
Part IV, Chapter 20

Face gluing

The goal of this chapter and the following one is to construct the connec-
tivity array j dof introduced in the previous chapter so that the two struc-
tural properties (19.2) and (19.3) hold true. In the present chapter, we focus
on (19.2), and more specifically we are going to see how we can enforce the
zero-jump condition [[vh]]

x
F = 0 by means of the degrees of freedom (dofs)

on the two mesh cells sharing the interface F ∈ F◦
h for vh in the broken

finite element space P x,b
k (Th). In particular, we identify two key structural

assumptions on the dofs of the finite element making this construction pos-
sible. The first assumption is called face unisolvence (see Assumption 20.1),
and the second one is called face matching (see Assumption 20.3). We first
introduce these ideas with Lagrange elements to make the argumentation
easier to understand. Then we generalize the concepts to the Nédélec and
the Raviart–Thomas finite elements in a unified setting that encompasses all
the finite elements considered in the book. The two main results of this chap-
ter are Lemma 20.4 for Lagrange elements and Lemma 20.15 for the general
situation. In the entire chapter, D is a polyhedron in Rd and Th is an oriented
matching mesh covering D exactly (see Chapter 10 on mesh orientation).

20.1 The two gluing assumptions (Lagrange)

For Lagrange elements our aim is to construct the H1-conforming subspace

P g
k (Th) := {vh ∈ P g,b

k (Th) | [[vh]]gF = 0, ∀F ∈ F◦
h}, (20.1)

where P g,b
k (Th) is a broken finite element space and [[·]]gF := [[·]]F is the jump

operator across the mesh interfaces introduced in Definition 8.10. Recall that
we have P g

k (Th) = P g,b
k (Th) ∩H1(D).

The Lagrange nodes of the reference cell K̂ are denoted by {âi}i∈N so that

the dofs Σ̂ := {σ̂i}i∈N are s.t. σ̂i(p̂) := p̂(âi) for all i ∈ N and all p̂ ∈ P̂ . The
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Lagrange nodes of K ∈ Th are denoted by {aK,i := TK(âi)}i∈N , where TK :

K̂ → K is the geometric mapping. The dofs in K are s.t. σK,i(p) = p(aK,i)

for all i ∈ N and all p ∈ PK with PK := (ψg
K)−1(P̂ ), where ψg

K(v) := v ◦ TK

is the pullback by the geometric mapping. We do not assume in this section
that the geometric mapping TK is affine.

We now formalize the structure of the reference element that will allow
us to enforce the zero-jump condition in (20.1). We make two assumptions
which we will show hold true in the next section for the simplicial and the
tensor-product Lagrange elements. Our first key assumption is the following.

Assumption 20.1 (Face unisolvence). Let F̂ be a face of K̂, i.e., F̂ ∈ FK̂,
and let NK̂,F̂ ⊂ N be the collection of the indices of the Lagrange nodes in

K̂ located on F̂ . We assume that

∀p̂ ∈ P̂ , [ σ̂i(p̂) = 0, ∀i ∈ NK̂,F̂ ] ⇐⇒ [ p̂|F̂ = 0 ]. (20.2)

Let K be a mesh cell and let F be a face of K., i.e., F ∈ FK . Let F̂ be the
face of K̂ s.t. F̂ := T−1

K (F ). Let NK,F ⊂ N be the collection of the indices
of the Lagrange nodes in K located on F . The above definitions imply that

[ i ∈ NK,F ] ⇐⇒ [aK,i ∈ F ] ⇐⇒ [ âi ∈ F̂ ] ⇐⇒ [ i ∈ NK̂,F̂ ], (20.3)

that is, we have

NK,F = NK̂,F̂ = NK̂,T−1
K

(F ), ∀K ∈ Th, ∀F ∈ FK . (20.4)

We define the trace space PK,F := span{θK,i|F }i∈NK,F
, so that PK,F =

γgK,F (PK), where we recall that the trace map γgK,F is defined by setting

γgK,F (v) := v|F for all v ∈ PK . We define the set of the dofs associated
with the Lagrange nodes located on F , ΣK,F := {σK,F,i}i∈NK,F

, by setting
σK,F,i(q) := q(aK,i) for all i ∈ NK,F and all q ∈ PK,F . Notice that σK,F,i

acts on functions in PK,F (i.e., functions defined on F ), whereas σK,i acts on
functions in PK (i.e., functions defined on K).

Let us state an important consequence of Assumption 20.1.

Lemma 20.2 (Face element). Let K ∈ Th and F ∈ FK . Under Assump-
tion 20.1, the triple (F, PK,F , ΣK,F ) is a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since we have

σK,F,j(θK,i|F ) = θK,i|F (aK,j) = θK,i(aK,j) = δij ,

for all i, j ∈ NK,F , we infer that the family {θK,i|F }i∈NK,F
is linearly inde-

pendent, which implies that dim(PK,F ) = card(ΣK,F ). Let now q ∈ PK,F be
s.t. σK,F,i(q) = 0 for all i ∈ NK,F . By definition of PK,F and PK , there is

p̂ ∈ P̂ s.t. q = (p̂◦T−1
K )|F . Hence, for all i ∈ NK̂,F̂ = NK,F , we have aK,i ∈ F

and
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σ̂i(p̂) = p̂(âi) = (p̂ ◦ T−1
K )(aK,i) = (p̂ ◦ T−1

K )|F (aK,i)

= q(aK,i) = σK,F,i(q) = 0.

