
Part IV, Chapter 18

From broken to conforming spaces

In Parts II and III, we have introduced many examples of finite elements
and devised techniques to generate finite elements in each cell of a mesh.
In Part IV, composed of Chapters 18 to 23, we show how these methods
can be used to build finite-dimensional spaces composed of piecewise smooth
functions whose gradient, curl, or divergence is integrable. We also devise
quasi-interpolation operators enjoying fundamental stability, approximation,
and commutation properties. These spaces and operators will be used repeat-
edly in Volumes II and III to approximate various PDEs and estimate the
approximation error. In the present chapter, we introduce broken Sobolev
spaces and broken finite element spaces based on a mesh from a family of
meshes (Th)h∈H covering exactly a domain D ( Rd. Then we identify jump
conditions across the mesh interfaces that are necessary and sufficient for
every function in some broken Sobolev space to have an integrable gradi-
ent, curl, or divergence. These conditions lead to the notion of conforming
finite element spaces. Finally, we show how to construct L1-stable (local) in-
terpolation operators in the broken finite element space with optimal local
approximation properties.

18.1 Broken spaces and jumps

In this section, we are only concerned with broken Sobolev spaces and with
broken finite element spaces. Membership to broken spaces is defined by
requiring that some property be satisfied in each mesh cell without requiring
any continuity across the mesh interfaces.

18.1.1 Broken Sobolev spaces and jumps

The notions introduced hereafter will be used repeatedly in this book. We
consider Rq-valued functions for some integer q ≥ 1.
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Definition 18.1 (Broken Sobolev space). Let p ∈ [1,∞] and s > 0 be a
positive real number. The space defined by

W s,p(Th;Rq) := {v ∈ Lp(D;Rq) | v|K ∈W s,p(K;Rq), ∀K ∈ Th}, (18.1)

is called broken Sobolev space. This space is equipped with the norm

‖v‖pW s,p(Th;Rq)
:=

∑

K∈Th

‖v‖pW s,p(K;Rq), (18.2)

if p ∈ [1,∞) and ‖v‖W s,∞(Th;Rq) := maxK∈Th
‖v‖W s,∞(K;Rq) if p = ∞. We

write W s,p(Th) :=W s,p(Th;R) when q = 1.

An important notion in broken Sobolev spaces is the jump of functions
across mesh interfaces (see Figure 18.1). Recall from the Definition 8.10 that
the collection of the mesh interfaces is denoted by F◦

h and that for all F ∈ F◦
h ,

there are two distinct mesh cells Kl,Kr ∈ Th such that F = ∂Kl ∩ ∂Kr. The
interface F is oriented by means of the unit normal vector nF pointing from
Kl to Kr.

Definition 18.2 (Jump). Let F := ∂Kl ∩ ∂Kr ∈ F◦
h be a mesh interface.

Let v ∈ W s,p(Th;Rq) with s > 1
p if p ∈ (1,∞) or s ≥ 1 if p = 1 (notice that

(v|Kl
)|F ∈ L1(F ) and (v|Kr

)|F ∈ L1(F )). The jump of v across F is defined
as follows a.e. in F :

[[v]]F := v|Kl
− v|Kr

. (18.3)

The subscript F is dropped when the context is unambiguous.

Fig. 18.1 Jump of a piecewise smooth
function across the interface F := ∂Kl ∩
∂Kr.

F

Kl
Kr

Remark 18.3 (Alternative definition). Another definition of the jump
where Kl,Kr play symmetric roles consists of setting [[v]]∗F := v|Kl

⊗nKl|F +
v|Kr

⊗ nKr|F , where nKi|F , i ∈ {l, r}, is the unit normal to F pointing
away from Ki, i.e., [[v]]F ⊗ nF = [[v]]∗F . The advantage of (18.3) over this
definition is that the jump [[v]]F is Rq-valued instead of being Rq×d-valued.
Both definitions are commonly used in the literature. ⊓⊔
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Remark 18.4 (Zero-jumps in W s,p). Let p ∈ (1,∞) and s > 1
p , or p = 1

and s ≥ 1
p . Owing to Theorem 2.21, smooth functions are dense in W s,p(D).

