
Part III, Chapter 12

Local inverse and functional inequalities

Inverse inequalities rely on the fact that all the norms are equivalent in
finite-dimensional normed vector spaces, e.g., in the local (polynomial) space
PK generated from the reference finite element. The term ‘inverse’ refers
to the fact that high-order Sobolev (semi)norms are bounded by lower-order
(semi)norms, but the constants involved in these estimates either tend to zero
or to infinity as the meshsize goes to zero. Our purpose is then to study how
the norm-equivalence constants depend on the local meshsize and the poly-
nomial degree of the reference finite element. We also derive some local func-
tional inequalities valid in infinite-dimensional spaces. All of these inequali-
ties are regularly invoked in this book. In the whole chapter, we consider the
same setting as in Chapter 11, i.e., (K̂, P̂ , Σ̂) is the reference finite element,

(Th)h∈H is a shape-regular sequence of affine meshes, TK : K̂ → K is the
geometric mapping for every mesh cell K ∈ Th, and the local finite element
(K,PK , ΣK) is generated by using the transformation ψK(v) := AK(v ◦ TK)
with AK ∈ Rq×q s.t. ‖AK‖ℓ2‖A−1

K ‖ℓ2 ≤ c (which follows from (11.12) and the
regularity of the mesh sequence).

12.1 Inverse inequalities in cells

Lemma 12.1 (Bound on Sobolev seminorm). Let l ∈ N be s.t. P̂ ⊂
W l,∞(K̂;Rq). There is c s.t. for every integer m ∈ {0: l}, all p, r ∈ [1,∞],
all v ∈ PK , all K ∈ Th, and all h ∈ H, the following holds true:

|v|W l,p(K;Rq) ≤ c h
m−l+d( 1

p
− 1

r
)

K |v|Wm,r(K;Rq). (12.1)

Proof. (1) Since all the norms in the finite-dimensional space P̂ are equiva-

lent, there exists ĉ, only depending on K̂, l, and q, such that ‖v̂‖W l,∞(K̂;Rq) ≤
ĉ ‖v̂‖L1(K̂;Rq) for all v̂ ∈ P̂ , which in turn means that for all p, r ∈ [1,∞],
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‖v̂‖W l,p(K̂;Rq) ≤ ĉ ‖v̂‖Lr(K̂;Rq), ∀v̂ ∈ P̂ . (12.2)

(2) Let now v ∈ PK . Since PK := ψ−1
K (P̂ ), v̂ := ψK(v) is in P̂ . Let j ∈ {0: l}.

Using Lemma 11.7, (12.2), the assumption ‖AK‖ℓ2‖A−1
K ‖ℓ2 ≤ c, and the

regularity of the mesh sequence implies that (the value of c changes at each
occurrence)

|v|W j,p(K;Rq) ≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖jℓ2 |det(JK)| 1p ‖v̂‖W j,p(K̂;Rq)

≤ c ‖A−1
K ‖ℓ2‖J−1

K ‖jℓ2 |det(JK)| 1p ‖v̂‖Lr(K̂;Rq)

≤ c ‖AK‖ℓ2‖A−1
K ‖ℓ2‖J−1

K ‖jℓ2 |det(JK)| 1p− 1
r ‖v‖Lr(K;Rq)

≤ c h
−j+d( 1

p
− 1

r
)

K ‖v‖Lr(K;Rq).

Taking j = l proves (12.1) for m = 0.
(3) Let now m ∈ {0: l}. Let α be a multi-index of length l, i.e., |α| = l. One
can find two multi-indices β and γ such that α = β + γ with |γ| = m and
|β| = l −m. It follows from Step (2) that

‖∂αv‖Lp(K;Rq) = ‖∂β(∂γv)‖Lp(K;Rq) ≤ |∂γv|W l−m,p(K;Rq)

≤ c h
m−l+d( 1

p
− 1

r
)

K ‖∂γv‖Lr(K;Rq) ≤ c h
m−l+d( 1

p
− 1

r
)

