
Part II, Chapter 7

Simplicial finite elements

This chapter deals with finite elements (K,P,Σ) where K is a triangle in
R2, a tetrahedron in R3, and more generally a simplex in Rd, d ≥ 2. The
degrees of freedom (dofs) Σ are either nodal values in K or integrals over
the faces or the edges of K, and P is the space Pk,d composed of multivari-
ate polynomials of total degree at most k ≥ 0. We focus our attention on
scalar-valued finite elements. The results extend to the vector-valued case by
reasoning componentwise.

7.1 Simplices

Definition 7.1 (Simplex, vertices, normal). Let d ≥ 1. Let {zi}i∈{0:d}
be a set of points in Rd such that the vectors {z1 − z0, . . . , zd − z0} are
linearly independent. The convex hull of these points is called simplex in Rd,
say K := conv({zi}i∈{0:d}). By definition, K is a closed set. The points
{zi}i∈{0:d} are called vertices of K. The outward unit normal vector on ∂K
is denoted by nK .

Example 7.2 (d ∈ {1, 2, 3}). A simplex is a compact interval if d = 1, a
triangle if d = 2, and a tetrahedron if d = 3 (see Figure 5.2). ⊓⊔

Example 7.3 (Unit simplex). The unit simplex in Rd is the set {x ∈
Rd | 0 ≤ xi ≤ 1, ∀i ∈ {1:d}, ∑i∈{0:d} xi ≤ 1}. This corresponds to setting

z0 := 0 and zi−z0 := ei for all i ∈ {1:d}, where {ei}i∈{1:d} is the canonical

Cartesian basis of Rd. The unit simplex has volume 1
d! . ⊓⊔

Definition 7.4 (Faces, edges). The convex hull of the set {z0, . . . , zd}\{zi}
is denoted by Fi for all i ∈ {0:d} and is called the face of K opposite to the
vertex zi. For all l ∈ {0:d−1}, an l-face of K is the convex hull of a subset
of {zi}i∈{0:d} of cardinality (l + 1) (i.e., usual faces are (d − 1)-faces). By

definition, l-faces are closed sets and are subsets of an affine subspace of Rd



72 Chapter 7. Simplicial finite elements

of codimension (d− l). The 0-faces of K are the vertices of K. The 1-faces of
K are called edges. In dimension d = 2, the notions of edge and face coincide.
In dimension d = 1, the notions of vertex, edge, and face coincide.

Example 7.5 (Number of faces and edges). The number of l-faces in a
simplex in Rd is equal to

(
d+1
l+1

)
, e.g., there are (d+1) faces and vertices, and

for d ≥ 2, there are d(d+1)
2 edges. ⊓⊔

Remark 7.6 (Geometric identities). Let nK|Fi
be the value of nK on

Fi for all i ∈ {0:d}. Then {nK|Fi
}i∈{1:d} is a basis of Rd. Let cFi

be the

barycenter of Fi, cK that of K, and Id the identity matrix in Rd×d. We have

∑

i∈{0:d}
|Fi|nK|Fi

= 0,
∑

i∈{0:d}
|Fi|nK|Fi

⊗ (cFi
− cK) = |K|Id. (7.1)

See Exercise 7.2. These identities hold true for any polyhedron in Rd. ⊓⊔

7.2 Barycentric coordinates, geometric mappings

Let K be a simplex in Rd with vertices {zi}i∈{0:d}. For all x ∈ Rd and all
i ∈ {1:d}, we denote by λi(x) the components of the vector x − z0 in the
basis (z1 − z0, . . . , zd − z0), i.e.,

x− z0 =
∑

i∈{1:d}
λi(x)(zi − z0). (7.2)

Differentiating (7.2) twice, we infer that
∑

i∈{0:d}D
2λi(x)(h1,h2)(zi−z0) =

0 for all h1,h2 ∈ Rd. The vectors {zi−z0}i∈{1:d} being linearly independent,
this implies that D2λ1(x)(h1,h2) = . . . = D2λd(x)(h1,h2) = 0. Hence, λi
is an affine function of x, i.e., there exist γi ∈ R and gi ∈ Rd such that
λi(x) = γi + gi·x for all x ∈ Rd, where a·b denotes the inner product in Rd.
Note that Dλi is independent of x and Dλi(h) = gi·h for all h ∈ Rd. In
other words, we have ∇λi = gi.