Assumption 20.1 (face unisolvence) implies that p̂|F̂ = 0, so that q = 0. ⊓⊔

Recall that since the mesh is matching, any interface F := ∂Kl∩∂Kr ∈ F◦
h

is a face of Kl and a face of Kr, i.e., F ∈ FKl
∩ FKr

. Our second key
assumption is formulated as follows.

Assumption 20.3 (Face matching). For all F := ∂Kl ∩ ∂Kr ∈ F◦
h, we

have (i) PKl,F = PKr ,F =: PF and (ii) ΣKl,F = ΣKr,F =: ΣF , i.e., there is
a bijective map χlr : NKl,F → NKr,F s.t. aKl,i = aKr,χlr(i) for all i ∈ NKl,F .

We are now in a position to state the main result of this section.

Lemma 20.4 (Zero-jump). Let vh ∈ P g,b
k (Th) and F ∈ F◦

h. Under As-
sumptions 20.1 and 20.3, the following equivalence holds true:

[ [[vh]]F = 0 ] ⇐⇒ [ vh|Kl
(aKl,i) = vh|Kr

(aKr,χlr(i)), ∀i ∈ NKl,F ]. (20.5)

Proof. Let vh ∈ P g,b
k (Th) and F ∈ F◦

h . Let vl be the restriction of vh|Kl

to F , and let vr be the restriction of vh|Kr
to F . Since vh ∈ P g,b

k (Th), we
have vl ∈ PKl,F and vr ∈ PKr ,F . Owing to Assumption 20.3, we also have
vr ∈ PKl,F , i.e., [[vh]]F = vl − vr ∈ PKl,F . Since (F, PKl,F , ΣKl,F ) is a finite
element owing to Lemma 20.2 (which follows from Assumption 20.1), we
infer that [[vh]]F = vl − vr = 0 iff (vl − vr)(aKl,i) = 0 for all i ∈ NKl,F .
But vl(aKl,i) = vh|Kl

(aKl,i) and, owing to Assumption 20.3, we also have
vr(aKl,i) = vh|Kr

(aKl,i) = vh|Kr
(aKr,χlr(i)). This proves (20.5). ⊓⊔

20.2 Verification of the assumptions (Lagrange)

In this section, we verify Assumptions 20.1 and 20.3 for Lagrange Pk,d el-

ements when K̂ is a simplex and for Lagrange Qk,d elements when K̂ is
a cuboid. Since these two assumptions trivially hold true when d = 1, we
assume in this section that d ≥ 2. We do not assume that the geometric
mapping TK : K̂ → K is affine.

20.2.1 Face unisolvence

Assumption 20.1 has been proved in Lemma 6.15 for Lagrange Qk,d elements
and in Lemma 7.13 for Lagrange Pk,d elements. Note that the face unisolvence
assumption is not met for the Crouzeix–Raviart element.
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20.2.2 The space PK,F

Let us now identify the space PK,F for all K ∈ Th and all F ∈ FK . Let us

set F̂ := T−1
K (F ). Then F̂ ∈ FK̂ , i.e., F̂ is a face of the reference cell K̂.

Let F̂ d−1 be the unit simplex in Rd−1 if K̂ is the unit simplex of Rd or let
F̂ d−1 be the unit cuboid of Rd−1 if K̂ is the unit cuboid of Rd. Since both
F̂ d−1 and F̂ are either (d− 1)-dimensional simplices or cuboids, it is always

possible to construct an affine bijective mapping TF̂ from F̂ d−1 to F̂ . Let us
denote

TF̂ : F̂ d−1 → F̂ , TK,F := TK|F̂ ◦ TF̂ : F̂ d−1 → F. (20.6)

Lemma 20.5 (Characterization of PK,F ). Let K̂ be either a simplex or

a cuboid. Then PK,F = P̂ d−1
k ◦ T−1

K,F where P̂ d−1
k := Pk,d−1 if K̂ is a simplex

and P̂ d−1
k := Qk,d−1 if K̂ is a cuboid.

Proof. Let q ∈ PK,F . By definition of PK,F , there is p̂ ∈ P̂ s.t.

q = (p̂◦T−1
K )|F = p̂|F̂ ◦T−1

K|F = (p̂|F̂ ◦TF̂ )◦(TK|F̂ ◦TF̂ )
−1 = (p̂|F̂ ◦TF̂ )◦T−1

K,F .

Since p̂|F̂ ◦ TF̂ ∈ P̂ d−1
k (see Lemma 6.13 or Lemma 7.10 depending on the

nature of F̂ ), we conclude that q ∈ P̂ d−1
k ◦ T−1

K,F . This shows that PK,F ⊂
P̂ d−1
k ◦ T−1

K,F . The converse inclusion is proved by similar arguments. ⊓⊔

20.2.3 Face matching

We now establish that PKl,F = PKr,F and ΣKl,F = ΣKr,F .

Lemma 20.6 (Face matching, (i)). Assume that K̂ is either a simplex or
a cuboid. Let F := ∂Kl ∩ ∂Kr ∈ F◦

h. Then PKl,F = PKr ,F .

Proof. Let us set F̂l := T
−1
Kl

(F ) and F̂r := T−1
Kr

(F ). Since the mesh is match-

ing, F̂l and F̂r are faces of K̂. By construction, the mapping

T−1
Kl|F ◦ TKr|F̂r

: F̂r → F̂l

is bijective, and turns out to be affine even when the mappings TKl
and TKr

are nonaffine as shown in Exercise 20.1. Then the mapping Srl : F̂ d−1 →
F̂ d−1 s.t.

