
Part III, Chapter 10

Mesh orientation

Orienting the edges and the faces of a mesh is crucial when working with finite
elements whose degrees of freedom invoke normal or tangential components
of vector fields. This notion is important also when working with high-order
scalar-valued finite elements to enumerate consistently all the degrees of free-
dom in each mesh cell sharing the edge or the face in question. In this chapter,
we focus on matching meshes (see Definition 8.11), and we assume that the
meshes are affine. We first explain how to orient meshes. Then we introduce
the important notion of generation-compatible orientation. Finally, we study
whether simplicial, quadrangular, and hexahedral meshes can be equipped
with a generation-compatible orientation.

10.1 How to orient a mesh

Let us consider a three-dimensional matching mesh. The geometric entities
to be oriented are the mesh edges E ∈ Eh and the mesh faces F ∈ Fh (one
can also orient the vertices and the cells of the mesh, but for simplicity, we
will not introduce these notions here). The edges of the mesh are oriented by
specifying how to circulate along them. This is done by fixing one unit vector
tangent to each edge. The faces of the mesh are oriented by specifying how
to cross them. This is done by fixing one unit normal vector on each face.
Orienting the mesh thus means that we fix once and for all the following
collections of unit vectors:

{τE}E∈Eh
, {nF }F∈Fh

. (10.1)

Since the mesh is affine, the mesh edges are straight and the mesh faces are
planar. Hence, one single tangent vector is enough to orient each edge and
one normal vector is enough to orient each face.

Let us now consider a two-dimensional mesh. Then the mesh edges and
the mesh faces are identical one-dimensional manifolds in R2, but they are
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oriented differently. The orientation of the mesh edges is done as in the three-
dimensional case by fixing once and for all a unit tangent vector along the
edge, whereas the mesh faces are oriented by rotating the unit tangent vectors
anti-clockwise, i.e., for every edge E oriented by the vector τE , we set

nE := Rπ
2
(τE), (10.2)

where the matrix of Rπ
2
relative to the canonical basis of R2 is

(
0 −1
1 0

)
.

It is useful to define the following subsets: For every mesh edge E ∈ Eh
and for every mesh face F ∈ Fh,

TE := {K ∈ Th | E ⊂ K}, TF := {K ∈ Th | F ⊂ K}, (10.3)

are the collection of the mesh cells sharing E and F , respectively. The car-
dinality of the subset TE cannot be ascertained a priori, whereas we have
TF = {Kl,Kr} for every interface F := ∂Kl ∩ ∂Kr ∈ F◦

h and TF = {Kl} for
every boundary face F := ∂Kl ∩ ∂D ∈ F∂

h ; see Definition 8.10.

Remark 10.1 (Face orientation in 3D). The faces of cells in three-
dimensional meshes have connected boundaries. Hence, instead of assigning a
normal vector to each face, one can also orient the faces by specifying how to
circulate along their boundary. The two ways of orienting faces are equivalent
once an orientation for the ambient space R3 has been fixed (by using the
right-hand convention for example). The boundary-based orientation is more
intrinsic since it does not require to embed the faces into R3. In this book,
we adopt the normal-based orientation introduced in (10.1) since it is more
convenient to use with finite elements. ⊓⊔

Remark 10.2 (Incidence matrices). Consider a three-dimensional mesh
where the vertices, edges, faces, and cells have been enumerated from 1 to
Nv, Ne, Nf, and Nc, respectively. Assume that the mesh has been oriented.
Incidence matrices can then be defined as follows. The matrixMev ∈ RNe×Nv

is s.t. Mev
ml := 1 if zl is a vertex of Em and τEm

points toward zl, Mev
ml := −1

if τEm
points in the opposite direction, and Mev

ml := 0 if zl is not a vertex
of Em. The matrix Mfe ∈ RNf×Ne is s.t. Mfe

ml := 1 if El is an edge of Fm

and the orientation of El prescribed by τEl
and that induced by nFm

on
El ⊂ ∂Fm using the right-hand convention are the same, Mfe

ml := −1 if
these orientation are opposite, and Mfe

ml := 0 if El is not an edge of Fm.
The matrix Mcf ∈ RNc×Nf is s.t. Mcf

ml := 1 if Fl is a face of Km and nF

points toward the outside of Km, Mcf
ml := −1 if nF points toward the inside,

and Mcf
ml := 0 if Fl is not a face of Km. The incidence matrices Mev, Mfe,

and Mcf can be viewed as discrete counterparts of the gradient, curl, and
divergence operators, respectively. In particular, we have MfeMev = 0RNf×Nv

and McfMfe = 0RNc×Ne . We refer the reader to Bossavit [37], Bochev and
Hyman [27], Bonelle and Ern [32], Gerritsma [106] and the references therein
for further insight into this topic. ⊓⊔
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10.2 Generation-compatible orientation