To allow all the vertices of K to play a symmetric role, we introduce the
additional function λ0(x) := 1−∑i∈{1:d} λi(x). Then we have

∑

i∈{0:d}
λi(x) = 1 and x =

∑

i∈{0:d}
λi(x)zi, (7.3)

for all x ∈ Rd. A consequence of the above definitions is that λi(zj) = δij
for all i, j ∈ {0:d}. This implies that the functions {λi}i∈{0:d} are linearly
independent: if the linear combination

∑
i∈{0:d} βiλi(x) vanishes identically,

evaluating it at the vertex zj yields βj = 0 for all j ∈ {0:d}. Moreover, since
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K is the convex hull of {zi}i∈{0:d}, we infer that 0 ≤ λi(x) ≤ 1 for all x ∈ K
and all i ∈ {0:d}.

Definition 7.7 (Barycentric coordinates). The functions {λi}i∈{0:d} are
called barycentric coordinates in K.

It is shown below that the barycentric coordinates are also the shape functions
of the P1,d Lagrange finite element.

Example 7.8 (Unit simplex). Since x =
∑

i∈{1:d} xiei, (7.2) shows

that the barycentric coordinates in the unit simplex of Rd are λ0(x) :=
1−∑i∈{1:d} xi and λi(x) := xi for all i ∈ {1:d}. ⊓⊔

The following construction plays an important role in the rest of the book.
Let Ŝl := conv({ẑj}j∈{0: l}) be the unit simplex in Rl with barycentric coor-

dinates {λ̂j}j∈{0: l} (see Example 7.8).

Proposition 7.9 (Geometric mapping). Let K be a simplex in Rd, let
l ∈ {1:d}, and let σ : {0: l} → {0:d} be an injective map, i.e., σ chooses
(l + 1) distinct integers in {0:d}. Let S := conv({zσ(j)}j∈{0: l}) be an l-face

of K or K itself if l = d. Let TS : Ŝl → Rd be the geometric mapping s.t.
TS(x̂) =

∑
j∈{0: l} λ̂j(x̂)zσ(j) for all x̂ ∈ Ŝl. Then S = TS(Ŝ

l), and the
mapping TS is a smooth diffeomorphism.

Proof. We first notice that TS(ẑj) = zσ(j) for all j ∈ {0:l} and that TS is an
affine mapping since TS(x̂) = zi0 +

∑
j∈{1: l} x̂j(zσ(j) − zi0 ). Let {θj}j∈{0: l}

be any nonnegative numbers s.t.
∑

j∈{0: l} θj = 1. We have

∑

j∈{0: l}
θjzσ(j) =

∑

j∈{0: l}
θjTS(ẑj) = TS

( ∑

j∈{0: l}
θj ẑj

)
.

Since S = conv({zσ(j)}j∈{0: l}) and Ŝl = conv({ẑj}j∈{0: l}), this proves that

S = TS(Ŝ
l). Moreover, the mapping TS is of class C∞ since it is linear.

We now show that the linear mapping DTS : Rl → Rl is invertible by ver-
ifying the injectivity. Let ĥ ∈ Rl be such that DTS(ĥ) = 0. Writing ĥ =∑

j∈{1: l} ĥj(ẑj−ẑ0) and sinceDTS(ẑj−ẑ0) = TS(ẑj)−TS(ẑ0) = zσ(j)−zσ(0),
we infer that 0 =

∑
j∈{1: l} ĥj(zσ(j) − zσ(0)), implying that h = 0. ⊓⊔

Fig. 7.1 Geometric mapping TS (d = 3,
l = 2). The face S of K is highlighted in
gray, and the vertices of both Ŝ2 and S

are indicated by bullets.
S

Ŝ2

TS
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7.3 The polynomial space Pk,d

The real vector space Pk,d is composed of d-variate polynomial functions
p : Rd → R of total degree at most k. Thus, we have

Pk,d := span {xα1

1 . . . xαd

d , 0 ≤ α1, . . . , αd ≤ k, α1 + . . .+ αd ≤ k} . (7.4)

The importance of the polynomial space Pk,d is rooted in the fact that the
Taylor expansion of order k of any d-variate function belongs to Pk,d. Another
important fact is that for every smooth function v : Rd → R,

[ v ∈ Pk,d ] ⇐⇒ [Dk+1v(x) = 0, ∀x ∈ Rd ]. (7.5)

The vector space Pk,d has dimension (see Exercise 7.4)

dimPk,d =

(
k + d

d

)
=





k + 1 if d = 1,
1
2 (k + 1)(k + 2) if d = 2,
1
6 (k + 1)(k + 2)(k + 3) if d = 3.

