
Part III, Chapter 9

Finite element generation

In the previous chapter, we have seen how to generate a mesh from a reference
cell and a collection of geometric mappings. We now show how to generate
a finite element in each mesh cell from a reference finite element. To this
purpose, we need one new concept in addition to the geometric mapping: a
functional transformation that maps functions defined on the current mesh
cell to functions defined on the reference cell. Key examples of such transfor-
mations are the Piola transformations. These transformations arise naturally
in the chain rule when one investigates how the standard differential opera-
tors (gradient, curl, divergence) are transformed by the geometric mapping.
The construction presented in this chapter provides the cornerstone for the
analysis of the finite element interpolation error to be performed in Chap-
ter 11. Recall that ‖·‖ℓ2 is the Euclidean norm in Rd and a·b denotes the
corresponding inner product.

9.1 Main ideas

Let Th be a mesh generated as described in Chapter 8. This means that
we have at hand a reference cell K̂ (recall that K̂ is a polyhedron) and a

geometric mapping TK : K̂ → K for every mesh cell K ∈ Th. Given an
integer q ≥ 1, our goal is now to define a finite element in K composed of
Rq-valued functions defined on K. To this purpose, we assume that we have
at hand a fixed finite element (K̂, P̂ , Σ̂), where P̂ is composed of Rq-valued

functions defined on K̂, and Σ̂ is the collection of the degrees of freedom
(dofs) for these functions.

The triple (K̂, P̂ , Σ̂) should not be confused with the geometric finite ele-

ment (K̂, P̂geo, Σ̂geo) whose only use is to define K, whereas (K̂, P̂ , Σ̂) is used
to interpolate Rq-valued functions. The interpolation is said to be isopara-
metric whenever [P̂geo]

q = P̂ and subparametric whenever [P̂geo]
q ( P̂ . The

most common example of subparametric interpolation consists of using affine
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geometric mappings together with shape functions that are quadratic or of
higher polynomial order.

Definition 9.1 (Reference element). (K̂, P̂ , Σ̂) is called reference finite

element, and with obvious notation {σ̂i}i∈N and {θ̂i}i∈N are called reference
dofs and reference shape functions, respectively.

Recalling Definition 5.7, we also assume that we have at hand a Banach
space V (K̂) ⊂ L1(K̂;Rq) such that P̂ ⊂ V (K̂) and such that the linear

forms {σ̂i}i∈N can be extended to L(V (K̂);R) (we use the same symbol σ̂i
for simplicity). The interpolation operator IK̂ : V (K̂) → P̂ associated with

(K̂, P̂ , Σ̂) is defined as follows (see (5.7)):

IK̂(v̂)(x̂) :=
∑

i∈N
σ̂i(v̂)θ̂i(x̂), ∀x̂ ∈ K̂. (9.1)

The operator IK̂ is called reference interpolation operator.
Since our goal is to generate a finite element on K and to build an in-

terpolation operator IK acting on functions defined on K, we introduce a
counterpart of the space V (K̂) for those functions, say V (K). The new in-
gredient we need for the construction is a transformation

ψK : V (K) → V (K̂), (9.2)

which we assume to be a bounded linear isomorphism. A simple definition of
ψK is the pullback by the geometric mapping, i.e.,

ψK(v) := v ◦ TK , ∀v ∈ V (K). (9.3)

We will see that this definition is well-suited to nodal and modal finite el-
ements. However we will also see that this definition is not adequate when
considering vector-valued functions for which the tangential or the normal
component at the boundary of K plays specific roles. This is the reason why
we use a general notation for the functional transformation ψK .

Proposition 9.2 (Finite element generation). Let (K̂, P̂ , Σ̂) be the ref-

erence element with extended dofs {σ̂i}i∈N ⊂ L(V (K̂);R). Let K ∈ Th be a
mesh cell. Assume that we have at hand a Banach space V (K) and a bounded

linear isomorphism ψK ∈ L(V (K);V (K̂)). Then the triple (K,PK , ΣK) s.t.