Let v ∈ W s,p(D) and let (vn)n∈N be a sequence in C∞(D)∩W s,p(D) converg-
ing to v inW s,p(D). Let F ∈ F◦

h be a mesh interface. Then 0 = [[vn]]F → [[v]]F
as n → ∞ since the trace map is bounded on W s,p(D). Hence, 0 = [[v]]F for
all F ∈ F◦

h . This shows that functions in W
s,p(D) have a single-valued trace

in L1(F ) for all F ∈ F◦
h . ⊓⊔

18.1.2 Broken finite element spaces

Let (K̂, P̂ , Σ̂) be the reference finite element of degree k ≥ 0, where P̂ is
composed of Rq-valued functions for some integer q ≥ 1. We assume that
P̂ ⊂ L∞(K̂;Rq) (this is a mild assumption since in general P̂ is com-
posed of polynomial functions). Consider a Th-based family of finite elements
{(K,PK , ΣK)}K∈Th

constructed as in Proposition 9.2 by using the geometric

mappings TK : K̂ → K and the transformations ψK : V (K) → V (K̂) for

all K ∈ Th. We assume henceforth that ψK ∈ L(L∞(K;Rq), L∞(K̂;Rq)).
Recall that we denote by {θK,i}i∈N the local shape functions in K and by
{σK,i}i∈N the local degrees of freedom (dofs).

Definition 18.5 (Broken finite element space). The broken finite ele-
ment space is defined as follows:

P b
k (Th;Rq) := {vh ∈ L∞(D;Rq) | ψK(vh|K) ∈ P̂ , ∀K ∈ Th}. (18.4)

We simply write P b
k (Th) whenever q = 1.

Recalling that PK := ψ−1
K (P̂ ) (see (9.4a)), we have vh ∈ P b

k (Th;Rq) iff

vh|K ∈ PK for all K ∈ Th. The above assumptions on P̂ and ψK imply that

PK ⊂ L∞(K;Rq), which in turn means that P b
k (Th;Rq) is indeed a sub-

space of L∞(D;Rq). Moreover, since functions in P b
k (Th;Rq) can be defined

independently in each mesh cell, we have

dim(P b(Th;Rq)) = card(N )× card(Th) =: nsh×Nc, (18.5)

where nsh is the number of dofs in Σ̂ (i.e., the cardinality of the set N ), and
Nc is the number of mesh cells in Th. Then the set {θ̃K,i}(K,i)∈Th×N , where

θ̃K,i is the zero-extension of θK,i to D, is a basis of P b
k (Th;Rq). The functions

θ̃K,i are called global shape functions in P b
k (Th;Rq).

Example 18.6 (Piecewise polynomials). On affine meshes the choice

P̂ := Pk,d (resp., P̂ := Qk,d) together with ψK(v) := v ◦ TK and q := 1 (i.e.,
scalar-valued functions) leads to P b

k (Th) = {vh ∈ L∞(D) | vh|K ∈ Pk,d, ∀K ∈
Th} (resp., {vh ∈ L∞(D) | vh|K ∈ Qk,d, ∀K ∈ Th}) since vh|K ∈ Pk,d iff
vh ◦ TK ∈ Pk,d (resp., Qk,d). ⊓⊔
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Remark 18.7 (Connectivity array). In practice, the global shape func-
tions are enumerated, say from 1 to I. For the broken finite element space,
we have P b

k (Th;Rq) = span{ϕ1, . . . , ϕI} with I = nshNc. The connection
between the local and the global shape functions is materialized by a connec-
tivity array j dof : {1:Nc}×N → {1:I} defined such that ϕj dof(m,n)|Km

:=
θKm,i for all m ∈ {1:Nc} and all n ∈ N . The most common approach to
define j dof consists of enumerating first the dofs in the first cell, then in the
second cell, and so on, leading to j dof(m,n) := (m− 1)nsh + n. ⊓⊔

18.2 Conforming finite element subspaces

Given a piecewise smooth function on the mesh Th, either scalar- or vector-
valued, depending on the context, we want to find necessary and sufficient
conditions for this function to be in H1(D), H(curl;D), or H(div;D). It
turns out that the answer to this question hinges on the continuity properties
of the function, its normal component, or its tangential component across the
mesh interfaces.

18.2.1 Membership in H1

The global integrability of the gradient of a piecewise smooth function is
characterized by the following result.

Theorem 18.8 (Integrability of ∇). Let v ∈ W 1,p(Th;Rq) with p ∈ [1,∞].
Then ∇v ∈ Lp(D) iff [[v]]F = 0 a.e. on all F ∈ F◦

h.

