
Part III, Chapter 11

Local interpolation on affine meshes

We have seen in the previous chapter how to build finite elements and local
interpolation operators in each cell K of a mesh Th. In this chapter, we
analyze the local interpolation error for smooth Rq-valued functions, q ≥ 1.
We restrict the material to affine meshes and to transformations ψK s.t.

ψK(v) = AK(v ◦ TK), (11.1)

where AK is a matrix in Rq×q. Nonaffine meshes are treated in Chapter 13.
We introduce the notion of shape-regular families of affine meshes, we study
the transformation of Sobolev norms using (11.1), and we present important
approximation results collectively known as the Bramble–Hilbert lemmas. We
finally prove the main result of this chapter, which is an upper bound on the
local interpolation error over each mesh cell for smooth functions.

11.1 Shape regularity for affine meshes

Let Th be an affine mesh. Let K ∈ Th. Since the geometric mapping TK is
affine, its Jacobian matrix JK ∈ Rd×d defined in (8.3) is such that

TK(x̂)− TK(ŷ) = JK(x̂− ŷ), ∀x̂, ŷ ∈ K̂. (11.2)

The matrix JK is invertible since the mapping TK is bijective. Moreover, the
(Fréchet) derivative of the geometric mapping is such thatDTK(x̂)(ĥ) = JKĥ

for all ĥ ∈ Rd (see Appendix B). We denote the Euclidean norm in Rd by
‖·‖ℓ2(Rd), or ‖·‖ℓ2 when the context is unambiguous. We abuse the notation
by using the same symbol for the induced matrix norm.

Lemma 11.1 (Bound on JK). Let Th be an affine mesh and let K ∈ Th.
Let ρK be the diameter of the largest ball that can be inscribed in K and let
hK be the diameter of K, as shown in Figure 11.1. Let ρ̂K̂ and ĥK̂ be defined
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similarly. The following holds true:

|det(JK)| = |K|
|K̂|

, ‖JK‖ℓ2 ≤ hK
ρK̂

, ‖J−1
K ‖ℓ2 ≤ hK̂

ρK
. (11.3)

Proof. The first equality results from the fact that

|K| =
∫

K

dx =

∫

K̂

|det(JK)| dx̂ = |det(JK)| |K̂|.

Regarding the bound on ‖JK‖ℓ2 , we observe that

‖JK‖ℓ2 = sup
ĥ6=0

‖JKĥ‖ℓ2
‖ĥ‖ℓ2

=
1

ρK̂
sup

‖ĥ‖ℓ2=ρ
K̂

‖JKĥ‖ℓ2 .

Any ĥ ∈ Rd such that ‖ĥ‖ℓ2 = ρK̂ can be written as ĥ = x̂1 − x̂2 with

x̂1, x̂2 ∈ K̂. We infer that JKĥ = TK(x̂1) − TK(x̂2) = x1 − x2, which in

turn proves that ‖JKĥ‖ℓ2 ≤ hK . This establishes the bound on ‖JK‖ℓ2 . The
bound on ‖J−1

K ‖ℓ2 is obtained by exchanging the roles of K and K̂. ⊓⊔

Fig. 11.1 Triangular cell K with vertex
z, angle θK,z , and largest inscribed ball.
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Since the analysis of the interpolation error (implicitly) invokes sequences
of successively refined meshes, we henceforth denote by (Th)h∈H a sequence
of meshes discretizing a domain D in Rd, where the index h takes values in
a countable set H having zero as the only accumulation point.

Definition 11.2 (Shape regularity). A sequence of affine meshes (Th)h∈H
is said to be shape-regular if there is σ♯ such that

σK :=
hK
ρK

≤ σ♯, ∀K ∈ Th, ∀h ∈ H. (11.4)

Occasionally, when the context is unambiguous, we will say that (Th)h∈H
is regular instead of shape-regular. Owing to Lemma 11.1, a shape-regular
sequence of affine meshes satisfies

‖JK‖ℓ2‖J−1
K ‖ℓ2 ≤ σ♯σK̂ , ∀K ∈ Th, ∀h ∈ H. (11.5)
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Example 11.3 (Dimension 1). Every sequence of one-dimensional meshes
is shape-regular, since hK = ρK when d = 1. ⊓⊔

Example 11.4 (Triangulations). A shape-regular sequence of affine tri-
angulations can be obtained from an initial triangulation by connecting all
the edge midpoints and repeating this procedure as many times as needed.

