
Part III, Chapter 14

H(div) finite elements

The goal of this chapter is to construct Rd-valued finite elements (K,P , Σ)
with d ≥ 2 such that (i) PPPk,d := [Pk,d]

d ⊂ P for some k ≥ 0 and (ii) the
degrees of freedom (dofs) in Σ fully determine the normal components of
the polynomials in P on all the faces of K. The first requirement is key for
proving convergence rates on the interpolation error. The second one is key
for constructing H(div)-conforming finite element spaces (see Chapter 19).
The finite elements introduced in this chapter are used, e.g., in Chapter 51
to approximate Darcy’s equations which constitute a fundamental model for
porous media flows. The focus here is on defining a reference element and
generating finite elements on the mesh cells. The estimation of the inter-
polation error is done in Chapters 16 and 17. We detail the construction for
the simplicial Raviart–Thomas finite elements. Some alternative elements are
outlined at the end of the chapter.

14.1 The lowest-order case

We start by considering the lowest-order Raviart–Thomas finite element. Let
d ≥ 2 be the space dimension, and define the polynomial space

RTRTRT0,d := PPP0,d ⊕ xP0,d. (14.1)

Since the above sum is indeed direct, RTRTRT0,d is a vector space of dimension
dim(RTRTRT0,d) = d + 1. A basis of RTRTRT0,2 is

{(
1
0

)
,
(
0
1

)
,
(
x1
x2

)}
. The space RTRTRT0,d

has several interesting properties. (a) One has PPP0,d ⊂ RTRTRT0,d in agreement
with the first requirement stated above. (b) If v ∈ RTRTRT0,d is divergence-free,
then v is constant. (c) If H is an affine hyperplane of Rd with normal vector
νH , then the function v·νH is constant on H for all v ∈ RTRTRT0,d. Writing
v(x) = a+ bx with a ∈ Rd and b ∈ R, we indeed have (v(x1)−v(x2))·νH =
b(x1 − x2)·νH = 0 for all x1,x2 ∈ H .
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Let K be a simplex in Rd and let FK be the collection of the faces of K.
Each face F ∈ FK is oriented by a fixed unit normal vector nF , and we set
νF := |F |nF . Let Σ be the collection of the following linear forms acting on
RTRTRT0,d:

σf
F (v) :=

1

|F |

∫

F

(v·νF ) ds, ∀F ∈ FK . (14.2)

Since v·νF is constant on F , σf
F (v) = 0 implies that v|F ·νF = 0 in agreement

with the second requirement stated above. Note that we could have written
more simply σf

F (v) :=
∫
F (v·nF ) ds, but the expression (14.2) is introduced

to be consistent with later notation. In any case, the unit of σf
F (v) is a surface

times the dimension of v. A graphic representation of the dofs is shown in
Figure 14.1.

Fig. 14.1 RTRTRT0,d finite element in dimensions two (left) and three (right). Only visible
degrees of freedom are shown in dimension three. (The arrows have been drawn outward
under the assumption that the vectors νF point outward. The orientation of the arrows
must be changed if some vectors νF point inward.)

Proposition 14.1 (Finite element). (K,RTRTRT0,d, Σ) is a finite element.

Proof. Since dim(RTRTRT0,d) = card(Σ) = d + 1, we just need to prove that
the only function v ∈ RTRTRT0,d that annihilates the dofs in Σ is zero. Since
v|F ·νF is constant and has zero mean-value on F , we have v|F ·νF = 0 for
all F ∈ FK . Moreover, the divergence theorem implies that

∫
K
(∇·v) dx =∑

F∈FK

∫
F (v·nF ) ds = 0. Since ∇·v ∈ P0,d, we infer that ∇·v is zero, so

that v ∈ PPP0,d. Hence, v·νF vanishes identically in K for all F ∈ FK . Since
span{νF}F∈FK

= Rd (see Exercise 7.3(iv)), we conclude that v = 0. ⊓⊔

Since the volume of a simplex is |K| = 1
d |F |h⊥F for all F ∈ FK where h⊥F

is the height of K measured from the vertex zF opposite to F , one readily
verifies that the shape functions are

θfF (x) :=
ιF,K

d|K| (x− zF ), ∀x ∈ Rd, ∀F ∈ FK , (14.3)

where ιF,K := 1 if νF points outward and ιF,K := −1 otherwise (i.e., ιF,K =
nF ·nK where nK is the outward unit normal to K). The normal component
of θfF is constant on each of the (d+1) faces of K (as expected), it is equal to
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1 on F and to 0 on the other faces. See Exercise 14.1 for additional properties
of the RTRTRT0,d shape functions.

