
Part III, Chapter 8

Meshes

In Part III, composed of Chapters 8 to 17, we introduce the notion of meshes,
show how to generate a finite element on each cell composing the mesh, and
estimate the interpolation error in each mesh cell. We also derive important
discrete inverse and functional inequalities in each mesh cell. Moreover, we
discuss in some detail finite elements in H(div) and H(curl). In the present
chapter, we study how to build a mesh of a bounded subset D (Rd, i.e.,
a finite collection of cells forming a partition of D. This is indeed the first
important task to realize when one wants to approximate some PDEs posed in
D. The viewpoint we adopt in this book is that each mesh cell is the image
of a reference cell by some smooth diffeomorphism that we call geometric
mapping. We show how to construct the geometric mapping and we present
various important notions concerning meshes. We also discuss mesh-related
data structures and mesh generators.

8.1 The geometric mapping

Let K̂ be a polyhedron in Rd, called reference cell. We want to build a smooth
diffeomorphism (i.e., an invertible mapping) TK from K̂ to K := TK(K̂)
using a set of geometric nodes {gi}i∈Ngeo in K with Ngeo := {1:ngeo} for
some integer ngeo. In practice, these nodes are provided by a mesh generator.

The key idea to build TK is to use a Lagrange finite element in K̂, say
(K̂, P̂geo, Σ̂geo), with reference Lagrange nodes {ĝi}i∈Ngeo in K̂. This finite

element is called geometric finite element. It is standard to assume that P̂geo

is a space of d-variate polynomials and that there is an integer kgeo ≥ 1 s.t.

Pkgeo,d ⊂ P̂geo ⊂ C∞(K̂). (8.1)

Notice that ngeo ≥ d+1 since kgeo ≥ 1. Let {ψ̂i}i∈Ngeo be the shape functions
of the geometric finite element.

84 Chapter 8. Meshes

Definition 8.1 (Geometric mapping). The geometric mapping TK :

K̂ → K is defined by

TK(x̂) :=
∑

i∈Ngeo

ψ̂i(x̂)gi, ∀x̂ ∈ K̂. (8.2)

Since ψ̂i(ĝj) = δij for all i, j ∈ Ngeo, we have TK(ĝj) = gj . Notice that
this construction implies that TK is of class C∞. We henceforth assume that
TK is a C∞ diffeomorphism. Some care has to be taken when choosing the
geometric nodes {gi}i∈Ngeo to ensure that TK is indeed bijective when TK is
not affine. Some counterexamples are shown in Figures 8.1 and 8.2.

Fig. 8.1 P1-based generation of a triangle (top left), P2-based generation of a curved trian-
gle (top right), P1-based generation of a parallelogram (bottom left), Q1-based generation
of two quadrangles, the second one with a nonbijective mapping (bottom right).

We adopt the usual convention that consists of identifying vectors in Rd

with column vectors. This allows us to identify TK with the column vector
with entries (TK)i for all i ∈ {1:d} and the Jacobian of TK with the matrix
with entries

(JK)ij := ∂j(TK)i, ∀i, j ∈ {1:d}, (8.3)

where i is the row index and j the column index. The field JK is Rd×d-valued
and it is constant over K̂ if TK is affine. Notice that the sign of det(JK) is

necessarily constant over K̂ since we assumed that det(JK)(x̂) 6= 0 for all

x̂ ∈ K̂ (this is indeed a necessary condition for TK to be bijective). Contrary
to what is done sometimes in the literature, we do not require that det(JK)
has any particular sign.

Example 8.2 (Simplex generation). Let K̂ be the unit simplex in

Rd with barycentric coordinates {λ̂i}i∈{0:d} (λ̂0(x̂) := 1 −∑i∈{1:d} x̂i and

λ̂i(x̂) := x̂i for all i ∈ {1:d}). Let K be a simplex in Rd. Taking P̂geo := P1,d

and the ngeo := (d + 1) vertices of K as geometric nodes, the geometric

mapping TK : K̂ → K is s.t. TK(x̂) :=
∑

i∈{0:d} λ̂i(x̂)zi for all x̂ ∈ K̂.