⊓⊔

Remark 11.5 (Angles). Let (Th)h∈H be a shape-regular sequence of affine
simplicial meshes. Assume that d = 2, let K be a triangle in Th and let z be
a vertex of K. Then the angle θK,z ∈ (0, 2π) formed by the two edges of K
sharing z is uniformly bounded away from zero. Indeed, the angular sector
centered at z of angle θK,z and radius hK covers the ball of diameter ρK that
is inscribed in K (see Figure 11.1). Hence, 1

2h
2
KθK,z ≥ 1

4πρ
2
K , which in turn

implies that θK,z ≥ 1
2πσ

−2
♯ . Assume now that d = 3, let K be a tetrahedron,

and let z be a vertex of K. Then the solid angle ωK,z ∈ (0, 4π) formed by the
three faces of K sharing z is uniformly bounded away from zero. Reasoning
as above, with volumes instead of surfaces, leads to 1

3h
3
KωK,z ≥ 1

6πρ
3
K , so

that ωK,z ≥ 1
2πσ

−3
♯ . ⊓⊔

We close this section with a useful result on matching meshes. Recall
from §8.2 the notion of mesh faces, edges, and vertices in a matching mesh
(assuming d = 3). For every mesh vertex z ∈ Vh, we denote

Tz := {K ∈ Th | z ∈ K} (11.6)

the collection of the mesh cells sharing z. Similarly, recall from (10.3) that for
every mesh edge E ∈ Eh and every mesh face F ∈ Fh, TE := {K ∈ Th | E ⊂
K} and TF := {K ∈ Th | F ⊂ K} are the collection of the mesh cells sharing
E and F , respectively.

Proposition 11.6 (Neighboring cells). Let (Th)h∈H be a shape-regular
sequence of matching affine meshes. Then the cardinality of the set Tz is
uniformly bounded for all z ∈ Vh and all h ∈ H, and the sizes of all the cells
in Tz are uniformly equivalent w.r.t. h ∈ H. The same assertion holds true
for the sets TE and TF .

Proof. It suffices to prove the assertions for Tz. The bound on card(Tz) follows
from Remark 11.5. Concerning the sizes of the cells in Tz, we first observe
that if K ′,K ′′ ∈ Tz, K ′ 6= K ′′, share a common face, say F with diameter
hF , then hK′ ≤ σ♯ρK′ ≤ σ♯hF ≤ σ♯hK′′ , and similarly, hK′′ ≤ σ♯hK′ . This
shows that the sizes of K ′ and K ′′ are uniformly equivalent. Now, for all K ′

and K ′′ in Tz , there is a finite path of cells linking K ′ to K ′′ s.t. any two
consecutive mesh cells in the path share a common face. The number of cells
composing the path cannot exceed card(Tz), so that it is uniformly bounded.
Hence, the sizes of K ′ and K ′′ are uniformly equivalent. ⊓⊔
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11.2 Transformation of Sobolev seminorms

The question we investigate now is the following: given a function v ∈
Wm,p(K;Rq), how does the seminorm of ψK(v) in Wm,p(K̂;Rq) compare
to that of v in Wm,p(K;Rq) with ψK is defined in (11.1)?

Lemma 11.7 (Norm scaling by ψK). Let Th be an affine mesh. Let s ∈
[0,∞) and p ∈ [1,∞] (with z±

1
p := 1, ∀z > 0 if p = ∞). There exists c,

depending only on s and d, such that the following bounds hold true for all
v ∈ W s,p(K;Rq), all K ∈ Th, and all h ∈ H:

|ψK(v)|W s,p(K̂;Rq) ≤ c γ
1
p

K‖AK‖ℓ2‖JK‖sℓ2 |det(JK)|− 1
p |v|W s,p(K;Rq), (11.7a)

|v|W s,p(K;Rq) ≤ c δ
1
p

K‖A−1
K ‖ℓ2‖J−1

K ‖sℓ2 |det(JK)| 1p |ψK(v)|W s,p(K̂;Rq), (11.7b)

where γK = δK := 1 if s ∈ N and γK := |det(JK)|−1‖JK‖dℓ2 , δK :=
|det(JK)| ‖J−1

K ‖dℓ2 otherwise (the real numbers γK and δK are uniformly
bounded w.r.t. h ∈ H on shape-regular mesh sequences).

Proof. We start by assuming s = m ∈ N. The bounds are obvious for
m = 0. For m ≥ 1, let α be a multi-index with length |α| = m, i.e.,

α := (α1, . . . , αd) ∈ Nd with α1 + . . .+ αd = m. Let x̂ ∈ K̂. Owing to (B.6),
we infer that

∂α(ψK(v))(x̂) = AKD
m(v ◦ TK)(x̂)(e1, . . . , e1︸ ︷︷ ︸

α1 times

, . . . , ed, . . . , ed︸ ︷︷ ︸
αd times

),

where Dm(v ◦ TK)(x̂) is the m-th Fréchet derivative of v ◦ TK at x̂ and
{e1, . . . , ed} is the canonical Cartesian basis of Rd. We now apply the chain
rule (see Lemma B.4) to v ◦ TK . Since TK is affine, the Fréchet derivative
of TK is independent of x̂ and its higher-order Fréchet derivatives vanish.
Hence, we have