14.2 The polynomial space RTRTRTk,d

We now generalize the construction of §14.1 to an arbitrary polynomial order
k ∈ N. Let d ≥ 2 be the space dimension. Recall from §7.3 the multi-index
set Ak,d := {α ∈ Nd | |α| ≤ k} where |α| := α1 + . . . + αd. We additionally
introduce the subset AH

k,d := {α ∈ Ak,d | |α| = k}. For instance, A1,2 =

{(0, 0), (1, 0), (0, 1)} and AH
1,2 = {(1, 0), (0, 1)}.

Definition 14.2 (Homogeneous polynomials). A polynomial p ∈ Pk,d

is said to be homogeneous of degree k if p(x) =
∑

α∈AH
k,d
aαx

α with real

coefficients aα. The real vector space composed of homogeneous polynomials
is denoted by PH

k,d or PH
k when the context is unambiguous.

Lemma 14.3 (Properties of PH
k,d). We have x·∇q = kq (Euler’s identity)

and ∇·(xq) = (k + d)q for all q ∈ PH
k,d.

Proof. By linearity, it suffices to verify the assertion with q(x) := xα

for all α ∈ AH
k,d. We have x·∇q =

∑
i∈{1:d} αixix

α1
1 . . . xαi−1

i . . . xαd

d =

(
∑

i∈{1:d} αi)q = kq. Moreover, the assertion for ∇·(xq) follows from the

observation that ∇·x = d and ∇·(xq) = q∇·x+ x·∇q. ⊓⊔

Definition 14.4 (RTRTRTk,d). Let k ∈ N and let d ≥ 2. We define the following
real vector space of Rd-valued polynomials:

RTRTRTk,d := PPPk,d ⊕ xPH
k,d. (14.4)

The above sum is direct since polynomials in xPH
k,d are members of PPPH

k+1,d,
whereas the degree of any polynomial in PPPk,d does not exceed k.

Example 14.5 (k = 1, d = 2). dim(RTRTRT1,2) = 8 and
{(

1
0

)
,
(
x1
0

)
,
(
x2
0

)
,
(
0
1

)
,

(
0
x1

)
,
(

0
x2

)
,
(

x2
1

x1x2

)
,
( x1x2

x2
2

)}
is a basis of RTRTRT1,2. ⊓⊔

Lemma 14.6 (Dimension of RTRTRTk,d). dim(RTRTRTk,d) = (k+ d+1)
(
k+d−1

k

)
, in

particular dim(RTRTRTk,2) = (k+1)(k+3) and dim(RTRTRTk,3) =
1
2 (k+1)(k+2)(k+4).

Proof. Since dim(Pk,d) =
(
k+d
k

)
, dim(PH

k,d) =
(
k+d−1

k

)
, and the sum in (14.4)

is direct, dim(RTRTRTk,d) = d
(
k+d
k

)
+
(
k+d−1

k

)
= (k + d+ 1)

(
k+d−1

k

)
. ⊓⊔

Lemma 14.7 (Trace space). Let H be an affine hyperplane in Rd with
normal vector nH , and let TH : Rd−1 → H be an affine bijective mapping.
Then v|H ·nH ∈ Pk,d−1 ◦ T−1

H for all v ∈ RTRTRTk,d.
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Proof. Let v ∈ RTRTRTk,d with v = p+xq, p ∈ PPPk,d, and q ∈ PH
k,d. Let x ∈ H and

set y := T−1
H (x). Since the quantity x·nH is constant, say x·nH =: cH , we

infer that (v|H ·nH)(x) = (p|H ·nH)(x) + (x·nH)q(x) = ((p ◦ TH)·nH)(y) +
cH(q ◦TH)(y). Hence, (v|H ·nH) ◦TH = (p ◦TH)·nH + cH(q ◦TH), and both
terms in the sum are in Pk,d−1 by virtue of Lemma 7.10. ⊓⊔

Remark 14.8 (TH). Consider a second affine bijective mapping T̃H :
Rd−1 → H . Since S := T−1

H ◦T̃H is an affine bijective mapping fromRd−1 onto

itself, we have Pk,d−1 ◦S = Pk,d−1. Hence, Pk,d−1 ◦T−1
H = Pk,d−1 ◦S ◦ T̃−1

H =

Pk,d−1 ◦ T̃−1
H . This proves that the assertion of Lemma 14.7 is independent

of the mapping TH . ⊓⊔

Lemma 14.9 (Divergence). ∇·v ∈ Pk,d for all v ∈ RTRTRTk,d, and if the func-
tion v is divergence-free, then v ∈ PPPk,d.