In dimension two, taking P̂geo := P2,2, i.e., ngeo := 6, we can prescribe six
geometric nodes in K and build a triangle with curved faces. See Figure 8.1
(top row) for illustrations. When using high-order elements, some care must

Part III. Finite element interpolation 85

be taken to ensure that the geometric mapping TK is indeed invertible. Fig-
ure 8.2 presents two examples where the mapping TK is not invertible. For
the one shown on the left, the enumerations chosen for the geometric nodes
of K̂ and K1 are not compatible. The example shown on the right is slightly
more subtle since the singularity comes from the fact that the shape functions
of the P2,2 Lagrange finite element can take negative values and that some
geometric nodes of K2 are too close. ⊓⊔

TK2

K̂

K2

K1

TK1

11

1 22 2

33 3

4

4

4
5

5
5

66

6

Fig. 8.2 Left: incompatible enumeration of the geometric nodes. Right: compatible enu-
meration, but some geometric nodes are too close.

Example 8.3 (Quadrangle generation). Let K̂ := (0, 1)2 be the unit
square in R2. Let us set ẑ0 := (0, 0), ẑ1 := (1, 0), ẑ2 := (0, 1), and ẑ3 := (1, 1).

Taking P̂geo := P1,2, so that ngeo = 3, we can prescribe three geometric nodes
in K to build a smooth diffeomorphism. Let z0 be one vertex of K and let
z1, z2 be the other two vertices of K sharing an edge with z0. Let z3 be the
fourth vertex of K. Upon setting TK(x̂) := (1− x̂1− x̂2)z0+ x̂1z1+ x̂2z2, we
observe thatK is a parallelogram. In particular, z3 = TK(ẑ3) = −z0+z1+z2,
i.e., z0 + z3 = z1 + z2. To generate a more general quadrangle, we can take
P̂geo := Q1,2, so that ngeo = 4, and use the four vertices of K as geometric
nodes. In this case, TK(x̂) = (1− x̂1)(1− x̂2)z0+ x̂1(1− x̂2)z1+(1− x̂1)x̂2z2+
x̂1x̂2z3. The mapping TK is a smooth diffeomorphism whenever the nodes of
K are properly enumerated. See the bottom row of Figure 8.1 for illustrations.
In the rightmost example, TK is not invertible because the nodes are not
properly enumerated. ⊓⊔

8.2 Main definitions related to meshes

Definition 8.4 (Mesh). Let D be a Lipschitz domain in Rd. We say that
Th is a mesh of D if Th is a finite collection of closed subsets of D, called
mesh cells (or mesh elements), such that (i) the interiors of the mesh cells
are all nonempty Lipschitz domains in Rd that are mutually disjoint and (ii)
all the mesh cells cover D exactly, i.e.,

D =
⋃

K∈Th

K. (8.4)

86 Chapter 8. Meshes

The subscript h refers to a level of refinement. It is common in the literature
to set h := maxK∈Th

hK with hK := diam(K) := maxx1,x2∈K ‖x1 − x2‖ℓ2,
where ‖·‖ℓ2 is the Euclidean norm in Rd, and to call h the meshsize.

K̂

TK

TK′

TK′′

Fig. 8.3 Reference cell K̂ (left), mesh (right). The three arrows indicate the action of the
geometric mapping for the three mesh cells K,K ′,K ′′.

The mesh cells have often a simple shape. For simplicity, we assume in
this book that all the mesh cells have been generated from a fixed reference
polyhedron K̂ ∈ Rd (see §8.1) so that there is a smooth diffeomorphism

TK : K̂ → K for all K ∈ Th. Figure 8.3 presents an illustration using P1

geometric mappings to generate triangular cells. More generally, it is possible
to consider a finite set of reference polyhedra to generate the mesh cells. One
can for instance build meshes mixing triangles and quadrangles in dimension
two, etc.