Dm(v ◦ TK)(x̂)(h1, . . . ,hm) =
∑

σ∈Sm

1

m!
(Dmv)(TK(x̂))(DTK(hσ(1)), . . . , DTK(hσ(m))),

for all h1, . . . ,hm ∈ Rd, where Sm is the set of the permutations of {1:m}.
Since DTK(h) = JKh for all h ∈ Rd owing to (11.2), we infer that

|∂α(v ◦ TK)(x̂)| ≤ ‖JK‖mℓ2 ‖(Dmv)(TK(x̂))‖Mm(Rd,...,Rd;Rq),

with ‖A‖Mm(Rd,...,Rd;Rq) := sup(y1,...,ym)∈Rd×...×Rd
‖A(y1,...,ym)‖ℓ2

‖y1‖ℓ2 ...‖ym‖ℓ2
for every

multilinear map A ∈ Mm(Rd, . . . ,Rd;Rq). Owing to the multilinearity of
Dmv and using again (B.6), we infer that (see Exercise 11.1)
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‖(Dmv)(TK(x̂))‖Mm(Rd,...,Rd;Rq) ≤ c
∑

|β|=m

‖(∂βv)(TK(x̂))‖ℓ2 ,

where c only depends on m and d. As a result, we have

‖∂α(ψK(v))(x̂)‖ℓ2 ≤ c ‖AK‖ℓ2‖JK‖mℓ2
∑

|β|=m

‖(∂βv)(TK(x̂))‖ℓ2 ,

and (11.7a) follows by taking the Lp(K̂)-norm on both sides of the inequality.
The proof of (11.7b) is similar. We refer to Exercise 11.7 when s 6∈ N. ⊓⊔

Remark 11.8 (Seminorms). The upper bounds in (11.7a) and (11.7b)
involve only seminorms because the geometric mappings are affine. ⊓⊔

11.3 Bramble–Hilbert lemmas

This section contains an important result for the analysis of the approxima-
tion properties of finite elements. We consider scalar-valued functions. The
result extends to vector-valued functions by reasoning componentwise.

Lemma 11.9 (Pk-Bramble–Hilbert/Deny–Lions). Let S be a Lipschitz
domain in Rd. Let p ∈ [1,∞]. Let k ∈ N. There is c (depending on k, p, S)
s.t. for all v ∈W k+1,p(S),

inf
q∈Pk,d

‖v − q‖Wk+1,p(S) ≤ c |v|Wk+1,p(S). (11.8)

Proof. (1) Consider the bounded linear forms fα : W k+1,p(S) → R s.t.

fα(v) := ℓ
|α|−d
S

∫

S

∂αv dx, ∀α ∈ Ak,d,

where Ak,d := {α := (α1, . . . , αd) ∈ Nd | |α| ≤ k} and ℓS := diam(S) (the

factor ℓ
|α|−d
S is introduced for dimensional consistency). Let us set Nk,d :=

card(Ak,d) =
(
k+d
d

)
. Let us consider the map Φk,d :W k+1,p(S) → RNk,d s.t.

Φk,d(q) := (fα(q))α∈Ak,d
,

and let us prove that the restriction of this map to Pk,d is an isomorphism.
To prove this, we observe that dim(Pk,d) = Nk,d, so that it is sufficient to
prove that Φk,d is injective, which we do by induction on k. For k = 0, if
q ∈ P0 satisfies Φ0,d(q) = 0, then

∫
S
q dx = q|S| = 0 so that q = 0. Let us

assume now that k ≥ 1 and let q ∈ Pk,d be such that Φk,d(q) = 0. Let us write
q(x) =

∑
α∈Ak,d

aαx
α. Whenever |α| = k, we obtain ∂αq(x) = aαα1! . . . αd!

so that fα(q) = 0 implies that aα = 0. Since this property is satisfied for all α
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such that |α| = k, we infer that q ∈ Pk−1,d and conclude from the induction
assumption that q = 0.
(2) Let us prove that there is c > 0, depending on S, k, and p, such that

c ‖v‖Wk+1,p(S) ≤ ℓk+1
S |v|Wk+1,p(S) + ℓ

d
p

S ‖Φk,d(v)‖ℓ1(RNk,d), (11.9)

for all v ∈ W k+1,p(S), with ‖f‖ℓ1(RNk,d )
:=
∑

α∈Nk,d
|fα|. Reasoning by con-

tradiction, let (vn)n∈N be a sequence s.t.

‖vn‖Wk+1,p(S) = 1, lim
n→∞

|vn|Wk+1,p(S) = 0, lim
n→∞

Φk,d(vn) = 0. (11.10)

Owing to the Rellich–Kondrachov theorem (Theorem 2.35), we infer that,
up to a subsequence (not renumbered for simplicity), the sequence (vn)n∈N

converges strongly to a function v inW k,p(S). Moreover, (vn)n∈N is a Cauchy
sequence in W k+1,p(S) since

‖vn − vm‖Wk+1,p(S) ≤ ‖vn − vm‖Wk,p(S) + ℓk+1
S |vn − vm|Wk+1,p(S),

and |vn − vm|Wk+1,p(S) → 0 by assumption. Hence, (vn)n∈N converges to v

strongly in W k+1,p(S) (that the limit is indeed v comes from the uniqueness
of the limit in W k,p(S)). Owing to (11.10), we infer that ‖v‖Wk+1,p(S) = 1,
|v|Wk+1,p(S) = 0, and Φk,d(v) = 0. Repeated applications of Lemma 2.11
(stating that in an open connected set S, ∇v = 0 implies that v is constant
on S) allow us to infer from |v|Wk+1,p(S) = 0 that v ∈ Pk,d. Since we have
established in Step (1) that the restriction of Φk,d to Pk,d is an isomorphism,
this yields v = 0, which contradicts ‖v‖Wk+1,p(S) = 1.

