
Part III, Chapter 15

H(curl) finite elements

The goal of this chapter is to construct Rd-valued finite elements (K,P , Σ)
with d ∈ {2, 3} such that (i) PPPk,d ⊂ P for some k ≥ 0 and (ii) the de-
grees of freedom (dofs) in Σ fully determine the tangential components of
the polynomials in P on all the faces of K. The first requirement is key for
proving convergence rates on the interpolation error. The second one is key
for constructing H(curl)-conforming finite element spaces (see Chapter 19).
The finite elements introduced in this chapter are used, e.g., in Chapter 43
to approximate (simplified forms of) Maxwell’s equations which constitute
a fundamental model in electromagnetism. The focus here is on defining a
reference element and generating finite elements on the mesh cells. The in-
terpolation error analysis is done in Chapters 16 and 17. We detail the con-
struction for the simplicial Nédélec finite elements of the first kind. Some
alternative elements are outlined at the end of the chapter.

15.1 The lowest-order case

Let us consider the lowest-order Nédélec finite element. Let d ∈ {2, 3} be the
space dimension, and define the polynomial space

NNN0,d := PPP0,d ⊕ SSS1,d, (15.1)

where SSS1,d := {q ∈ PPPH
1,d | q(x)·x = 0}, i.e.,

SSS1,2 := span
{(−x2

x1

)}
, SSS1,3 := span

{(
0

−x3
x2

)
,
( x3

0
−x1

)
,
(−x2

x1
0

)}
. (15.2)

The sum in (15.1) is indeed direct, so that dim(NNN0,d) = d(d+1)
2 =: d′ (i.e.,

d′ = 3 if d = 2 and d′ = 6 if d = 3). Note that d′ is the number of edges of
a simplex in Rd. The space NNN0,d has several interesting properties. (a) One
has PPP0,d ⊂ NNN0,d in agreement with the first requirement stated above. (b)
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The gradient of v ∈ NNN0,d is skew-symmetric. Indeed, only the component
q ∈ SSS1,d contributes to the gradient, and the identity ∂xixj

(q(x)·x) = 0,
i 6= j, yields ∂iqj + ∂jqi = 0. (c) If v ∈ NNN0,d is curl-free, then v is constant.
Indeed, v being curl-free means that ∇v is symmetric, which implies ∇v = 0
owing to (b). (d) The tangential component of v ∈ NNN0,d along an affine line
in Rd is constant along that line. Let indeed x,y be two distinct points
on the line, say L, with tangent vector tL. Then there is λ ∈ R such that
tL = λ(x− y) and since v = r + q with r ∈ PPP0,d and q ∈ SSS1,d, we infer that
v(x)·tL − v(y)·tL = (q(x)− q(y))·tL = λq(x− y)·(x− y) = 0.

Let K be a simplex in Rd and let EK collect the edges of K. Any edge E ∈
EK is oriented by fixing an edge vector tE s.t. ‖tE‖ℓ2 = |E|. Conventionally,
we set tE := zq − zp, where zp, zq are the two endpoints of E with p < q.
We denote by Σ the collection of the following linear forms acting on NNN0,d:

σe
E(v) :=

1

|E|

∫

E

(v·tE) dl, ∀E ∈ EK . (15.3)

Note that the unit of σe
E(v) is a length times the dimension of v. A graphic

representation of the dofs is shown in Figure 15.1. Each arrow indicates the
orientation of the corresponding edge.

Fig. 15.1 Degrees of freedom of the NNN0,d

finite element in dimensions two (left) and
dimension three (right).
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Proposition 15.1 (Face (edge) unisolvence, d = 2). Let v ∈ NNN0,2. Let
E ∈ EK be an edge of K. Then σe

E(v) = 0 implies that v|E ·tE = 0.

Proof. Since we have established above that v|E ·tE is constant, the assertion
follows readily. ⊓⊔

Proposition 15.2 (Finite element, 2D). (K,NNN0,2, Σ) is a finite element.

Proof. Since dim(NNN0,2) = card(Σ) = 3, we just need to verify that the only
function v ∈ NNN0,2 that annihilates the three dofs in Σ is zero. This follows
from Proposition 15.1 since span{tE}E∈EK

= R2. ⊓⊔

The above results hold also true if d = 3, but the proofs are more intricate
since the tangential component on an affine hyperplane of a function inNNN0,3 is
not necessarily constant. Let F ∈ FK be a face ofK and let us fix a unit vector
nF normal to F . There are two ways to define the tangential component
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of a function v on F : one can define it either as v×nF or as ΠF (v) :=
v− (v·nF )nF . We will use both definitions. The first one is convenient when
working with the ∇× operator. The second one is more geometric. The two
definitions produce ℓ2-orthogonal vectors since (v×nF )·ΠF (v) = 0 as shown
in Figure 15.2.

Fig. 15.2 Two possible definitions of the
tangential component of a vector.

v×nF

vnF

F

ΠF (v)

Proposition 15.3 (Face unisolvence, 3D). Let v ∈ NNN0,3. Let F ∈ FK be
a face of K and let EF be the collection of the three edges of K forming the
boundary of F . Then σe

E(v) = 0 for all E ∈ EF implies that v|F×nF = 0.