Proof. That ∇·v ∈ Pk,d follows from vi ∈ Pk+1,d for all i ∈ {1:d}. Let
v ∈ RTRTRTk,d be divergence-free. Since v ∈ RTRTRTk,d, there are p ∈ PPPk,d and q ∈ PH

k,d

such that v = p+xq. Owing to Lemma 14.3, we infer that ∇·p+(k+d)q = 0,
which implies that q = 0 since PH

k,d ∩ Pk−1,d = {0} if k ≥ 1. The argument
for k = 0 is trivial. Hence, v = p ∈ PPPk,d. ⊓⊔

14.3 Simplicial Raviart–Thomas elements

Let k ∈ N and let d ≥ 2. Let K be a simplex in Rd. Each face F ∈ FK of
K is oriented by the normal vector νF := |F |nF (so that ‖νF ‖ℓ2 = |F |).
The simplex K itself is oriented by the d vectors {νK,j := |Fj |nFj

}j∈{1:d}
where {Fj}j∈{1:d} are the d faces of K sharing the vertex with the lowest

index. Note that {νK,j}j∈{1:d} is a basis of Rd (see Exercise 7.3(iv)), and

this basis coincides with the canonical Cartesian basis of Rd when K is the
unit simplex. The dofs of the RTRTRTk,d finite element involve integrals over the
faces of K or over K itself (for k ≥ 1). Since the face dofs require to evaluate
moments against (d−1)-variate polynomials, we introduce an affine bijective

mapping TF : Ŝd−1 → F for all F ∈ FK , where Ŝd−1 is the unit simplex of
Rd−1; see Figure 14.2. For instance, after enumerating the d vertices of Ŝd−1

and the (d + 1) vertices of K, we can define TF such that the d vertices of

Ŝd−1 are mapped to the d vertices of F with increasing indices.

Definition 14.10 (dofs). We denote by Σ the collection of the following
linear forms acting on RTRTRTk,d:

σf
F,m(v) :=

1

|F |

∫

F

(v·νF )(ζm ◦ T−1
F ) ds, ∀F ∈ FK , (14.5a)

σc
j,m(v) :=

1

|K|

∫

K

(v·νK,j)ψm dx, ∀j ∈ {1:d}, (14.5b)
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TF

F

TF

K Ŝ2 K

F
Ŝ1

Fig. 14.2 Reference face Ŝd−1 and mapping TF for d = 2 (left, the face F is indicated in
bold) and d = 3 (right, the face F is highlighted in gray).

where {ζm}m∈{1:nf
sh} is a basis of Pk,d−1 with nf

sh := dim(Pk,d−1) =
(
d+k−1

k

)

and {ψm}m∈{1:nc
sh} is a basis of Pk−1,d with nc

sh := dim(Pk−1,d) =
(
d+k−1
k−1

)

if k ≥ 1. We regroup the dofs as follows:

Σf
F := {σf

F,m}m∈{1:nf
sh}, ∀F ∈ FK , (14.6a)

Σc := {σc
j,m}(j,m)∈{1:d}×{1:nc

sh}. (14.6b)

Remark 14.11 (dofs). The unit of all the dofs is a surface times the di-
mension of v. We could also have written σc

j,m(v) := ℓ−1
K

∫
K(v·ej)ψm dx for

the cell dofs, where ℓK is a length scale of K and {ej}j∈{1:d} is the canonical

Cartesian basis of Rd. We will see that the definition (14.5b) is more natural
when using the contravariant Piola transformation to generate other finite
elements. The dofs are defined here on RTRTRTk,d. Their extension to some larger
space V (K) is addressed in Chapters 16 and 17. ⊓⊔
Lemma 14.12 (Invariance w.r.t. TF ). Assume that every affine bijective

mapping S : Ŝd−1 → Ŝd−1 leaves the basis {ζm}m∈{1:nf
sh
} globally invariant,

i.e., {ζm}m∈{1:nf
sh} = {ζm ◦ S}m∈{1:nf

sh}. Then for all F ∈ FK , the set Σf
F

is independent of the affine bijective mapping TF .