Proof. We prove the assertion for q = 1. The general case is treated by
working componentwise. Let v ∈ W 1,p(Th) and let C∞

0 (D) be the set of the
smooth functions compactly supported in D. For all Φ ∈ C∞

0 (D), we have

∫

D

v∇·Φ dx =
∑

K∈Th

∫

K

v|K∇·Φ dx

= −
∑

K∈Th

∫

K

∇(v|K)·Φ dx+
∑

K∈Th

∫

∂K

v|KnK ·Φ ds

= −
∑

K∈Th

∫

K

∇(v|K)·Φ dx+
∑

F∈F◦
h

∫

F

[[v]]FnF ·Φ ds,

where nK is the outward unit normal to K and nF is the unit vector defining
the orientation of F .
(i) If [[v]]F = 0 a.e. on all F ∈ F◦

h , we infer from the above identity that∫
D v∇·Φ dx = −∑K∈Th

∫
K Φ·∇(v|K) dx, which shows that v has a weak

gradient in Lp(D) s.t. (∇v)|K = ∇(v|K) for all K ∈ Th. Hence, v ∈W 1,p(D).
(ii) Conversely let v ∈ W 1,p(D). We can conclude by invoking Remark 18.4.
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Let us give a more direct proof. Owing to Lemma 18.9 below, we infer that
(∇v)|K = ∇(v|K) for all K ∈ Th. Hence, the above identity implies that∑

F∈F◦
h

∫
F [[v]]FnF ·Φ ds = 0 for all Φ ∈ C∞

0 (D). Let F ∈ F◦
h be an arbitrary

interface. After localizing the support of Φ in such a way that it intersects F
and no other interface in F◦

h , it follows from the vanishing integral theorem
(Theorem 1.32) that [[v]]F = 0, since Φ|F ·nF can be arbitrarily chosen, and
[[v]]F ∈ L1(F ) because the trace map is bounded on W 1,p(D). ⊓⊔

Lemma 18.9 (Local weak derivative). Let p ∈ [1,∞] and let v ∈
W 1,p(D). Then ∇(v|K) = (∇v)|K a.e. in K for all K ∈ Th.

Proof. Let K ∈ Th and let φ ∈ C∞
0 (K). Let φ̃ ∈ C∞

0 (D) be the zero-
extension of φ to D. For all v ∈ W 1,p(D), we infer that

∫

K

∇(v|K)·φ dx = −
∫

K

v|K∇·φ dx

= −
∫

D

v∇·φ̃ dx =

∫

D

∇v·φ̃ dx =

∫

K

(∇v)|K ·φ dx.

The assertion follows from Theorem 1.32 since φ is arbitrary in C∞
0 (K). ⊓⊔

Figure 18.2 illustrates Theorem 18.8 in dimension one.

Fig. 18.2 One-dimensional example with two piecewise quadratic functions. The one on
the left is not in H1, the one on the right is.

18.2.2 Membership in H(curl) and H(div)

Let us now consider the integrability of the curl or the divergence of vector-
valued piecewise smooth functions. Let v ∈ W 1,p(Th) := W 1,p(Th;Rd), p ∈
[1,∞). We also use the notation W s,p(Th) := W s,p(Th;Rd), s > 0. The
jump of the tangential component of v (if d = 3) and the jump of its normal
component across a mesh interface F ∈ F◦

h , with F := ∂Kl∩∂Kr, are defined
as follows a.e. in F :

[[v×n]]F := (v|Kl
×nF )− (v|Kr

×nF ) = [[v]]F×nF , (18.6a)

[[v·n]]F := (v|Kl
·nF )− (v|Kr

·nF ) = [[v]]F ·nF , (18.6b)

where [[v]]F is the componentwise jump of v across F from Definition 18.2.
The subscript F is dropped when the context is unambiguous.
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Theorem 18.10 (Integrability of ∇× and ∇·). Let v ∈ W 1,p(Th) with
p ∈ [1,∞]. (i) If d = 3, ∇×v ∈ Lp(D) if and only if [[v×n]]F = 0 a.e. on all
F ∈ F◦

h . (ii) ∇·v ∈ Lp(D) if and only if [[v·n]]F = 0 a.e. on all F ∈ F◦
h.

Proof. Proceed as in the proof of Theorem 18.8. See Exercise 18.1. ⊓⊔

Remark 18.11 (Extension). The statement of Theorem 18.10 can be ex-
tended to functions v ∈W s,p(Th) with s > 1

p if p ∈ (1,∞) or s ≥ 1 if p = 1.

The following holds true: (i) If d = 3 and ∇×(v|K) ∈ Lp(K) for all K ∈ Th,
then ∇×v ∈ Lp(D) iff [[v×n]]F = 0 for all F ∈ F◦

h . (ii) If ∇·(v|K) ∈ Lp(K)
for all K ∈ Th, then ∇·v ∈ Lp(D) iff [[v·n]]F = 0 for all F ∈ F◦

h . ⊓⊔

18.2.3 Unified notation for conforming subspaces

To allow for a unified treatment of H1-, H(curl)-, and H(div)-conformity,
we use the superscript x ∈ {g, c, d} (referring to the gradient, curl, and diver-
gence operators), and we consider Rq-valued functions with q := 1 if x = g,
q = d = 3 if x = c, and q = d if x = d. Let p ∈ [1,∞) and let s > 1

p if p > 1
or s ≥ 1 if p = 1. Let K ∈ Th be a mesh cell and let F ∈ FK be a face of K.
We define the local trace operators γxK,F : W s,p(K;Rq) → L1(F ;Rt) s.t.