Proof. Let Ŝ2 be the unit simplex in R2. Let TF : Ŝ2 → F be defined by
TF (0, 0) := zp, TF (1, 0) := zq, TF (0, 1) := zr, where zp, zq, zr are the three
vertices of F enumerated by increasing vertex-index. Let JF be the 3×2
Jacobian matrix of TF . Note that for all ŷ ∈ R2 the vector JF ŷ is parallel
to F and TF (ŷ) − zp = JF ŷ. Let v = r + q with r ∈ PPP0,3 and q ∈ SSS1,3. Let
us set v̂ := JTFΠF (v ◦ TF ) and let us show that v̂ ∈ NNN0,2. For all ŷ ∈ R2, we
have

ŷ·v̂(ŷ) = ŷ·
(
JTFΠF (v(TF (ŷ)))

)
= ŷ·

(
JTFΠF (r + q(TF (ŷ)))

)

= ŷ·
(
JTFΠF (r + q(zp) + q(JF ŷ))

)

= ŷ·(JTFΠF (r + q(zp))) + (JF ŷ)·(q(JF ŷ)).

Setting ĉ := JTFΠF (r + q(zp)) ∈ R2 and using that q ∈ SSS1,3, we infer that
ŷ·v̂(ŷ) = ŷ·ĉ. Since v̂ ∈ PPP1,2, we have v̂ = r̂+ q̂ where r̂ ∈ PPP0,2 and q̂ ∈ PPPH

1,2.
Then ŷ·r̂+ ŷ·q̂(ŷ) = ŷ·ĉ for all ŷ ∈ R2. This implies that the quadratic form

ŷ·q̂(ŷ) is zero. Hence, v̂ ∈ NNN0,2. Let now Ê be any of the three edges of Ŝ2.

Then E := TF (Ê) is one of the three edges of F . We obtain that

∫

Ê

(v̂·tÊ) dl̂ =
∫

Ê

(JTFΠF (v ◦ TF ))·tÊ dl̂

=

∫

Ê

(v ◦ TF )·tE dl̂ =
|Ê|
|E|

∫

E

v·tE dl = |Ê|σe
E(v) = 0.

Since v̂ ∈ NNN0,2 annihilates the three edge dofs in Ŝ2, Proposition 15.2 implies
that v̂ = 0. After observing that im(ΠF ) is orthogonal to ker(JTF ), we con-
clude that the tangential component of v on F is zero. ⊓⊔
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Proposition 15.4 (Finite element, 3D). (K,NNN0,3, Σ) is a finite element.

Proof. Since dim(NNN0,3) = card(Σ) = 6, we just need to verify that the only
function v ∈ NNN0,3 that annihilates the six dofs in Σ is zero. Face unisolvence
implies that v|F×nF = 0 for all F ∈ FK . Let (e1, e2, e3) be the canonical ba-
sis of R3. Using (4.11), we infer that

∫
K(∇×v)·ei dx = −

∫
∂K(v×nK)·ei ds =

0, where nK is the outward unit normal to K. Since ∇×v is actually constant
on K, we have ∇×v = 0, and we have seen that this implies that v ∈ PPP0,3,
i.e., v = ∇p for some p ∈ P1,3. Integrating ∇p along the edges of K, we infer
that p takes the same value at all the vertices of K. Hence, p is constant,
which in turn implies that v is zero. ⊓⊔

One can verify that the shape functions are such that

θeE(x) = λp(x)∇λq − λq(x)∇λp, ∀E ∈ EK , (15.4)

for all x ∈ K, with tE := zq−zp. For every E′ ∈ EK , we have θeE ·tE′ = δEE′ .
We refer the reader to Exercise 15.3 for additional properties of theNNN0,3 shape
functions.

15.2 The polynomial space NNNk,d

Let k ∈ N and let d ∈ {2, 3} (the material of this section extends to any
dimension d ≥ 2). Let PH

k,d be the space of the homogeneous polynomials of

degree k (see Definition 14.2). Set PPPH
k,d := [PH

k,d]
d and PPPk,d := [Pk,d]

d.

Definition 15.5 (NNNk,d). We define the following real vector space of Rd-
valued polynomials:

NNNk,d := PPPk,d ⊕ SSSk+1,d, with SSSk+1,d := {q ∈ PPPH
k+1,d | q(x)·x = 0}. (15.5)

Note that the above sum is direct since PPPk,d ∩ SSSk+1,d ⊂ PPPk,d ∩PPPH
k+1,d = {0}.

Example 15.6 (Space SSS2,d). The set {(−x22, x1x2)T, (x1x2,−x21)T} is a
basis of SSS2,2, and the set {(−x22, x1x2, 0)T, (−x23, 0, x1x3)T, (x1x2,−x21, 0)T,
(0,−x23, x2x3)T, (x1x3, 0,−x21)T, (0, x2x3,−x22)T, (x2x3,−x1x3, 0)T, (0, x1x3,
−x1x2)T} is a basis of SSS2,3. Note that dim(SSS2,2) = 2 and dim(SSS2,3) = 8. ⊓⊔

Lemma 15.7 (Dimension of NNNk,d). Let k ∈ N and d ≥ 2. We have

dim(NNNk,d) =
(k + d+ 1)!

k!(d− 1)!(k + 2)
. (15.6)

Hence, dim(NNNk,2) = (k + 1)(k + 3) and dim(NNNk,3) =
1
2 (k + 1)(k + 3)(k + 4).
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Proof. (1) Let us first prove that the map φ : PPPH
k,d ∋ p 7→ x·p ∈ PH

k+1,d is

surjective. By linearity, it suffices to prove that for each monomial q ∈ PH
k+1,d

s.t. q(x) := xα with |α| := k + 1, there is r ∈ PPPH
k,d such that q(x) = x·r(x).