K |v|Wm,r(K;Rq),

which proves (12.1) for every integer m ∈ {0:l}. ⊓⊔

Remark 12.2 (Scale invariance). Inverse inequalities are invariant when
K is dilated by any factor λ > 0. Indeed, the left-hand side of (12.1) scales

as λ−l+ d
p and the right-hand side as λm−l+d( 1

p
− 1

q
)λ−m+ d

q = λ−l+ d
p . This fact

is useful to verify the correctness of the exponent of hK in (12.1). ⊓⊔

Example 12.3 (Bound on gradient). Lemma 12.1 with l := 1, m := 0
yields

‖∇v‖Lp(K;Rq) ≤ c h−1
K ‖v‖Lp(K;Rq),

for all p ∈ [1,∞], all v ∈ PK , all K ∈ Th, and all h ∈ H. ⊓⊔

Example 12.4 (Lp vs. Lq-norms). Lemma 12.1 with m := 0, l := 0 yields

‖v‖Lp(K;Rq) ≤ c h
d( 1

p
− 1

r
)

K ‖v‖Lr(K;Rq), (12.3)

for all p, r ∈ [1,∞], all v ∈ PK , all K ∈ Th, and all h ∈ H. ⊓⊔

Proposition 12.5 (dof-based norm). There is c s.t.

c ‖v‖Lp(K;Rq) ≤ |K| 1p ‖A−1
K ‖ℓ2

(
max
i∈N

|σK,i(v)|
)
≤ c−1 ‖v‖Lp(K;Rq), (12.4)

for all p ∈ [1,∞], all v ∈ PK , all K ∈ Th, and all h ∈ H.
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Proof. See Exercise 12.3. ⊓⊔

Example 12.6 (dof-based norm). For any Lagrange finite element with
nodes (aK,i)i∈N , ‖v‖Lp(K;Rq) is uniformly equivalent to

h
d
p

K max
i∈N

‖v(aK,i)‖ℓ2(Rq),

where |K| 1p has been replaced by h
d
p

K owing to regularity of the mesh sequence.
For the Raviart–Thomas RTRTRTk,d element (see Chapter 14), inspection of the
dofs shows that ‖v‖Lp(K) is uniformly equivalent to

h
1
p

K max
F∈FK

‖v·nF ‖Lp(F ) + ‖Πk−1
K (v)‖Lp(K),

where nF is the unit normal vector orienting the face F of K, and Πk−1
K is

the L2(K)-orthogonal projection onto PPPk−1,d (k ≥ 1). For the Nédélec NNNk,d

element (see Chapter 15), ‖v‖Lp(K) is uniformly equivalent to

h
2
p

K max
E∈EK

‖v·τE‖Lp(E) + h
1
p

K max
F∈FK

‖Πk−1
K (v)×nF ‖Lp(F ) + ‖Πk−2

K (v)‖Lp(K),

where τE is the unit tangent vector orienting the edge E of K and Πk−2
K is

the L2(K)-orthogonal projection onto PPPk−2,d (k ≥ 2). ⊓⊔

Sharp estimates of the constant c appearing in the above inverse inequali-
ties can be important in various contexts. For instance, the hp-finite element
analysis requires to know how c behaves with respect to the polynomial de-
gree; see, e.g., Schwab [177]. It turns out that estimating c in terms of the
polynomial degree can be done in some particular cases. One of the earliest
known inverse inequalities with a sharp estimate on c is the Markov inequality
proved in the 1890s by Andrey Markov and Vladimir Markov for univariate
polynomials over the interval [−1, 1].

Lemma 12.7 (Markov inequality). Let k, l ∈ N with l ≤ k and k ≥ 1.
The following holds true for every univariate polynomial v ∈ Pk,1:

‖v(l)‖L∞(−1,1) ≤ C∞,k,l‖v‖L∞(−1,1), (12.5)

with C∞,k,l :=
k2(k2−12)...(k2−(l−1)2)

1·3...(2l−1) .

Setting l := 1 in (12.5) gives ‖v′‖L∞(−1,1) ≤ C∞,k‖v‖L∞(−1,1) with C∞,k :=
k2. This type of result can be extended to the multivariate case in any di-
mension. In particular, it is shown in Wilhelmsen [200] that

‖∇v‖
L∞(K̂) ≤

4k2

width(K̂)
‖v‖L∞(K̂), ∀v ∈ Pk,d, (12.6)
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for all compact convex sets K̂ in Rd with nonempty interior, where width(K̂)

is the width of K̂, i.e., the minimal distance between two parallel supporting
hyperplanes of K̂; see also Kroó and Révész [129].