Srl := T
−1
Kl,F

◦ TKr,F = T−1

F̂l

◦ T−1
Kl|F ◦ TKr|F̂r

◦ TF̂r

is affine (because the mappings T−1

F̂l

, T−1
Kl|F ◦TKr|F̂r

, and TF̂r
are affine) and

bijective; see Figure 20.1. Since P̂ d−1
k = Pk,d−1 or P̂ d−1

k = Qk,d−1 depending



Part IV. Finite element spaces 239

on the nature of K̂, we infer that P̂ d−1
k is invariant under Srl, i.e., P̂

d−1
k ◦Srl =

P̂ d−1
k . Using this property together with the identity PK,F = P̂ d−1

k ◦ T−1
K,F

proved in Lemma 20.5, we infer that

PKl,F = P̂ d−1
k ◦ T−1

Kl,F
= P̂ d−1

k ◦ Srl ◦ T−1
Kr,F

= P̂ d−1
k ◦ T−1

Kr ,F
= PKr ,F . ⊓⊔

F

TKl

TKr

TF̂l Kr

Kl

K̂
F̂l

TF̂r
F̂r

TKr,Fr

F̂ d−1

TKl,Fl

Fig. 20.1 Two-dimensional example (d = 2): geometric mappings associated with an
interface F , the reference faces F̂l and F̂r, and the unit segment F̂ d−1.

To establish that ΣKl,F = ΣKr,F for a general set of Lagrange nodes in K̂,
we formulate a symmetry assumption on the Lagrange nodes located on the
faces of K̂. This assumption turns out to be sufficient in order to establish
that ΣKl,F = ΣKr,F . Combined with the result from Lemma 20.6, this allows
us to conclude that Assumption 20.3 (face matching) is indeed satisfied.

Assumption 20.7 (Invariance by vertex permutation). We assume

that there is a set {ŝm}m∈N
F̂d−1

of Lagrange nodes in F̂ d−1, with NF̂d−1 :=

{1:nf} for some integer nf ≥ 1, s.t. the following holds true: (i) The set

{ŝm}m∈N
F̂d−1

is invariant under any vertex permutation of F̂ d−1. (ii) For

every face F̂ of K̂, {TF̂ (ŝm)}m∈N
F̂d−1

are the Lagrange nodes on F̂ .

Assumption 20.7(i) means that for every affine bijective mapping S :

F̂ d−1 → F̂ d−1, there is a permutation χS ofNF̂d−1 such that S(ŝm) = ŝχS(m)

for all m ∈ NF̂d−1 . Assumption 20.7(ii) means that card(NK̂,F̂ ) = nf is inde-

pendent of the face F̂ of K̂ and that, for every F̂ ∈ FK̂ , there is a bijective
map jfc

F̂
: NF̂d−1 → NK̂,F̂ such that (see Figure 20.2)

TF̂ (ŝm) = âjfc
F̂
(m), ∀m ∈ NF̂d−1 . (20.7)

Example 20.8 (Qk,d Lagrange elements). After inspection of Propo-

sition 6.14 on the reference cuboid K̂ := [0, 1]d, we realize that Assump-
tion 20.7 holds true for tensor-product Lagrange elements provided that for
every i ∈ {1:d}, the set of points {ai,l}l∈{0:k} is such that ai,l = αl for
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Fig. 20.2 Face (segment) F̂ d−1 with
nf := 3 Lagrange nodes ŝ1, ŝ2, ŝ3 mapped
by T

F̂
to the three Lagrange nodes on F̂ .

The enumeration of the Lagrange nodes of
K̂ implies that N

K̂,F̂
= {1, 3, 5} and that

jfc
F̂
(1) = 3, jfc

F̂
(2) = 5, jfc

F̂
(3) = 1.

â3

K̂

â1 â6

F̂

â2

â4
â5

F̂ d−1

ŝ3ŝ2ŝ1

TF̂

every l ∈ {0:k}, where the points 0 = α0 < . . . < αk = 1 are all distinct
in the interval [0, 1] and satisfy the symmetry property αl = 1 − αk−l for
all l ∈ {0:⌊k

2⌋}. The Gauss–Lobatto nodes satisfy these assumptions (up to
rescaling from [−1, 1] to [0, 1]); see §6.2. ⊓⊔
Example 20.9 (Pk,d Lagrange elements). The simplicial Lagrange ele-
ment described in Proposition 7.12 also satisfies the assumption on invariance
by vertex permutation. In dimension two, for instance, the edge nodes are
invariant under symmetry about the midpoint as shown in the left panel of
Figure 20.3 (for k = 2). Note that it is possible to use a set of Lagrange nodes
that is different from the one introduced in Proposition 7.12 provided the ver-
tex permutation assumption holds true (in addition to the face unisolvence).
For instance, one can use the Fekete points mentioned in Remark 7.14. ⊓⊔

Fig. 20.3 P2,2 Lagrange element: two-dimensional example (left) and counterexample
(center) for Assumption 20.3 (the triangles Kl and Kr are drawn slightly apart). In the
rightmost panel, Assumption 20.3 is satisfied but not Assumption 20.7. This illustrates the
fact that Assumption 20.7 is not needed to establish Assumption 20.3 if one enforces extra
constraints on the way adjacent mesh cells come into contact.