Proof. Let TF , T̃F be two affine bijective mappings from Ŝd−1 to F . Then
S := T−1

F ◦ T̃F is an affine bijective mapping from Ŝd−1 to Ŝd−1. Let m ∈
{1:nf

sh}. The invariance assumption implies that there exists ζn, n ∈ {1:nf
sh},

s.t. ζm ◦ S = ζn. Hence, with obvious notation we have

|F |σf
F,m(v) =

∫

F

(v·νF )(ζm ◦ T−1
F ) ds

=

∫

F

(v·νF )((ζm◦S)◦T̃−1
F ) ds =

∫

F

(v·νF )(ζn◦T̃−1
F ) ds = |F |σ̃f

F,n(v). ⊓⊔

Example 14.13 (Vertex permutation). For every affine bijective map-

ping S : Ŝd−1 → Ŝd−1, there is a unique permutation σ of the set {0:d−1}
s.t. S(ẑi) := ẑσ(i) for all i ∈ {0:d−1}, where {ẑi}i∈{0:d−1} are the vertices of

Ŝd−1. Then the above invariance holds true holds true iff all the vertices of
Ŝd−1 play symmetric roles when defining the basis functions {ζm}m∈{1:nf

sh}.

For instance, for d := 2, Ŝ1 := [0, 1], and k := 1, the basis {1, s} of P1,1 is
not invariant w.r.t. vertex permutation, but the basis {1− s, s} is. ⊓⊔
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A graphic representation of the dofs is shown in Figure 14.3. The number
of arrows on a face counts the number of moments of the normal component
considered over the face. The number of pairs of gray circles inside the triangle
counts the number of moments inside the cell (one circle for the component
along νK,1 and one for the component along νK,2).

Fig. 14.3 Degrees of freedom of RTRTRTk,d finite elements for d = 2 and k = 1 (left) or k = 2
(right) (assuming that all the normals point outward).

Lemma 14.14 (Face unisolvence). For all v ∈ RTRTRTk,d and all F ∈ FK ,

[σ(v) = 0, ∀σ ∈ Σf
F ] ⇐⇒ [v|F ·νF = 0 ]. (14.7)

Proof. The condition σ(v) = 0 for all σ ∈ Σf
F means that v|F ·νF is orthog-

onal to Pk,d−1 ◦T−1
F . Since Lemma 14.7 implies that v|F ·νF ∈ Pk,d−1 ◦ T−1

F ,
we infer that v|F ·νF = 0. ⊓⊔

Proposition 14.15 (Finite element). (K,RTRTRTk,d, Σ) is a finite element.

Proof. We have already established the assertion for k = 0. Let us consider
k ≥ 1. Observe first that the cardinality of Σ can be evaluated as follows:

card(Σ) = dnc
sh + (d+ 1)nf

sh = d

(
d+ k − 1

k − 1

)
+ (d+ 1)

(
d+ k − 1

k

)

=
(d+ k − 1)!

(d− 1)!(k − 1)!

(
1 +

d+ 1

k

)
= dim(RTRTRTk,d).

Hence, the statement will be proved once it is established that zero is the
only function in RTRTRTk,d that annihilates the dofs in Σ. Let v ∈ RTRTRTk,d be
such that σ(v) = 0 for all σ ∈ Σ. Owing to Lemma 14.14, we infer that
v|F ·νF = 0 for all F ∈ FK . This in turn implies that

∫
K v·(∇∇·v) dx =

−
∫
K
(∇·v)2 dx. Observing that ∇∇·v is in PPPk−1,d (recall that ∇·v ∈ Pk,d

from Lemma 14.9), the assumption that σ(v) = 0 for all σ ∈ Σc (i.e., v is
orthogonal to PPPk−1,d), together with the above identity imply that ∇·v = 0.
Using Lemma 14.9, we conclude that v ∈ PPPk,d and v|F ·νF = 0 for all F ∈ FK .
Let j ∈ {1:d}. Since νK,j = νFj