(7.6)

We omit the subscript d and write Pk when the context is unambiguous.
An element α := (α1, . . . , αd) of Nd is called multi-index, and its length is

defined as |α| := α1 + . . . + αd. We define the multi-index set Ak,d := {α ∈
Nd | |α| ≤ k}. Note that card(Ak,d) = dim(Pk,d) =

(
k+d
d

)
. Any polynomial

function p ∈ Pk,d can be written in the form

p(x) =
∑

α∈Ak,d

aαx
α, with xα := xα1

1 . . . xαd

d and aα ∈ R. (7.7)

Let H be an affine subspace in Rd of dimension l ∈ {1:d−1}. Given a
polynomial p ∈ Pk,d, the following result gives a characterization of the trace
of p on H which will be used repeatedly in the book.

Lemma 7.10 (Trace space). Let H be an affine subspace in Rd of dimen-
sion l ∈ {1:d−1}. Then p|H ◦ TH ∈ Pk,l for all p ∈ Pk,d and every affine

bijective mapping TH : Rl → H. Moreover, q ◦TRl ∈ Pk,d for all q ∈ Pk,l and
every affine mapping TRl : Rd → Rl.

Proof. We observe that Dk+1(p|H ◦ TH)(y) = 0 for all y ∈ Rl by using the
chain rule and the fact that TH is affine. Then we apply (7.5). The second
statement is proved similarly. ⊓⊔

7.4 Lagrange (nodal) finite elements

We begin with a simple example where we set k := 1; see Table 7.1.
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Proposition 7.11 (Simplicial Lagrange, k := 1). Let K be a simplex in
Rd with vertices {zi}i∈{0:d}. Let P := P1,d. Let Σ := {σi}i∈{0:d} be the linear
forms on P such that σi(p) := p(zi) for all i ∈ {0:d}. Then (K,P,Σ) is a
Lagrange finite element and the shape functions are θi := λi.

Proof. Let p ∈ P . We use (7.2), i.e., x− z0 =
∑

i∈{1:d} λi(x)(zi − z0), that
p is affine, the linearity of Dp, and the first identity in (7.3) to infer that

p(x) = p(z0) +Dp(x− z0) = p(z0) +
∑

i∈{1:d}
λi(x)Dp(zi − z0)

=
∑

i∈{0:d}

(
λi(x)(p(z0) +Dp(zi − z0))

)
=

∑

i∈{0:d}
λi(x)p(zi),

for all x ∈ Rd. Now we use Remark 5.3. We have dimP = d + 1 = cardΣ,
and the above identity shows that any polynomial in P vanishing at the
(d+1) vertices of K vanishes identically. Hence, (K,P,Σ) is a finite element.
Finally, owing to the above identity applied with p := θj , we have θj(x) =∑

i∈{0:d} λi(x)θj(zi) =
∑

i∈{0:d} λi(x)δij = λj(x) for all x ∈ K. This proves

that θj = λj for all j ∈ {0:d}. ⊓⊔

We now extend the above construction to any polynomial order k ≥ 1
using equidistributed nodes in the simplex K. Other choices are discussed in
Remark 7.14.

Proposition 7.12 (Simplicial Lagrange). Let K be a simplex in Rd. Let
k ≥ 1, P := Pk,d, and Ak,d := {α ∈ Nd | |α| ≤ k}. Set nsh :=

(
k+d
d

)
and

consider the set of nodes {aα}α∈Ak,d
s.t. aα − z0 :=

∑
i∈{1:d}

αi

k (zi − z0).
Let Σ := {σα}α∈Ak,d

be the linear forms on P s.t. σα(p) := p(aα) for all
α ∈ Ak,d. Then (K,P,Σ) is a Lagrange finite element.

Proof. We use Remark 5.3. Since cardΣ = cardAk,d =
(
k+d
d

)
= dimPk,d, we

need to prove the following property which we call [Pk,d]: Any polynomial
p ∈ Pk,d vanishing at all the Lagrange nodes {aα}α∈Ak,d

of any simplex in

Rd vanishes identically. Property [Pk,1] holds true for all k ≥ 1 owing to
Proposition 6.8. Assume now that d ≥ 2 and that [Pk,d−1] holds true for
all k ≥ 1 and let us prove that [Pk,d] holds true for all k ≥ 1. Assume
that p ∈ Pk,d vanishes at all the Lagrange nodes of a simplex K. Let F0

be the face of K opposite to the vertex z0 and consider an affine bijective
mapping TH0 : Rd−1 → H0, where H0 is the affine hyperplane supporting F0.
Then p0 := p ◦ TH0 is in Pk,d−1 owing to Lemma 7.10, and by assumption,
p0(T