Let Th be an oriented mesh and let K ∈ Th be a mesh cell. Recall that the
cell K is generated using a geometric mapping TK : K̂ → K. One of the key
results from the previous chapter, Lemma 9.13, deals with the preservation
of the moments of the normal and tangential components of fields defined on
K. Let F̂ be a face of K̂ and let Ê be an edge of K̂. Let F := TK(F̂ ) and

E := TK(Ê) be the corresponding face and edge ofK. Let n̂F̂ be a unit vector

normal to F̂ and let τ̂Ê be a unit vector tangent to Ê. Recall from (9.14)

that Φd
K(n̂F̂ )(x) := ǫK‖(J−T

K n̂F̂ )(x̂)‖−1
ℓ2 (J−T

K n̂F̂ )(x̂) is a unit vector normal

to F and that Φc
K(τ̂Ê)(x) := ‖(JK τ̂Ê)(x̂)‖−1

ℓ2 (JK τ̂Ê)(x̂) is a unit vector

tangent to E, where JK is the Jacobian matrix of TK , ǫK := det(JK)
|det(JK)| = ±1,

and x := TK(x̂). With the Piola transformations ψg
K , ψc

K , and ψd
K defined

in Definition 9.8, Lemma 9.13 states that the following holds true for all
v ∈ C0(K) and all q ∈ C0(K):

∫

F

(v·Φd
K(n̂F̂ ))(x)q(x) ds =

∫

F̂

(ψd
K(v)·n̂F̂ )(x̂)ψ

g
K(q)(x̂) dŝ, (10.4a)

∫

E

(v·Φc
K(τ̂Ê))(x)q(x) dl =

∫

Ê

(ψc
K(v)·τ̂Ê)(x̂)ψ

g
K(q)(x̂) dl̂. (10.4b)

Since we are going to define face and edge dofs for vector-valued finite
elements by using the right-hand sides in (10.4), we want to make sure that

the results do not depend on the mapping TK : K̂ → K. For instance, let
F ∈ Fh be an interface, i.e., F := ∂Kl ∩ ∂Kr so that TF = {Kl,Kr}. The
way to ascertain that the right-hand side of (10.4a) gives the same results on
both sides of F consists of requiring that

nF = Φd
K(n̂F̂ ), ∀K ∈ TF , with F̂ := T−1

K (F ), (10.5)

that is, letting F̂l := T−1
Kl

(F ) and F̂r := T−1
Kr

(F ), we would like that nF =

Φd
Kl

(n̂F̂l
) = Φd

Kr
(n̂F̂r

). This idea is illustrated in Figure 10.1.

n̂F̂r

n̂F̂l

Kl

F

Kr

K̂

TKl

TKr

Φd
Kr
(n̂F̂r

)

Φd
Kl
(n̂F̂l

)

Fig. 10.1 Orientation transfer for face normals.
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Similarly, given a mesh edge E ∈ Eh oriented by the fixed unit tangent
vector τE , we want to ascertain that for every mesh cell K of which E is
an edge, i.e., for all K ∈ TE (see (10.3)), we have τE = Φc

K(τ̂Ê) where

Ê := T−1
K (E). This leads to the following important notion.

Definition 10.3 (Generation-compatible orientation). Let Th be an
oriented mesh specified by the collections of unit tangent vectors {τE}E∈Eh

and unit normal vectors {nF }F∈Fh
as in (10.1). We say that this orienta-

tion is generation-compatible if there is an orientation of the reference cell K̂
specified by the unit tangent vectors {τ̂Ê}Ê∈E

K̂

and the unit normal vectors

{n̂F̂ }F̂∈F
K̂

and a collection of geometric mappings {TK}K∈Th
such that for

all E ∈ Eh and all F ∈ Fh,

τE = Φc
K(τ̂Ê), ∀K ∈ TE , Ê := T−1

K (E), (10.6a)

nF = Φd
K(n̂F̂ ), ∀K ∈ TF , F̂ := T−1

K (F ). (10.6b)

The key consequence of the notion of generation-compatible mesh is
the following result which says that the moments of the normal and tan-
gential components of vector fields are preserved by the transformations
ψg
K ,ψ

c
K ,ψ

d
K .