= |Fj |nFj
for some face Fj ∈ FK , we infer

that v(x)·νK,j = λj(x)rj(x) for all x ∈ K, where λj is the barycentric
coordinate of K associated with the vertex opposite to Fj (i.e., λj vanishes
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on Fj) and rj ∈ Pk−1,d; see Exercise 7.4(iv). The condition σ(v) = 0 for
all σ ∈ Σc implies that

∫
K(v·νK,j)rj dx = 0, which in turn means that

0 =
∫
K(v·νK,j)rj dx =

∫
K λjr

2
j dx, thereby proving that rj = 0 since λj

is positive in the interior of K. Hence, v·νK,j vanishes identically for all
j ∈ {1:d}. This proves that v = 0 since {νK,j}j∈{1:d} is a basis of Rd. ⊓⊔

The shape functions {θi}i∈N associated with the dofs {σi}i∈N defined
in (14.5) can be constructed by choosing a basis {φi}i∈N of the polynomial
space RTRTRTk,d and by inverting the corresponding generalized Vandermonde
matrix V as explained in Proposition 5.5. Recall that this matrix has entries
Vij = σj(φi) and that the i-th line of V−1 gives the components of the shape
function θi in the basis {φi}i∈N . The basis {φi}i∈N chosen in Bonazzoli and
Rapetti [31] (built by dividing the simplex into smaller sub-simplices following
the ideas in Rapetti and Bossavit [163], Christiansen and Rapetti [70]) is
particularly interesting since the entries of V−1 are integers. One could also
choose {φi}i∈N to be the hierarchical basis of RTRTRTk,d constructed in Fuentes
et al. [103, §7.3]. This basis can be organized into functions attached to the
faces of K and to K itself in such a way that the generalized Vandermonde
matrix V is block-triangular (notice though that this matrix is not block-
diagonal).

Remark 14.16 (Dof independence). As in Remark 7.20, we infer from
Exercise 5.2 that the interpolation operator Id

K associated with the RTRTRTk,d

element is independent of the bases {ζm}m∈{1:nf
sh} and {ψm}m∈{1:nc

sh} used

to define the dofs in (14.5). This operator is also independent of the mappings
TF and of the orientation vectors {νF }F∈FK

and {νK,j}j∈{1:d}. ⊓⊔

Remark 14.17 (Literature). The RTRTRTk,d finite element has been intro-
duced in Raviart and Thomas [164, 165] for d = 2; see also Weil [198, p. 127],
Whitney [199, Eq. (12), p. 139] for k = 0. The generalization to d ≥ 3 is
due to Nédélec [151]. The reading of [151] is highly recommended; see also
Boffi et al. [29, §2.3.1], Hiptmair [117], Monk [145, pp. 118-126]. The name
Raviart–Thomas seems to be an accepted practice in the literature. ⊓⊔

14.4 Generation of Raviart–Thomas elements

Let K̂ be the reference simplex in Rd. Let Th be an affine simplicial mesh. Let
K = TK(K̂) be a mesh cell, where TK : K̂ → K is the geometric mapping,
and let JK be the Jacobian matrix of TK . Let F ∈ FK be a face of K. We
have F = TK(F̂ ) for some face F̂ ∈ FK̂ . Owing to Theorem 10.8, it is possible

(using the increasing vertex-index enumeration) to orient the faces F and F̂
in a way that is compatible with the geometric mapping TK . This means that
the unit normal vectors nF and n̂F̂ satisfy (10.6b), i.e., nF = Φd

K(n̂F̂ ) with
Φd

K defined in (9.14a). In other words, we have
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nF ◦ TK|F̂ = ǫK
1

‖J−T

K n̂F̂ ‖ℓ2
J−T

K n̂F̂ , (14.8)

where ǫK := det(JK)
|det(JK)| = ±1. Recalling that νF := |F |nF , ν̂F̂ := |F̂ |n̂F̂ and

that |F | = |det(JK)|‖J−T

K n̂F̂ ‖ℓ2 |F̂ | owing to Lemma 9.12, we infer that

νF ◦ TK|F̂ = det(JK)J−T

K ν̂F̂ . (14.9)

Due to the role played by the normal component of vector fields on the
faces of K, we are going to use in Proposition 9.2 the contravariant Piola
transformation