γgK,F (v) := v|F (q = t = 1), (18.7a)

γcK,F (v) := v|F×nF (q = t = d = 3), (18.7b)

γdK,F (v) := v|F ·nF (q = d, t = 1). (18.7c)

This leads to the following notion of γ-jump: For all v ∈W s,p(Th;Rq),

[[v]]xF (x) := γxKl,F
(v|Kl

)(x)− γxKr ,F (v|Kr
)(x) a.e. on F . (18.8)

Let (K̂, P̂ g, Σg) be one of the Lagrange elements or the canonical hybrid
element introduced in Chapters 6 and 7. Let k ≥ 1 be the degree of the finite
element. The corresponding broken finite element space is

P g,b
k (Th) := {vh ∈ L∞(D) | ψg

K(vh|K) ∈ P̂ g, ∀K ∈ Th}, (18.9)

where ψg
K(v) := v ◦ TK is the pullback by the geometric mapping TK . The

H1-conforming finite element subspace is defined as follows:

P g
k (Th) := P g,b

k (Th) ∩H1(D). (18.10)

Similarly, let (K̂, P̂ c, Σc) be one of the Nédélec elements introduced in Chap-

ter 15, and let (K̂, P̂ d, Σd) be one of the Raviart–Thomas elements intro-
duced in Chapter 14. Let k ≥ 0 be the degree of the finite element. The
corresponding broken finite element spaces are
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P
c,b
k (Th) := {vh ∈ L∞(D) | ψc

K(vh|K) ∈ P̂ c, ∀K ∈ Th}, (18.11a)

P
d,b
k (Th) := {vh ∈ L∞(D) | ψd

K(vh|K) ∈ P̂ d, ∀K ∈ Th}, (18.11b)

where ψc
K(v) := JTK(v ◦ TK) is the covariant Piola transformation and

ψd
K(v) := det(JK)J−1

K (v ◦TK) is the contravariant Piola transformation. The
corresponding H(curl)- and H(div)-conforming finite element subspaces are
defined as follows:

P c
k (Th) := P c,b

k (Th) ∩H(curl;D), (18.12a)

P d
k (Th) := P d,b

k (Th) ∩H(div;D). (18.12b)

The zero-jump conditions from Theorem 18.8 and Theorem 18.10 imply that

P g
k (Th) = {vh ∈ P g,b

k (Th) | [[vh]]gF = 0, ∀F ∈ F◦
h}, (18.13a)

P c
k (Th) = {vh ∈ P c,b

k (Th) | [[vh]]cF = 0, ∀F ∈ F◦
h}, (18.13b)

P d
k (Th) = {vh ∈ P d,b

k (Th) | [[vh]]dF = 0, ∀F ∈ F◦
h}. (18.13c)

In the next chapters, we study the construction and the interpolation prop-
erties of the above conforming finite element subspaces. To stay general, we
employ the following unified notation with x ∈ {g, c, d}:

P x
k (Th;Rq) := {vh ∈ P x,b

k (Th;Rq) | [[vh]]xF = 0, ∀F ∈ F◦
h}, (18.14)

where P x,b
k (Th;Rq) is one of the broken finite element spaces defined above.

Remark 18.12 (2D discrete Sobolev inequality). We have P g
k (Th) ⊂

L∞(D)∩H1(D) by construction, but as shown in Example 2.33, if d ≥ 2, there
exist functions in H1(D) that are unbounded. It turns out that in dimension
two, it is possible to derive a bound on the ‖·‖L∞-norm of functions in P g

k (Th)
that blows up very mildly w.r.t. the meshsize. This bound involves a global
length scale associated with D, say δD. More precisely, since D is Lipschitz,
one can show that there exist a length scale δD > 0 and an angle ω ∈ (0, 2π)
such that any point x ∈ D is the vertex of a cone C(x) ⊂ D, where C(x) is the
image by a translation and rotation of the cone C := {(r, θ) | r ∈ (0, δD), θ ∈
(0, ω)} defined in polar coordinates; see Lemma 3.4. Then assuming d := 2,
one can show (see Exercise 18.2 and Bramble et al. [42]) the following inverse
inequality, called discrete Sobolev inequality: There is c > 0 s.t.

c δ
− 1

2

D ‖vh‖L∞(K) ≤ δ−1
D ‖vh‖L2(D) + ln

(
δD
hK

) 1
2

‖∇vh‖L2(D), (18.15)

for all vh ∈ P g
k (Th), all K ∈ Th such that hK ≤ 1

2δD, and all h ∈ H. ⊓⊔



214 Chapter 18. From broken to conforming spaces

18.3 L1-stable local interpolation

In this section, we devise a local interpolation operator that is L1-stable and
maps L1(D) onto the broken finite element space P b

k (Th;Rq) defined in (18.4).
The construction is local in each mesh cell. The key idea is to extend the dofs
of the reference finite element so as to be able to interpolate boundedly all
the functions that are in L1(D).