−1
H0

(aα)) = p(aα) = 0 for all aα ∈ F0. Moreover, aα ∈ F0 iff |α| = k. Let

us set β̃ := (k − |β|, β1, . . . , βd−1) for all β ∈ Ak,d−1, so that β̃ ∈ Ak,d and

|β̃| = k. Setting bβ := T−1
H0

(aβ̃) for all β ∈ Ak,d−1, we obtain all the Lagrange

nodes of the simplex T−1
H0

(F ) in Rd−1. Since p0(bβ) = p(aβ̃) = 0 for all
β ∈ Ak,d−1, we infer owing to [Pk,d−1] that p0 = 0. Since TH0 is bijective, we
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obtain p|F0
= 0. Denoting by λ0 ∈ P1,d the barycentric coordinate associated

with z0, this implies that there is q ∈ Pk−1,d s.t. p = λ0q (see Exercise 7.4(iv)).
Let us prove by induction on k that q = 0. For k = 1, we have already proved
[P1,d] in Proposition 7.11. Let us now assume that [Pk−1,d] holds true for
k ≥ 2. Since k ≥ 2, q vanishes at all the Lagrange nodes aα s.t. |α| < k (since
λ0(aα) 6= 0 at these nodes), i.e., |α| ≤ k − 1. Hence, q vanishes at all the
Lagrange nodes aα, α ∈ Ak−1,d. Since these nodes belong again to a simplex,
[Pk−1,d] implies q = 0. ⊓⊔

We have established the following result in the proof of Proposition 7.12.

Lemma 7.13 (Face unisolvence). Let F be one of the (d+ 1) faces of the
simplex K ⊂ Rd. Let NF be the collection of the indices of the Lagrange nodes
on F . The following holds true for all p ∈ Pk,d:

[σj(p) = 0, ∀j ∈ NF ] ⇐⇒ [ p|F = 0 ]. (7.8)

P1 P2 P3

λi λi(2λi − 1) 1

2
λi(3λi − 1)(3λi − 2)

4λiλj ± 9

2
λi(3λi −

3

2
± 1

2
)λj

27λiλjλk

Table 7.1 Two- and three-dimensional P1, P2, and P3 Lagrange elements. Visible degrees
of freedom are shown in black, hidden degrees of freedom are in white, and hidden edges are
represented with dashed lines. The shape functions are expressed in terms of the barycentric
coordinates. The first, second, and third lines list shape functions associated with the
vertices (i ∈ {0:d}), the edges (i, j ∈ {0:d}, i < j), and the faces (i, j, k ∈ {0:d}, i < j < k).

Table 7.1 presents examples of node locations and shape functions for
k ∈ {1, 2, 3} in dimension d ∈ {2, 3}. The bullets conventionally indicate the
location of the nodes; see Exercise 7.5 for some properties of these nodes.
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Possible choices for the domain of the interpolation operator are V (K) :=
C0(K) or V (K) := W s,p(K) with p ∈ [1,∞] and sp > d (or s ≥ d if p = 1);
see §5.4.1.

Remark 7.14 (High-order). Other sets of Lagrange nodes can be used.
For instance, the Fekete points from §6.3.5 can be extended to simplices,
although finding Fekete points on simplices for high polynomial degrees is a
difficult problem. We refer the reader to Chen and Babuška [66] and Taylor
et al. [190] for results on triangles with degrees up to k = 13 and k = 19,
respectively; see also Canuto et al. [58, p. 112]. A comparison of various nodal
sets on triangles and tetrahedra can be found in Blyth et al. [26]. ⊓⊔

Remark 7.15 (Modal and hybrid simplicial elements). A hierarchi-
cal basis of Pk,d can be built by combining a hierarchical univariate basis
of Pk,1 with the barycentric coordinates; see Ainsworth and Coyle [6] and
Exercise 7.6. One can also introduce a nonlinear transformation mapping the
simplex to a cuboid and use tensor products of one-dimensional basis func-
tions in the cuboid; see Proriol [162], Dubiner [91], Owens [154], Karniadakis
and Sherwin [123, §3.2]. Another possibility is to use Bernstein polynomi-
als, i.e., the basis {

(
p
m

)
tm(1 − t)p−m}m∈{0:p} if d = 1; see Ainsworth et al.

[7], Kirby [125] for scalar-valued polynomials and Kirby [126] for the exten-
sion to the de Rham complex (see also §16.3). ⊓⊔

PR1 PR2 PR3

Table 7.2 Nodes for prismatic Lagrange finite elements of degree 1, 2, and 3. The bullets
indicate the location of the nodes. Only visible nodes are shown.