ψd
K(v) := det(JK)J−1

K (v ◦ TK) (14.10)

to define Raviart–Thomas elements on K from a reference Raviart–Thomas
element defined on K̂. For scalar fields, we consider the pullback by the
geometric mapping, i.e., ψg

K(q) := q◦TK . Finally, we orientK and K̂ with the

d vectors {νK,j := |Fj |nFj
}j∈{1:d} and {ν̂K̂,j

:= |F̂j |n̂Fj
}j∈{1:d} associated

with the d faces of K and K̂ that share the vertex with the lowest index, i.e.,
we have Fj = TK(F̂j) for all j ∈ {1:d}. The above considerations show that
νK,j ◦ TK = det(JK)J−T

K ν̂K̂,j for all j ∈ {1:d}.

Lemma 14.18 (Transformation of dofs). Let v ∈ C0(K) and let q ∈
C0(K). The following holds true:

1

|F |

∫

F

(v·νF )q ds =
1

|F̂ |

∫

F̂

(ψd
K(v)·ν̂F̂ )ψ

g
K(q) dŝ, ∀F ∈ FK , (14.11a)

1

|K|

∫

K

(v·νK,j)q dx =
1

|K̂|

∫

K̂

(ψd
K(v)·ν̂K̂,j)ψ

g
K(q) dx̂, ∀j ∈ {1:d}. (14.11b)

Proof. The identity (14.11a) is nothing but (10.7a) from Lemma 10.4, which
itself is a reformulation of (9.15a) from Lemma 9.13 (the fact that TK is
affine is not used here). The proof of (14.11b) is similar since

∫

K

(v·νK,j)q dx =

∫

K̂

(v ◦ TK)·(νK,j ◦ TK)ψg
K(q)|det(JK)| dx̂

=

∫

K̂

(ψd
K(v)·ν̂K̂,j)ψ

g
K(q)|det(JK)| dx̂,

and since TK is affine, we have |K| = |det(JK)| |K̂|. ⊓⊔

Proposition 14.19 (Generation). Let (K̂, P̂ , Σ̂) be a simplicial RTRTRTk,d ele-
ment with face and cell dofs defined using the polynomial bases {ζm}m∈{1:nf

sh}
and {ψm}m∈{1:nc

sh} (if k ≥ 1) of Pk,d−1 and Pk−1,d, respectively, as in (14.5).
Assume that the geometric mapping TK is affine and that (14.9) holds true.
Then the finite element (K,PK , ΣK) generated using Proposition 9.2 with
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the contravariant Piola transformation (14.10) is a simplicial RTRTRTk,d finite
element with dofs

σf
F,m(v) =

1

|F |

∫

F

(v·νF )(ζm ◦ T−1
K,F ) ds, ∀F ∈ FK , (14.12a)

σc
j,m(v) =

1

|K|

∫

K

(v·νK,j)(ψm ◦ T−1
K ) dx, ∀j ∈ {1:d}, (14.12b)

where TK,F := TK|F̂ ◦TF̂ is the affine bijective mapping from Ŝd−1 to F that

maps the d vertices of Ŝd−1 to the d vertices of F with increasing indices.

Proof. See Exercise 14.4 for the proof that PK = RTRTRTk,d. Use Lemma 14.18
to prove (14.12a)-(14.12b). ⊓⊔

Remark 14.20 (Unit). Given some length unit L, the shape functions scale
as L1−d since the unit of all the dofs is Ld−1. ⊓⊔

Remark 14.21 (Nonaffine meshes). Proposition 9.2 together with the
map ψd

K defined in (14.10) can still be used to generate a finite element
(K,PK , ΣK) if the geometric mapping TK is nonaffine. The function space
PK and the dofs in ΣK then differ from those of the RTRTRTk,d element. ⊓⊔

14.5 Other H(div) finite elements

14.5.1 Brezzi–Douglas–Marini elements

Brezzi–Douglas–Marini (BDM) elements [49, 50] offer an interesting alter-
native to Raviart–Thomas elements since in this case the polynomial space
is P := PPPk,d ( RTRTRTk,d, k ≥ 1. This space is optimal from the approximation
viewpoint. The price to pay for this simplification is that the divergence oper-
ator ∇· is surjective from PPPk,d onto Pk−1,d only. This is not a limitation if the
functions one wants to interpolate are divergence-free (or have a divergence
that belongs to Pk−1,d).