We assume that the geometric mappings TK are affine for all K ∈ Th,
and that all the transformations ψK are of the form ψK(v) := AK(v ◦ TK)
(see (11.1)) where AK ∈ Rq×q satisfies (see (11.12))

‖AK‖ℓ2‖A−1
K ‖ℓ2 ≤ c ‖JK‖ℓ2‖J−1

K ‖ℓ2 , (18.16)

with c uniform w.r.t. K ∈ Th and h ∈ H, where JK is the Jacobian matrix of
TK . Let us define the adjoint transformation φK(w) := BK(w ◦ TK) where
BK := |det(JK)|A−T

K . The terminology is motivated by the following identity:

(w, v)L2(K;Rq) = (φK(w), ψK(v))L2(K̂;Rq), (18.17)

for all v ∈ Lp(K;Rq), all w ∈ Lp′

(K;Rq), and all p ∈ [1,∞] with 1
p + 1

p′ = 1.
Indeed, we have

(φK(w), ψK(v))L2(K̂;Rq)=

∫

K̂

|det(JK)|(A−T

K (w ◦ TK),AK(v ◦ TK))ℓ2(Rq) dx̂

=

∫

K

(w ◦ TK , v ◦ TK)ℓ2(Rq) dx = (w, v)L2(K;Rq).

Moreover, we have ‖BK‖ℓ2‖B−1
K ‖ℓ2 = ‖AK‖ℓ2‖A−1

K ‖ℓ2 since ‖AT

K‖ℓ2 =
‖AK‖ℓ2.

We first extend the dofs of the reference finite element. Let ρ̂i ∈ P̂ for all
i ∈ N be such that

1

|K̂|
(ρ̂i, p̂)L2(K̂;Rq)

:= σ̂i(p̂), ∀p̂ ∈ P̂ . (18.18)

The function ρ̂i is well defined owing to the Riesz–Fréchet theorem (see either

Exercise 5.9 or Theorem A.16 applied here in the finite-dimensional space P̂
equipped with the L2-inner product weighted by |K̂|−1). This leads us to
define the extended dofs as follows:

σ̂♯
i (v̂) :=

1

|K̂|
(ρ̂i, v̂)L2(K̂;Rq), ∀v̂ ∈ L1(K̂;Rq). (18.19)

We then define the interpolation operator s.t. for all x̂ ∈ K̂,
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I♯

K̂
(v̂)(x̂) :=

∑

i∈N
σ̂♯
i (v̂)θ̂i(x̂), ∀v̂ ∈ L1(K̂;Rq). (18.20)

We can take V (K̂) := L1(K̂;Rq) for the domain of I♯

K̂
. One can show that

I♯

K̂
is actually the L2-orthogonal projection onto P̂ ; see Exercise 18.3.

Lemma 18.13 (Invariance and stability). Let I♯

K̂
be defined in (18.20).

(i) P̂ is pointwise invariant under I♯

K̂
. (ii) I♯

K̂
is Lp-stable for all p ∈ [1,∞],

i.e., there is ĉ s.t.

‖I♯

K̂
(v̂)‖Lp(K̂;Rq) ≤ ĉ ‖v̂‖Lp(K̂;Rq), ∀v̂ ∈ Lp(K̂;Rq). (18.21)

Proof. (i) Since σ̂♯
i (p̂) = σ̂i(p̂) for all p̂ ∈ P̂ and all i ∈ N , we obtain I♯

K̂
(p̂) =

∑
i∈N σ̂i(p̂)θ̂i = p̂. (ii) Since P̂ ⊂ L∞(K̂;Rq), we have ρ̂i ∈ L∞(K̂;Rq).