Let {ei}i∈{1:d} be the canonical Cartesian basis of Rd. Since |α| = k+1 ≥ 1,

there exists i ∈ {1:d} s.t. αi ≥ 1. Setting r(x) := xα1
1 . . . xαi−1

i . . . xαd

d ei, we
have r ∈ PPPH

k,d and q(x) = x·r(x).
(2) Observing that ker(φ) = SSSk,d, the rank nullity theorem implies that
dim(SSSk,d)+dim(im(φ)) = dimPPPH

k,d, i.e., dim(SSSk,d) = d dimPH
k,d−dimPH

k+1,d =

d
(
k+d−1

k

)
−
(
k+d
k+1

)
=
(
k+d−1

k

)
(d− k+d

k+1 ) = k (k+d−1)!
(k+1)!(d−2)! . The sum in (15.5) being

direct, we conclude that

dim(NNNk,d) = d dim(Pk,d) + dim(SSSk+1,d)

=
(k + d)!

k!(d− 1)!
+ (k + 1)

(k + d)!

(k + 2)!(d− 2)!
=

(k + d+ 1)!

k!(d− 1)!(k + 2)
. ⊓⊔

Lemma 15.8 (Trace space). Let H be an affine hyperplane in Rd, let nH

be a unit normal vector to H, and let TH : Rd−1 → H be an affine bijec-
tive mapping with Jacobian matrix JH . Let ΠH(v) := v − (v·nH)nH be the
ℓ2-orthogonal projection of v onto the tangent space to H (i.e., the linear
hyperplane in Rd parallel to H). Then JTHΠH(v|H) ∈ NNNk,d−1 ◦ T−1

H for all
v ∈ NNNk,d.

Proof. Identical to the proof of Proposition 15.3. ⊓⊔

Lemma 15.9 (d = 2). NNNk,2 = Rπ
2
(RTRTRTk,2), where Rπ

2
is the rotation of angle

π
2 in R2, i.e., Rπ

2
x = (−x2, x1)T for all x = (x1, x2)

T ∈ R2.

Proof. See Exercise 15.4. ⊓⊔

Lemma 15.10 (Curl). Assume d ∈ {2, 3}. Then ∇×v ∈ PPPk,d for all v ∈
NNNk,d, and if ∇×v = 0, there is p ∈ Pk+1,d such that v = ∇p (that is,
v ∈ PPPk,d).

Proof. That ∇×v ∈ PPPk,d results fromNNNk,d ⊂ PPPk+1,d. The condition ∇×v = 0
together with v ∈ NNNk,d ⊂ PPPk+1,d implies that there is p ∈ Pk+2,d such that
v = ∇p. The definition of NNNk,d implies that v = ∇p1 +∇p2 with p1 ∈ Pk+1,d

and ∇p2 ∈ SSSk+1,d. We infer that p2(x)− p2(0) =
∫ 1

0 ∇p2(tx)·(tx)t−1 dt = 0,
which means that p2 is constant. Hence, v = ∇p1 with p1 ∈ Pk+1,d. ⊓⊔

15.3 Simplicial Nédélec elements

Let k ∈ N and let d ∈ {2, 3}. Let K be a simplex in Rd. In this section, we
define the dofs in order to make the triple (K,NNNk,d, Σ) a finite element. The
construction can be generalized to any dimension.
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15.3.1 Two-dimensional case

Let us orient the three edges E ∈ EK of K with the edge vectors tE . Let us
orientK with the two vectors {tK,j}j∈{1,2} which are the edge vectors for the
two edges of K sharing the vertex with the lowest enumeration index. Note
that {tK,j}j∈{1,2} is a basis of R2. Let TE be an affine bijective mapping

from the unit simplex Ŝ1 := [0, 1] in R onto E. We define the dofs of the
two-dimensional Nédélec element (K,NNNk,2, Σ) as follows:

σe
E,m(v) :=

1

|E|

∫

E

(v·tE)(µm ◦ T−1
E ) dl, ∀E ∈ EK , (15.7a)

σc
j,m(v) :=

1

|K|

∫

K

(v·tK,j)ψm dx, ∀j ∈ {1:2}, (15.7b)

where {µm}m∈{1:ne
sh} is a basis of Pk,1 with ne

sh := dim(Pk,1) = k + 1, and

{ψm}m∈{1:nc
sh} is a basis of Pk−1,2 with nc

sh := dim(Pk−1,2) = 1
2k(k + 1) if

k ≥ 1. SinceNNNk,2 = Rπ
2
(RTRTRTk,2) owing to Lemma 15.9 and since the above dofs

are those of the RTRTRTk,2 finite element once the edges (faces) are oriented by the
vectors νE := Rπ

2
(tE) and K is oriented by the vectors νK,j := Rπ

2
(tK,j), it

follows from Proposition 14.15 that the triple (K,NNNk,2, Σ) is a finite element
for all k ≥ 0. The unit of all the above dofs is a length times the dimension
of v.