PK := ψ−1
K (P̂ ) = {p := ψ−1

K (p̂) | p̂ ∈ P̂}, (9.4a)

ΣK := Σ̂ ◦ ψK = {σK,i := σ̂i|P̂ ◦ ψK}i∈N ⊂ L(PK ;R), (9.4b)

is a finite element. The dofs in ΣK can be extended to L(V (K);R) by setting
σK,i := σ̂i ◦ ψK for all i ∈ N .
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Proof. We apply Remark 5.3 to prove that (K,PK , ΣK) is a finite element.

Since ψK is bijective, we have dim(P ) = dim(P̂ ) = nsh. Let p ∈ PK be
s.t. σK,i(p) = 0 for all i ∈ N . Then σ̂i(ψK(p)) = 0 for all i ∈ N , so that

ψK(p) = 0 by the unisolvence property of (K̂, P̂ , Σ̂). This implies that p = 0
since ψK is an isomorphism. Finally, since (σ̂i ◦ψK)|P = σ̂i|P̂ ◦ψK , the linear

map σ̂i ◦ ψK : V (K) → R is an extension of σK,i : PK → R to V (K) (we
use the same notation for simplicity), and we have σK,i ∈ L(V (K);R) since
|σK,i(v)| ≤ ‖σ̂i‖L(V (K̂);R)‖ψK‖L(V (K);V (K̂))‖v‖V (K) for all v ∈ V (K). ⊓⊔

The linear forms {σK,i}i∈N are called local dofs. The following functions,
called local shape functions :

θK,i := ψ−1
K (θ̂i), ∀i ∈ N , (9.5)

satisfy σK,i(θK,j) = σ̂i(ψK(θK,j)) = σ̂i(θ̂j) = δij for all i, j ∈ N . The local
interpolation operator IK : V (K) → PK acts as follows:

IK(v)(x) :=
∑

i∈N
σK,i(v)θK,i(x), ∀x ∈ K. (9.6)

The following result plays a key role in the analysis of the interpolation error.

Proposition 9.3 (Commuting diagram). We have IK = ψ−1
K ◦ IK̂ ◦ ψK ,

i.e., the following diagram commutes:

V (K)
ψK

✲ V (K̂)

PK

IK
❄ ψK

✲ P̂

IK̂
❄

i.e., PK is pointwise invariant under IK , that is, IK(p) = p for all p ∈ PK .

Proof. Let v in V (K). The definition (9.4) of (K,PK , ΣK) implies that

IK̂(ψK(v)) =
∑

i∈N
σ̂i(ψK(v)) θ̂i =

∑

i∈N
σK,i(v)ψK(θK,i) = ψK(IK(v)),

owing to the linearity of ψK . Hence, the above diagram commutes. Let now
p ∈ PK . We have IK(p) = ψ−1

K (IK̂(ψK(p))) = ψ−1
K (ψK(p)) since ψK(p) ∈ P̂

and P̂ is pointwise invariant under IK̂ . Hence, IK(p) = p. ⊓⊔

Example 9.4 (Lagrange elements). Let (K̂, P̂ , Σ̂) be a Lagrange fi-

nite element with nodes {âi}i∈N and V (K̂) := C0(K̂); see §5.4.1. Set

V (K) := C0(K). The map ψK : V (K) → V (K̂) defined in (9.3) is an iso-

morphism in L(V (K);V (K̂)). The finite element (K,PK , ΣK) constructed in
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Proposition 9.2 using ψK is also a Lagrange finite element. Indeed, we have
σK,i(p) := σ̂i(ψK(p)) := ψK(p)(âi) = (p ◦ TK)(âi) for all p ∈ PK . Setting

aK,i := TK(âi), ∀i ∈ N ,

we infer that {aK,i}i∈N are the Lagrange nodes of (K,PK , ΣK). The La-
grange interpolation operator IL

K acts as follows:

IL
K(v)(x) :=

∑

i∈N
v(aK,i)θK,i(x), ∀x ∈ K. (9.7)