Hölder’s inequality implies that

|σ̂♯
i (v̂)| ≤ |K̂|− 1

p ‖ρ̂i‖L∞(K̂;Rq)‖v̂‖Lp(K̂;Rq),

for all v̂ ∈ Lp(K̂;Rq). We conclude that (18.21) holds true with ĉ :=∑
i∈N |K̂|− 1

p ‖ρ̂i‖L∞(K̂;Rq)‖θ̂i‖Lp(K̂;Rq). ⊓⊔

Consider now a mesh cell K ∈ Th from a shape-regular mesh sequence
(Th)h∈H and let (K,PK , ΣK) be the finite element generated in K using the
transformation ψK (see Proposition 9.2). The assumption ψK(v) = AK(v ◦
TK) implies that ψ−1

K (L1(K̂;Rq)) = L1(K;Rq). We extend the dofs in ΣK

to L1(K;Rq) by setting σ♯
K,i(v) := σ̂♯

i (ψK(v)), i.e., owing to (18.17),

σ♯
K,i(v) =

1

|K̂|
(ρ̂i, ψK(v))L2(K̂;Rq) =

1

|K̂|
(φ−1

K (ρ̂i), v)L2(K;Rq), (18.22)

and we define the local interpolation operator in K s.t. for all x ∈ K,

I♯
K(v)(x) :=

∑

i∈N
σ♯
K,i(v)θK,i(x), ∀v ∈ V (K) := L1(K;Rq), (18.23)

recalling that the local shape functions are given by θK,i := ψ−1
K (θ̂i) for all

i ∈ N . The linearity of ψK implies that

ψK

(
I♯
K(v)

)
:= ψK

(
∑

i∈N
σ♯
K,i(v)ψ

−1
K (θ̂i)

)
=
∑

i∈N
σ̂♯
i (ψK(v))θ̂i = I♯

K̂
(ψK(v)).

In other words, the following key relation holds true:

I♯
K = ψ−1

K ◦ I♯

K̂
◦ ψK . (18.24)
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One can show that I♯
K is the oblique projection onto PK = ψ−1

K (P̂ ) parallel

to Q⊥
K with QK := Φ−1

K (P̂ ). Note that I♯
K is L2-orthogonal whenever the

matrix AK is unitary; see Exercise 18.3.

Theorem 18.14 (Local approximation). Let I♯
K be defined by (18.23).

Let k be the degree of the finite element, i.e., [Pk,d]
q ⊂ P̂ ⊂ W k+1,p(K̂;Rq).

(i) PK is pointwise invariant under I♯
K . (ii) Assuming that the mesh sequence

is shape-regular, there is c s.t. for all r ∈ [0, k+ 1], all p ∈ [1,∞) if r 6∈ N or
all p ∈ [1,∞] if r ∈ N, every integer m ∈ {0:⌊r⌋}, all v ∈ W r,p(K;Rq), all
K ∈ Th, and all h ∈ H,

|v − I♯
K(v)|Wm,p(K;Rq) ≤ c hr−m

K |v|W r,p(K;Rq). (18.25)

Proof. The property (i) follows from (18.24). The property (ii) for r ∈ N
follows from Theorem 11.13 with l := 0 since I♯

K̂
is stable in Lp owing to

Lemma 18.13. Taking m := r in (18.25) implies the Wm,p-stability of I♯
K for

every integer m ∈ {0:k + 1}, i.e.,

|I♯
K(w)|Wm,p(K;Rq) ≤ c |w|Wm,p(K;Rq), ∀w ∈ Wm,p(K;Rq). (18.26)

Since I♯
K(g) = g for all g ∈ PK , (18.26) and the triangle inequality yield

|v − I♯
K(v)|Wm,p(K;Rq) = inf

q∈PK

|v − g − I♯
K(v − g)|Wm,p(K;Rq)

≤ c inf
q∈PK

|v − g|Wm,p(K;Rq).

Invoking the bound (12.18) on infq∈PK
|v − g|Wm,p(K;Rq), we infer that the

property (ii) holds true for all r 6∈ N as well. ⊓⊔

Corollary 18.15 (Approximation on faces). (i) Let p ∈ [1,∞) and r ∈
( 1p , k + 1] if p > 1 or r ∈ [1, k + 1] if p = 1. There is c s.t.

‖v − I♯
K(v)‖Lp(F ;Rq) ≤ c h

r− 1
p

K |v|W r,p(K;Rq), (18.27)

for all v ∈ W r,p(K;Rq), all K ∈ Th, all F ∈ FK , and all h ∈ H, where the
constant c grows unboundedly as rp ↓ 1 if p > 1. (ii) Assume k ≥ 1. Let
p ∈ [1,∞) and r ∈ ( 1p , k] if p > 1 or r ∈ [1, k] if p = 1. There is c s.t.

‖∇(v − I♯
K(v))‖Lp(F ;Rq) ≤ c h

r− 1
p

K |v|W 1+r,p(K;Rq), (18.28)

for all v ∈ W 1+r,p(K;Rq), all K ∈ Th, and all h ∈ H, where the constant c
grows unboundedly as rp ↓ 1 if p > 1.