Remark 15.11 (2D Piola transformations). Owing to the identity AT =
det(A)R−1

π
2
A−1Rπ

2
for all A ∈ R2×2, the two-dimensional contravariant and

covariant Piola transformations satisfy Rπ
2
(ψc

K(v)) = ψd
K(Rπ

2
(v)). ⊓⊔

15.3.2 Three-dimensional case

Let K be a simplex (tetrahedron) in R3. Let EK be the collection of the six
edges of K and let FK be the collection of the four faces of K. Each edge
E ∈ EK is oriented by the edge vector tE := zq − zp, where zp, zq are the
two vertices of E with p < q (note that ‖tE‖ℓ2 = |E|). Each face F ∈ FK is
oriented by the two edge vectors {tF,j}j∈{1,2} with tF,1 := zq − zp, tF,2 :=
zr − zp, where zp, zq, zr are the three vertices of F with p < q < r. Note
that the unit normal vector nF is then defined as tF,1×tF,2/‖tF,1×tF,2‖ℓ2 ;
see for instance (10.9). Note also that {tF,j}j∈{1,2} is a basis of the tangent
space of the affine hyperplane supporting F . Finally, the cell K is oriented
by the three edge vectors {tK,j}j∈{1: 3} with tK,1 := zq −zp, tK,2 := zr −zp,
tK,3 := zs − zp, where zp, zq, zr, zs are the four vertices of K with p < q <
r < s. Note that {tK,j}j∈{1:3} is a basis of R3. In order to define dofs using
moments on the edges and moments on the faces of K, we introduce affine
bijective mappings TF : Ŝ2 → F and TE : Ŝ1 → E, where Ŝ2 is the unit
simplex in R2 and Ŝ1 is the unit simplex in R; see Figure 15.3. For instance,
after enumerating the vertices of Ŝ1, Ŝ2, these mappings can be constructed
by using the increasing vertex-index enumeration technique of §10.2.
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Ŝ2K K

F

TE
TF

E

Ŝ1

Fig. 15.3 Reference edge Ŝ1 and reference face Ŝ2 with the corresponding mappings.

Definition 15.12 (dofs). The set Σ is defined to be the collection of the
following linear forms acting on NNNk,3:

σe
E,m(v) :=

1

|E|

∫

E

(v·tE)(µm ◦ T−1
E ) dl, ∀E ∈ EK (15.8a)

σf
F,j,m(v) :=

1

|F |

∫

F

(v·tF,j)(ζm ◦ T−1
F ) ds, ∀F ∈ FK , ∀j ∈ {1, 2}, (15.8b)

σc
j,m(v) :=

1

|K|

∫

K

(v·tK,j)ψm dx, ∀j ∈ {1, 2, 3}, (15.8c)

where {µm}m∈{1:ne
sh} is a basis of Pk,1 with ne

sh := k + 1, {ζm}m∈{1:nf
sh} is

a basis of Pk−1,2 with nf
sh := 1

2 (k + 1)k if k ≥ 1, and {ψm}m∈{1:nc
sh} is a

basis of Pk−2,3 with nc
sh := 1

6 (k+1)k(k− 1) if k ≥ 2. We regroup the dofs as
follows:

Σe
E := {σe

E,m}m∈{1:ne
sh}, ∀E ∈ EK , (15.9a)

Σf
F := {σf

F,j,m}(j,m)∈{1,2}×{1:nf
sh}, ∀F ∈ FK , (15.9b)

Σc := {σc
j,m}(j,m)∈{1:3}×{1:nc

sh}. (15.9c)

Remark 15.13 (dofs). The unit of all the dofs is a length times the di-
mension of v. For the cell dofs, we could also have written σc

j,m(v) :=

ℓ−2
K

∫
K(v·ej)ψm dx, where ℓK is a length scale associated with K and

{ej}j∈{1:d} is the canonical Cartesian basis of Rd. We will see that the defi-
nition (15.8c) is more natural when using the covariant Piola transformation
to generate Nédélec finite elements. The dofs are defined here on NNNk,d. Their
extension to some larger space V (K) is addressed in Chapters 16 and 17. ⊓⊔

Lemma 15.14 (Invariance). Assume that every affine bijective mapping

S : Ŝ1 → Ŝ1 (resp., S : Ŝ2 → Ŝ2) leaves the basis {µm}m∈{1:ne
sh} (resp.,

{ζm}m∈{1:nf
sh}) globally invariant. Then for all E ∈ EK and all F ∈ FK, the

set Σe
E and Σf

F are independent of the affine bijective mapping TE and TF ,
respectively.

Proof. Similar to that of Lemma 14.12; see also Example 14.13 for the in-
variance w.r.t. vertex permutation. ⊓⊔

The following result is important in view of H(curl)-conformity.
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Lemma 15.15 (Face unisolvence). Let v ∈ NNNk,3 and let F ∈ FK be a face
of K. Let EF be the collection of the (three) edges forming the boundary of
F , let Σe

F :=
⋃

E∈EF
Σe

E, and let nF be a unit normal to F . We have the
following equivalence:

[σ(v) = 0, ∀σ ∈ Σf
F ∪Σe

F ] ⇐⇒ [v|F×nF = 0 ]. (15.10)

Moreover, both assertions in (15.10) imply that (∇×v)|F ·nF = 0.

Proof. We only need to prove the implication in (15.10) since the converse is
evident. The proof is an extension of that of Proposition 15.3 accounting for
the richer structure of the dofs. We introduce v̂ := JTFΠF (v ◦ TF ). It can be

shown that v̂ ∈ NNNk,2; see Exercise 15.6. The unit simplex Ŝ2 is oriented by

the two edge vectors {t̂j}j∈{1,2} s.t. JF t̂j = tF,j ◦ TF for all j ∈ {1, 2}. For
the face dofs, we have

1

|Ŝ2|

∫

Ŝ2

(v̂·t̂j)ζm dŝ =
1

|Ŝ2|

∫

Ŝ2

((JTF (v − (v·nF )nF ) ◦ TF )·t̂j)ζm dŝ

=
1

|Ŝ2|

∫

Ŝ2

(((v − (v·nF )nF )·tF,j) ◦ TF )ζm dŝ

=
1

|Ŝ2|

∫

Ŝ2

((v·tF,j) ◦ TF )ζm dŝ

=
1

|F |

∫

F

(v·tF,j)(ζm ◦ T−1
F ) ds = σf

F,j,m(v) = 0.