Note that even if P̂ is a polynomial space, PK := {p̂ ◦ T−1
K , p̂ ∈ P̂} is not

necessarily a polynomial space unless TK is affine. ⊓⊔

Example 9.5 (Modal elements). Let (K̂, P̂ , Σ̂) be a modal finite element

with dofs σ̂i(p̂) :=
1

|K̂|
∫
K̂
ζ̂ip̂dx̂ for all p̂ ∈ P̂ and all i ∈ N , where {ζ̂i}i∈N is a

basis of P̂ , and let V (K̂) := L1(K̂); see §5.4.2. Set V (K) := L1(K). The map

ψK : V (K) → V (K̂) defined in (9.3) is an isomorphism in L(V (K);V (K̂)).
The finite element (K,PK , ΣK) constructed in Proposition 9.2 using ψK is
also a modal finite element. Indeed, we have for all p ∈ PK ,

σK,i(p) := σ̂i(ψK(p)) :=
1

|K̂|

∫

K̂

ζ̂i(x̂)(p ◦ TK)(x̂) dx̂

=
1

|K̂|

∫

K̂

1

αK
(ζK,i ◦ TK)(p ◦ TK) dx̂ =

1

|K|

∫

K

ζK,ip dx,

with ζK,i := αK ζ̂i ◦ T−1
K , αK := |det(JK)|−1 |K|

|K̂| , and JK is the Jacobian

matrix of TK defined in (8.3) (αK = 1 if TK is affine). ⊓⊔

9.2 Differential calculus and geometry

In this section, we present basic identities from differential calculus and ge-
ometry showing how the usual differential operators (gradient, curl, and di-
vergence) and normal and tangent vectors are transformed by the geometric
mapping. We refer the reader to (4.6) for the definition of the divergence
operator and to (4.7) for the definition of the curl operator with d = 3 (the
material can be adapted to the case d = 2 by proceeding as in Remark 4.18).

9.2.1 Transformation of differential operators

Let K̂ be the reference polyhedron in Rd and let K ∈ Th be a mesh cell. Let
TK : K̂ → K be the geometric mapping and let JK be the Jacobian matrix of
TK (see (8.3)). Recall that we use boldface notation for Rd-valued functions
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and for functional spaces composed of Rd-valued functions. For instance, we
writeCl(K) := Cl(K;Rd) for all l ∈ N. The following result is of fundamental
importance.

Lemma 9.6 (Differential operators). Let v ∈ C1(K) and v ∈ C1(K).

The following holds true for all x̂ ∈ K̂:

∇(v ◦ TK)(x̂) = JK(x̂)T(∇v)(TK(x̂)), (9.8a)

∇×(JTK(v ◦ TK))(x̂) = det(JK(x̂))J−1
K (x̂)(∇×v)(TK(x̂)), (9.8b)

∇·(det(JK)J−1
K (v ◦ TK))(x̂) = det(JK(x̂))(∇·v)(TK(x̂)). (9.8c)

Proof. (1) Proof of (9.8a). Since the link between the Jacobian matrix of TK

and its Fréchet derivative (see Definition B.1) is that DTK(x̂)(h) = JK(x̂)h
for all h ∈ Rd, we can use Lemma B.4 (chain rule) with n := 1 to infer that

D(v ◦ TK)(x̂)(h) = Dv(TK(x̂))(DTK(x)(h)) = Dv(TK(x̂))(JK(x̂)h).

Using the gradient to represent the Fréchet derivative yields (9.8a) since

∇(v ◦ TK)(x̂)·h = D(v ◦ TK)(x̂)(h) = Dv(TK(x̂))(JK(x̂)h)

= (∇v)(TK(x̂))·(JK(x̂)h) = (JK(x̂)T(∇v)(TK(x̂)))·h.