Proof. For simplicity, we assume that q = 1. The general case is treated
by reasoning componentwise. Let us prove (18.27). Assume first that r ∈
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[1, k+1]. Owing to the multiplicative trace inequality (12.16), we infer that,

with η := v − I♯
K(v),

‖η‖Lp(F ) ≤ c

(
h
− 1

p

K ‖η‖Lp(K) + ‖η‖1−
1
p

Lp(K)‖∇η‖
1
p

Lp(K)

)
.

Invoking (18.25) with m ∈ {0, 1} (note that m ≤ ⌊r⌋) shows that (18.27)
holds true in this case. Let us now assume that r ∈ ( 1p , 1) with p > 1. Let

q0 ∈ ψ−1
K (P0,d) = P0,d be arbitrary. We have

h
1
p

K‖η‖Lp(F ) ≤ h
1
p

K‖v − q0‖Lp(F ) + h
1
p

K‖I♯
K(v)− q0‖Lp(F )

≤ c
(
‖v − q0‖Lp(K) + hrK |v|W r,p(K) + ‖I♯

K(v)− q0‖Lp(K)

)

≤ c
(
‖v − q0‖Lp(K) + hrK |v|W r,p(K) + ‖v − I♯

K(v)‖Lp(K)

)
,

where we used the triangle inequality in the first line, the fractional trace
inequality (12.17), the discrete trace inequality (12.10) and q0 ∈ P0,d in
the second line, and the triangle inequality in the third line. Invoking the
best-approximation estimate (12.15) from Corollary 12.13 (observe that q0 is
arbitrary in P0,d) and (18.25) with m = 0 leads again to (18.27). Finally, the
proof of (18.28) is similar and is left as an exercise. ⊓⊔

We define I♯
h : L1(D;Rq) → P b

k (Th;Rq) s.t. for all v ∈ L1(D;Rq),

I♯
h(v)|K := I♯

K(v|K), ∀K ∈ Th. (18.29)

The approximation properties of I♯
h readily follow from Theorem 18.14.

18.4 Broken L2-orthogonal projection

Let K ∈ Th be a mesh cell. The L2-orthogonal projection Ib
K : L1(K;Rq) →

PK is defined s.t. for all v ∈ L1(K;Rq),

(Ib
K(v) − v, q)L2(K;Rq) = 0, ∀q ∈ PK , (18.30)

where PK := ψ−1
K (P̂ ) and ψK(v) := AK(v ◦ TK). Since (18.30) implies that

‖v − q‖2L2(K;Rq) = ‖v − Ib
K(v)‖2L2(K;Rq) + ‖Ib

K(v)− q‖2L2(K;Rq), (18.31)

we have the optimality property

Ib
K(v) = arg min

q∈PK

‖v − q‖L2(K;Rq). (18.32)
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The stability and approximation properties of Ib
K can be analyzed by using

the L1-stable interpolation operator I♯
K introduced in the previous section.

Theorem 18.16 (Stability and local approximation). Let Ib
K be defined

by (18.30). Let k be the degree of the finite element, i.e., [Pk,d]
q ⊂ P̂ ⊂

W k+1,p(K̂;Rq). Assume that the mesh sequence is shape-regular. (i) PK is
pointwise invariant under Ib

K . (ii) Ib
K is Lp-stable for all p ∈ [1,∞], i.e., there

is c s.t. ‖Ib
K(v)‖Lp(K;Rq) ≤ c‖v‖Lp(K;Rq) for all v ∈ Lp(K;Rq), all K ∈ Th,

and all h ∈ H. (iii) There is c s.t.

|v − Ib
K(v)|Wm,p(K;Rq) ≤ c hr−m

K |v|W r,p(K;Rq), (18.33)

for all r ∈ [0, k + 1], all p ∈ [1,∞) if r 6∈ N or all p ∈ [1,∞] if r ∈ N, every
integer m ∈ {0:⌊r⌋}, all v ∈ W r,p(K;Rq), all K ∈ Th, and all h ∈ H.

Proof. (i) The pointwise invariance of PK under Ib
K follows from (18.30).

(ii) Stability. Let v ∈ Lp(K;Rq). We observe that

‖Ib
K(v)‖2Lp(K;Rq) ≤ c h

d( 2
p
−1)

K ‖Ib
K(v)‖2L2(K;Rq) = c h

d( 2
p
−1)

K (v, Ib
K(v))L2(K;Rq)

≤ c h
d( 2

p
−1)

K ‖v‖Lp(K;Rq)‖Ib
K(v)‖Lp′(K;Rq)

≤ c′ h
d( 2

p
−1+ 1

p′
− 1

p
)

K ‖v‖Lp(K;Rq)‖Ib
K(v)‖Lp(K;Rq)

= c′ ‖v‖Lp(K;Rq)‖Ib
K(v)‖Lp(K;Rq),

where we used the inverse inequality (12.3) (between Lp and L2), (18.30)
with q := Ib

K(v), Hölder’s inequality (with 1
p +

1
p′ = 1), and again the inverse

inequality (12.3) (between Lp′

and Lp). This proves the Lp-stability of Ib
K .