Remark 7.16 (Prismatic Lagrange elements). Let d ≥ 3 and set x′ :=
(x1, . . . , xd−1) for all x ∈ Rd. Let K ′ be a simplex in Rd−1 and [z−d , z

+
d ] be

an interval with z−d < z+d . The set K := {x ∈ Rd | x′ ∈ K ′, xd ∈ [z−d , z
+
d ]} is

called prism in Rd. Let k ≥ 1 and let PRk := span{p(x) = p1(x
′) p2(xd) | p1 ∈

Pk,d−1, p2 ∈ Pk,1}. Examples of prismatic Lagrange elements based onK and
PRk with equidistributed nodes are shown in Table 7.2 for k ∈ {1, 2, 3}. ⊓⊔
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7.5 Crouzeix–Raviart finite element

The Crouzeix–Raviart finite element is based on the polynomial space P1,d.
It has been introduced in [86] to approximate the Stokes equations. Let K be
a simplex in Rd with vertices {zi}i∈{0:d}. Recall that the face of K opposite
to zi is denoted by Fi.

Proposition 7.17 (Finite element). Let K be a simplex in Rd, set P :=
P1,d, and define the following dofs on P :

σcr

i (p) :=
1

|Fi|

∫

Fi

p ds, ∀i ∈ {0:d}. (7.9)

Set Σ := {σcr
i }i∈{0:d}. Then (K,P,Σ) is a finite element.

Proof. Since cardΣ = dimP = d + 1, it suffices to verify that any polyno-
mial p in P satisfying σcr

i (p) = 1
|Fi|
∫
Fi
p ds = 0 for all i ∈ {0:d} vanishes

identically. Since p ∈ P1,d, we have p =
∑

j∈{0:d} p(zj)λj , where {λj}j∈{0:d}
are the barycentric coordinates in K. Owing to Exercise 7.3(iii), we infer
that σcr

i (p) =
∑

j∈{0:d} p(zj)σ
cr
i (λj) =

1
d

∑
j 6=i p(zj) since σcr

i (λi) = 0 and

σcr
i (λj) =

1
d |Fi| for all j 6= i. Hence,

∑
j 6=i p(zj) = 0 for all i ∈ {0:d}. This

implies that 0 =
∑

j 6=i p(zj) −
∑

j 6=i′ p(zj) = p(zi) − p(zi′ ) for every pair
(i, i′) such that i 6= i′. Hence, p takes a constant value at all the vertices of
K, and this value must be zero since, say,

∑
j 6=0 p(zj) = 0. ⊓⊔

Using the barycentric coordinates {λi}i∈{0:d} in K, one can verify that
the shape functions are θcri (x) := 1− dλi(x) for all i ∈ {0:d} and all x ∈ K.
Note that θcri|Fi

= 1 and θcri (zi) = 1− d. The Crouzeix–Raviart interpolation
operator acts as follows:

Icr

K (v)(x) :=
∑

i∈{0:d}
σcr

K,i(v)θ
cr

K,i(x) =
∑

i∈{0:d}

(
1

|Fi|

∫

Fi

v ds

)
θcri (x), (7.10)

for all x ∈ K. A possible choice for the domain of Icr
K is V (K) := W 1,1(K)

since the trace theorem (Theorem 3.10) applied with p := 1 implies that any
function in W 1,1(K) has a trace in L1(∂K). The two- and three-dimensional
Crouzeix–Raviart elements are shown in Table 7.3.

Remark 7.18 (Definition as a Lagrange element). The mean-value
over a face of a polynomial in P1,d is equal to the value this polynomial
takes at the barycenter of the face. Another possible choice for the dofs is
therefore to take the values at the barycenter of all the faces. The resulting
finite element is a Lagrange finite element (see Definition 5.11), andW 1,1(K)
is no longer a legitimate domain for the interpolation operator. One possible
choice is the smaller space V (K) := C0(K). ⊓⊔
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1− 2λi 1− 3λi

Table 7.3 P1 Crouzeix–Raviart elements in di-
mensions two and three. Visible degrees of free-
dom are shown in black, hidden degrees of free-
dom are in white, and hidden edges are repre-
sented with dashed lines. The shape functions are
expressed in terms of the barycentric coordinates.