(2) Proof of (9.8c). This identity is deduced from (9.8a) by integrating by

parts. Since TK is bijective, the ratio ǫK := det(JK)
|det(JK)| is constant over K̂ and is

either equal to −1 or 1. Moreover, the volume measure in K at x and in K̂ at
x̂ are s.t. dx = |det(JK(x̂))| dx̂. Let q ∈ C∞

0 (K) be a smooth scalar-valued
function compactly supported in K. Integrating by parts and using (9.8a),
we infer that

∫

K̂

(∇·v)(TK(x̂))q(TK(x̂)) det(JK(x̂)) dx̂ = ǫK

∫

K

(∇·v)(x)q(x) dx

= −ǫK
∫

K

(v·∇q)(x) dx = −ǫK
∫

K̂

(v·∇q)(TK(x̂)) |det(JK(x̂))| dx̂

= −
∫

K̂

((v ◦ TK)·(J−T

K ∇(q ◦ TK)))(x̂) det(JK(x̂)) dx̂

= −
∫

K̂

((det(JK)J−1
K (v ◦ TK))·∇(q ◦ TK))(x̂) dx̂

=

∫

K̂

∇·(det(JK)J−1
K (v ◦ TK))(x̂)q(TK(x̂)) dx̂,

which proves (9.8c) since q is arbitrary.
(3) Proof of (9.8b) in R3. Let ε be the Levi-Civita symbol (εijk := 0 if
at least two indices take the same value, ε123 = ε231 = ε312 := 1, and
ε132 = ε213 = ε321 := −1). Recall that det(JK) = εijk(JK)1i(JK)2j(JK)3k =
εijk(JK)i1(JK)j2(JK)k3 and (∇×v)i = εijk∂jvk, with the Einstein convention



100 Chapter 9. Finite element generation

on the summation of repeated indices. For all i ∈ {1:d}, we have

(JK∇×(JTK(v ◦ TK)))i = (JK)ijεjkl∂k(J
T

K(v ◦ TK))l

= (JK)ijεjkl∂k((J
T

K)lm(vm ◦ TK))

= (JK)ijεjkl (∂k(JK)ml(vm ◦ TK) + (JK)ml∂k(vm ◦ TK)) .

Let T1 and T2 be the two terms on the right-hand side of the above
equality. Since ∂k(JK)ml = ∂kl(TK)m = ∂lk(TK)m = ∂l(JK)mk, we infer
that T1 = (JK)ij

1
2 (εjkl + εjlk)∂k(JK)ml(vm ◦ TK) = 0. Moreover, since

εjkl(JK)ij(JK)nk(JK)ml = εinm det(JK), we infer that

T2 = (JK)ijεjkl(JK)ml((∂nvm) ◦ TK)(JK)nk

= εjkl(JK)ij(JK)nk(JK)ml((∂nvm) ◦ TK)

= εinm det(JK)((∂nvm) ◦ TK) = det(JK)((∇×v) ◦ TK)i. ⊓⊔

Remark 9.7 (Literature). See Marsden and Hughes [139, pp. 116-119],
Ciarlet [75, p. 39], Monk [145, §3.9], Rognes et al. [168, p. 4134]. ⊓⊔

Definition 9.8 (Piola transformations). Let v ∈ C0(K) and v ∈ C0(K).
The Piola transformations are defined as follows:

ψg
K(v) := v ◦ TK , (9.9a)

ψc
K(v) := JTK(v ◦ TK), (9.9b)

ψd
K(v) := det(JK)J−1

K (v ◦ TK), (9.9c)

ψb
K(v) := det(JK)(v ◦ TK). (9.9d)

ψg
K is called pullback by the geometric mapping, ψc

K is called covariant Piola
transformation, and ψd

K is called contravariant Piola transformation.

Corollary 9.9 (Commuting properties). The Piola transformations are
such that for all v ∈ C1(K) and all v ∈ C1(K),

∇(ψg
K(v)) = ψc

K(∇v), ∇×(ψc
K(v)) = ψd

K(∇×v), ∇·(ψd
K(v)) = ψb

K(∇·v).

Proof. Apply Lemma 9.6. ⊓⊔

The superscript g (resp., c, d) refers to the fact that the map ψg
K (resp.,

ψc
K , ψd

K) is used when integrability properties on the gradient (resp., curl,
divergence) are required. The superscript b for “broken” means that no in-
tegrability with respect to any differential operator is invoked.

9.2.2 Normal and tangent vectors

Another important property of the Piola transformations is that ψc
K (resp.,

ψd
K) preserves the moments of the tangential (resp., normal) components of
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fields at the edges (resp., the faces) of the mesh cell K. Let us first motivate
this claim by a simple example.