(3) Let v ∈ W k+1,p(S) and define π(v) ∈ Pk,d such that Φk,d(π(v)) = Φk,d(v).
This is possible since the restriction of Φk,d to Pk,d is an isomorphism. Then

c inf
q∈Pk,d

‖v − q‖Wk+1,p(S) ≤ c‖v − π(v)‖Wk+1,p(S)

≤ ℓk+1
S |v − π(v)|Wk+1,p(S) + ‖Φk,d(v − π(v))‖ℓ1(RNk,d )

= ℓk+1
S |v|Wk+1,p(S),

since ∂απ(v) = 0 for all α ∈ Nd such that |α| = k + 1. ⊓⊔

Remark 11.10 (Peetre–Tartar lemma). Step (2) in the above proof is
similar to the Peetre–Tartar lemma (Lemma A.20). Define X :=W k+1,p(S),
Y := [Lp(D)]Nk+1,d−Nk,d×RNk,d , Z :=W k,p(S), and the operator

A : X ∋ v 7−→ ((∂αv)|α|=k+1, Φk,d(v)) ∈ Y.

Since A is bounded and injective, and the embedding X →֒ Z is compact,
the property (11.9) results from the Peetre–Tartar lemma. ⊓⊔
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Corollary 11.11 (Pk-Bramble–Hilbert for linear functionals). Under
the hypotheses of Lemma 11.9, there is c s.t. the following holds true for all
f ∈ (W k+1,p(S))′ := L(W k+1,p(S);R) vanishing on Pk,d,

|f(v)| ≤ c ‖f‖(Wk+1,p(S))′ℓ
k+1
S |v|Wk+1,p(S), ∀v ∈W k+1,p(S). (11.11)

Proof. Left as an exercise. ⊓⊔

Remark 11.12 (Literature). The estimate (11.8) is proved in Bramble
and Hilbert [40, Thm. 1] and in Ciarlet and Raviart [79, Lem. 7]; see also
Deny and Lions [90]. The estimate (11.11) is proved in Bramble and Hilbert
[40, Thm. 2] and in Ciarlet and Raviart [79, Lem. 6]. There is some vari-
ability in the literature regarding the terminology for these results. For in-
stance, Lemma 11.9 is called Bramble–Hilbert lemma in Brenner and Scott
[47, Lem. 4.3.8] and Ciarlet and Raviart [78, p. 219], whereas it is called
Deny–Lions lemma in Ciarlet [77, p. 111], and it is not given any name in
Braess [39, p. 77]. Corollary 11.11 is called Bramble–Hilbert lemma in Ciar-
let [77, p. 192] and Braess [39, p. 78]. Incidentally, there are two additional
results that are the counterparts of Lemma 11.9 and Corollary 11.11 for Qk,d

polynomials; see Lemma 13.8 and Corollary 13.9. ⊓⊔

11.4 Local finite element interpolation

This section contains our main result on local finite element interpolation.
Recall the construction of §9.1 to generate a finite element and a local in-
terpolation operator in each mesh cell K ∈ Th. Our goal is now to estimate
the interpolation error v−IK(v) for every smooth function v. The key point
is that we want this bound to depend on K only through its size hK un-
der the assumption that the mesh sequence is shape-regular. The Bramble–
Hilbert/Deny–Lions lemma cannot be used directly on K since this would
give a constant depending on the shape of K. The crucial idea is then to use
the fact that IK = ψ−1

K ◦ IK̂ ◦ ψK owing to Proposition 9.3 and to apply

Lemma 11.9 on the fixed reference cell K̂.

Theorem 11.13 (Local interpolation). Let P̂ be finite-dimensional, IK̂ ∈
L(V (K̂); P̂ ), p ∈ [1,∞], k, l ∈ N, and assume that the following holds true:

(i) [Pk,d]
q ⊂ P̂ ⊂W k+1,p(K̂;Rq).

(ii) [Pk,d]
q is pointwise invariant under IK̂ .

(iii) W l,p(K̂;Rq) →֒ V (K̂), i.e., ‖v̂‖V (K̂)≤ ĉ ‖v̂‖W l,p(K̂;Rq) for all v̂ ∈ V (K̂).

Let (Th)h∈H be a shape-regular sequence of affine meshes, let the transforma-
tion ψK be defined in (11.1) for all K ∈ Th, and assume that there is γ s.t.
for all K ∈ Th and all h ∈ H,
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‖AK‖ℓ2‖A−1
K ‖ℓ2 ≤ γ ‖JK‖ℓ2‖J−1

K ‖ℓ2 . (11.12)

Define the operator
IK := ψ−1

K ◦ IK̂ ◦ ψK . (11.13)

There is c s.t. the following local interpolation error estimates hold true:
(i) If l ≤ k + 1, then for every integers r ∈ {l:k + 1} and m ∈ {0:r}, all
v ∈ W r,p(K;Rq), all K ∈ Th, and all h ∈ H,

|v − IK(v)|Wm,p(K;Rq) ≤ c hr−m
K |v|W r,p(K;Rq). (11.14)

(ii) If l > k + 1, then for every integer m ∈ {0:k + 1}, all v ∈ W l,p(K;Rq),
all K ∈ Th, and all h ∈ H,

|v − IK(v)|Wm,p(K;Rq) ≤ c
∑

n∈{k+1: l}
hn−m
K |v|Wn,p(K;Rq). (11.15)

Proof. We present a unified proof of (11.14) and (11.15). Let

r ∈ {l: max(l, k + 1)}, r = min(r, k + 1), m ∈ {0:r}.