7.6 Canonical hybrid finite element

We now present a finite element based on the polynomial space Pk,d whose
dofs combine values at the vertices of the simplex K with integrals over the
l-faces of K for l ≥ 1 (hence the name hybrid). It is a useful alternative to
Lagrange elements that has interesting commuting properties, which will be
invoked in §16.3 in the context of the discrete de Rham complex (hence the
name canonical).

Let K be a tetrahedron in R3. Let VK , EK , and FK be the collections of
the vertices, edges, and faces of K, respectively. Let TE : Ŝ1 → E for all
E ∈ EK , and TF : Ŝ2 → F for all F ∈ FK , be affine bijective mappings
(see Proposition 7.9), where Ŝ1 and Ŝ2 are the unit simplices in R and R2.
Let k ≥ 1 be the polynomial degree. The canonical hybrid finite element
involves vertex dofs, edge dofs if k ≥ 2, surface (or face) dofs if k ≥ 3, and
volume (or cell) dofs if k ≥ 4. We consider the following dofs:

σv
z(p) := p(z), z ∈ VK , (7.11a)

σe
E,m(p) :=

1

|E|

∫

E

(µm◦T−1
E )p dl, E ∈ EK , m ∈ {1:ne

sh}, (7.11b)

σf
F,m(p) :=

1

|F |

∫

F

(ζm◦T−1
F )p ds, F ∈ FK , m ∈ {1:nf

sh}, (7.11c)

σc
m(p) :=

1

|K|

∫

K

ψmp dx, m ∈ {1:nc
sh}, (7.11d)

where {µm}m∈{1:ne
sh
} is a basis of Pk−2,1 with ne

sh :=
(
k−1
1

)
if k ≥ 2,

{ζm}m∈{1:nf
sh} is a basis of Pk−3,2 with nf

sh :=
(
k−1
2

)
if k ≥ 3, and

{ψm}m∈{1:nc
sh} is a basis of Pk−4,3 with nc

sh :=
(
k−1
3

)
if k ≥ 4. The above con-

struction is possible in any dimension. If d = 2 for instance, the vertex dofs
are defined in (7.11a), the edge (face) ones in (7.11b) if k ≥ 2, and the cell
ones in (7.11d), where {ψm}m∈{1:nc

sh} is a basis of Pk−3,2 with nc
sh :=

(
k−1
2

)

if k ≥ 3.
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Proposition 7.19 (Canonical hybrid finite element). Let k ≥ 1. Let
K be a simplex in Rd, let P := Pk,d, and let Σ := {σi}i∈N be the collection
of all the dofs defined in (7.11). Then (K,P,Σ) is a finite element.

Proof. We use Remark 5.3. Since we use polynomials in Pk−l−1,l to define

the dofs of the l-faces, and the number of l-faces is
(
d+1
l+1

)
=
(
d+1
d−l

)
(see Ex-

ample 7.5), the total number of dofs for all the l-faces is
(
k−1
l

)(
d+1
d−l

)
. Vander-

monde’s convolution identity implies that

nsh =
∑

j∈{0:d}

(
k − 1

j

)(
d+ 1

d− j

)
=

(
k + d

d

)
= dim(Pk,d).

It remains to prove that if p ∈ Pk,d is such that σi(p) = 0 for all i ∈ N , then
p vanishes identically. First, p vanishes at all the vertices of K. If k = 1, this
concludes the proof. If k ≥ 2, fix an edge E of K. Since p ◦ TE vanishes at
the two endpoints of E, p ◦ TE = λ0λ1q, where λ0, λ1 ∈ P1,1 are the local

barycentric coordinates over Ŝ1 and q ∈ Pk−2,1. Since the dofs of p attached
to E vanish, we infer that

∫
Ŝ1 λ0λ1q

2 dl = 0, which implies that q = 0. Hence,
p is identically zero on all edges of K. If k = 2, this completes the proof since
all the Lagrange nodes for k = 2 are located at the edges of K. If k ≥ 3, we
proceed similarly by fixing a face F ofK and showing that p is identically zero
on all faces of K. If k = 3, this completes the proof since all the Lagrange
nodes for k = 3 are located at the faces of K. For k ≥ 4, we finally infer
that p = λ0 . . . λdqK where {λi}i∈{0:d} are the barycentric coordinates of K
and qK ∈ Pk−4,d. Since the dofs of p attached to K vanish, we infer that∫
K λ0 . . . λdq

2
K dx = 0, which implies that qK = 0, i.e., p = 0. ⊓⊔

The shape functions associated with the vertices, the edges, the faces, and
K are denoted by {ξ̃z}z∈VK