(iii) Local approximation. Since I♯
K(v) ∈ PK and PK is left pointwise invari-

ant by Ib
K , we have

|v − Ib
K(v)|Wm,p(K;Rq) ≤ |v − I♯

K(v)|Wm,p(K;Rq) + |Ib
K(v − I♯

K(v))|Wm,p(K;Rq)

≤ |v − I♯
K(v)|Wm,p(K;Rq) + ch−m

K ‖Ib
K(v − I♯

K(v))‖Lp(K;Rq)

≤ |v − I♯
K(v)|Wm,p(K;Rq) + c′h−m

K ‖v − I♯
K(v)‖Lp(K;Rq)

≤ c′′hr−m
K |v|W r,p(K;Rq),

where we used the triangle inequality, the inverse inequality from Lemma 12.1,
the Lp-stability of Ib

K , and the approximation property (18.25) of I♯
K . ⊓⊔

We define Ib
h : L1(D;Rq) → P b

k (Th;Rq) s.t. for all v ∈ L1(D;Rq),
Ib
h(v)|K := Ib

K(v|K) for all K ∈ Th. One readily verifies that Ib
h is the

L2-orthogonal projection onto P b
k (Th;Rq). The stability and approximation

properties of Ib
h follow from Theorem 18.16.

Remark 18.17 (Approximation on faces). A result similar to Corol-
lary 18.15 holds true for Ib

K on the mesh faces. ⊓⊔
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Remark 18.18 (Pullback). One cannot investigate the approximation

properties of Ib
K by introducing the L2-orthogonal projection onto P̂ (i.e., the

operator I♯

K̂
) and using Theorem 11.13, since we have seen that ψ−1

K ◦I♯

K̂
◦ψK

is actually the oblique projection I♯
K and not the L2-orthogonal projection

Ib
K . The two projections I♯

K and Ib
K coincide when the matrix AK is unitary

(see Exercise 18.3). This happens when ψK is the pullback by the geometric
mapping TK , i.e., when AK is the identity as is the case for scalar-valued
elements. In this situation, Theorem 18.16 has already been established in
Lemma 11.18 (at least for r ∈ {0:k + 1}). ⊓⊔

Remark 18.19 (Algebraic realization). To evaluate the L2-orthogonal
projection Ib

K(v) of a function v, one has to solve the linear system MKX =
Y, where the local mass matrix has entriesMK,mn :=

∫
K(θK,m, θK,n)ℓ2(Rq) dx

for all m,n ∈ N , and the right-hand side vector Y has components Yn :=∫
K(v, θK,n)ℓ2(Rq) dx. Then we have Ib

K(v) =
∑

n∈N XnθK,n; see §5.4.2. ⊓⊔

Exercises

Exercise 18.1 (H(div), H(curl)). Prove Theorem 18.10. (Hint : use (4.8).)

Exercise 18.2 (Discrete Sobolev inequality). (i) Assume d ≥ 3. Prove

that ‖vh‖L∞(K) ≤ ch
1− d

2

K ‖∇vh‖L2(K) for all vh ∈ P g,b
k (Th), all K ∈ Th, and

all h ∈ H. (Hint : use Theorem 2.31.) (ii) Assume d = 2. Prove (18.15). (Hint :
let K ∈ Th with hK ≤ δD

2 , let x ∈ K and let y have polar coordinates (r, θ)

with respect to x with r ≥ δD
2 and θ ∈ (0, ω), use that vh(x) = vh(y) −∫ r

0 ∂ρvh(ρ, θ) dρ, decompose the integral as
∫ r

0 · dρ =
∫ hK

0 ·dρ+
∫ r

hK
· dρ, and

bound the two addends.)

Exercise 18.3 (Orthogonal and oblique projections). (i) Show that I♯

K̂

is the L2-orthogonal projection onto P̂ . (Hint : observe that (ρ̂i, θ̂j)L2(K̂;Rq) =

|K̂|δij for all i, j ∈ N .) (ii) Prove that I♯
K is the oblique projection onto

PK = ψ−1
K (P̂ ) parallel to Q⊥

K with QK := Φ−1
K (P̂ ). (Hint : use (18.17).) (iii)

Show that PK = QK if the matrix AK is unitary, i.e., AT

KAK = AKAT

K = Iq.

Exercise 18.4 (Approximation on faces). Prove (18.28).