Results are also available for the L2-Markov inequality in the univariate
and multivariate cases; see Harari and Hughes [112], Schwab [177], Kroó [128],
Özişik et al. [155]. For instance, it is shown in [177, Thm. 4.76] that

‖v′‖L2(−1,1) ≤ C2,k‖v‖L2(−1,1), ∀v ∈ Pk,1, (12.7)

with C2,k := k((k+1)(k+ 1
2 ))

1
2 . Sharp estimates of the constant C2,k can be

derived by computing the largest eigenvalue of the stiffness matrix A of order

(k+1) with entries Amn :=
∫ 1

−1
(L̃m)′(t)(L̃n)

′(t) dt for allm,n ∈ {0:k}, where
L̃m :=

(
2m+1

2

) 1
2 Lm, Lm being the Legendre polynomial from Definition 6.1,

i.e., {L̃m}m∈{0:k} is an L2-orthonormal basis of Pk,1. For instance, it is found

in [155] that C2,1 = 3, C2,2 = 15, C2,3 = 45+
√
1605

2 , and C2,4 = 105+3
√
805

2 .

The multivariate situation is slightly more complicated, but when K̂ is the
unit triangle or the unit square, it is shown in [177] that

‖∇v‖
L2(K̂) ≤ c k2‖v‖L2(K̂), ∀v ∈ Pk,2, (12.8)

where c is uniform with respect to k. By numerically evaluating the largest
eigenvalue of the stiffness matrix assembled from an L2-orthonormal basis of
Pk,2 on the reference triangle K̂, it is shown in [155] that

‖∇v‖L2(K) ≤ C2,k
|∂K|
|K| ‖v‖L2(K), k ∈ {1, 2, 3, 4}, (12.9)

for every triangle K, with C2,1 :=
√
6 ∼ 2.449, C2,2 := 3

√
5
2 ∼ 4.743, C2,3 ∼

7.542, and C2,4 ∼ 10.946. Values of C2,k for tetrahedra with k ∈ {1:4} are
also given in [155].

12.2 Inverse inequalities on faces

Let FK be the collection of the faces of a mesh cell K ∈ Th.

Lemma 12.8 (Discrete trace inequality). Assume that P̂ ⊂ L∞(K̂;Rq).
There is c s.t. the following holds true:

‖v‖Lp(F ;Rq) ≤ c h
− 1

p
+d( 1

p
− 1

r
)

K ‖v‖Lr(K;Rq), (12.10)

for all p, r ∈ [1,∞], all v ∈ PK , all K ∈ Th, all F ∈ FK , and all h ∈ H.
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Proof. Let v̂ := ψK(v). Then ‖v‖Lp(F ;Rq) ≤ ‖A−1
K ‖ℓ2

(
|F |
|F̂ |

) 1
p ‖v̂‖Lp(F̂ ;Rq). Us-

ing norm equivalence in P̂ , we infer that ‖v̂‖Lp(F̂ ;Rq) ≤ ĉ‖v̂‖Lp(K̂;Rq). Hence,

‖v‖Lp(F ;Rq) ≤ c′‖AK‖ℓ2‖A−1
K ‖ℓ2

(
|F |
|F̂ |

|K̂|
|K|

) 1
p ‖v‖Lp(K;Rq). The regularity of

the mesh sequence yields (12.10) if p = r. The result for r 6= p follows
from (12.3). ⊓⊔

Again, it can be important to have an accurate estimate of the constant c
appearing in the discrete trace inequality (12.10). For instance, this constant
is invoked to determine a minimal threshold on the stability parameter that is
used to enforce boundary conditions weakly in the boundary penalty method
and the discontinuous Galerkin method for elliptic PDEs; see Chapters 37
and 38. It is indeed possible to estimate c in the Hilbertian setting (with
p = q = 2), when K is a simplex or a cuboid. We start with the case of the
cuboid; see Canuto and Quarteroni [57], Bernardi and Maday [22].