One proves similarly that the edge dofs vanish. This proves that v̂ = 0 be-
cause v̂ ∈ NNNk,2. Since JTF has full rank, we infer that ΠF (v|F ) = 0, which
implies that v|F×nF = ΠF (v|F )×nF = 0. Finally, (∇×v)|F ·nF = 0 imme-
diately follows from v|F×nF = 0. ⊓⊔

Proposition 15.16 (Finite element). (K,NNNk,3, Σ) is a finite element.

Proof. Observe first that the cardinality of Σ can be evaluated as follows:

card(Σ) = 3nc
sh + 2× 4nf

sh + 6ne
sh = 3

(
k + 1

3

)
+ 8

(
k + 1

2

)
+ 6(k + 1)

=
1

2
(k + 1)(k + 3)(k + 4) = dim(NNNk,3).

Hence, the assertion will be proved once it is established that zero is the only
function in NNNk,3 that annihilates all the dofs in Σ. Let v ∈ NNNk,3 be such
that σ(v) = 0 for all σ in Σ. We are going to show that v = 0. Owing to
Lemma 15.15, v|F×nF = 0 and (∇×v)|F ·nF = 0 for every face F ∈ FK .
(1) Let us prove that w := ∇×v = 0. Since w ∈ PPPk,3 ⊂ RTRTRTk,3, it suffices to
prove that w annihilates all the dofs of the RTRTRTk,3 element. Since w|F ·nF = 0,
w annihilates all the dofs associated with the faces ofK. In addition, if k ≥ 1,
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we observe that
∫
K
w·q dx =

∫
K
∇×v·q dx =

∫
K
v·∇×q dx for all q ∈ PPPk−1,3,

since v×nK = 0 on ∂K, where nK is the outward unit normal to K. This
in turn implies that

∫
K w·q dx = 0 since ∇×q ∈ PPPk−2,3 and σ(v) = 0 for

all σ ∈ Σc if k ≥ 2. The statement is obvious if k = 1. In conclusion,
∇×v = w = 0.
(2) Using Lemma 15.10, we infer that there is p ∈ Pk+1,3 such that v =
∇p. The condition v×nK = 0 on ∂K implies that p is constant on ∂K.
Without loss of generality, we take this constant equal to zero. This in turn
implies that p = 0 if k ≤ 2 (see Exercise 7.5(iii)), so that it remains to
consider the case k ≥ 3. In this case, we infer that p = λ0 . . . λ3r where λi,
i ∈ {0:3}, are the barycentric coordinates in K and r ∈ Pk−3,3. Writing
this polynomial in the form r(x) =

∑
|α|≤k−3 aαx

α, we consider the field

q(x) :=
∑

|α|≤k−3
1

α1+1aαx1x
αe1, where e1 is the first vector of the canonical

Cartesian basis of R3. Since q ∈ PPPk−2,3, the fact that σ(v) = 0 for all σ ∈ Σc

implies that
∫
K
v·q dx = 0. Integration by parts and the fact that p|∂K = 0

yield 0 =
∫
K v·q dx = −

∫
K p∇·q dx = −

∫
K λ0 . . . λ3r

2 dx. In conclusion,
r = 0, so that v = ∇p = 0. ⊓⊔

The shape functions {θi}i∈N associated with the dofs {σi}i∈N defined
in (15.8) can be constructed by choosing a basis {φi}i∈N of the polyno-
mial spaceNNNk,3 and by inverting the corresponding generalized Vandermonde
matrix as explained in Proposition 5.5. Recall that this matrix has entries
Vij = σj(φi) and that the i-th line of V−1 gives the components of the shape
function θi in the basis {φi}i∈N . The basis {φi}i∈N chosen in Bonazzoli and
Rapetti [31] (built by dividing the simplex into smaller sub-simplices follow-
ing the ideas in Rapetti and Bossavit [163], Christiansen and Rapetti [70]) is
particularly interesting since the entries of V−1 are integers. One could also
choose {φi}i∈N to be the hierarchical basis of NNNk,d constructed in Fuentes
et al. [103, §7.2]. This basis can be organized into functions attached to the
the edges of K, the faces of K, and to K itself, in such a way that the gen-
eralized Vandermonde matrix V is block-triangular (notice though that this
matrix is not block-diagonal). For earlier work on shape functions and basis
functions for the NNNk,3 element, see Webb [197], Gopalakrishnan et al. [109].