If l ≤ k + 1, then r ∈ {l:k + 1}, r = r =: r, m ∈ {0:r}, whereas if l > k + 1,
then r = l, r = k + 1, m ∈ {0:k + 1}. Thus, proving (11.14) and (11.15) is
equivalent to prove that for all v ∈ W r,p(K;Rq),

|v − IK(v)|Wm,p(K;Rq) ≤ c
∑

n∈{r :r}
hn−m
K |v|Wn,p(K;Rq).

Let c denote a generic constant whose value can change at each occurrence
as long as it is independent of v, K, and h. We take ℓK̂ := 1.

(1) For all v̂ ∈ W r,p(K̂;Rq), we set G(v̂) := v̂ − IK̂(v̂). Since all the norms

are equivalent in P̂ , there is a constant cP̂ such that

‖p̂‖Wm,p(K̂;Rq) ≤ cP̂ ‖p̂‖V (K̂), ∀p̂ ∈ P̂ .

Using m ≤ r ≤ r, the above bound applied to p̂ := IK̂(v̂), IK̂ ∈ L(V (K̂)),
and Assumption (iii), we infer that

‖G(v̂)‖Wm,p(K̂;Rq) ≤ ‖v̂‖Wm,p(K̂;Rq) + ‖IK̂(v̂)‖Wm,p(K̂;Rq)

≤ ‖v̂‖W r,p(K̂;Rq) + cP̂ ‖IK̂(v̂)‖V (K̂)

≤ ‖v̂‖W r,p(K̂;Rq) + cP̂ ‖IK̂‖L(V (K̂))‖v̂‖V (K̂)

≤ ‖v̂‖W r,p(K̂;Rq) + cP̂ ‖IK̂‖L(V (K̂))ĉ ‖v̂‖W l,p(K̂;Rq).

Since l ≤ r, this shows that G ∈ L(W r,p(K̂;Rq);Wm,p(K̂;Rq)).
(2) Let us prove that
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|v̂ − IK̂(v̂)|Wm,p(K̂;Rq) ≤ c
(
|v̂|W r,p(K̂;Rq) + . . .+ |v̂|W r,p(K̂;Rq)

)
. (11.16)

The estimate is trivial if r = 0. Assume now that r ≥ 1. Then 0 ≤ r− 1 ≤ k,
so that Pr−1,d ⊂ Pk,d, which implies that [Pr−1,d]

q is pointwise invariant
under IK̂ . Hence, the operator G vanishes on Pr−1,d. We then infer that

|v̂ − IK̂(v̂)|Wm,p(K̂;Rq) = |G(v̂)|Wm,p(K̂;Rq) = inf
p̂∈[Pr−1,d]q

|G(v̂ − p̂)|Wm,p(K̂;Rq)

≤ ‖G‖L(W r,p(K̂;Rq);Wm,p(K̂;Rq)) inf
p̂∈[Pr−1,d]q

‖v̂ − p̂‖W r,p(K̂;Rq)

≤ c inf
p̂∈[Pr−1,d]q

‖v̂ − p̂‖W r,p(K̂;Rq) ≤ c
(
|v̂|W r,p(K̂;Rq) + . . .+ |v̂|W r,p(K̂;Rq)

)
,

since ‖v̂ − p̂‖p
W r,p(K̂;Rq)

= ‖v̂ − p̂‖p
W r,p(K̂;Rq)

+
∑

n∈{r+1:r} |v̂|pWn,p(K̂;Rq)
for

r < r, and owing to the estimate (11.8) from the Bramble–Hilbert/Deny–
Lions lemma applied componentwise to ‖v̂−p̂‖p

W r,p(K̂;Rq)
. This proves (11.16).

(3) Finally, let v ∈W r,p(K;Rq). We infer that

|v − IK(v)|Wm,p(K;Rq)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p |ψK(v − IK(v))|Wm,p(K̂;Rq)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p |ψK(v)− IK̂(ψK(v))|Wm,p(K̂;Rq)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖mℓ2 |det(JK)| 1p
(
|ψK(v)|W r,p(K̂;Rq) + . . .+ |ψK(v)|W r,p(K̂;Rq)

)

≤ c ‖J−1
K ‖mℓ2

(
‖JK‖rℓ2 |v|W r,p(K;Rq) + . . .+ ‖JK‖rℓ2 |v|W r,p(K;Rq)

)
,

where we used the bound (11.7b) in the first line, the linearity of ψK and
IK = ψ−1

K ◦ IK̂ ◦ ψK in the second line, the bound (11.16) in the third line,
and the bound (11.7a) together with (11.12) in the fourth line. The expected
error estimate follows by using (11.3) and the fact that σK := hK

ρK
is uniformly

bounded owing to the shape-regularity of the mesh sequence. ⊓⊔
Definition 11.14 (Degree of a finite element). The largest integer k such

that [Pk,d]
q ⊂ P̂ ⊂W k+1,p(K̂;Rq) is called degree of the finite element.