Lemma 12.9 (Discrete trace inequality in cuboid). Let K be a cuboid
in Rd and let F ∈ FK. The following holds true for all v ∈ Qk,d:

‖v‖L2(F ) ≤ (k + 1)|F | 12 |K|− 1
2 ‖v‖L2(K). (12.11)

Proof. We first consider the reference hypercube K̂ := [−1, 1]d and the

face F̂ := {x̂d = −1}. Recall the rescaled Legendre polynomials L̃m :=(
2m+1

2

) 1
2 Lm, i.e., {L̃m}m∈{0:k} is an L2-orthonormal basis of Qk,1 = Pk,1.

An L2-orthonormal basis of Qk,d is obtained by constructing the tensor prod-
uct of this one-dimensional basis. Let v̂ ∈ Qk,d and write

v̂(x̂) =
∑

i1∈{0:k}
. . .

∑

id∈{0:k}
v̂i1...id L̃i1(x̂1) . . . L̃id(x̂d).

Let V ∈ R(k+1)d be the coordinate vector of v̂ in this tensor-product basis.
Using orthonormality, we infer that

∫

F̂

v̂(x̂)2 dŝ = V TT V,

where the (k + 1)d×(k + 1)d symmetric matrix T is block-diagonal with
(k+1)d−1 diagonal blocks all equal to the rank-one matrix U := UUT where
U = (L̃0(−1), . . . , L̃k(−1))T. As a result, the largest eigenvalue of T is

λmax(T ) = λmax(U) = ‖U‖2ℓ2(Rk+1) =
∑

m∈{0:k}

2m+ 1

2
=

(k + 1)2

2
.

Since V TV = ‖v̂‖2
L2(K̂)

by orthonormality of the basis, we infer that
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‖v̂‖2
L2(F̂ )

≤ λmax(T )‖v̂‖2
L2(K̂)

= 1
2 (k + 1)2‖v̂‖2

L2(K̂)
.

Finally, we obtain (12.11) by mapping the above estimate back to the cuboid

K and by observing that |K̂| = 2|F̂ |. ⊓⊔
Lemma 12.10 (Discrete trace inequality in simplices). Let K be a
simplex in Rd and let F ∈ FK . The following holds true for all v ∈ Pk,d:

‖v‖L2(F ) ≤
(
(k + 1)(k + d)d−1

) 1
2 |F | 12 |K|− 1

2 ‖v‖L2(K). (12.12)

Proof. See Warburton and Hesthaven [196]. ⊓⊔

12.3 Functional inequalities in meshes

This section presents two important functional inequalities: the Poincaré–
Steklov inequality for functions having zero mean-value over a mesh cell and
the multiplicative trace inequality for functions having a trace at the bound-
ary of a mesh cell.

12.3.1 Poincaré–Steklov inequality in cells

Lemma 12.11 (Poincaré–Steklov). Let K ∈ Th and assume that K is a
convex set. Then for all v ∈ H1(K) with vK := 1

|K|
∫
K v dx, we have

‖v − vK‖L2(K) ≤ π−1hK |v|H1(K). (12.13)

Proof. This is a paraphrase of Lemma 3.24. ⊓⊔
Lemma 12.12 (Fractional Poincaré–Steklov). Let p ∈ [1,∞), r ∈ (0, 1),
and let K ∈ Th. Then for all v ∈ W r,p(K) with vK := 1

|K|
∫
K
v dx, we have

‖v − vK‖Lp(K) ≤ hsK

(
hdK
|K|

) 1
p

|v|W r,p(K). (12.14)

Proof. This is a paraphrase of Lemma 3.26. ⊓⊔
Corollary 12.13 (Polynomial approximation). Assume that the mesh
sequence (Th)h∈H is shape-regular. Let k ∈ N. There is c s.t. for every real
numbers r ∈ [0, k + 1] and p ∈ [1,∞) if r 6∈ N and p ∈ [1,∞] if r ∈ N, every
integer m ∈ {0:⌊r⌋} (where ⌊r⌋ denotes the largest integer n ∈ N s.t. n ≤ r),
all v ∈ W r,p(K), all K ∈ Th, and all h ∈ H,

inf
q∈Pk,d

|v − q|Wm,p(K) ≤ c hr−m
K |v|W r,p(K), (12.15)

where the mesh cells are supposed to be convex sets if r ≥ 1.