Lemma 20.10 (Face matching, (ii)). Assume that K̂ is either a simplex
or a cuboid. Let F := ∂Kl ∩ ∂Kr ∈ F◦

h. Let Assumption 20.7 on invariance
by vertex permutation be fulfilled. Then ΣKl,F = ΣKr,F .

Proof. Let i ∈ NKr,F = NK̂,F̂r
and let aKr,i be the corresponding Lagrange

node of Kr located on F . Then T−1
Kr

(aKr,i) = âi is a Lagrange node on F̂r.
Let m ∈ NF̂d−1 be such that i = jfc

F̂r
(m), that is, âi = TF̂r

(ŝm). Since we

have established above that the mapping Srl := T−1

F̂l

◦ T−1
Kl|F ◦ TKr|F̂r

◦ TF̂r

is affine, there is a permutation χSrl
: NF̂d−1 → NF̂d−1 such that Srl(ŝm) =

ŝχSrl
(m) for allm ∈ NF̂d−1 . Then the identity Srl(ŝm) = ŝχSrl

(m) means that

(TKr|F̂r
◦TF̂r

)(ŝm) = (TKl|F̂l
◦TF̂l

)(ŝχSrl
(m)), which can also be rewritten as

aKr,jfc
F̂r

(m) = aKl,jfc
F̂l

(χSrl
(m)). Hence, we have



Part IV. Finite element spaces 241

σKr ,F,jfc
F̂r

(m)(q) = q(aKr,jfc
F̂r

(m)) = q(aKl,jfc
F̂l

(χSrl
(m))) = σKl,F,jfc

F̂l
(χSrl

(m))(q),

for all q ∈ PF and all m ∈ NF̂d−1 . This proves that ΣKl,F = ΣKr,F since
jfc
F̂l

◦ χSrl
◦ (jfc

F̂r
)−1 is bijective. ⊓⊔

Remark 20.11 (Serendipity and prismatic elements). The reader is
invited to verify that the face unisolvence assumption 20.1 holds true also for
the serendipity elements described in §6.4.3 and for the prismatic elements
described in Remark 7.16. The face matching assumption 20.3 holds true
for the serendipity elements since the face dofs are the same as those of the
corresponding Qk,d element. The assumption 20.3 can also be shown to hold
true for the prismatic elements provided the Lagrange nodes on the triangular
faces and the Lagrange nodes on the quadrangular faces each satisfy the
vertex permutation assumption. ⊓⊔

20.3 Generalization of the two gluing assumptions

In this section, we generalize the theory developed in §20.1 to enforce the
jump condition [[vh]]

x
F = 0 across all the mesh interfaces F ∈ F◦

h for x ∈
{g, c, d} and vh ∈ P x,b

k (Th;Rq). We are going to rephrase §20.1 in a slightly
more abstract language. Recall from (18.8) that [[vh]]

x
F := γxKl,F

(vh|Kl
) −

γxKr,F
(vh|Kr

) with F := ∂Kl ∩ ∂Kr and the trace operator γxK,F defined
in (18.7) for every mesh cell K ∈ Th and every face F ∈ FK of K. We drop
the superscript x whenever the context is unambiguous.

We start by identifying two structural properties of the finite element
which we will call face unisolvence and face matching assumptions. We pro-
ceed in two steps. First, given a mesh cell K ∈ Th, we use the local finite
element (K,PK , ΣK) with local shape functions {θK,i}i∈N and local dofs
{σK,i}i∈N , and invoke the face unisolvence assumption to construct a fi-
nite element attached to each face F ∈ FK . Then for every mesh interface
F := ∂Kl∩∂Kr ∈ F◦

h , we invoke the face matching assumption to make sure
that the two face elements built on F fromKl and fromKr are identical (note
that F ∈ FKl

∩ FKr
since the mesh is matching). The theory is illustrated

with various examples in §20.4. In this section (and the next one), we restrict
the maps {σK,i}i∈N and γK,F to PK , so that the kernels of these maps are to
be understood as subspaces of PK (for simplicity, we keep the same notation
for the restrictions). Our first key assumption is the following.

Assumption 20.12 (Face unisolvence). For all K ∈ Th and all F ∈ FK,
there is a nonempty subset NK,F ⊂ N s.t. ker(γK,F ) =

⋂
i∈NK,F

ker(σK,i),
i.e., for all p ∈ PK ,

[σK,i(p) = 0, ∀i ∈ NK,F ] ⇐⇒ [ γK,F (p) = 0 ]. (20.8)



242 Chapter 20. Face gluing

Equivalently, we have ker(γK,F ) = span{θK,i}i6∈NK,F
.

Let NK,F ⊂ N be defined according to Assumption 20.12. Let us define
the corresponding trace space PK,F by setting

PK,F := γK,F (PK) = span{γK,F (θK,i)}i∈NK,F
. (20.9)

Notice that γK,F (θK,i) 6= 0 for all i ∈ NK,F by construction. The inclusion
ker(γK,F ) ⊂ ker(σK,i) for all i ∈ NK,F (which follows from Assumption 20.12)
implies that there is a unique linear map σK,F,i : PK,F → R s.t. σK,i =
σK,F,i ◦ γK,F (see Exercise 20.2). Finally, let us set

ΣK,F := {σK,F,i}i∈NK,F
. (20.10)

We can now state an important consequence of Assumption 20.12.