Remark 8.5 (Approximation of D). It happens sometimes that gener-
ating meshes that partition D exactly is too complicated, or that it is only
possible to construct meshes of approximations of D. For instance, this situ-
ation arises when the boundary of D is curved; see §13.1 for examples. Unless
specified otherwise, meshes are assumed to partition D exactly. ⊓⊔

Definition 8.6 (Simplicial/affine mesh). The mesh Th is said to be sim-

plicial when the reference cell K̂ is a simplex, and the mesh Th is said to be
affine when all the geometric mappings {TK}K∈Th

are affine.

In this book, we often consider simplicial affine meshes, and we speak of
triangulations when d = 2. An example is shown in Figure 8.4.

Fig. 8.4 Part of a triangulation around a
two-dimensional NACA0012 airfoil profile.

Part III. Finite element interpolation 87

Definition 8.7 (Faces, edges, and vertices of a cell). Let K ∈ Th be a
cell. Assuming d = 3, the faces, edges, and vertices of K are defined to be
the images by TK of the faces, edges, and vertices of the reference polyhedron
K̂, and these geometric entities are collected in the sets FK , EK , and VK ,
respectively. The same definition is valid in dimension d = 2 with the excep-
tion that the notions of edge and face coincide. The same definition is valid
in dimension d = 1, with the exception that the notions of vertex, edge, and
face coincide. We assume in the entire book that we have either F ⊂ ∂D or
int(F) ⊂ D for all K ∈ Th and all F ∈ FK .

Remark 8.8 (Geometric nodes). The notion of geometric nodes intro-
duced in §8.1 and the notion of vertices are different. In general, the vertices
of a cell form a subset of its geometric nodes. These two sets coincide if the
geometric element is a P1,d or Q1,d Lagrange element. ⊓⊔

Definition 8.9 (Mesh faces, edges, and vertices). Let Th be a mesh.
Assume d = 3. We say that a closed two-dimensional manifold F ⊂ D is a
mesh face if there is a mesh cell K ∈ Th s.t. F is a face of K, i.e., F ∈ FK.
Similarly, a closed one-dimensional manifold E ⊂ D is a mesh edge if there
is a mesh cell K ∈ Th s.t. E ∈ EK , and a point z ∈ D is a mesh vertex if
there is a mesh cell K ∈ Th s.t. z ∈ VK .

Another important notion is that of interfaces and boundary faces.

Definition 8.10 (Interfaces, boundary faces). A subset F ⊂ D is an
interface if F has positive (d−1)-dimensional measure and there are two dis-
tinct mesh cells Kl,Kr ∈ Th such that F := ∂Kl∩∂Kr and F is a subset of a
face of Kl and of a face of Kr. A subset F ⊂ D is a boundary face if F has
positive (d−1)-dimensional measure and if there is a mesh cell Kl ∈ Th such
that F := ∂Kl ∩ ∂D and F is a face of Kl. All the interfaces are collected in
the set F◦

h, all the boundary faces are collected in the set F∂
h , and we define

Fh := F◦
h ∪ F∂

h . (8.5)

The subscripts {l, r} in the definition F := ∂Kl ∩∂Kr refer to the left cell
and to the right cell. The notion of left and right cell will be unambiguously
defined later by orienting all the interfaces. Distinguishing the left from the
right cell will be important when defining jumps across interfaces (see Defi-
nition 18.2). In addition, we also have F = Kl ∩Kr since the mesh cells have
mutually disjoint interiors by assumption. Furthermore, we observe that a
boundary face is always a mesh face, but an interface is not necessarily a
mesh face since the notion of interface depends on the way adjacent mesh
cells come into contact. An illustration is presented in Figure 8.5. For the
mesh shown in the left panel, we have Fh =

⋃
K∈Th

FK . For that shown in
the central panel, we have Fh ⊂ ⋃

K∈Th
FK but

⋃
K∈Th

FK 6⊂ Fh. For that
shown in the right panel, we have Fh 6⊂ ⋃K∈Th

FK and
⋃

K∈Th
FK 6⊂ Fh.