Let K be a simplex in Rd. The dofs of BDM elements are attached to
the (d + 1) faces of K and to K itself (for k ≥ 2). The face dofs are the
same as for Raviart–Thomas elements, i.e., the linear forms σf

F,m defined

in (14.5a) for all F ∈ FK and every m ∈ {1:nf
sh} with nf

sh := dim(Pk,d−1).
Note that the cell dofs for Raviart–Thomas elements are moments against
a set of basis functions of PPPk−1,d, whereas those for BDM elements are mo-
ments against a set of basis functions of the Nédélec polynomial space NNNk−2,d

introduced in the next chapter (see §15.2). At this stage, it is sufficient to
know that PPPk−2,d ( NNNk−2,d ( PPPk−1,d and that dim(NNNk−2,2) = (k − 1)(k + 1)
and dim(NNNk−2,3) =

1
2 (k − 1)(k + 1)(k + 2) (see Lemma 15.7). We define
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σ̃c
m(v) :=

∫

K

v·ψ̃m dx, ∀m ∈ {1: ñc
sh}, (14.13)

where {ψ̃m}m∈{1: ñc
sh} is a basis of NNNk−2,d and ñc

sh := dim(NNNk−2,d). Let us set

Σ := {σf
F,m}F∈FK,m∈{1:nf

sh} ∪ {σ̃c
m}m∈{1: ñc

sh
}.

Proposition 14.22 (Finite element). (K,PPPk,d, Σ) is a finite element.

Proof. See Boffi et al. [29, p. 88]. ⊓⊔

Hierarchical basis functions for the BDM element are constructed in
Ainsworth and Coyle [6], Schöberl and Zaglmayr [176].

Remark 14.23 (Generation). Generating BDM elements also involves the
covariant Piola transformation ψc

K(w) := JTK(w ◦ TK) defined in (9.9b), so

that
∫
K
v·ψ̃m dx = ǫK

∫
K̂
ψd

K(v)·ψc
K(ψ̃m) dx̂ with ǫK := det(JK)

|det(JK)| = ±1. ⊓⊔

14.5.2 Cartesian Raviart–Thomas elements

Let us briefly review the Cartesian Raviart–Thomas finite elements. We refer
the reader to Exercise 14.6 for the proofs. For a multi-index α ∈ Nd, we
define the (anisotropic) polynomial space Qα1,...,αd

composed of d-variate
polynomials whose degree with respect to xi is at most αi for all i ∈ {1:d}.
Let k ∈ N and define

RTRTRT�

k,d := Qk+1,k,...,k× . . .×Qk,...,k,k+1. (14.14)

Since dim(Qk+1,k,...,k) = . . . = dim(Qk,...,k,k+1) = (k+2)(k+1)d−1, we have
dim(RTRTRT�

k,d) = d(k + 2)(k + 1)d−1. Moreover, one can verify that

∇·v ∈ Qk,d, v|H ·νH ∈ Qk,d−1◦T−1
H , (14.15)

for all v ∈ RTRTRT�

k,d and every affine hyperplane H in Rd with normal vector

νH parallel to one of the vectors of the canonical basis of Rd and where
TH : Rd−1 → H is any affine bijective mapping.

LetK be a cuboid in Rd. Each face F ∈ FK of K is oriented by the normal
vector νF with ‖νF‖ℓ2 = |F |. Let TF be an affine bijective mapping from
[0, 1]d−1 onto F . Let us orient K using νK,j := |Fj |ej for all j ∈ {1:d}, where
{ej}j∈{1:d} is the canonical basis of Rd and |Fj | is the measure of any of the
two faces of K supported in a hyperplane perpendicular to ej . Let Σ be the
set composed of the following linear forms:

σf
F,m(v) :=

1

|F |

∫

F

(v·νF )(ζm ◦ T−1
F ) ds, ∀F ∈ FK , (14.16a)

σc
j,m(v) :=

1

|K|

∫

K

(v·νK,j)ψj,m dx, ∀j ∈ {1:d}, (14.16b)
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where {ζm}m∈{1:nf
sh} is a basis of Qk,d−1 with nf

sh := (k + 1)d−1, and

{ψj,m}m∈{1:nc
sh
} is a basis of Qk,...,k,k−1,k,...,k with nc

sh := k(k + 1)d−1 if
k ≥ 1, with the index (k − 1) at the j-th position for all j ∈ {1:d}.