Example 9.10 (Piola transformation vs. pullback). Referring to Fig-

ure 9.1, let K̂ be the triangle with vertices (0, 0), (1, 0), and (0, 1). Let K

be the image of K̂ by the geometric mapping TK defined as the rotation of
center (0, 0) and of angle π

2 . Let F̂1 (resp., F̂2) be the edge of K̂ correspond-

ing to x2 = 0 (resp., x1 = 0), and let F1 and F2 be the images of F̂1 and F̂2

by TK , respectively. Consider the constant field v(x) := (1, 0)T. Note that
ψg
K(v) = v since v is invariant under the pullback by TK (applied componen-

twise). Hence, v is tangent to F2, whereas ψ
g
K(v) is normal to F̂2. Moreover,

v is normal to F1, whereas ψ
g
K(v) is tangent to F̂1. But ψ

c
K(v) = (0,−1)T is

tangent to F̂2, and ψ
d
K(v) = (0,−1)T is normal to F̂1. ⊓⊔

Fig. 9.1 Illustration of Example 9.10.

F1

K

F̂1F2

F̂2

K̂
v

Our first result identifies how the geometric mapping TK : K̂ → K trans-
forms normal and tangent vectors on ∂K̂.

Lemma 9.11 (Normal and tangent). (i) Let n̂K̂ be the outward unit

normal to ∂K̂ and let nK be the outward unit normal to ∂K. Let F̂ be a face
of K̂ and let F := TK(F̂ ) be the corresponding face of K. Let x̂ ∈ int(F̂ ) so
that n̂K̂|F̂ (x̂) is well defined, and let x := TK(x̂) ∈ int(F ). Then we have

nK|F (x) =
1

‖(J−T

K n̂K̂|F̂ )(x̂)‖ℓ2
(J−T

K n̂K̂|F̂ )(x̂). (9.10)

(ii) Let Ê be an edge of K̂ and let E := TK(Ê) be the corresponding edge

of K. Let x̂ ∈ int(Ê), let τ̂Ê be a unit tangent vector to Ê at x̂, and let
x := TK(x̂) ∈ E. Then the vector

τE(x) :=
1

‖(JK τ̂Ê)(x̂)‖ℓ2
(JK τ̂Ê)(x̂) (9.11)

is a unit tangent vector to E at x.

Proof. (1) Let ψ̂ be the signed distance function to F̂ , assumed to be negative

inside K̂. Then ∇ψ̂(x̂) = n̂K̂|F̂ (x̂). Defining ψ := ψ̂ ◦ T−1
K and using (9.8a),

we have ∇ψ(x) = J−T

K (x̂)∇ψ̂(x̂) = J−T

K (x̂)n̂K̂|F̂ (x̂). Since ψ is constant
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(equal to zero) over int(F ) and takes negative values inside K, the vector
∇ψ(x) is normal to F and points toward the inside of K. This proves (9.10).

(2) Consider an edge Ê := F̂1 ∩ F̂2 of K̂ and let x̂ ∈ Ê. Since

(J−T

K n̂K̂|F̂i
)(x̂)·(JK τ̂Ê(x̂)) = n̂K̂|F̂i

(x̂)·τ̂Ê(x̂) = 0,

we infer from Step (1) that JK τ̂Ê(x̂) is tangent to Fi := TK(F̂i) for all

i ∈ {1, 2}. Hence, (JK τ̂Ê)(x̂) is tangent to Fi ∩ Fj = E = TK(Ê). ⊓⊔

Our next step is to identify how surface and line measures are transformed
by the geometric mapping TK . Observe that the unit of JK is a length scale
and that the unit of det(JK) is a volume. The identity (9.12a) is sometimes
called Nanson’s formula in the continuum mechanics literature; see [149,
p. 184] and Truesdell and Toupin [192, p. 249, Eq. (20.8)].