88 Chapter 8. Meshes

Fig. 8.5 Three examples of a triangulation of a square. Left panel: the mesh is composed
of 2 cells and there is one interface. Central panel: the mesh is composed of 3 cells and there
are 3 interfaces. Right panel: the mesh is composed of 5 cells and there are 7 interfaces.
The three meshes contain 4 boundary faces.

The meshes shown in Figure 8.3, in Figure 8.4, and in the left panel of
Figure 8.5 fall into the important class of matching meshes. Matching meshes
play a central role in this book since they facilitate the construction of discrete
spaces composed of piecewise smooth functions having an integrable gradient,
curl or divergence (see Chapter 19 and onwards).

Definition 8.11 (Matching mesh). A mesh Th is said to be matching if
for all cells K,K ′ ∈ Th s.t. K ∩K ′ is a manifold of dimension (d− 1), then
K ∩K ′ is an entire face of K and an entire face of K ′.

Proposition 8.12 (Mesh faces). Let Th be a matching mesh. Then,

Fh =
⋃

K∈Th

FK . (8.6)

Proof. Let F ∈ Fh. If F ∈ F∂
h , we infer from Definition 8.10 that F ∈ FKl

,
whence F ∈ ⋃K∈Th

FK . If F ∈ F◦
h , we have F := ∂Kl ∩∂Kr = Kl ∩Kr, and

we infer from Definition 8.11 that F ∈ FKl
∩ FKr

, whence F ∈ ⋃K∈Th
FK .

We have thus shown that Fh ⊂ ⋃
K∈Th

FK . Conversely, let K ∈ Th and

F ∈ FK . If F ⊂ ∂D, we infer that F ∈ F∂
h . Otherwise, our assumption on

the faces of a mesh cell in Definition 8.7 implies that int(F) ⊂ D, and since
the mesh cells form a partition of D, we infer that there is a mesh cellK ′ 6= K
s.t. K ∩ K ′ ⊂ F and K ∩K ′ is a manifold of dimension (d − 1). Since the
mesh is matching, K∩K ′ is a full face of both K and K ′ so that F = K∩K ′,
which proves that F ∈ F◦

h . We have thus shown that
⋃

K∈Th
FK ⊂ Fh, and

this completes the proof. ⊓⊔
One can verify that Definition 8.11 implies that if K∩K ′ 6= ∅ andK 6= K ′,

then the setK∩K ′ is a face, an edge (if d = 3), or a vertex that is common to
K and K ′. For matching meshes we denote the collection of the mesh edges
(if d = 3) and the collection of the mesh vertices as follows:

Eh :=
⋃

K∈Th

EK , Vh :=
⋃

K∈Th

VK . (8.7)

Remark 8.13 (Euler relations). Let Th be a matching mesh of a poly-
hedron D in Rd. If d = 2, let I be the degree of multiple-connectedness of

Part III. Finite element interpolation 89

D (i.e., the number of holes in D). Let Nc, Ne, Nv, N
∂
e , N

∂
v be the num-

ber of mesh cells, edges, vertices, boundary edges, and boundary vertices,
respectively. Then we have

Nc −Ne +Nv = 1− I, N∂
v −N∂

e = 0. (8.8)

If d = 3, let additionally J be the number of connected components of the
boundary of D, and let Nf, N

∂
f be the number of mesh faces and boundary

faces, respectively. Then we have

Nc −Nf +Ne −Nv = −1 + I − J, N∂
f −N∂

e +N∂
v = 2(J − I). ⊓⊔

8.3 Data structure

A mesh is a data structure produced by a mesh generator. This data structure
consists of a cloud of points, called geometric nodes, that are numbered and
connected. There are many ways to construct this data structure. Let us give
an example. We start by enumerating the geometric nodes {g1, . . . , gNgeo}
where Ngeo is the number of geometric nodes. This enumeration is said to
be global. The geometric nodes are defined by their coordinates in Rd. These
quantities are stored in a two-dimensional array of size d×Ngeo, which we
denote by

coord(1:d, 1:Ngeo), (8.9)

and we say that coord is the coordinate array of the mesh. For all k ∈ {1:d}
and all n ∈ {1:Ngeo}, coord(k, n) is the k-th coordinate of gn.

