Part IV, Chapter 20

Face gluing

The goal of this chapter and the following one is to construct the connec-
tivity array j_dof introduced in the previous chapter so that the two struc-
tural properties (19.2) and (19.3) hold true. In the present chapter, we focus
on (19.2), and more specifically we are going to see how we can enforce the
zero-jump condition [v,]% = 0 by means of the degrees of freedom (dofs)
on the two mesh cells sharing the interface F' € F; for v, in the broken
finite element space Py ’b(’ﬁ). In particular, we identify two key structural
assumptions on the dofs of the finite element making this construction pos-
sible. The first assumption is called face unisolvence (see Assumption 20.1),
and the second one is called face matching (see Assumption 20.3). We first
introduce these ideas with Lagrange elements to make the argumentation
easier to understand. Then we generalize the concepts to the Nédélec and
the Raviart—Thomas finite elements in a unified setting that encompasses all
the finite elements considered in the book. The two main results of this chap-
ter are Lemma 20.4 for Lagrange elements and Lemma 20.15 for the general
situation. In the entire chapter, D is a polyhedron in R? and 7y, is an oriented
matching mesh covering D exactly (see Chapter 10 on mesh orientation).

20.1 The two gluing assumptions (Lagrange)
For Lagrange elements our aim is to construct the H!-conforming subspace
PE(Ty) = {vn € PE"(Th) | [vn]% = 0, VF € FR}, (20.1)

where P}f’b(’ﬁl) is a broken finite element space and [-]% := [-]r is the jump
operator across the mesh interfaces introduced in Definition 8.10. Recall that
we have PE(T;) = P& (Ty) N HY(D).

The Lagrange nodes of the reference cell K are denoted by {@;}ien so that
the dofs ¥ := {5, }ien are s.t. 5;(p) := p(@;) for all i € A" and all p € P. The
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Lagrange nodes of K € Ty, are denoted by {ax,; := Tk (a;)}ien, where Tk :
K — K is the geometric mapping. The dofs in K are s.t. ok,i(p) = plak,)
for all i € N and all p € Px with Pg = (% )~'(P), where 9% (v) := v o Tk
is the pullback by the geometric mapping. We do not assume in this section
that the geometric mapping Ty is affine.

We now formalize the structure of the reference element that will allow
us to enforce the zero-jump condition in (20.1). We make two assumptions
which we will show hold true in the next section for the simplicial and the
tensor-product Lagrange elements. Our first key assumption is the following.

Assumption 20.1 (Face unisolvence). Let F be a face ofIA(, i.e., Fe Fg,
and let Nf( 5 C N be the collection of the indices of the Lagrange nodes in

K located on F. We assume that
vpe P, [6i(p) =0,Vie Nz z] < [pz=0]. (20.2)

Let K be a mesh cell and let F be a face of K, i.e., F' € F. Let F be the
face of K s.t. F:= Ty (F). Let N,z C N be the collection of the indices
of the Lagrange nodes in K located on F. The above definitions imply that

li€eNkr] <= laki €F] « [a; € F] « [i€ Nzl (20.3)
that is, we have

NK*F:NIA(,F“:NIA(,TIQI(F)’ VK €Ty, VF € Fk. (20.4)

We define the trace space Pk p = span{fk ;r}icny.r, 50 that Pxp =
7% #(Pk), where we recall that the trace map 7% r s defined by setting
Y. p(v) = vp for all v € Px. We define the set of the dofs associated
with the Lagrange nodes located on F', Yk p = {UK,F,i}ieNK,Fa by setting
ok ri(q) == qlak,;) for all i € Nk p and all ¢ € Pk p. Notice that ox p;
acts on functions in Pk r (i.e., functions defined on F'), whereas ok ; acts on
functions in Pk (i.e., functions defined on K).
Let us state an important consequence of Assumption 20.1.