Lemma 10.4 (Preservation of moments of normal and tangential
components). Assume that the orientation of Th is generation-compatible
and let τE, nF be defined in (10.6). The following holds true for all v ∈
C0(K) and all q ∈ C0(K):

∫

F

(v·nF )(x)q(x) ds =

∫

F̂

(ψd
K(v)·n̂F̂ )(x̂)ψ

g
K(q)(x̂) dŝ, (10.7a)

∫

E

(v·τE)(x)q(x) dl =
∫

Ê

(ψc
K(v)·τ̂Ê)(x̂)ψ

g
K(q)(x̂) dl̂. (10.7b)

Proof. Apply Lemma 9.13. ⊓⊔

Whether it is possible to orient a mesh in a generation-compatible way
is not guaranteed for general meshes. However, we will see in the following
sections that this is indeed possible for simplicial meshes in any dimension,
for quadrangular meshes, and for hexahedral meshes (possibly up to an addi-
tional subdivision of the cells). The key idea to achieve this is the increasing
vertex-index enumeration technique introduced in the next section.

Remark 10.5 (Faces in 2D). Recall that the mesh edges and faces are
identical one-dimensional manifolds in R2, and that we have adopted the
convention that once the edges are oriented, the faces are oriented by rotating
the unit tangent vectors anti-clockwise; see (10.2). It is proved in Exercise 10.1
that Rπ

2
(Φc

K(z)) = Φd
K(Rπ

2
(z)) for all z ∈ R2. Hence, if (10.6a) holds

true, then (10.6b) holds true as well, because in this case nE := Rπ
2
(τE) =
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Rπ
2
(Φc

K(τ̂Ê)) = Φd
K(Rπ

2
(τ̂Ê)) =: Φd

K(n̂Ê). In conclusion, one only needs to
prove (10.6a) in dimension two. ⊓⊔

10.3 Increasing vertex-index enumeration

The increasing vertex-index enumeration technique described in this section
is the key tool to orient meshes in a generation-compatible way. The technique
is illustrated for various types of meshes in §10.4 and §10.5.

Let us enumerate the edges and the faces of K̂ from 1 to nce and from 1
to ncf , respectively. Orienting the reference cell K̂ consists of prescribing the
following unit vectors:

{τ̂Ên
}n∈{1:nce}, {n̂F̂n

}n∈{1:ncf}.

Recalling the connectivity arrays j ce and j cf defined in (8.12), any mesh

edge El for all l ∈ {1:Ne} satisfies El = TKm
(Ên) with (m,n) ∈ {1:Nc} ×

{1:nce} s.t. j ce(m,n) = l. Similarly, any mesh face Fl for all l ∈ {1:Nf}
satisfies Fl = TKm

(F̂n) with (m,n) ∈ {1:Nc} × {1:ncf} s.t. j cf(m,n) = l.

Definition 10.6 (Increasing vertex-index enumeration). A mesh Th is
said to be oriented according to the increasing vertex-index convention if:

(i) Every edge En with vertices zp, zq, p < q, is oriented by the vector
τEn

:= ‖tp,q‖−1
ℓ2 tp,q with tp,q := zq − zp;

(ii) Every face Fn in dimension two is oriented by the vector Rπ
2
(τFn

) (here

Fn is viewed as an edge, and Rπ
2
is the rotation of angle π

2 in R2 as
in (10.2)), and every face Fn in dimension three is oriented by the vector
nFn

:= ‖tp,q×tp,r‖−1
ℓ2 (tp,q×tp,r), where p < q < r are the three global

indices of the vertices of Fn.