Remark 11.15 (Assumptions). The assumption (i) in Theorem 11.13 is

easy to satisfy for finite elements since P̂ is in general composed of polynomial
functions. If P̂ and IK̂ are generated from a finite element construction, then

the assumption (ii) follows from (i) since P̂ is then pointwise invariant under
IK̂ . The assumption (iii) requires a bit more care since it amounts to finding

an integer l s.t. IK̂ : W l,p(K̂;Rq) → P̂ is bounded, i.e., the assumption (iii)
is a stability property of the reference interpolation operator. ⊓⊔
Remark 11.16 (Fractional order). For simplicity, the interpolation error
estimates from Theorem 11.13 are derived for functions in Sobolev spaces
of integer order. We refer the reader to Chapter 22 for interpolation error
estimates in Sobolev spaces of fractional order. ⊓⊔
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11.5 Some examples

In this section, we present some examples of the application of Theorem 11.13
where ψK is the pullback by the geometric mapping. We refer the reader to
Chapter 16 for applications of Theorem 11.13 to vector-valued finite elements
when ψK is one of the Piola transformations from Definition 9.8.

11.5.1 Lagrange elements

Let (Th)h∈H be a shape-regular sequence of affine meshes. For Lagrange ele-
ments, we have seen in Example 9.4 that the transformation ψK is the pull-
back by the geometric mapping, i.e., ψK(v) := ψg

K(v) := v ◦ TK (see (9.9a)).
Hence, the choice (11.1) with AK := 1 for ψK is legitimate, and (11.12) triv-
ially holds true (with γ := 1). Proposition 9.3 shows that IL

K = ψ−1
K ◦IL

K̂
◦ψK ,

where IL
K̂

and IL
K are, respectively, the Lagrange interpolation operator in

the reference cell K̂ and in a generic mesh cell K ∈ Th. Hence, (11.13) holds
true. Furthermore, Assumption (i) in Theorem 11.13 holds true with k being

the degree of the Lagrange element. Assumption (ii) also holds true since P̂
is pointwise invariant under IK̂ . It remains to verify Assumption (iii). This

assumption is satisfied if we take l to be the smallest integer such that l > d
p

(or l ≥ d if p = 1). This indeed implies thatW l,p(K̂) →֒ C0(K̂) owing to The-
orem 2.35. Assuming that k+1 > d

p (so that k+1 ≥ l), the estimate (11.14)

implies that there is c s.t. for every integers r ∈ {l:k+1} and m ∈ {0:r}, all
v ∈ W r,p(K), all K ∈ Th, and all h ∈ H,

|v − IL
K(v)|Wm,p(K) ≤ c hr−m

K |v|W r,p(K). (11.17)

If k+ 1 ≤ d
p , the more general estimate (11.15) has to be used. For instance,

assume that k = 1, d = 3, and p ∈ [1, 32 ], so that k+ 1 = 2 ≤ 3
p . In the range

p ∈ [1, 32 ], we can take l = 3 in Assumption (iii) (since either 3 > 3
p for p > 1

or 3 ≥ 3
1 ). For m = 0, we get

‖v − IL
K(v)‖Lp(K) ≤ c h2K(|v|W 2,p(K) + hK |v|W 3,p(K)). (11.18)

Remark 11.17 (Quadrangular meshes). When working on quadrangu-
lar (or hexahedral meshes), the geometric mapping is affine if and only if all
the cells are parallelograms (or parallelotopes). If one wants to work with
more general meshes, nonaffine geometric mappings need to be considered.
This case is treated in §13.5. ⊓⊔

11.5.2 Modal elements

Consider now a modal finite element of degree k and let Im
K̂

and Im
K be

the modal interpolation operators in the reference cell K̂ and in a generic
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mesh cell K ∈ Th, respectively. We have seen in Example 9.5 that the choice
ψK(v) := ψg

K(v) := v ◦ TK is legitimate, that is, we take AK := 1 in (11.1)
to define ψK , so that (11.12) trivially holds true (with γ := 1). Proposi-
tion 9.3 shows that Im

K = ψ−1
K ◦ Im

K̂
◦ ψK . Hence, (11.13) holds true. As

for Lagrange elements, Assumptions (i) and (ii) in Theorem 11.13 are easy
to verify. Concerning Assumption (iii), it is legitimate to take l = 0 since

V (K̂) = L1(K̂;Rq). Hence, the estimate (11.14) can always be used, i.e.,
there is c s.t. for every integers r ∈ {0:k+1} andm ∈ {0:r}, all v ∈ W r,p(K),
all K ∈ Th, and all h ∈ H,

|v − Im
K(v)|Wm,p(K) ≤ c hr−m

K |v|W r,p(K). (11.19)

11.5.3 L2-orthogonal projection

Let P̂ be a finite-dimensional space such that Pk,d ⊂ P̂ ⊂ W k+1,∞(K̂). The

L2-orthogonal projection onto P̂ is the linear operator Ib
K̂

: L1(K̂) → P̂ such

that for all v̂ ∈ L1(K̂), Ib
K̂
(v̂) is the unique element in P̂ s.t.