Proposition 14.24 (Finite element). (K,RTRTRT�

k,d, Σ) is a finite element.

Cartesian Raviart–Thomas elements can be generated for all the mesh
cells of an affine mesh composed of parallelotopes by using affine geometric
mappings and the contravariant Piola transformation (recall, however, that
orienting such meshes and making the orientation generation-compatible re-
quires some care; see Theorem 10.10).

Example 14.25 (Shape functions and dofs for RTRTRT�

0,d). Let K := [0, 1]d.
Let Fi and Fd+i be the faces defined by xi = 0 and xi = 1, respectively, for
all i ∈ {1:d}. Using the basis function ζ1 := 1 for Q0,d−1, the 2d dofs are
the mean-value of the normal component over each face of K, and the shape
functions are θfi(x) := (1 − xi)nFi

and θfd+i(x) := xinFi
for all i ∈ {1:d}.

The dofs are illustrated in Figure 14.4. ⊓⊔

Fig. 14.4 Degrees of freedom of the lowest-order Cartesian Raviart–Thomas element
RTRTRT�

0,d
in dimensions two (left) and three (right, only visible dofs are shown).

Remark 14.26 (Other elements). Alternative elements are the Carte-
sian Brezzi–Douglas–Marini elements in dimension two, the Brezzi–Douglas–
Durán–Fortin elements in dimension three (see [49, 50]), and their reduced
versions by Brezzi–Douglas–Fortin–Marini [51]. ⊓⊔

Exercises

Exercise 14.1 (RTRTRT0,d). (i) Prove that
∫
K ιF,Kθ

f
F dx = cF − cK , where θfF

is defined in (14.3), and cF , cK are the barycenters of F and K, respectively.
(Hint : use (14.3) and

∫
F
x ds = |F |cF .) Provide a second proof without

using (14.3). (Hint : fix e ∈ Rd, define φ(x) = (x−cF )·e, observe that∇φ = e,
and compute e·

∫
K
θfF dx.) (ii) Prove that

∑
F∈FK

|F |θfF (x) ⊗ nF = Id for
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all x ∈ K. (Hint : use (7.1).) (iii) Prove that v(x) = 〈v〉K + 1
d (∇·v)(x− cK)

for all v ∈ RTRTRT0,d, where 〈v〉K := 1
|K|
∫
K v dx is the mean value of v on K.

Exercise 14.2 (RTRTRT0,d in 3D). Let d = 3. Let Fi, i ∈ {0:3}, be a face of K
with vertices {ar,ap,aq} s.t.

(
(zq−zr)×(zp−zr)

)
·nK|Fi

> 0. (i) Prove that
∇λp×∇λq = zr−zi

6|K| and prove similar formulas for ∇λq×∇λr and ∇λr×∇λp.
(Hint : prove the formula in the reference simplex, then use Exercise 9.5.) (ii)
Prove that θfi = −2(λp∇λq×∇λr + λq∇λr×∇λp + λr∇λp×∇λq). Find the
counterpart of this formula if d = 2.

Exercise 14.3 (Piola transformation). (i) Let v ∈ C1(K) and q ∈
C0(K). Prove that

∫
K q∇·v dx =

∫
K̂
ψg
K(q)∇·ψd

K(v) dx̂. (ii) Show that∫
K v·θ dx = ǫK

∫
K̂
ψd

K(v)·ψc
K(θ) dx̂ for all θ ∈ C1(K).

Exercise 14.4 (Generating RTRTRTk,d). (i) Let c ∈ Rd, q ∈ PH
k,d, and A ∈

Rd×d′

. Show that there is r ∈ Pk−1,d′ such that q(Ay + c) = q(Ay) +
r(y). (ii) Defining s(y) := q(Ay), show that s ∈ PH

k,d′ . (iii) Prove that

(ψd
K)−1(RTRTRTk,d) ⊂ RTRTRTk,d. (iv) Prove the converse inclusion.

Exercise 14.5 (BDM). Verify that card(Σ) = dim(PPPk,d) for d ∈ {2, 3}.

Exercise 14.6 (Cartesian Raviart–Thomas element). (i) Propose a ba-
sis for RTRTRT�

0,2 and for RTRTRT�

0,3 in K := [0, 1]d. (ii) Prove (14.15). (iii) Prove
Proposition 14.24.