Remark 15.17 (Dof independence). As in Remark 14.16, the results from
Exercise 5.2 imply that the interpolation operator Ic

K associated with the
NNNk,3 element is independent of the bases {µm}m∈{1:ne

sh}, {ζm}m∈{1:nf
sh}, and

{ψm}m∈{1:nc
sh} that are used to define the dofs in (15.8). The interpolation

operator is also independent of the mappings TE , TF and of the orientation
vectors {tE}E∈EK

, {tF,j}F∈FK,j∈{1,2}, and {tK,j}j∈{1,2,3}. ⊓⊔

Remark 15.18 (Literature). The NNNk,d finite element has been introduced
by Nédélec [151]; see also Weil [198], Whitney [199] for k = 0. It is an accepted
practice in the literature to call this element edge element or Nédélec element.
See also Bossavit [36, Chap. 3], Hiptmair [117], Monk [145, Chap. 5]. ⊓⊔
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15.4 Generation of Nédélec elements

Let K̂ be the reference simplex in R3. Let Th be an affine simplicial mesh. Let
K = TK(K̂) be a mesh cell where TK : K̂ → K is the geometric mapping,
and let JK be the Jacobian matrix of TK . Let F ∈ FK be a face ofK. We have
F = TK(F̂ ) where F̂ ∈ FK̂ is a face of K̂. Similarly, let E ∈ EK be an edge of

K. We have E = TK(Ê) where Ê ∈ EK̂ is an edge of K̂. Using the increasing
vertex-index enumeration, Theorem 10.8 shows that it is possible to orient
the edges E and Ê in a way that is compatible with the geometric mapping
TK . This means that the unit tangent vectors τE and τ̂Ê satisfy (10.6a), i.e.,
τE = Φc

K(τ̂Ê) with Φ
c
K defined in (9.14b). In other words, we have

τE ◦ TK|Ê =
1

‖JK τ̂Ê‖ℓ2
JK τ̂Ê . (15.11)

Since tE := |E|τE , τ̂Ê := |Ê|t̂Ê and since |E| = ‖JK τ̂Ê‖ℓ2|Ê| owing to
Lemma 9.12, we infer that

tE ◦ TK|Ê = JK t̂Ê . (15.12)

We also orient the faces of K by using the two edge vectors originating from
the vertex with the lowest index in each face. We finally orient K by using
the three edge vectors originating from the vertex with the lowest index in
K. Reasoning as above, we infer that

tF,j ◦TK|F̂ = JK t̂F̂ ,j , ∀j ∈ {1, 2} tK,j ◦TK = JK t̂K̂,j , ∀j ∈ {1:3}. (15.13)

Recall the covariant Piola transformation introduced in (9.9b) such that

ψc
K(v) := JTK(v ◦ TK), (15.14)

and the pullback by the geometric mapping such that ψg
K(q) := q ◦ TK .

Lemma 15.19 (Transformation of dofs). Let v ∈ C0(K) and let q ∈
C0(K). The following holds true:

1

|E|

∫

E

(v·tE)q dl =
1

|Ê|

∫

Ê

(ψc
K(v)·t̂Ê)ψ

g
K(q) dl̂, ∀E ∈ EK ,

1

|F |

∫

F

(v·tF,j)q ds =
1

|F̂ |

∫

F̂

(ψc
K(v)·t̂F̂ ,j)ψ

g
K(q) dŝ, ∀F ∈ FK , j ∈ {1, 2},

1

|K|

∫

K

(v·tK,j)q dx =
1

|K̂|

∫

K̂

(ψc
K(v)·t̂K̂,j)ψ

g
K(q) dx̂, ∀j ∈ {1:3}.

Proof. The first identity is nothing but (10.7b) from Lemma 10.4, which itself
is a reformulation of (9.15b) from Lemma 9.13 (the fact that TK is affine is
not used here). The proof of the other two identities is similar to (9.15b)
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using (15.13) and the fact that ds = |F |
|F̂ | dŝ, dx = |K|

|K̂| dx̂ since TK is affine.

For instance, we have

1

|F |

∫

F

(v·tF,j)q ds =
1

|F |

∫

F̂

(v·tF,j) ◦ TK|F̂ (q ◦ TK|F̂ )
|F |
|F̂ |

dŝ

=
1

|F̂ |

∫

F̂

((JTKv)·(J−1
K tF,j)) ◦ TK|F̂ψ

g
K(q) dŝ

=
1

|F̂ |

∫

F̂

(ψc
K(v)·t̂F̂ ,j)ψ

g
K(q) dŝ. ⊓⊔

Proposition 15.20 (Generation). Let (K̂, P̂ , Σ̂) be a simplicial Nédélec
element with edge, face, and cell dofs defined by using the polynomial bases
{µm}m∈{1:ne

sh}, {ζm}m∈{1:nf
sh} (if k ≥ 1), and {ψm}m∈{1:nc

sh} (if k ≥ 2) of

Pk,1, Pk−1,2, and Pk−2,3, respectively, as in (15.8). Assume that the geometric
mapping TK is affine and that (15.12)-(15.13) hold true. Then the finite
element (K,PK , ΣK) generated using Proposition 9.2 with the covariant Piola
transformation (15.14) is a simplicial Nédélec element with dofs

σe
E,m(v) =

1

|E|

∫

E

(v·tE)(µm◦T−1
K,E) dl, ∀E ∈ EK , (15.15a)

σf
F,j,m(v) =

1

|F |

∫

F

(v·tF,j)(ζm◦T−1
K,F ) ds, ∀F ∈ FK , ∀j ∈ {1, 2}, (15.15b)

σc
j,m(v) =

1

|K|

∫

K

(v·tK,j)(ψm◦T−1
K ) dx, ∀j ∈ {1, 2, 3}, (15.15c)

where TK,E := TK|Ê◦TÊ : Ŝ1 → E and TK,F := TK|F̂ ◦TF̂ : Ŝ2 → F are the

affine bijective mappings that map vertices with increasing indices.