Part III. Finite element interpolation 137

Proof. If m = r, there is nothing to prove, so let us assume that m < r. If
r ∈ (0, 1), we have m = 0, and (12.15) follows from the fractional Poincaré–
Steklov (12.14) and the regularity of the mesh sequence. If r = 1, we only
need to consider the case m = 0 (since otherwise m = 1 = r), and (12.15)
follows from the Poincaré–Steklov inequality (12.13) and the convexity of K.
If k = 0, the proof is complete. Otherwise, k ≥ 1 and let us assume now
that r > 1. Let ℓ ∈ N be s.t. ℓ := ⌈r⌉ − 1 (where ⌈r⌉ denotes the smallest
integer n ∈ N s.t. n ≥ r). Notice that we have m ≤ ℓ ≤ k and 1 ≤ ℓ. The
key idea is to take q := πℓ(v) ∈ Pℓ,d ⊂ Pk,d since ℓ ≤ k, where πℓ(v) is
defined by

∫
K ∂α(v − πℓ(v)) dx = 0 for all α ∈ Nd of length at most ℓ (see

Exercise 11.8), and then to invoke the above Poincaré–Steklov inequalities in
K. Since ∂α(v−πℓ(v)) has zero mean-value onK for every multi-index α ∈ Nd

of lengthm with 0 ≤ m ≤ ℓ−1, repeated applications of the Poincaré–Steklov
inequality (12.13) (and the convexity of K) imply that

|v − πℓ(v)|Wm,p(K) ≤ c hℓ−m
K |v − πℓ(v)|W ℓ,p(K).

Since ∂α(v− πℓ(v)) has zero mean-value on K for any multi-index α ∈ Nd of
length ℓ as well, we can apply one more time either (12.13) or (12.14) to the
right-hand side. If r ∈ N, we invoke the convexity of K and apply (12.13) to
obtain (12.15). If r 6∈ N, we apply (12.14) and invoke the regularity of the
mesh sequence to obtain (12.15). ⊓⊔
Remark 12.14 (Comparison). The estimate (12.15) is similar in spirit to
the Bramble–Hilbert lemma (Lemma 11.9), except that in Lemma 11.9 it is
not known how the constant c depends onK. This difficulty was circumvented
in Theorem 11.13 by using that all the mesh cells are generated from a fixed
reference cell. This assumption is not used in the proof of (12.15), which
instead assumes the mesh cells to be convex sets. The estimate (12.15) can
be extended to (connected) cells that can be partitioned into a uniformly
finite number of convex subsets (e.g., simplices). The key point to establish
this result is that the Poincaré–Steklov inequality (12.13) can be generalized
to such sets; see Remark 22.11. ⊓⊔

12.3.2 Multiplicative trace inequality

Let K ∈ Th and let F ∈ FK be a face of K. Consider a function v ∈ W 1,p(K).
Then v has a trace in Lp(F ) (see Theorem 3.10). The following result gives an
estimate of ‖v‖Lp(F ) in terms of powers of ‖v‖Lp(K) and ‖∇v‖Lp(K) (hence
the name multiplicative).

Lemma 12.15 (Multiplicative trace inequality). Let (Th)h∈H be a
shape-regular sequence of affine simplicial meshes in Rd. There is c s.t. for
all p ∈ [1,∞], all v ∈W 1,p(K), all K ∈ Th, all F ∈ FK , and all h ∈ H,

‖v‖Lp(F ) ≤ c ‖v‖1−
1
p

Lp(K)

(
h
− 1

p

K ‖v‖
1
p

Lp(K) + ‖∇v‖
1
p

Lp(K)

)
. (12.16)
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Proof. Let K ∈ Th and v ∈ W 1,p(K). Assume first that p ∈ [1,∞). Let F
be a face of K and let zF be the vertex of K opposite to F . Consider the

Raviart–Thomas function θF (x) :=
|F |
d|K|(x− zF ) (see §14.1). One can verify

that the normal component of θF is equal to 1 on F and 0 on the other faces

of K. Since ∇·θF = |F |
|K| , we infer using the divergence theorem that

‖v‖pLp(F ) =

∫

∂K

|v|p(θF ·n) ds =
∫

K

∇·(|v|pθF ) dx

=

∫

K

(
|v|p∇·θF + pv|v|p−2θF ·∇v

)
dx

=
|F |
|K| ‖v‖

p
Lp(K) +

p

d

|F |
|K|

∫

K

v|v|p−2(x− zF )·∇v dx.