The increasing vertex-index enumeration is illustrated in Figure 10.2 for the
unit simplex and the unit cuboid in dimension two and dimension three.
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Fig. 10.2 Enumeration of the vertices and orientation of the edges and faces in the refer-
ence simplex and the reference cuboid in dimensions two and three.
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2D triangle ẑ1 = (0, 0), ẑ2 = (1, 0), ẑ3 = (0, 1)

3D tetrahedron ẑ1 = (0, 0, 0), ẑ2 = (1, 0, 0), ẑ3 = (0, 1, 0), ẑ4 = (0, 0, 1)

2D square ẑ1 = (0, 0), ẑ2 = (0, 1), ẑ3 = (1, 0), ẑ4 = (1, 1)

3D cube
ẑ1 = (0, 0, 0), ẑ2 = (1, 0, 0), ẑ3 = (0, 1, 0), ẑ4 = (0, 0, 1)
ẑ5 = (1, 1, 0), ẑ6 = (1, 0, 1), ẑ7 = (0, 1, 1), ẑ8 = (1, 1, 1)

Table 10.1 Enumeration of the vertices in the reference simplex and in the reference
cuboid in dimensions two and three.

Unless specified otherwise, we enumerate the vertices of the reference el-
ement K̂ by using the convention described in Table 10.1. Moreover, K̂ is
oriented by using the convention of the increasing vertex-index enumeration
as in Figure 10.2.

10.4 Simplicial meshes

Recall that the reference simplex K̂ is oriented by using the increasing
vertex-index technique. Let us show that it is possible to find a generation-
compatible orientation for every three-dimensional affine mesh Th composed
of simplices (the construction proposed thereafter is actually independent of
the space dimension). The key idea is to orient Th by using the increasing
vertex-index enumeration. More precisely, let {zn}n∈{1:Nv} be the mesh ver-
tices. For every edge El with end vertices zp, zq, where p < q, we orient El

by introducing tp,q := zq − zp and by setting

τEl
:= ‖tp,q‖−1

ℓ2 tp,q . (10.8)

For every face Fl defined by its three vertices, say zp, zq, zr with p < q < r,
we orient Fl by introducing tp,q := zq − zp, tp,r := zr − zp and by setting

nFl
:= ‖tp,q×tp,r‖−1

ℓ2 (tp,q×tp,r). (10.9)

Let us now construct the geometric mapping TK for all K ∈ Th. Let
zp, zq, zr, zs be the four vertices of K ordered by increasing vertex-index,
i.e., p < q < r < s. We define TK by setting

TK(ẑ1) := zp, TK(ẑ2) := zq, TK(ẑ3) := zr, TK(ẑ4) := zs. (10.10)

Hence, the global index of the mesh vertex TK(ẑn) increases with n. Us-
ing the connectivity array j cv defined by (8.12), we have j cv(m, 1) = p,
j cv(m, 2) = q, j cv(m, 3) = r, and j cv(m, 4) = s, where m is the global
enumeration index of the mesh cell K. Notice that (10.10) is sufficient to de-
fine TK entirely since we assumed that the mesh is affine. We emphasize that,
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in the present construction, the mapping TK is invertible, but its Jacobian
determinant can be positive or negative.

Example 10.7 (Orienting a tetrahedron). Consider a tetrahedron whose
vertices have global indices 35, 42, 67, and 89 shown in Figure 10.3. The
orientation of the (five visible) edges is materialized by dark arrows. The
unit normal vector nF defined by the increasing-vertex enumeration points
toward the outside of the tetrahedron for the face defined by the indices
{35, 42, 67}, and it points toward the inside of the tetrahedron for the face
defined by the indices {42, 67, 89}, etc. ⊓⊔

Fig. 10.3 Illustration of Example 10.7. 42
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Theorem 10.8 (Simplicial mesh orientation). Let Th be a simplicial

mesh. Let K̂ be oriented by using the increasing vertex-index enumeration.
For all K ∈ Th, let TK be defined by the increasing vertex-index conven-
tion (10.10). Then the orientation of Th based on the increasing vertex-index
enumeration is generation-compatible.

Proof. (1) Let us prove (10.6a). Let El be an edge with vertices zp, zq, p <

q. Let (m,n) be s.t. El = TKm
(Ên), i.e., j ce(m,n) = l. Let ẑi, ẑj with

i < j be the vertices of the edge Ên of K̂. The increasing vertex-index
convention (10.10) for the geometric mappings implies that TKm

(ẑi) = zp

and TKm
(ẑj) = zq. Moreover, the orientation for K̂ implies that τ̂Ên

=

‖t̂i,j‖−1
ℓ2 t̂i,j with t̂i,j := ẑj − ẑi, so that Φc

Km
(τ̂Ên

) = ‖JKm
τ̂Ên

‖−1
ℓ2 JKm

τ̂Ên
=

‖JKm
t̂i,j‖−1

ℓ2 JKm
t̂i,j . Since TKm

is affine, we have

JKm
t̂i,j = TKm

(ẑj)− TKm
(ẑi) = zq − zp = tp,q ,

and we conclude that Φc
Km

(τ̂Ên
) = ‖tp,q‖−1

ℓ2 tp,q = τEl
.