∫

K̂

(Ib
K̂
(v̂)− v̂)q̂ dx̂ = 0, ∀q̂ ∈ P̂ . (11.20)

Since v̂ − Ib
K̂
(v̂) and Ib

K̂
(v̂) − q̂ are L2-orthogonal for all q̂ ∈ P̂ , the

Pythagorean identity gives

‖v̂ − q̂‖2
L2(K̂)

= ‖v̂ − Ib
K̂
(v̂)‖2

L2(K̂)
+ ‖Ib

K̂
(v̂)− q̂‖2

L2(K̂)
. (11.21)

This implies that
Ib
K̂
(v̂) = arg min

q̂∈P̂

‖v̂ − q̂‖L2(K̂). (11.22)

Hence, Ib
K̂
(v̂) is the element in P̂ that is the closest to v̂ in the L2-norm, and

P̂ is pointwise invariant under Ib
K̂
.

Let (Th)h∈H be a shape-regular sequence of affine meshes. Let K ∈ Th. Let
ψg
K be the pullback by the geometric mapping TK , i.e., ψg

K(v) := v ◦TK , and

set PK := (ψg
K)−1(P̂ ). The L2-orthogonal projection onto PK is the linear

operator Ib
K : L1(K) → PK such that for all v ∈ L1(K), Ib

K(v) is the unique
element in PK s.t.

∫

K

(Ib
K(v)− v)q dx = 0, ∀q ∈ PK . (11.23)

As above, Ib
K(v) is the element in PK that is the closest to v in the L2-norm,

and PK is pointwise invariant under Ib
K .

Lemma 11.18 (L2-projection). Let p ∈ [1,∞]. There is c s.t. for every
integers r ∈ {0:k + 1} and m ∈ {0:r}, all v ∈ W r,p(K), all K ∈ Th, and all
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h ∈ H,
|v − Ib

K(v)|Wm,p(K) ≤ c hr−m
K |v|W r,p(K). (11.24)

Proof. We apply Theorem 11.13. Recall from (9.9d) the Piola transformation

ψb
K(v) := det(JK)(v◦TK). Observe that (ψb

K)−1(P̂ ) = PK . The map ψb
K is of

the general form (11.1), i.e., ψb
K(v) = AK(v ◦ TK) where AK := det(JK) is a

1×1 matrix (i.e., a real number) that trivially satisfies (11.12) (with γ := 1).
For all q ∈ PK with q = q̂ ◦ T−1

K , we have

∫

K

(ψb
K)−1(Ib

K̂
(ψb

K(v)))q dx =

∫

K

det(JK)−1(Ib
K̂
(ψb

K(v)) ◦ T−1
K )q dx

=

∫

K̂

ǫKIb
K̂
(ψb

K(v))q̂ dx̂

=

∫

K̂

ǫKψ
b
K(v)q̂ dx̂ =

∫

K

vq dx,

with ǫK := det(JK)
|det(JK)| , which proves that Ib

K = (ψb
K)−1 ◦ Ib

K̂
◦ ψb

K since

(ψb
K)−1(P̂ ) = PK , i.e., (11.13) holds true with ψK := ψb

K . It remains to
verify the assumptions (i), (ii), and (iii). Assumption (i) follows from our

assumption on P̂ . Assumption (ii) follows from P̂ being pointwise invariant
under Ib

K̂
. Finally, Assumption (iii) holds true with l := 0. Since l ≤ k + 1,

we can apply the estimate (11.14), which is nothing but (11.24). ⊓⊔

Remark 11.19 (Beyond finite elements). The above example shows
that Theorem 11.13 can be understood more generally as an approxima-
tion result for the operator IK defined by IK := ψ−1

K ◦ IK̂ ◦ ψK with-
out directly invoking any finite element structure to build the operator IK̂ .

Given the affine geometric mapping TK : K̂ → K and the transformation
ψK(v) := AK(v ◦ TK), the key requirements are that IK̂ :W l,p(K̂;Rq) → P̂
is bounded, Pk,d is pointwise invariant under IK̂ , and ψK is such that

‖AK‖ℓ2‖A−1
K ‖ℓ2 ≤ γ ‖JK‖ℓ2‖J−1

K ‖ℓ2. In conclusion, the finite element con-
struction of §9.1 is sufficient to apply Theorem 11.13 but not necessary. ⊓⊔

Exercises

Exercise 11.1 (High-order derivative). Let two integers m, d ≥ 2. Con-
sider the map Φ : {1:d}m ∋ j 7−→ (Φ1(j), . . . , Φd(j)) ∈ Nd, where Φi(j) :=
card{k ∈ {1:m} | jk = i} for all i ∈ {1:d}, so that |Φ(j)| = m by con-
struction. Let Cm,d := maxα∈Nd,|α|=m card{j ∈ {1:d}m | Φ(j) = α}. Let v
be a smooth (scalar-valued) function. (i) Show that ‖Dmv‖Mm(Rd,...,Rd;R) ≤

C
1
2

m,d

(∑
α∈Nd,|α|=m |∂αv|2

) 1
2

. (ii) Show that Cm,2 = max0≤l≤m

(
m
l

)
= 2m.
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(iii) Evaluate Cm,3 and m ∈ {2, 3}. (iv) Show that
∑

α∈Nd,|α|=m |∂αv| ≤(
d+m−1
d−1

)
‖Dmv‖Mm(Rd,...,Rd;R).