Using Hölder’s inequality and introducing the length ℓ⊥F defined as the largest
length of an edge of K having zF as an endpoint, we infer that

‖v‖pLp(F ) ≤
|F |
|K|‖v‖

p
Lp(K) +

p

d

|F |ℓ⊥F
|K| ‖v‖p−1

Lp(K)‖∇v‖Lp(K),

which implies the bound (12.16) using the regularity of the mesh sequence

and the fact that p
1
p ≤ e

1
e < 3

2 . Finally, the bound for p = ∞ is obtained by
passing to the limit p → ∞ in (12.16) since c is uniform w.r.t. p and since
limp→∞ ‖·‖Lp(K) = ‖·‖L∞(K). ⊓⊔

Remark 12.16 (Literature). The idea of using a Raviart–Thomas func-
tion to prove (12.16) can be traced to Monk and Süli [146, App. B] and
Carstensen and Funken [62, Thm. 4.1]. See also Ainsworth [5, Lem. 10] and
Veeser and Verfürth [193, Prop. 4.2]. ⊓⊔

Remark 12.17 (Application). Let IK : V (K) → PK be an interpola-
tion operator s.t. W 1,p(K) →֒ V (K), p ∈ [1,∞], and |v − IK(v)|Wm,p(K) ≤
chr−m

K |v|W r,p(K) for all r ∈ {1:k+1}, k ≥ 0, m ∈ {0, 1}, all v ∈ W r,p(K), all
K ∈ Th, and all h ∈ H. The multiplicative trace inequality (12.16) can then
be used to estimate the approximation properties of IK in Lp(F ). Combining
(12.16) with the above estimate on |v − IK(v)|Wm,p(K) gives

‖v − IK(v)‖Lp(F ) ≤ c h
r− 1

p

K |v|W r,p(K).

When IK := Ib
K is the L2-orthogonal projection built using Pk,d (see §11.5.3),

it is shown in Chernov [67, Thm. 1.1] that c decays like k−r+ 1
2 for p = 2. ⊓⊔

Remark 12.18 (Nonsimplicial cells). Lemma 12.15 can be extended to
nonsimplicial cells s.t. one can find a vector-valued function θF with nor-
mal component equal to 1 on F and 0 on the other faces, and satisfying
hK‖∇·θF‖L∞(K) + ‖θF‖L∞(K) ≤ c uniformly w.r.t. F , K, and h. ⊓⊔
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Remark 12.19 (Fractional trace inequality). The multiplicative trace
inequality from Lemma 12.15 can be extended to functions in fractional
Sobolev spaces. Let p ∈ (1,∞) and s ∈ ( 1p , 1) (we exclude the case s = 1

since it is already covered by Lemma 12.15). Functions in W s,p(K) have
traces in Lp(F ) for every face F of K (see Theorem 3.10). Then one can
show (see Exercise 12.6 or Ciarlet [73, Prop. 3.1] and the work by the au-
thors [97, Lem. 7.2]) that there is c s.t. for all v ∈ W s,p(K), all K ∈ Th, all
F ∈ FK , and all h ∈ H,

‖v‖Lp(F ) ≤ c

(
h
− 1

p

K ‖v‖Lp(K) + h
s− 1

p

K |v|W s,p(K)

)
. (12.17)

The constant c is uniform w.r.t. s and p as long as sp is bounded from below
away from 1, but c can grow unboundedly as sp ↓ 1. ⊓⊔

Exercises

Exercise 12.1 (ℓp vs. ℓr). Let p, r be two nonnegative real numbers.
Let {ai}i∈I be a finite sequence of nonnegative numbers. Set ‖a‖ℓp(RI) :=

(
∑

i∈I a
p
i )

1
p and ‖a‖ℓr(RI) := (

∑
i∈I a

r
i )

1
r . (i) Prove that ‖a‖ℓp(RI ) ≤ ‖a‖ℓr(RI )

for r ≤ p. (Hint : set θi := ari /‖a‖rℓr(RI ).) (ii) Prove that ‖a‖ℓp(RI) ≤
card(I)

r−p
pr ‖a‖ℓr(RI) for r > p.