Lemma 20.2 (Face element). Let K € T, and F € Fg. Under Assump-
tion 20.1, the triple (F, Px r, Xk r) is a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since we have
ox.Fj(Oxiir) = Oxiir(arx;) = Ok.i(ax ;) = dij,

for all i,j € Nk r, we infer that the family {0x ;r}ienr » is linearly inde-
pendent, which implies that dim(Pg,r) = card(Xk r). Let now ¢ € Pk r be
s.t. ok Fi(q) = 0 for all i € Nk p. By definition of Pk p and Pk, there is
pePst.g= (ﬁOTgl)w. Hence, for all i € Ngﬁ = Nk,r, wehave ag ; € F
and
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5:(p) = p(@:) = (Do T aki) = (Po Tgl)\F(aK,i)
=q(ak,;) = ok ri(q) =0.

Assumption 20.1 (face unisolvence) implies that ﬁ‘ 7 =0,s0that ¢g=0. O

Recall that since the mesh is matching, any interface F' := 0K;N0K, € Fy
is a face of K; and a face of K,, ie., F' € Fg, N Fk,. Our second key
assumption is formulated as follows.

Assumption 20.3 (Face matching). For all F := 0K; N 0K, € Fy, we
have (1) PKL,F = PKT,F = PF and (11) EK;,F = EKT.,F =: EF, i.e., there is
a biective map xir : N, 7 = Nk, r s.t. ag, i = arK, . (i) foralli € Nk, r.

We are now in a position to state the main result of this section.

Lemma 20.4 (Zero-jump). Let v, € P¥°(T,) and F € Fy. Under As-
sumptions 20.1 and 20.3, the following equivalence holds true:

[[vr]F = 0] <= [vnk,(ak,i) = vk, (@K, x. ) Vi € Nk, p].  (20.5)

Proof. Let vy, € Pf’b(ﬁ) and F' € Fp. Let v; be the restriction of vy, g,

to F, and let v, be the restriction of vy g, to F. Since v, € Pkg’b(ﬁ), we
have v; € Pk, r and v, € Pk, r. Owing to Assumption 20.3, we also have
Uy € PKL.,F, ie., [[vh]]p = —Ur € PKL.,F- Since (F, PKL,F7EKL,F) is a finite
element owing to Lemma 20.2 (which follows from Assumption 20.1), we
infer that [vp]r = v — v, = 0 iff (v; — v.)(ak,;) = 0 for all i € Nk, .
But vi(ak, ;) = vnk,(ak, ) and, owing to Assumption 20.3, we also have
vr(ar, i) = vk, (@K, i) = Vn|k, (@K, x..(:))- This proves (20.5). O

20.2 Verification of the assumptions (Lagrange)

In this section, we verify Assumptions 20.1 and 20.3 for Lagrange Py 4 el-
ements when K is a simplex and for Lagrange Q4 elements when K is
a cuboid. Since these two assumptions trivially hold true when d = 1, we
assume in this section that d > 2. We do not assume that the geometric
mapping Tk : K — K is affine.

20.2.1 Face unisolvence

Assumption 20.1 has been proved in Lemma 6.15 for Lagrange Qy, 4 elements
and in Lemma 7.13 for Lagrange P, 4 elements. Note that the face unisolvence
assumption is not met for the Crouzeix—Raviart element.
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20.2.2 The space Py r

Let us now identify the space Pk p for all K € T;, and all F' € Fg. Let us
set ' := T (F). Then F € Fz, ie., Fis a face of the reference cell K.

Let Fd=1 be the unit simplex in RO if K is the unit simplex of RY or let
lid_l be the unit cuboid of RI~1 if K is the unit cuboid of R%. Since both
Fa=1 and F are either (d — 1)-dimensional simplices or cuboids, it is always
possible to construct an affine bijective mapping T from Fd=1 o F. Let us
denote

Tp:FI' 5 F,  Tipi=TgpoTs: F7' 5 F (20.6)

Lemma 20.5 (Characterization of Pg p). Let K be either a simplex or

a cuboid. Then Pk p = ﬁgfl o TIEIF where ﬁgfl = Pra—1 sz( is a simplex
and ﬁg_l = Qr,a-1 Zfl/(\' 18 a cuboid.