Proof. Let us first prove that PK = NNNk,3. We can write TK(x̂) := JKx̂+ bK
with JK ∈ R3×3 and bK ∈ R3. Let v be a member of PK . Then ψc

K(v) = p̂+q̂
with p̂ ∈ PPPk,3 and q̂ ∈ SSSk+1,3, yielding v = J−T

K p̂ ◦ T−1
K + J−T

K q̂ ◦ T−1
K . Since

each component of q̂ is in PH
k+1,3, we infer that q̂ ◦ T−1

K (x) = q̂(J−1
K x −

J−1
K bK) = q̂(J−1

K x) + r(x), where r ∈ PPPk,3; see Exercise 14.4. As a result,

v = (p + r) + q, where p = J−T

K p̂ ◦ T−1
K ∈ PPPk,3 and q = J−T

K q̂ ◦ J−1
K . Note

that p + r ∈ PPPk,3 and q̂ ◦ J−1
K is a member of PPPH

k+1,3, which implies that q

is also in PPPH
k+1,3. Moreover, x·(J−T

K q̂(J−1
K x)) = (J−1

K x)·q̂(J−1
K x) = 0 which in

turn implies that q ∈ SSSk+1,3. In conclusion, v ∈ NNNk,3, meaning that PK ⊂
NNNk,3. The converse statement follows from a dimension argument. Finally,
the definition of the dofs results from Lemma 15.19, and the properties of
the mappings TK,E and TK,F from those of TK , TÊ , and TF̂ . ⊓⊔

Remark 15.21 (Unit). The shape functions scale like the reciprocal of a
length unit. ⊓⊔



178 Chapter 15. H(curl) finite elements

Remark 15.22 (Nonaffine meshes). Proposition 9.2 together with the
map (15.14) can still be used to generate a finite element (K,PK , ΣK) if the
geometric mapping TK is nonaffine. The function space PK and the dofs in
ΣK then differ from those of the NNNk,3 element. ⊓⊔

15.5 Other H(curl) finite elements

15.5.1 Nédélec elements of the second kind

Nédélec elements of the second kind [152] offer an interesting alternative to
those investigated in §15.3 (and often called Nédélec elements of the first
kind) since in this case the polynomial space is P := PPPk,d ( NNNk,d, k ≥ 1.
This space is optimal from the approximation viewpoint. The price to pay
for this simplification is that the curl operator maps onto PPPk−1,d. This is not
a limitation if the functions to be interpolated are curl-free.

Let K be a simplex in R3. The dofs are attached to the edges of K, its
faces (for k ≥ 2), and to K itself (for k ≥ 3). The edge dofs are defined
in (15.8a) as for the elements of the first kind, whereas the face dofs are
moments on each face of K of the tangential component against a set of basis
functions of RTRTRTk−2,2 up to a contravariant Piola transformation (instead of
basis functions of PPPk−1,2 for the elements of the first kind), and the cell dofs
are moments against a set of basis functions of RTRTRTk−3,3 (instead of basis
functions of PPPk−2,3 for the elements of the first kind). It is shown in [152]
that the triple (K,P , Σ) is a finite element. Hierarchical basis functions for
the Nédélec element of the second kind are constructed in Ainsworth and
Coyle [6], Schöberl and Zaglmayr [176].

15.5.2 Cartesian Nédélec elements

The Cartesian version of Nédélec elements have been introduced in Nédélec
[151, pp. 330-333]. Let us briefly review these elements (see Exercise 15.8 for
the proofs). We focus on the case d = 3, since two-dimensional Cartesian
Nédélec elements can be built by a rotation of the two-dimensional Cartesian
Raviart–Thomas elements from §14.5.2. Let k ∈ N and define

NNN�

k,3 := Qk,k+1,k+1×Qk+1,k,k+1×Qk+1,k+1,k, (15.16)

where the anisotropic polynomial spaces Qα1,α2,α3 are defined in §14.5.2.
Since the three anisotropic spaces in (15.16) have dimension (k+ 1)(k + 2)2,
we have dim(NNN�

k,3) = 3(k + 1)(k + 2)2.

Let K := (0, 1)3 be the unit cube in R3. Let FK collect the six faces of K,
and let EK collect the twelve edges ofK. Let TF , F ∈ FK (resp., TE, E ∈ EK)
be an affine geometric mapping from [0, 1]2 onto F (resp., [0, 1] onto E). Let
t̂e := 1 be the canonical basis of R. We orient E ∈ EK using tE := JE t̂e,
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where JE is the Jacobian matrix of TE . Let {tfj}j∈{1,2} be the canonical basis

of R2. We orient F ∈ FK by using tF,j := JF t̂fj for all j ∈ {1, 2}, where
JF is the Jacobian matrix of TF . We orient K by using the canonical basis
{tK,j := ej}j∈{1:3} of R3. Let Σ be the set composed of the following linear
forms:

σe
E,m(v) :=

1

|E|

∫

E

(v·tE)(µm ◦ T−1
E ) dl, ∀E ∈ EK , (15.17a)

σf
F,j,m(v) :=

1

|F |

∫

F

(v·tF,j)(ζj,m ◦ T−1
F ) ds, ∀F ∈ FK , ∀j ∈ {1, 2},

(15.17b)

σc
j,m(v) :=

1

|K|

∫

K

(v·tK,j)ψj,m dx, ∀j ∈ {1, 2, 3}, (15.17c)

where {µm}m∈{1:ne
sh} is a basis of Pk,1 with ne

sh := k + 1, {ζj,m}m∈{1:nf
sh} is

a basis of the space Qk,k−1 if j = 1 and Qk−1,k if j = 2, with nf
sh := (k+1)k

(if k ≥ 1), and {ψj,m}m∈{1:nc
sh
} is a basis of the space Qk,k−1,k−1 if j = 1,

Qk−1,k,k−1 if j = 2, and Qk−1,k−1,k if j = 3, with nc
sh := (k+1)k2 (if k ≥ 1).