Lemma 20.13 (Face element). Let K ∈ Th and F ∈ FK . Under Assump-
tion 20.12, the triple (F, PK,F , ΣK,F ) is a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since Assumption 20.12
means that ker(γK,F ) = span{θK,i}i6∈NK,F

, we infer that dim(ker(γK,F )) =
card(N )− card(NK,F ). The rank nullity theorem implies that

dim(PK,F ) = dim(PK)− dim(ker(γK,F )) = card(NK,F ) = card(ΣK,F ).

Let now q ∈ PK,F be s.t. σK,F,i(q) = 0 for all i ∈ NK,F . The definition of PK,F

implies that there is p ∈ PK s.t. q = γK,F (p). Hence, σK,i(p) = σK,F,i(q) = 0
for all i ∈ NK,F . In other words, p ∈ ⋂i∈NK,F

ker(σK,i). Hence, p ∈ ker(γK,F ).

We conclude that q = γK,F (p) = 0. ⊓⊔

Let (K̂, P̂ , Σ̂) be the reference element and let ψK be the functional trans-
formation that has been used to generate (K,PK , ΣK). Let F ∈ FK and

consider the face F̂ := T−1
K (F ) of K̂. We are going to assume that for all

p ∈ PK , γK,F (p) = 0 iff γK̂,F̂ (p̂) = 0 with p̂ := ψK(p), i.e., we assume that

ker(γK,F ) = ker(γK̂,F̂ ◦ ψK). (20.11)

This assumption holds true if ψK is the pullback by the geometric mapping
TK or one of the Piola transformations. Then Assumption 20.12 can be formu-
lated on the reference element, and this assumption amounts to requiring that
there exists a nonempty subset NK̂,F̂ ⊂ N s.t.

⋂
i∈N

K̂,F̂
ker(σ̂i) = ker(γK̂,F̂ ).

Then we have

NK,F = NK̂,F̂ = NK̂,T−1
K

(F ), ∀K ∈ Th, ∀F ∈ FK . (20.12)

Our second key assumption is the following.

Assumption 20.14 (Face matching). For all F := ∂Kl ∩ ∂Kr ∈ F◦
h, we

have (i) PKl,F = PKr,F =: PF and (ii) ΣKl,F = ΣKr,F =: ΣF , i.e., there
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is a bijective map χlr : NKl,F → NKr ,F s.t. σKl,F,i = σKr ,F,χlr(i) for all
i ∈ NKl,F .

We are now in a position to state the main result of this section.

Lemma 20.15 (Zero γ-jump). Let vh ∈ P b
k (Th;Rq) and F ∈ F◦

h. Under
Assumptions 20.12 and 20.14, the following equivalence holds true:

[ [[vh]]F = 0 ] ⇐⇒ [σKl,i(vh|Kl
) = σKr ,χlr(i)(vh|Kr

), ∀i ∈ NKl,F ]. (20.13)

Proof. Since vh ∈ P b
k (Th;Rq), we have vh|Kl

∈ PKl
and vh|Kr

∈ PKr
.

Set vl := γKl,F (vh|Kl
) and vr := γKr ,F (vh|Kr

), so that [[vh]]F = vl − vr.
Note that vl ∈ γKl,F (PKl

) = PKl,F . Similarly, vr ∈ PKr ,F , and As-
sumption 20.14 implies that vr ∈ PKl,F , i.e., vl − vr ∈ PKl,F . Since
(F, PKl,F , ΣKl,F ) is a finite element owing to Lemma 20.13 (which fol-
lows from Assumption 20.12), we infer that [[vh]]F = vl − vr = 0 iff
σKl,F,i(vl − vr) = 0 for all i ∈ NKl,F . To conclude the proof, we need to
show that σKl,F,i(vl − vr) = σKl,i(vh|Kl

) − σKr ,χlr(i)(vh|Kr
). On the one

hand we have σKl,F,i(vl) = σKl,F,i(γKl,F (vh|Kl
)) = σKl,i(vh|Kl

), and on the
other hand Assumption 20.14 implies that σKl,F,i(vr) = σKr ,F,χlr(i)(vr) =
σKr ,F,χlr(i)(γKr ,F (vh|Kr

)) = σKr,χlr(i)(vh|Kr
). ⊓⊔

20.4 Verification of the two gluing assumptions

We now present examples of finite elements satisfying the two structural as-
sumptions of §20.3. These assumptions have already been shown in §20.2 to
hold true for Lagrange elements. In the present section, we focus on affine sim-
plicial matching meshes and assume that the mesh is oriented in a generation-
compatible way (see §10.2). We invite the reader to verify that these examples
can be adapted to affine Cartesian meshes.

20.4.1 Raviart–Thomas elements

Let k ≥ 0 and let us show that the RTRTRTk,d Raviart–Thomas elements intro-
duced in §14.3 can be used to build discrete functions with integrable diver-
gence. Let K ∈ Th and F ∈ FK . We consider the γd-trace defined by (18.7c),
i.e., γdK,F (v) := v|F ·nF where nF is the unit normal vector orienting F . Fol-

lowing §14.4, consider the face dofs σf
F,m(v) := 1

|F |
∫
F (v·νF )(ζm ◦ T−1

K,F ) ds,

where νF := |F |nF , TK,F := TK|F̂ ◦ TF̂ : Ŝd−1 → F , TF̂ : Ŝd−1 → F̂ is

an affine bijective mapping, {ζm}m∈{1:nf
sh} is a fixed basis of Pk,d−1, and

nf
sh := dim(Pk,d−1) (see (14.12a)).