Exercise 12.2 (Lp-norm of shape functions). Let θK,i, i ∈ N , be a local
shape function. Let p ∈ [1,∞]. Assume that (Th)h∈H is shape-regular. Prove

that ‖θK,i‖Lp(K) is equivalent to h
d/p
K uniformly w.r.t. K ∈ Th and h ∈ H.

Exercise 12.3 (dof norm). Prove Proposition 12.5. (Hint : use Lemma 11.7.)

Exercise 12.4 (Inverse inequality). (i) Let k ≥ 1, p ∈ [1,∞], let K̂ :=

{(x̂1, . . . , x̂d) ∈ (0, 1)d | ∑i∈{1:d} x̂i ≤ 1}, and set ĉk,p := supv̂∈Pk,d

‖∇v̂‖
Lp(K̂)

‖v̂‖
Lp(K̂)

.

Explain why ĉk,p is finite. (ii) Let K be a simplex in Rd and let ρK denote the

diameter of its largest inscribed ball. Show that ‖∇v‖Lp(K) ≤ ĉk,p
√
2

ρK
‖v‖Lp(K)

for all v ∈ Pk,d ◦ TK , where TK : K̂ → K is the geometric mapping. (Hint :
use (9.8a) and Lemma 11.1.)

Exercise 12.5 (Markov inequality). (i) Justify that the constant C2,k in
the Markov inequality (12.7) can be determined as the largest eigenvalue
of the stiffness matrix A. (ii) Compute numerically the constant C2,k for
k ∈ {1, 2, 3}.

Exercise 12.6 (Fractional trace inequality). Prove (12.17). (Hint : use a

trace inequality in W s,p(K̂).)
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Exercise 12.7 (Mapped polynomial approximation). Let (K̂, P̂ , Σ̂) be

a reference finite element such Pk,d ⊂ P̂ , k ∈ N. Let Th be a member of a

shape-regular mesh sequence. Let TK(K̂) = K ∈ Th and let (K,PK , ΣK) be
the finite element generated by the geometric mapping TK and the functional
transformation ψK(v) := AK(v ◦ TK). Recall that PK = ψ−1

K (P̂ ). Show that
there is c s.t.

inf
q∈PK

|v − q|Wm,p(K) ≤ c hr−m
K |v|W r,p(K), (12.18)

for all r ∈ [0, k + 1], all p ∈ [1,∞) if r 6∈ N or all p ∈ [1,∞] if r ∈ N, every
integer m ∈ {0:⌊r⌋}, all v ∈ W r,p(K), all K ∈ Th, and all h ∈ H, where the
mesh cells are supposed to be convex sets if r ≥ 1. (Hint : use Lemma 11.7
and Corollary 12.13.)

Exercise 12.8 (Trace inequality). Let U be a Lipschitz domain in Rd.
Prove that there are c1(U) and c2(U) such that ‖v‖Lp(∂U) ≤ c1(U)‖v‖Lp(U)+

c2(U)‖∇v‖
1
p

Lp(U)‖v‖
1− 1

p

Lp(U)) for all p ∈ [1,∞) and all v ∈ W 1,p(U). (Hint :

accept as a fact that there exists a smooth vector field N ∈ C1(U) and
c0(U) > 0 such that (N ·n)|∂U ≥ c0(U) and ‖N(x)‖ℓ2(Rd) = 1 for all x ∈ U .)

Exercise 12.9 (Weighted inverse inequalities). Let k ∈ N. (i) Prove

that ‖(1− t2) 1
2 v′‖L2(−1,1) ≤

(
k(k+1)

) 1
2 ‖v‖L2(−1,1) for all v ∈ Pk,1. (Hint : let

L̃m :=
(
2m+1

2

)1/2
Lm, Lm being the Legendre polynomial from Definition 6.1,

and prove that
∫ 1

−1(1− t2)(L̃m)′(t)(L̃n)
′(t) dt = δmnm(m+1) for every inte-

gers m,n ∈ {0:k}.) (ii) Prove that ‖v‖L2(−1,1) ≤ (k + 2)‖(1− t2)
1
2 v‖L2(−1,1)

for all v ∈ Pk,1. (Hint : consider a Gauss–Legendre quadrature with lQ :=
k + 2 and use the fact that the rightmost Gauss–Legendre node satisfies
ξlQ ≤ cos( π

2lQ
).) Note: see also Verfürth [195].