(2) Let us prove (10.6b) in dimension three. Let Fl be a face with vertices

zp, zq, zr, p < q < r. Let (m,n) be s.t. Fl = TKm
(F̂n), i.e., j cf(m,n) = l.

Let ẑi, ẑj, ẑk with i < j < k be the vertices of the face F̂n of K̂. Reasoning

as above, we have JKm
t̂i,j = tp,q and JKm

t̂i,k = tp,r. Using the identity
A−T(x×y) = det(A)−1(Ax×Ay) for every 3×3 invertible matrix A and all
x,y ∈ R3 (see Exercise 9.5), we have

J−T

Km
(t̂i,j×t̂i,k) = det(JKm

)−1(tp,q×tp,r).
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Moreover, since n̂F̂n
and t̂i,j×t̂i,k are collinear and point in the same direc-

tion, the definition (9.14a) implies that

Φd
Km

(n̂F̂n
) = ǫKm

‖J−T

Km
(t̂i,j×t̂i,k)‖−1

ℓ2 J−T

Km
(t̂i,j×t̂i,k).

Since ‖J−T

Km
(t̂i,j×t̂i,k)‖ℓ2 = |det(JKm

)|−1‖tp,q×tp,r‖ℓ2 , we conclude that

Φd
Km

(n̂F̂n
) = ǫKm

|det(JKm
)|‖tp,q×tp,r‖−1

ℓ2 det(JKm
)−1(tp,q×tp,r)

= ‖tp,q×tp,r‖−1
ℓ2 (tp,q×tp,r) = nFl

.

(3) Finally, by Remark 10.5, the argument in Step (1) implies that (10.6b)
holds true in dimension two. ⊓⊔

Remark 10.9 (Positive Jacobian determinant). If one insists on build-
ing geometric mappings such that det(JK) > 0, the above orientation of the
edges and the faces of the mesh is still generation-compatible if one uses two
reference tetrahedra; see Ainsworth and Coyle [6]. ⊓⊔

10.5 Quadrangular and hexahedral meshes

We state without proof a result by Agelek et al. [4] on quadrangular and
hexahedral meshes.

Theorem 10.10 (Quad/Hex mesh orientation). Let the reference square
or cube be oriented using the increasing vertex-index enumeration technique.
(i) Let Th be a quadrangular mesh. It is possible to orient the mesh to make
it generation-compatible. (ii) Let now Th be a hexahedral mesh and let Th

2
be

obtained from Th by cutting each hexahedron into eight smaller hexahedra. It
is possible to orient Th

2
to make it generation-compatible.

Let us provide some further insight into this result. Let us start with the faces
since orientating the faces is simple and independent of the space dimension.
Consider the undirected graph whose vertices are the mesh faces and the
edges are the mesh cells. We say that two mesh faces F1, F2 are connected
through K iff F1, F2 are faces of K that are TK-parallel (i.e., images by TK

of faces of K̂ that are parallel). Since each face is connected to either one
(boundary face) or two cells (interface), all the connected components of the
graph thus constructed are either closed loops or chains whose extremities
are boundary faces. In either case, the connected components of the graph
realize a partition of the faces of Th. We then assign the same orientation to
all the faces in the same connected component of the graph.