Lemma 9.12 (Surface and line measures). The surface measures on F̂

at x̂ and on F := TK(F̂ ) at x := TK(x̂) are such that

ds = |det(JK)(x̂)| ‖(J−T

K n̂K̂|F̂ )(x̂)‖ℓ2 dŝ, (9.12a)

dŝ = |det(J−1
K )(x)| ‖(JTKnK|F )(x)‖ℓ2 ds. (9.12b)

The line measures on Ê at x̂ and on E := TK(Ê) at x := TK(x̂) are such
that

dl = ‖(JK τ̂E)(x̂)‖ℓ2 dl̂, dl̂ = ‖(J−1
K τE)(x)‖ℓ2 dl. (9.13)

Proof. Let q ∈ C∞
0 (F ) and let v ∈ C∞(K) be s.t. v·nK|F = q and

v·nK|∂K\F = 0 (this construction is possible since q is compactly sup-
ported in F and so vanishes near ∂F where nK is multivalued). Recall that

ψd
K(v) := det(JK)J−1

K (v ◦ TK) and that ǫK := det(JK)
|det(JK)| = ±1. Using (9.8c)

and (9.10), we infer that

∫

F

q(x) ds =

∫

∂K

(v·nK)(x) ds =

∫

K

(∇·v)(x) dx

= ǫK

∫

K̂

∇·ψd
K(v)(x̂) dx̂ = ǫK

∫

∂K̂

(ψd
K(v)·n̂K̂)(x̂) dŝ

=

∫

∂K̂

(J−1
K v)·(JTKnK)(TK(x̂))‖(J−T

K n̂K̂)(x̂)‖ℓ2 |det(JK)(x̂)| dŝ

=

∫

∂K̂

(v·nK)(TK(x̂))‖(J−T

K n̂K̂)(x̂)‖ℓ2 |det(JK)(x̂)| dŝ

=

∫

F̂

q(TK(x̂))‖(J−T

K n̂K̂|F̂ )(x̂)‖ℓ2 |det(JK)(x̂)| dŝ.

This yields (9.12a). To prove (9.12b), we use the following identity:

‖(JTKnK|F )(x)‖ℓ2 = ‖(J−T

K n̂K̂|F̂ )(x̂)‖−1
ℓ2 ,
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which follows from (9.10) and the fact that nK and n̂K̂ are unit vectors. We
refer the reader to Exercise 9.2 for the transformation of line measures. ⊓⊔

We can now state the main result of this section showing that the Piola
transformations ψc

K and ψd
K are tailored to preserve the moments of the

tangential components of fields over edges and the moments of the normal
components of fields over faces, respectively. Let F̂ be a face of K̂ and let Ê
be an edge of K̂. Let F := TK(F̂ ) and E := TK(Ê) be the corresponding

face and edge of K. Let n̂F̂ be a unit vector normal to F̂ and let τ̂Ê be a

unit vector tangent to Ê. Note that n̂F̂ can point either toward the inside

of K̂ or the outside of K̂, i.e., we only have n̂F̂ = ±n̂K̂|F̂ . Recall that

ǫK := det(JK)
|det(JK)| = ±1. Lemma 9.11 shows that the following unit vectors:

Φd
K(n̂F̂ )(x) := ǫK

1

‖(J−T

K n̂F̂ )(x̂)‖ℓ2
(J−T

K n̂F̂ )(x̂), (9.14a)

Φc
K(τ̂Ê)(x) :=

1

‖(JK τ̂Ê)(x̂)‖ℓ2
(JK τ̂Ê)(x̂), (9.14b)

are, respectively, normal to F and tangent to E at x := TK(x̂). The defini-
tions in (9.14) are motivated by the following result.