Exercise 11.2 (Flat triangle). Let K be a triangle with vertices (0, 0),
(1, 0) and (−1, ǫ) with 0 < ǫ ≪ 1. Consider the function v(x1, x2) := x21.
Evaluate the P1 Lagrange interpolant IL

K(v) (see (9.7)) and show that |v −
IL
K(v)|H1(K) ≥ ǫ−1|v|H2(K). (Hint : use a direct calculation of IL

K(v).)

Exercise 11.3 (Barycentric coordinate). LetK be a simplex with barycen-
tric coordinates {λi}i∈{0:d}. Prove that |λi|W 1,∞(K) ≤ ρ−1

K for all i ∈ {0:d}.

Exercise 11.4 (Bramble–Hilbert). Prove Corollary 11.11. (Hint : use the
Bramble–Hilbert/Deny–Lions lemma.)

Exercise 11.5 (Taylor polynomial). Let K be a convex cell. Consider a
Lagrange finite element of degree k ≥ 1 with nodes {ai}i∈N and associated
shape functions {θi}i∈N . Consider a sufficiently smooth function v. For all
x,y ∈ K, consider the Taylor polynomial of order k and the exact remainder
defined as follows:

Tk(x,y) := v(x) +Dv(x)(y − x) + . . .+
1

k!
Dkv(x)(y − x, . . . ,y − x︸ ︷︷ ︸

k times

),

Rk(v)(x,y) :=
1

(k + 1)!
Dk+1v(ηx+ (1− η)y)(y − x, . . . ,y − x︸ ︷︷ ︸

(k + 1) times

),

so that v(y) = Tk(x,y) + Rk(v)(x,y) for some η ∈ [0, 1]. (i) Prove that
v(x) = IL

K(v)(x) −∑i∈N Rk(v)(x,ai)θi(x), where IL
K is the Lagrange in-

terpolant defined in (9.7). (Hint : interpolate with respect to y.) (ii) Prove
that Dmv(x) = Dm(IL

K(v))(x) −∑i∈N Rk(v)(x,ai)D
mθi(x) for all m ≤ k.

(Hint : proceed as in (i), take m derivatives with respect to y at x, and
observe that v(x) = Tk(x,x).) (iii) Deduce that |v − IL

K(v)|Wm,∞(K) ≤
cσm

Kh
k+1−m
K |v|Wk+1,∞(K) with c := 1

(k+1)!c∗h
m
K̂

∑
i∈N |θ̂i|Wm,∞(K̂), where c∗

comes from (11.7b) with s = m and p = ∞.

Exercise 11.6 (Lp-stability of Lagrange interpolant). Let α ∈ (0, 1).
Consider the Lagrange P1 shape functions θ1(x) := 1 − x and θ2(x) := x.
Consider the sequence of continuous functions {un}n∈N\{0} defined over the

interval K := [0, 1] as un(x) := nα − 1 if 0 ≤ x ≤ 1
n and un(x) := x−α − 1

otherwise. (i) Prove that the sequence is uniformly bounded in Lp(0, 1) for
all p such that pα < 1. (ii) Compute IL

K(un). Is the operator IL
K stable in

the Lp-norm? (iii) Is the operator IL
K stable in any Lr-norm with r ∈ [1,∞)?

Exercise 11.7 (Norm scaling, s 6∈ N). Complete the proof of Lemma 11.7
for the case s 6∈ N. (Hint : use (2.6) with s = m+ σ, m := ⌊s⌋, σ := s−m ∈
(0, 1).)
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Exercise 11.8 (Morrey’s polynomial). Let U be a nonempty open set in
Rd. Let k ∈ N and p ∈ [1,∞]. Let u ∈ W k,p(U). Show that there is a unique
polynomial q ∈ Pk,d s.t.

∫
U ∂

α(u− q) dx = 0 for all α ∈ Nd of length at most
k. (Hint : see the proof of Lemma 11.9 and also Morrey [148, Thm. 3.6.10].)

Exercise 11.9 (Fractional Sobolev norm). Let r ∈ (0, 1). Let (Th)h∈H
be an shape-regular affine mesh sequence and let K̂ be the reference element.
Let K be an affine cell in Th. Using the notation v̂ := v ◦ TK , show that

there is c such that ‖v̂‖Hr(K̂) ≤ ch
r−d

2

K |v|Hr(K) for all v ∈ Hr(K) such that∫
K
v dx = 0, all K ∈ Th, and all h ∈ H. (Hint : use Lemma 3.26.)