Proposition 15.23 (Finite element). (K,NNN�

k,3, Σ) is a finite element.

Cartesian Nédélec elements can be generated for all the mesh cells of an
affine mesh composed of parallelotopes by using affine geometric mappings
and the covariant Piola transformation. Recall however that orienting such
meshes requires some care; see Theorem 10.10.

Exercises

Exercise 15.1 (SSS1,d). (i) Prove that for all q ∈ SSS1,d, there is a unique skew-
symmetric matrix Q s.t. q(x) = Qx. (ii) Propose a basis of SSS1,d. (iii) Show
that q ∈ SSS1,3 if and only if there is b ∈ R3 such that q(x) = b×x.

Exercise 15.2 (Cross product). (i) Prove that (Ab)×(Ac) = A(b×c) for
every rotation matrix A ∈ R3×3 and all b, c ∈ R3. (Hint : use Exercise 9.5.)
(ii) Show that (a×b)×c = (a·c)b − (b·c)a. (Hint : (a×b)k = εikjaibj with
Levi-Civita tensor εikj ; see also the proof of Lemma 9.6.) (iii) Prove that
−(b×n)×n+ (b·n)n = b if n is a unit vector.

Exercise 15.3 (NNN0,3). (i) Prove (15.4). (Hint : verify that tE ·∇λq = 1 and
tE ·∇λp = −1.) (ii) Prove that v = 〈v〉K+ 1

2 (∇×v)×(x−cK) for all v ∈ NNN0,3,
where 〈v〉K is the mean value of v onK and cK is the barycenter ofK. (Hint :
∇×(b×x) = 2b for b ∈ R3.) (iii) Let θeE be the shape function associated with
the edge E ∈ EK . Let F ∈ FK with unit normal nK|F pointing outward K.
Prove that (θeE)|F×nK|F = 0 if E is not an edge of F , and

∫
F
θeE×nK|F ds =
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ιE,F (cE − cF ) otherwise, where cE is the barycenter of E, cF that of F , and
ιE,F = −1 if nK|F×tE points outward F , ιE,F = 1 otherwise. (Hint : use
Lemma 15.15 and Exercise 14.1(ii).) (iv) Let FE collect the two faces sharing
E ∈ EK . Prove that

∫
K
θeE dx = 1

2

∑
F∈FE

ιE,F (cF − cK)×(cE − cF ). (Hint :
take the inner product with an arbitrary vector e ∈ R3 and introduce the
function ψ(x) := 1

2e×(x− cK).)

Exercise 15.4 (Rotated RTRTRTk,2). Prove Lemma 15.9. (Hint : observe that
Rπ

2
(PPPk,2) = PPPk,2 and SSSk+1,2 = Rπ

2
(x)PH

k,2.)

Exercise 15.5 (Hodge decomposition). Prove that for all k ∈ N,

PPPk+1,d = NNNk,d ⊕∇PH
k+2,d.

(Hint : compute NNNk,d ∩∇PH
k+2,d, and use a dimension argument.)

Exercise 15.6 (Face element). We use the notation from the proof of

Lemma 15.15. Let F ∈ FK . Let TF : Ŝ2 → F be an affine bijective
mapping. Let JF be the Jacobian matrix of TF . Let v ∈ NNNk,3 and let
v̂ := JTF (I3 −nF⊗nF )(v ◦ TF ). Show that v̂ ∈ NNNk,2. (Hint : compute ŷTv̂(ŷ)
and apply the result from Exercise 14.4.)

Exercise 15.7 (Geometric mapping TA). Let A be an affine subspace of
Rd of dimension l ∈ {1:d−1}, d ≥ 2. Let a ∈ A and let PA(x) := a+ΠA(x−
a) be the orthogonal projection onto A, where ΠA ∈ Rd×d. (i) Let n ∈ Rd be
such that n·(x−y) = 0 for all x,y ∈ A (we say that n is normal to A). Show
that ΠAn = 0. Let t ∈ Rd be such that a + t ∈ A (we say that t is tangent
to A). Show that ΠA(t) = t. (ii) Let q ∈ Pk,l and let q̃(x) := q(T−1

A ◦PA(x)).
Compute ∇q̃. (iii) Show that there are t1, . . . , tl tangent vectors and q1, . . . , ql
polynomials in Pk,l such that ∇q̃(x) =∑s∈{1: l} qs(T

−1
A (x))ts for all x ∈ A.

(iv) Let t be a tangent vector. Show that there is µ ∈ Pk,l such that t·∇q̃(x) =
µ(T−1

A (x)).

Exercise 15.8 (Cartesian Nédélec element). (i) Propose a basis forNNN�

0,3.
(ii) Prove Proposition 15.23. (Hint : accept as a fact that any field v ∈ NNN�

k,3

annihiliating all the edge and faces dofs defined in (15.17) satisfies v|F×nF =
0 for all F ∈ FK ; then adapt the proof of Lemma 15.16 by using the RTRTRT�

k,3

finite element defined in §14.5.2.)


