for all v ∈ Zd,p(D) and all l ∈W
1
p
,p′

(∂D), where q(l) ∈W 1,p′

(D) is such that

γg(q(l)) = l, and 〈·, ·〉∂D now denotes the duality pairing betweenW− 1
p
,p(∂D)

and W
1
p
,p′

(∂D). Reasoning as above, one can verify that: γd(v) = v|∂D·n
when v is smooth; the map γd is bounded; the definition (4.12) is independent
of the choice of q(l).

Theorem 4.15 (Normal/tangential component). Let p ∈ (1,∞). Let

D be a Lipschitz domain in Rd. Let γc : Zc,p(D) → W− 1
p
,p(∂D) and γd :

Zd,p(D) → W− 1
p
,p(∂D) be defined in (4.11) and (4.12), respectively. The

following holds true:

(i) γc(v) = v|∂D×n and γd(v) = v|∂D·n whenever v is smooth.

(ii) γd is surjective.

(iii) Density: setting Zc,p
0 (D) := C∞

0 (D)
Zc,p(D)

, Zd,p
0 (D) := C∞

0 (D)
Zd,p(D)

,
we have

Z
c,p
0 (D) = ker(γc), Z

d,p
0 (D) = ker(γd). (4.13)

Proof. Item (i) is a simple consequence of the definition of γc and γd. See
Tartar [189, Lem. 20.2] for item (ii) when p = 2. See [96, Thm. 4.7] for item
(iii) (see also Exercise 23.9). ⊓⊔

Example 4.16 (Normal derivative). In the context of elliptic PDEs,
one often deals with functions v ∈ H1(D) such that ∇·(∇v) ∈ L2(D). For
these functions we have ∇v ∈H(div;D). Owing to Theorem 4.15 with p = 2,
one can then give a meaning to the normal derivative of v at the boundary
as γd(∇v) ∈ H− 1

2 (∂D). Assuming more smoothness on v, e.g., v ∈ Hs(D),
s > 3

2 , and some smoothness of ∂D, one can instead invoke Theorem 3.16

to infer that γ∂n(v) ∈ Hs− 3
2 (∂D) →֒ L2(∂D), i.e., the normal derivative

is integrable. However, this smoothness assumption is often too strong for
elliptic PDEs, and one has to use γd(∇v) to define the normal derivative. ⊓⊔

Example 4.17 (Whitney’s paradox). Let us show by a counterexample
(see [199, p. 100]) that the normal component of a vector field with integrable
divergence over D may not be integrable over ∂D. The two-dimensional field
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v(x1, x2) := ( −x2

x2
1+x2

2
, x1

x2
1+x2

2
)T in D := (0, 1)2 satisfies ‖v(x)‖ℓ2 = ‖x‖−1

ℓ2 ,

v ∈ Lp(D) for all p ∈ [1, 2), and ∇·v = 0. However, v·n is not integrable,
i.e., v·n 6∈ L1(∂D). ⊓⊔

Remark 4.18 (2D). In dimension two (d = 2), the tangential component

is defined using the linear map γc : Zc,p(D) →W− 1
p
,p(∂D) as follows:

〈γc(v), l〉∂D :=

∫

D

v·∇⊥w(l) dx+

∫

D

(∇×v)w(l) dx,

for all v ∈ Zc,p(D) and all l ∈ W
1
p
,p′

(∂D), where w(l) ∈ W 1,p′

(D) is such
that γg(w(l)) = l. Here, ∇⊥v := (−∂2v, ∂1v)T and ∇×v := ∂1v2−∂2v1. Note
that ∇⊥v = Rπ

2
(∇v) and ∇×v = −∇·(Rπ

2
(v)), where Rπ

2
is the rotation of

angle π
2 in R2 (i.e., the matrix of Rπ

2
relative to the canonical basis of R2 is(

0 −1
1 0

)
). Whenever v is smooth, we have γc(v) = v|∂D·t where t := Rπ

2
(n)

is a unit tangent vector to ∂D. ⊓⊔

Exercises

Exercise 4.1 (Distributions). Let D be an open set in Rd. Let v be a
distribution in D. (i) Let ψ ∈ C∞(D). Show that the map C∞

0 (D) ∋ ϕ 7→
〈v, ψϕ〉 defines a distribution in D (this distribution is usually denoted by
ψv). (ii) Let α, β ∈ Nd. Prove that ∂α(∂βv) = ∂β(∂αv) in the distribution
sense.

Exercise 4.2 (Dirac measure on a manifold). Let D be a smooth
bounded and open set in Rd. Let u ∈ C2(D;R) and assume that u|∂D = 0. Let

ũ be the extension by zero of u over Rd. Compute ∇·(∇ũ) = ∂11u+ . . .+∂ddu
in the distribution sense.

Exercise 4.3 (P.V. 1
x). Let D := (−1, 1). Prove that the linear map T :

C∞
0 (D) → R defined by 〈T, ϕ〉 := limǫ→0

∫
|x|>|ǫ|

1
xϕ(x) dx is a distribution.

Exercise 4.4 (Integration by parts). Prove the two identities in (4.8) by
using the divergence formula

∫
D
∇·φ dx =

∫
∂D

(φ·n) ds for all φ ∈ C1(D).

Exercise 4.5 (Definition (4.11)). Verify that the right-hand side of (4.11)
is independent of the choice of w(l). (Hint : consider two functions w1,w2 ∈
W 1,p′

(D) s.t. γg(w1) = γg(w2) = l and use the density of C∞
0 (D) in

W
1,p′

0 (D).)