Lemma 9.13 (Preservation of moments of normal and tangential
components). Let v ∈ C0(K) and q ∈ C0(K). The following holds true:

∫

F

(v·Φd
K(n̂F̂ ))(x)q(x) ds =

∫

F̂

(ψd
K(v)·n̂F̂ )(x̂)ψ

g
K(q)(x̂) dŝ, (9.15a)

∫

E

(v·Φc
K(τ̂Ê))(x)q(x) dl =

∫

Ê

(ψc
K(v)·τ̂Ê)(x̂)ψ

g
K(q)(x̂) dl̂. (9.15b)

Proof. To prove (9.15a), we use the transformation of surface measures from
Lemma 9.12 followed by the definition (9.14a) of Φd

K(n̂F̂ ) and the definition
of the maps ψd

K and ψg
K (see (9.9)) to obtain

∫

F

(v·Φd
K(n̂F̂ ))(x)q(x) ds

=

∫

F̂

(v·Φd
K(n̂F̂ ))(TK(x̂))ψg

K(q)(x̂)|det(JK)(x̂)| ‖J−T

K n̂F̂ (x̂)‖ℓ2 dŝ

=

∫

F̂

((v ◦ TK)·(J−T

K n̂F̂ ))(x̂)ψ
g
K(q)(x̂) det(JK)(x̂) dŝ

=

∫

F̂

(ψd
K(v)·n̂F̂ )(x̂)ψ

g
K(q)(x̂) dŝ.

The proof of (9.15b) uses similar arguments and is left as an exercise. ⊓⊔
Remark 9.14 (Sign of det(JK)). The factor ǫK = ±1 in the defini-
tion (9.14a) is due to the fact that the contravariant Piola transformation



104 Chapter 9. Finite element generation

ψd
K may transform an outward-pointing field into an inward-pointing field.

The definition (9.14a) is such that the sign of ψd
K(nK)(x̂)·nF̂ (x̂) and the sign

of nK(x)·Φd
K(n̂F̂ )(x) are identical. Note that ǫK = 1 if det(JK) > 0. ⊓⊔

Exercises

Exercise 9.1 (Canonical hybrid element). Consider an affine geometric

mapping TK and the pullback by TK for ψK . Let (K̂, P̂ , Σ̂) be the canonical
hybrid element of §7.6. Verify that Proposition 9.2 generates the canonical
hybrid element in K. Write the dofs.

Exercise 9.2 (Line measure). (i) Prove Lemma 9.12 for line measures.

(Hint : the change in line measure is dl

dl̂
(x) = limh→0

‖TK(x̂+hτ̂ )−TK(x̂)‖ℓ2

‖hτ̂‖ℓ2
.)

(ii) Assume that d = 2. Show that |det(JK)|‖J−T

K n̂‖ℓ2(R2) = ‖JK τ̂‖ℓ2(R2) for
any pair of unit vectors (n̂, τ̂ ) that are orthogonal.

Exercise 9.3 (Surface measure). (i) Let TF := TK|F̂ : F̂ → F and x̂ ∈ F̂ .

Let JF (x̂) ∈ Rd×(d−1) be the Jacobian matrix representing the (Fréchet)
derivative DTF (x̂). Let gF (x̂) = (JF (x̂))TJF (x̂) ∈ R(d−1)×(d−1) be the sur-
face metric tensor at x̂. Prove that

√
det(gF (x̂)) = |det(JK)| ‖J−T

K n̂‖ℓ2 .
(Hint : use that ds =

√
det(gF (x̂)) dŝ.) (ii) Let K̂ := {(x̂1, x̂2, x̂3) ∈

R3 | 0 ≤ x̂1, x̂2, x̂3, x̂1 + x̂2 + x̂3 ≤ 1} be the unit simplex in R3. Let

TK(x̂) := (x̂1, x̂2, x̂
2
1+x̂

2
2−x̂3)T. Let F̂ be the face {x̂3 = 0} and F := TK(F̂ ).

Compute JF , JK , gF and verify the identity proved in Step (i).

Exercise 9.4 (Sobolev spaces). Prove that ψg
K is a bounded isomorphism

from H1(K) to H1(K̂), that ψc
K is a bounded isomorphism fromH(curl;K)

to H(curl; K̂), and that ψd
K is a bounded isomorphism from H(div;K) to

H(div; K̂).

Exercise 9.5 (Transformation of cross products). Let A be a 3×3 in-
vertible matrix. Prove that A−T(x×y) = det(A)−1(Ax×Ay) for any vectors
x,y ∈ R3.

Exercise 9.6 ((9.15b)). Prove (9.15b).