, {µ̃E,m}E∈EK ,m∈{1:ne
sh}, {ζ̃F,m}F∈FK,m∈{1:nf

sh},

and {ψ̃m}m∈{1:nc
sh}, respectively. All these functions are in Pk,d and form

a basis thereof. Recalling Proposition 5.5 the shape functions are computed
by inverting the generalized Vandermonde matrix V after choosing a basis of
Pk,d. A basis of Pk,d with a structure close to that of the above shape functions
can be found in Fuentes et al. [103, §7.1]. The proposed basis can be organized
into functions attached to the vertices of K, the edges of K, the faces of K,
and to K itself, and the associated generalized Vandermonde matrix V is
block-triangular. The interpolation operator has domain V (K) := C0(K) (or
V (K) := W s,p(K) with sp > d, p ∈ [1,∞] or s ≥ d, p = 1) and it acts as
follows:

Ig
K(v)(x) :=

∑

z∈VK

σv
z(v)ξ̃z(x) +

∑

E∈EK

∑

m∈{1:ne
sh}
σe
E,m(v)µ̃E,m(x)

+
∑

F∈FK

∑

m∈{1:nf
sh}
σf
F,m(v)ζ̃F,m(x) +

∑

m∈{1:nc
sh}
σc
m(v)ψ̃m(x).
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Remark 7.20 (Dofs). The interpolation operator Ig
K is independent of the

bases {µm}m∈{1:ne
sh}, {ζm}m∈{1:nf

sh}, and {ψm}m∈{1:nc
sh} (this follows from

Exercise 5.2). It is also independent of the choice of the mappings TE and
TF . Let for instance TF and T̃F be two geometric mappings associated with
the face F . Then T−1

F ◦ T̃F is affine and bijective from R2 to R2. Hence,

ζm ◦ (T−1
F ◦ T̃F ) ∈ Pk,2 for all m ∈ {1:nf

sh}, so that ζm ◦ (T−1
F ◦ T̃F ) =∑

n∈{1:nf
sh} Smnζn for some real numbers Smn, i.e.,

ζm ◦ T−1
F =

∑

n∈{1:nf
sh}

Smn(ζn ◦ T̃−1
F ).

Since the mappings TF and T̃F are bijective, the matrix S ∈ Rnf
sh×nf

sh is
invertible, and we use again Exercise 5.2 to conclude. ⊓⊔

Exercises

Exercise 7.1 (Lagrange interpolation). Let IK be the P1 Lagrange in-
terpolation operator on a simplex K. Prove that ‖IK(v)‖C0(K) ≤ ‖v‖C0(K)

for all v ∈ C0(K). (Hint : use the convexity of K and recall that K is closed.)
Does this property hold true for P2 Lagrange elements?

Exercise 7.2 (Geometric identities). Prove the statements in Remark 7.6.
(Hint : use the divergence theorem to prove (7.1).)

Exercise 7.3 (Barycentric coordinates). Let K be a simplex in Rd. (i)

Prove that λi(x) = 1− |Fi|
d|K|nK|Fi

·(x−zi) for all x ∈ K and all i ∈ {0:d}, and
that ∇λi = − |Fi|

d|K|nK|Fi
. (ii) For all x ∈ K, letKi(x) be the simplex obtained

by joining x to the d vertices zj with j 6= i. Show that λi(x) =
|Ki(x)|
|K| . (iii)

Prove that
∫
K
λi dx = 1

d+1 |K| for all i ∈ {0:d}, and that
∫
Fj
λi ds =

1
d |Fj | for

all j ∈ {0:d} with j 6= i, and
∫
Fi
λi ds = 0. (Hint : consider an affine mapping

from K to the unit simplex.) (iv) Prove that if h ∈ Rd satisfies Dλi(h) = 0
for all i ∈ {1:d}, then h = 0.

Exercise 7.4 (Space Pk,d). (i) Give a basis for P2,d for d ∈ {1, 2, 3}. (ii)
Show that any polynomial p ∈ Pk,d can be written in the form p(x1, . . . , xd) =
r(x1, . . . , xd−1) + xdq(x1, . . . , xd), with unique polynomials r ∈ Pk,d−1 and
q ∈ Pk−1,d. (iii) Determine the dimension of Pk,d. (Hint : by induction on d.)
(iv) Let K be a simplex in Rd. Let F0 be the face of K opposite to the vertex
z0. Prove that if p ∈ Pk,d satisfies p|F0

= 0, then there is q ∈ Pk−1,d s.t.
p = λ0q. (Hint : write the Taylor expansion of p at zd and use (7.2) with zd
playing the role of z0.) (v) Prove that {λβ0