Lemma 20.16 (Face unisolvence). Assumption 20.12 holds true with

NK,F := {i ∈ N | ∃m(i) ∈ {1:nf
sh}, σK,i = σf

F,m(i)}, (20.14)
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i.e., NK,F collects all the indices of the dofs involving an integral over F .

Proof. We first observe that the subset NK,F is nonempty. Since γdK,F (v) = 0
implies that v|F ·nF = 0 and since nF and νF are collinear, we infer that

σK,i(v) = 0 for all i ∈ NK,F and all v ∈ ker(γdK,F ), i.e., ker(γdK,F ) ⊂⋂
i∈NK,F

ker(σK,i). The converse inclusion results from Lemma 14.14. Hence,
Assumption 20.12 holds true. ⊓⊔
Lemma 20.17 (P d

K,F ). We have P d
K,F := γdK,F (RTRTRTk,d) = Pk,d−1 ◦ T−1

K,F .

Proof. We have P d
K,F ⊂ Pk,d−1◦T−1

K,F owing to Lemma 14.7, and the equality

follows by observing that dim(P d
K,F ) = nf

sh = dim(Pk,d−1). ⊓⊔

Let us set NŜd−1 := {1:nf
sh} and for all F̂ ∈ FK̂ , let us introduce the

bijective map jsf
F̂

: NŜd−1 → NK̂,F̂ defined by setting jsf
F̂
(m) := i for all

m ∈ NŜd−1 , where i is s.t. σ̂i = σf
F̂ ,m

. Then Lemma 20.16 applied on the

reference element means that NK̂,F̂ = jsf
F̂
(NŜd−1). Owing to (20.12), we

infer that we have for all K ∈ Th and all F ∈ FK ,

NK,F = NK̂,T−1
K (F ) = jsf

T
−1
K

(F )
(NŜd−1). (20.15)

Lemma 20.18 (Face matching). (i) (F, P d
K,F , Σ

d
K,F ) is a modal scalar-

valued finite element with σd
K,F,i(φ) :=

∫
F
(ζm ◦ T−1

K,F )φds, i := jsf
T

−1
K

(F )
(m),

for all φ ∈ P d
K,F and all m ∈ NŜd−1 . (ii) For all F := ∂Kl ∩ ∂Kr ∈ F◦

h,

we have P d
Kl,F

= P d
Kr,F

=: P d
F . (iii) Σd

Kl,F
= Σd

Kr,F
=: Σd

F if the basis

{ζm}m∈N
Ŝd−1

of Pk,d−1 is invariant under any vertex permutation of Ŝd−1,

i.e., for every affine bijective mapping S : Ŝd−1 → Ŝd−1, there exists a
permutation χS of NŜd−1 such that ζm ◦ S = ζχS(m) for all m ∈ NŜd−1 .

Proof. (i) The first claim is a consequence of Lemma 20.17 and of the defini-
tion of the face dofs of the RTRTRTk,d element.

(ii) Let F := ∂Kl ∩ ∂Kr ∈ F◦
h , and set F̂l := T−1

Kl
(F ) and F̂r := T−1

Kr
(F ).

Recalling that the mapping Srl = T−1
Kl,F

◦ TKr,F is affine, as shown in Fig-
ure 20.1, we observe that

P d
Kl,F

= Pk,d−1 ◦ T−1
Kl,F

= (Pk,d−1 ◦ Srl) ◦ T−1
Kr ,F

= Pk,d−1 ◦ T−1
Kr ,F

= P d
Kr ,F ,

as in the proof of Lemma 20.6.
(iii) Letting χSrl

be the index permutation associated with the mapping Srl,
the following holds true for all m ∈ NŜd−1 :

σd
Kl,F,jsf

F̂l
(m)(φ) =

∫

F

(ζm ◦ T−1
Kl,F

)φds =

∫

F

(ζm ◦ Srl ◦ T−1
Kr,F

)φds

=

∫

F

(ζχSrl
(m) ◦ T−1

Kr,F
)φds = σd

Kr ,F,jsf
F̂r

(χSrl
(m))(φ),
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i.e., any dof σd
Kl,F,i in Σ

d
Kl,F

is also in Σd
Kr,F

, and conversely. ⊓⊔
Remark 20.19 (Basis). Let us give two examples of a permutation-invariant

basis of Pk,d−1. Let {ŝ0, . . . , ŝd−1} be the vertices of Ŝd−1. LetAk,d−1 := {α ∈
Nd−1 | |α| ≤ k} and consider the Lagrange nodes {âα}α∈Ak,d−1

defined by
âα := ŝ0+

∑
i∈{1:d−1}

αi

k (ŝi−ŝ0). Then the Lagrange polynomials associated

with {âα}α∈Ak,d−1
form a permutation-invariant basis of Pk,d−1. Likewise the

modal basis {λ̂β0

0 . . . λ̂
βd−1

d−1 , β0 + . . . + βd−1 = k}, where (λ̂0, . . . , λ̂d−1) are

the barycentric coordinates in Ŝd−1, is also a permutation-invariant basis of
Pk,d−1 (see Exercise 7.4(v)). ⊓⊔

20.4.2 Nédélec elements

Let k ≥ 0 and let us show that the NNNk,d Nédélec elements introduced in §15.3
can be used to build discrete functions with integrable curl. We assume that
d = 3 (the construction is analogous but simpler for d = 2). Let K ∈ Th and
F ∈ FK . We consider the γc-trace defined in (18.7b), i.e., γcK,F (v) := v|F×nF

where nF is the unit normal vector orienting F . Proceeding as in §15.4,
we consider the edge dofs σe