The geometric nodes are organized into mesh cells by means of a connec-
tivity array, in such a way that every mesh cell is assigned ngeo geometric
nodes. Let us enumerate the mesh cells as {K1, . . . ,KNc} where Nc is the
number of mesh cells. The geometric nodes associated with any mesh cell
can be recovered from a two-dimensional array of size Nc×ngeo, which we
denote by

j geo(1:Nc, 1:ngeo). (8.10)

For all m ∈ {1:Nc} and all n ∈ Ngeo (recall that Ngeo := {1:ngeo}), the
integer j geo(m,n) is the global index of the n-th node in the m-th cell.
The second index in the array j geo provides the local enumeration of the
geometric nodes for each mesh cell. Using the connectivity array and the
coordinate array, it is possible to rewrite the geometric mapping TK from
Definition 8.1 as follows:

(TKm
(x̂))i =

∑

n∈Ngeo

ψ̂n(x̂) coord(i, j geo(m,n)), (8.11)

for all x̂ ∈ K̂, all m ∈ {1:Nc}, and all i ∈ {1:d}.

90 Chapter 8. Meshes

Example 8.14 (Enumeration in a simplex). Figure 8.6 shows an exam-
ple of local and global enumerations. Here, the geometric reference element
is the two-dimensional P1 Lagrange element, i.e., ngeo = 3. We consider three
mesh cells with global indices 56, 213, and 315. The values of the connec-
tivity array are j geo(315, 1) = 13, j geo(315, 2) = 37, j geo(315, 3) = 250,
j geo(56, 1) = 13, j geo(56, 2) = 37, j geo(56, 3) = 53, etc. We have adopted
the convention that for anym, the value of j geo(m,n) increases with n. This
choice will be instrumental in Chapter 10 when orienting the mesh. Note that
the sign of det(JK) is different in the cells 315 and 56. ⊓⊔

213

56

315

250
37

77

53

13

❢3 ❢2

❢1
❢1

❢2

❢3

❢3

❢2

❢1

Global index of geometric node

Local index of geometric node

Global index of mesh cell

250
❢3

56

Fig. 8.6 Example of local and global enumerations of geometric nodes for three triangular
mesh cells.

In many situations, it is useful to have two-dimensional arrays providing
the global indices of the faces, edges, and vertices of any mesh cell. The reason
is that finite element matrices are assembled by means of a loop over the mesh
cells (see §29.2.3), and that these arrays are instrumental to identify degrees
of freedom attached to the mesh faces, edges, and vertices. Let us focus on
matching meshes and let us enumerate the mesh faces, edges, and vertices in
Fh, Eh, and Vh from 1 to Nf, Ne, and Nv, respectively, i.e.,

Fh = {Fj}j∈{1:Nf}, Eh = {Ej}j∈{1:Ne}, Vh = {zj}j∈{1:Nv}.

Let ncf , nce, and ncv be, respectively, the number of faces, edges, and vertices
of a mesh cell. For instance, ncf = 4, nce = 6, and ncv = 4 for a tetrahedron.
We introduce the following two-dimensional arrays:

j cf(1:Nc, 1:ncf), j ce(1:Nc, 1:nce), j cv(1:Nc, 1:ncv). (8.12)

For all m ∈ {1:Nc} and all n ∈ {1:ncf}, the integer j cf(m,n) is the global
index of the n-th face in the m-th cell, and similarly for j ce and j cv. In
other words, we have

TKm
(F̂n) = Fj cf(m,n), TKm

(Ên) = Ej ce(m,n), TKm
(ẑn) = zj cv(m,n).

Part III. Finite element interpolation 91

Notice that the arrays j cv and j geo are different in general, just like the
vertices and the geometric nodes may be different objects.