0 . . . λβd

d | β0 + . . . + βd = k} is a
basis of Pk,d.
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Exercise 7.5 (Nodes of simplicial Lagrange FE). Let K be a simplex
in Rd, and consider the set of nodes {ai}i∈N with barycentric coordinates(
i0
k , . . . ,

id
k

)
, ∀i0, . . . , id ∈ {0:k} with i0 + . . . + id = k. (i) Prove that the

number of nodes located on any one-dimensional edge of K is (k + 1) in any
dimension d ≥ 2. (ii) Prove that the number of nodes located on any (d− 1)-
dimensional face of K is the dimension of Pk,d−1. (iii) Prove that if k ≤ d,
all the nodes are located on the boundary of K.

Exercise 7.6 (Hierarchical basis). Let k ≥ 1 and let {θ0, . . . , θk} be a
hierarchical basis of Pk,1. Let {λ0, . . . , λd} be a basis of P1,d and assume
that λi : Rd → R is surjective for all i ∈ {0:d} (i.e., λi is not constant).
(i) Show that the functions (mapping Rd to R) {θ0(λi), . . . , θk(λi)} are lin-
early independent for all i ∈ {0:d}. (Hint : consider a linear combination∑

l∈{0:k} αlθl(λi) ∈ Pk,d and prove that the polynomial
∑

l∈{0:k} αlθl ∈ Pk,1

vanishes at (k+1) distinct points.) (ii) Show that the functions (mapping Rd

to R) from the set Sk,d := {θα1(λ1) . . . θαd
(λd) | (α1, . . . αd) ∈ Nd, |α| ≤ k}

are linearly independent. (Hint : by induction on d.) (iii) Show that (Sk,d)k≥0

is a hierarchical polynomial basis, i.e., Sk,d ⊂ Sk+1,d and Sk,d is basis of Pk,d.
(Note: the (d+ 1) vertices of K do not play here the same role.)

Exercise 7.7 (Cubic Hermite triangle). LetK be a triangle with vertices
{z0, z1, z2}. Set Σ := {p(zi), ∂x1p(zi), ∂x2p(zi)}0≤i≤2 ∪ {p(aK)}, where aK

is a point inside K. Show that (K,P3,2, Σ) is a finite element. (Hint : show
that any p ∈ P3,2 for which all the dofs vanish is identically zero on the three
edges of K and infer that p = cλ0λ1λ2 for some c ∈ R.)

Exercise 7.8 (P2,d canonical hybrid FE). Compute the shape functions
of the P2,d canonical hybrid finite element for the unit simplex for d = 1 and
d = 2 (provide an expression using the Cartesian coordinates and another
one using the barycentric coordinates).

Exercise 7.9 (P4,2 Lagrange). Using the Lagrange nodes defined as in
Proposition 7.11, give the expression of the P4,2 Lagrange shape functions
in terms of the barycentric coordinates.

Exercise 7.10 (Quadratic Crouzeix–Raviart). Let K be the unit sim-
plex. Let α ∈ (0, 1). Let g1 := (α, 0), g2 := (1− α, 0), g3 := (1− α, α), g4 :=
(α, 1−α), g5 := (0, 1−α), g6 := (0, α). (i) Compute λ0(gj)

2+λ1(gj)
2+λ2(gj)

2

for all j ∈ {1:6}, where λ0, λ1, λ2 are the barycentric coordinates of K.
(ii) Let σj ∈ L(P2,2;R) be defined by σj(p) := p(gj) for all p ∈ P2,2 and
j ∈ {1:6}. Let Σ := {σj}j∈{1:6}. Is the triple (K,P2,2, Σ) a finite element?
(iii) Let Fi, i ∈ {0:2}, be one of the three faces of K. Let TFi

: [−1, 1] → Fi

be one of the two affine mappings that realize a bijection between [−1, 1]
and Fi. Let {q0, q1} be a basis of P1,1. Let ̟2i+k ∈ L(P2,2;R), i ∈ {0:2},
k ∈ {0:1}, be defined by ̟2i+k(p) := 1

|Fi|
∫
Fi
(qk◦T−1

Fi
)p ds for all p ∈ P2,2.

Let Σ := {̟j}j∈{0:5}. Is the triple (K,P2,2, Σ) a finite element? (Hint : con-
sider the points TFi

(ξk), i ∈ {0:2}, k ∈ {0:1}, where ξ0, ξ1 are the two nodes
of the Gauss–Legendre quadrature of order 3, then use Step (ii).)