E,m(v) := 1
|E|
∫
E
(v·tE)(µm ◦ T−1

K,E) dl, where

TK,E := TK|Ê ◦ TÊ : Ŝ1 → E, TÊ : Ŝ1 → Ê is an affine bijective mapping,

tE is the edge vector orienting E, {µm}m∈{1:ne
sh} is a fixed basis of Pk,1,

and ne
sh := dim(Pk,1). If k ≥ 1, we also consider the face dofs σf

F,j,m(v) :=
1
|F |
∫
F
(v·tF,j)(ζm ◦ T−1

K,F ) ds, where TK,F := TK|F̂ ◦ TF̂ : Ŝ2 → F , TF̂ :

Ŝ2 → F̂ is an affine bijective mapping, {tF,j}j∈{1,2} are the two edge vectors

orienting F , {ζm}m∈{1:nf
sh} is a fixed basis of Pk−1,2, and n

f
sh := dim(Pk−1,2).

For all F ∈ FK , let EF be the collection of the three edges composing the
boundary of F . Let

N e
K,F := {i ∈ N | ∃(E(i),m(i)) ∈ EF×{1:ne

sh}, σK,i = σe
E(i),m(i)}

be the collection of the indices of the edge dofs associated with F and

N f
K,F := {i ∈ N | ∃(j(i),m(i)) ∈ {1, 2}×{1:nf

sh}, σK,i = σf
F,j(i),m(i)}

be the collection of the indices of the face dofs associated with F (k ≥ 1).
We adopt the convention that N f

K,F := ∅ if k = 0.

Lemma 20.20 (Face unisolvence). Assumption 20.12 holds true with the
subset NK,F := N e

K,F ∪ N f
K,F .

Proof. We first observe that the subset NK,F is nonempty. Let v ∈ P c
K be

such that γcK,F (v) = 0, i.e., v|F×nF = 0. Then σK,i(v) = 0 for all i ∈ NK,F ,
so that ker(γK,F ) ⊂

⋂
i∈NK,F

ker(σK,i). The converse inclusion results from
Lemma 15.15. ⊓⊔
Lemma 20.21 (P c

K,F ). P
c
K,F := γcK,F (NNNk,d) = J−T

K,F (NNNk,2 ◦ T−1
K,F )×nF .
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Proof. The inclusion P c
K,F ⊂ J−T

K,F (NNNk,2 ◦T−1
K,F )×nF is shown as in the proof

of Lemma 15.8. Equality follows by invoking a dimension argument, i.e.,
dim(J−T

K,F (NNNk,2 ◦T−1
K,F )×nF ) = dim(NNNk,2) and card(NK,F ) = 2 dim(Pk−1,2)+

3 dim(Pk,1) = (k + 1)(k + 3) = dim(NNNk,2) owing to Lemma 15.7. ⊓⊔
Lemma 20.22 (Face matching). (i) The triple (F,P c

K,F , Σ
c
K,F ) is a two-

dimensional Raviart–Thomas finite element with dofs

σc
K,F,i(φ) :=

1

|E(i)|

∫

E(i)

(φ·t⊥E(i))(µm(i)◦T−1
K,E(i)) dl, ∀i ∈ N e

K,F , (20.16a)

σc
K,F,i(φ) :=

1

|F |

∫

F

(φ·t⊥F,j(i))(ζm(i) ◦ T−1
K,F ) ds, ∀i ∈ N f

K,F , (20.16b)

for all φ ∈ P c
K,F and all i ∈ NK,F , with t

⊥
E(i)

:= tE(i)×nF and t⊥F,j(i)
:=

tF,j(i)×nF . (ii) For all F := ∂Kl∩∂Kr ∈ F◦
h, we have P

c
Kl,F

= P c
Kr,F

=: P c
F .

(iii) We have Σc
Kl,F

= Σc
Kr,F

=: Σc
F if the chosen bases {ζm}m∈{1:nf

sh} and

{µm}m∈{1:ne
sh} are invariant under any vertex permutation of Ŝ2 and Ŝ1,

respectively.

Proof. The expressions in (20.16) follow from the definition of the edge and
the face dofs of the NNNk,d element and from the fact that (nF×(h×nF ))·t =
h·t for all h ∈ R3 and every vector t that is tangent to F . The rest of the
proof is similar to that of Lemma 20.18. ⊓⊔
Remark 20.23 (Choice of basis). Examples of permutation-invariant
bases of Pk−1,2 and Pk,1 are the nodal and the modal bases built by us-

ing either the Lagrange nodes in Ŝ2 and Ŝ1 or the barycentric coordinates in
Ŝ2 and Ŝ1 as in Remark 20.19. ⊓⊔

20.4.3 Canonical hybrid elements

Let k ≥ 1 and let us show that the canonical hybrid finite element introduced
in §7.6 can be used to build discrete functions with integrable gradient. As-
sume d = 3 (the case d = 2 is similar). As for the Lagrange elements, we
consider the γg-trace defined in (18.7a), i.e., γgK,F (v) := v|F for all F ∈ FK .
Recall that the dofs of the canonical hybrid element are defined in (7.11). Let
NK,F be the collection of the dof indices of the following types: integrals over
F of products with functions from the fixed basis {ζm}m∈{1:nf

sh} of Pk−3,2

(if k ≥ 3); integrals over the edges of F of products with functions from the
fixed basis {µm}m∈{1:ne

sh} of Pk−2,1 (if k ≥ 2); evaluation at the vertices of

F . Note that card(NK,F ) = 3 + 3ne
sh + nf

sh if k ≥ 3. Assume that the basis
{µm}m∈{1:ne

sh} is invariant under every permutation of the vertices of the

unit simplex Ŝ1, and the basis {ζm}m∈{1:nf
sh
} in invariant under every per-

mutation of the vertices of the unit simplices Ŝ2. Then one can prove that
the canonical hybrid element satisfies the Assumptions 20.12 and 20.14; see
Exercise 20.6.
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Exercises