Remark 8.15 (Alternative data structure). Another choice is to con-
sider the two-dimensional arrays j cf(1:Nc, 1:ncf) (as above) together with
the two-dimensional arrays j fe(1:Nf, 1:nfe) (providing the global indices of
the edges of a given mesh face, where nfe is the number of edges of a face, as-
suming that this number is face-independent), and j ev(1:Ne, 1:2) (providing
the global indices of the two vertices of a mesh edge). The information stored
in the array j ce (resp., j cv) can then be recovered from the arrays j cf and
j fe (resp., j cf, j fe, and j ev). The reader must be aware that all these
compositions involve memory accesses that may be time consuming. ⊓⊔

8.4 Mesh generation

Mesh generation is a basic ingredient of finite element methods. Generating a
mesh is often a time-consuming task, especially for complex three-dimensional
configurations. Mesh generators involve two types of tasks: (1) representing
geometrically the boundary of the domain by using suitable mappings pa-
rameterizing paths or surfaces; (2) meshing the lines, surfaces, and volumes
that have been identified in the first task. This section briefly describes how
to organize the above two tasks. The material is meant to provide some basic
understanding of the process.

8.4.1 Two-dimensional case

Let us consider a two-dimensional domain D and let us think about how D
can be geometrically represented.

1. D is entirely defined by its one-dimensional boundary, ∂D.
2. The boundary ∂D can be decomposed into its connected components.
3. Each connected component can be partitioned into a union of paths.
4. Each path can be assigned two extremities (possibly by cutting the paths

that are closed). These points are referred to as the vertices of ∂D.
5. Each path can be mapped to the interval [0, 1].

As an illustration, consider the domain shown in Figure 8.7. Its boundary
is composed of two connected components. The external component is the
union of the three paths PQ, QR, and RP . The internal boundary is trans-
formed into a path that is homeomorphic to a segment by cutting it at S. In
conclusion, the boundary of D is decomposed into the union of four paths:
∂D1 := PQ, ∂D2 := QR, ∂D3 := RP , and ∂D4 := SS.

A general algorithm for a two-dimensional mesh generator is obtained by
reading in reverse order the above list:

92 Chapter 8. Meshes

Fig. 8.7 Meshing a two-dimensional
domain.

P

P
P

Q
QQ

R
R
R

S

1. Locate the vertices of ∂D and partition ∂D =
⋃

n∈{1:N∂
p } ∂Dn so that

each elementary path ∂Dn is limited by two vertices (possibly identical).
Here, N∂

p denotes the total number of elementary paths.

2. Connect the two vertices of ∂Dn for all n ∈ {1:N∂
p } by a parameterized

path γn : [0, 1] → ∂Dn.
3. Letting

⋃
i∈{1: In}[xn,i−1, xn,i] be a partition of [0, 1] into In small seg-

ments, the boundary mesh on ∂D is
⋃

n∈{1:N∂
p }
⋃

i∈{1:In} γn([xn,i−1, xn,i]).

4. Finally, mesh the interior of D by extending the boundary mesh. This
last step usually involves an advancing front method where mesh vertices
are progressively inserted inside the domain and connected to the other
vertices to form new triangles (see Figure 8.8); see, e.g., Rebay [166] and
the references therein.

Fig. 8.8 Triangulation of a circle by an advancing front method. Various stages of the
mesh generation process are illustrated.

8.4.2 Three-dimensional case

The above algorithm extends to dimension three. As in dimension two, the
algorithm is deduced from the geometric description of three-dimensional
domains. Let D be a three-dimensional domain.

1. D is entirely defined by its two-dimensional boundary, ∂D.
2. The boundary ∂D can be decomposed into its connected components.
3. Each connected component can be decomposed into a union of orientable

surfaces with edges, say ∂D =
⋃

n∈{1:N∂
s } ∂Dn (N∂

s is the total number

Part III. Finite element interpolation 93

of these surfaces). For instance, a sphere can be decomposed into two
hemispheres. The orientation of the connected components of ∂D says
on which side of ∂D the interior of D is.

4. Each orientable surface ∂Dn can be mapped to a two-dimensional domain
∂D2D

n ⊂ R2 by a mapping γn : ∂D2D
n → ∂Dn.

5. Each two-dimensional domain ∂D2D
n for all n ∈ {1:N∂

s } can be described
by means of the algorithm from §8.4.1.