Let us now orient the edges. For quadrangular meshes, the edges are ori-
ented by rotating clockwise the unit normal vector; see the second panel in
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Figure 10.2 and the left panel of Figure 10.4 where the dashed lines con-
nect the edges/faces that are in the same equivalence class. For hexahedral
meshes, we further need to devise a specific orientation of the edges. Let Eh
be the collection of the mesh edges. We say that two edges of a cell K are
TK-parallel if they are images by TK of edges in K̂ that are parallel. We then
define a binary relation R on Eh. Let E,E′ ∈ Eh be two mesh edges. We say
that ERE′ if either E and E′ belong to the same cell K and are TK-parallel
or there is a collection of cells K1, . . . ,KL, all different, and a collection of
edges E =: E1, . . . , EL+1 := E′ such that El and El+1 are both edges of Kl,
l ∈ {1:L}, and El, El+1 are TKl

-parallel. This defines an equivalence relation
over the edges which in turn generates a partition of Eh. Unfortunately, it is
not always possible to give the same orientation to all the edges belonging
to the same equivalence class, since in dimension three edges in the same
equivalence class may actually be sitting on a Möbius strip. An example of
nonorientable mesh (in the sense defined above) composed of hexahedra is
shown in the right panel of Figure 10.4. Theorem 10.10 then says that after
subdivision, this mesh becomes orientable in a generation-compatible way,
and more generally, every mesh composed of hexahedra is orientable after
one subdivision.

Fig. 10.4 Orientation of the edges in a mesh composed of quadrangles (left). Nonori-
entable three-dimensional mesh composed of hexahedra (right).

Assuming that the mesh edges have been oriented as discussed above, it is
now possible to build the geometric mappings TK such that the above mesh
orientation is generation-compatible. The idea is that for each mesh cell K,
there is only one vertex such that all the edges sharing it are oriented away
from it. This vertex is called origin of the cell. Then we choose TK such that
TK maps ẑ1 to the origin of K (recall that ẑ1 is the only vertex of K̂ such
that all the edges sharing it are oriented away from it; see Figure 10.2). This
choice implies that the image by TK of ẑ4 (if d = 2) and of ẑ8 (if d = 3) is the
vertex of K opposite to the origin. Finally, the image by TK of the remaining
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two (if d = 2) or six (if d = 3) vertices can be chosen arbitrarily. One criterion
to limit the choices can be to fix a sign for det(JK). In dimension two, one
choice gives a positive sign and the other gives a negative sign, whereas in
dimension three, three choices give a positive sign and three choices give a
negative sign.

Exercises

Exercise 10.1 (Faces in 2D). Let Rπ
2
be the rotation of angle π

2 in R2.

(i) Let A be an inversible 2×2 matrix. Prove that A−TRπ
2
= 1

det(A)Rπ
2
A. (ii)

Prove that Φd
K(Rπ

2
(z)) = Rπ

2
(Φc

K(z)) for all z ∈ R2.

Exercise 10.2 (Connectivity arrays j cv, j ce). Consider the mesh shown
in Figure 10.5, where the face enumeration is identified with large circles and
the cell enumeration is identified with squares. (i) Write the connectivity ar-
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Fig. 10.5 Illustration for Exercise 10.2.

rays j cv and j ce based on increasing vertex-index enumeration. (ii) Give
the sign of the determinant of the Jacobian matrix of TK for each triangle.

Exercise 10.3 (Connectivity array j geo). Consider the mesh shown in
Figure 10.6 and based on the P2,2 geometric Lagrange element. (i) Write
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Fig. 10.6 Illustration for Exercise 10.3.

the connectivity array j geo based on increasing vertex-index enumeration.
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(ii) Give the sign of the determinant of the Jacobian matrix of TK for each
triangle.

Exercise 10.4 (Orientation of quadrangular mesh). (i) Using the enu-
meration and the orientation conventions proposed in this chapter, orient
the mesh shown in Figure 10.7, where the cell enumeration is identified with
shaded rectangles. (ii) Give the connectivity array j geo so that the mesh ori-
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Fig. 10.7 Illustration for Exercise 10.4.

entation is generation-compatible and the determinant of the Jacobian matrix
of TK is positive for even quadrangles and negative for odd quadrangles.

Exercise 10.5 (Mesh extrusion). (i) Let K be a triangular prism. Denote
by e3 the unit vector in the vertical direction. Let z1, z2, z3 be the three
vertices of the bottom triangular face of K, and let z4, z5, z6 be the three
vertices of its top triangular face, so that the segments [zp, zp+3] are parallel
to e3 for every p ∈ {1, 2, 3}. Propose a way to cut K into three tetrahedra.
(ii) Let Th be a two-dimensional oriented mesh composed of triangles. Let
T ′
h be a copy of Th obtained by translating Th in the third direction e3, say

T ′
h := Th + e3. Propose a way to cut all the prisms thus formed to make a

matching mesh composed of tetrahedra.