Exercise 20.1 (Affine mapping between faces). Let F := ∂Kl ∩ ∂Kr ∈
F◦

h and set F̂l := T−1
Kl

(F ) and F̂r := T−1
Kr

(F ). Prove that the mapping

Trl := T−1
Kl

◦TKr|F̂r
is affine. (Hint : let (K̂, P̂geo, Σ̂geo) be the geometric ref-

erence Lagrange finite element. Observe that the two face finite elements
(F̂l, P̂

g
geo,l, Σ̂

g
geo,l) and (F̂r, P̂

g
geo,r, Σ̂

g
geo,r) can be constructed from the same

reference Lagrange finite element (F̂ d−1, P̂ d−1
geo , Σ̂

d−1
geo ).)

Exercise 20.2 (Linear maps). Let E,F,G be finite-dimensional vector
spaces, let A ∈ L(E;F ) and let T ∈ L(E;G). Assume that ker(T ) ⊂ ker(A).
Set G̃ := T (E). (i) Prove that there is Ã ∈ L(G̃;F ) s.t. A = Ã ◦ T . (Hint :
build a right inverse of T using a direct sum E = E1⊕E2 with E1 := ker(T ).)
(ii) Show that Ã is uniquely defined, i.e., does not depend on E2.

Exercise 20.3 (γK,F and NK,F ). (i) Prove that PK =
∑

F∈FK
ker(γxK,F )

(nondirect sum of vector spaces) if and only if there is F ∈ FK s.t. i 6∈ NK,F

for all i ∈ N . (ii) Let the face unisolvence assumption hold true. Let
F(K, i) := {F ∈ FK | ker(γK,F ) ⊂ ker(σK,i)}. Prove the following state-
ments: (ii.a) F ∈ F(K, i) iff i ∈ NK,F ; (ii.b) F ∈ F(K, i) iff γK,F (θK,i) 6= 0
where θK,i is the local shape function associated with the dof i.

Exercise 20.4 (Reference face element). Let F̂ be any face of K̂. Let

P̂ x := γx
K̂,F̂

(P̂ ) and let NK̂,F̂ be the subset of N s.t.
⋂

i∈N
K̂,F̂

ker(σK̂,i) =

ker(γK̂,F̂ ). Recall that this means that there exists σ̂x
F̂ ,i

: P̂K̂,F̂ → R s.t.

σ̂i = σ̂x
F̂ ,i

◦ γx
K̂,F̂

for all i ∈ NK̂,F̂ . Assume that NK̂,F̂ is nonempty, that

the triple {F̂ , P̂ x, Σ̂x} with Σ̂x := {σ̂x
F̂ ,i

}i∈N
K̂,F̂

is a finite element, and that

there is a linear bijective map ψF : P x
K,F → P̂ x s.t. ψ−1

F ◦ γx
K̂,F̂

= γxK,F ◦ψ−1
K .

Prove that Assumption 20.12 holds true and NK,F = NK̂,F̂ . (Hint : show that

the finite element {F, P x
K,F , Σ

x
K,F } is generated from {F̂ , P̂ x, Σ̂x} using the

map ψF .)

Exercise 20.5 (Permutation invariance). Let Ŝ1 := [0, 1] and consider
the bases B1 := {µ1(s) = 1−s, µ2(s) = s} and B2 := {µ1(s) = 1, µ2(s) = s}.
Are these bases invariant under permutation of the vertices of Ŝ1?

Exercise 20.6 (Canonical hybrid element, d = 3). Consider the assump-
tions made in §20.4.3. (i) Prove the face unisolvence assumption 20.12. (ii)

Let F ∈ FK . Let TF̂ : Ŝ2 → F̂ be an affine bijective mapping, and let

TK,F := TK|F̂ ◦ TF̂ : Ŝ2 → F . Verify that P g
K,F = Pk,d−1 ◦ T−1

K,F and that

{F, P g
K,F , Σ

g
K,F} is a two-dimensional canonical hybrid element. (iii) Prove

that P g
Kl,F

= P g
Kr,F

=: P g
F and Σg

Kl,F
= Σg

Kr,F
=: Σg

F .
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Exercise 20.7 (PK,F ). Let K̂ be the unit simplex in R2 and let {F̂i}i∈{0: 2}
be the faces of K̂. Recall that for Pk,d scalar-valued elements, we have
PK̂,F̂i

:= γg
K̂,F̂i

(Pk,d). (i) Compute a basis of PK̂,F̂i
for all i ∈ {0:2} as-

suming that (K̂, P̂ , Σ̂) is the P1 Lagrange element. Is (F̂i, PK̂,F̂i
, ΣK̂,F̂i

) a

finite element? (ii) Compute a basis of PK̂,F̂i
for all i ∈ {0:2} assuming that

(K̂, P̂ , Σ̂) is the P1 Crouzeix–Raviart element. Is (F̂i, PK̂,F̂i
, ΣK̂,F̂i

) a finite
element?