An illustration is presented in Figure 8.9. The domain is a cone. Since the
boundary of the cone is connected but has no edges, it is decomposed into two
simpler surfaces by separating the base and the lateral surface. The base is
homeomorphic to a disk, ∂D2D

1 . The lateral surface is further transformed by
cutting it along the segment PQ. The surface thus created is homeomorphic
to a triangle, ∂D2D

2 . When meshing the two sides of the triangle associated
with the segment PQ, one must make sure that the two one-dimensional
meshes coincide.

P P
P

P

P P
P
P

P

P

Q

Q
QQ

Fig. 8.9 Geometric representation of a three-dimensional domain.

An algorithm to mesh a three-dimensional domain is obtained by reading
the above list from bottom to top:

1. Construct a mesh T 2D
h,n of each two-dimensional domain ∂D2D

n for all

n ∈ {1:N∂
s } by applying the algorithm from §8.4.1.

2. A mesh for ∂Dn is defined to be T ∂
h,n := γn(T 2D

h,n) for all n ∈ {1:N∂
s }.

3. The union
⋃

n∈{1:N∂
s } T ∂

h,n is the boundary mesh.
4. Finally, mesh the interior of D by extending the boundary mesh.

Remark 8.16 (Extruded meshes). Some applications use either cylin-
ders or domains that are homeomorphic to cylinders. A possible strategy to
mesh the interior of domains of this type consists of meshing first its right
section, which can have any two-dimensional shape, then extruding the mesh
of the right section along the generatrix. Depending on the elements chosen
to mesh the right section, the volume mesh is typically composed of prisms
of triangular or quadrangular base. These prisms can be further decomposed
into tetrahedra if needed. ⊓⊔

94 Chapter 8. Meshes

Exercises

Exercise 8.1 (Curved triangle). Consider the P2 transformation of a tri-
angle shown in the upper right panel of Figure 8.1. Consider a geometric
node of K that is the image of the midpoint of an edge of K̂. Show that the
tangent vector to the curved boundary at this node is collinear to the vector
formed by the two vertices of the corresponding curved edge. (Hint : use the
properties of the Lagrange P2 shape functions.)

Exercise 8.2 (Euler relations). Let Th be a matching mesh in R2 com-
posed of polygons all having ν vertices. (i) Show that 2Ne −N∂

e = νNc. (ii)
Combine this result with the Euler relations to show that Nc ∼ 2

ν−2Nv and

Ne ∼ ν
ν−2Nv for fine enough meshes where N∂

v = N∂
e ≪ min(Nv, Ne, Nc).

Exercise 8.3 (Connectivity arrays j cv, j ce). Write admissible connec-
tivity arrays j cv and j ce for the following mesh where the face enumeration
is identified with large circles and the cell enumeration with squares.

5 3

2

41

K̂

463

21

1

2

5

8

3

3

8

2 1 1

3

10 4

9

5

7

2
6

11

Exercise 8.4 (Connectivity array j geo). Define a connectivity array
j geo for the following mesh such that the determinant of the Jacobian ma-
trix of TK is positive for all the cells.

1

5

2

4

3
K̂

10

11

18

3

21

5 4

6

67
4

9

3

16

8
17

5

14

1

2

12

15

13

Exercise 8.5 (Geometric mapping). Let z1 := (0, 0), z2 := (1, 0),
z3 := (0, 1), z4 := (13 ,

1
3). Consider the triangles K1 := conv(z1, z2, z4),

K2 := conv(z2, z3, z4), and K3 := conv(z3, z1, z4). (i) Construct the affine
geometric mappings TK2 : K1 → K2 and TK3 : K1 → K3 s.t. TK2(z1) = z2,
TK2(z4) = z4, and TK3(z1) = z3, TK3(z4) = z4. (Hint : TK2 is of the form
TK2(x) = z2 + JK2(x − z1).) (ii) Compute det(JK2)J

−1
K2

and det(JK3)J
−1
K3

.

Note: the transformation v 7→ det(JK)J−1
K v ◦ TK is called contravariant Pi-

ola transformation; see (9.9c).