Proof. Let q € Px p. By definition of Pk p, there is p € Pst.
¢ = (T )i = BpoTip = (BipoTp) o (T poTp) ' = (BjpoTp) o Ticr-

Since ﬁlﬁ oTs € ﬁg_l (see Lemma 6.13 or Lemma 7.10 depending on the
nature of F), we conclude that ¢ € Pg_l o TI}IF This shows that Px p C

P,ffl oTy IF The converse inclusion is proved by similar arguments. ad

20.2.3 Face matching

We now establish that Pk, r = Pk, r and Y, r = Yk, F.

Lemma 20.6 (Face matching, (i)). Assume that K is either a simplex or
a cuboid. Let F:= 0K, NOK, € Fy. Then Pk, r = Pk, r.

Proof. Let us set Fy := Tgll (F) and F, := T};Tl (F). Since the mesh is match-
ing, ﬁ'l and ﬁr are faces of K. By construction, the mapping
—1 . e fy
TK”F OTKrlﬁr cF.— F
is bijective, and turns out to be affine even when the mappings Tk, and Tk,

are nonaffine as shown in Exercise 20.1. Then the mapping S, : Fa-1
Fi=1 g4,

1 [ RN | R 2
Sp =Ty, poTk. r= Tﬁz o TK”F o TKTIFT oTg

is affine (because the mappings Tﬁ:llv T};ll‘ FoTy |5
bijective; see Figure 20.1. Since P,ffl =Py q—1 or P,ffl = Qk,q—1 depending

and Tp are affine) and



Part IV. FINITE ELEMENT SPACES 239

on the nature of IA(, we infer that ]3,?_1 is invariant under S,;, i.e., ﬁg_lo =
P,f_l. Using this property together with the identity Pk r = Pg_l o lelF
proved in Lemma 20.5, we infer that

_ Pd-1 1 _ pd-1 -1 _ pd-1 -1
P, r =Py OTKL,F =Py oSy OTKT,F =P OTKT,F =Pg,r. O

Tk, F,

Fig. 20.1 Two-dimensional example (d = 2): geometric mappings associated with an
interface F, the reference faces Fj and Fj., and the unit segment F4—1,

To establish that X'k, p = Y, r for a general set of Lagrange nodes in IA(,
we formulate a symmetry assumption on the Lagrange nodes located on the
faces of K. This assumption turns out to be sufficient in order to establish
that Yk, r = Yk, p. Combined with the result from Lemma 20.6, this allows
us to conclude that Assumption 20.3 (face matching) is indeed satisfied.

Assumption 20.7 (Invariance by vertex permutation). We assume
that there is a set {8, }menr,,_, of Lagrange nodes in FO=', with Ng,_, :=
{1:nf} for some integer n* > 1, s.t. the following holds true: (i) The set
{8m}menpa_, is invariant under any verter permutation of Fa=1. (i) For

every face F of K, {T5(8m) tmenpq 1 are the Lagrange nodes on F.

Assumption 20.7(i) means that for every affine bijective mapping S :
Fi=1 — F9=1 there is a permutation x5 of Nz, such that S(8,,) = 8,4 (m)
for all m € Nz, .. Assumption 20.7(ii) means that card(Nz 5) = n! is inde-
pendent of the face F' of K and that, for every F' € Fj, there is a bijective
map j : Npa1 — N 5 such that (see Figure 20.2)

Tﬁ(/s\m) = aj%c(m)’ Vm € Nﬁd,l. (207)

Example 20.8 (Qx,q Lagrange elements). After inspection of Propo-
sition 6.14 on the reference cuboid K := [0,1]¢, we realize that Assump-
tion 20.7 holds true for tensor-product Lagrange elements provided that for
every i € {1:d}, the set of points {a;:}ic(o:x} is such that a;; = «a; for
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Fig. 20.2 Face (segment) Fd=1 with

nf := 3 Lagrange nodes 31, 82, 83 mapped
by T’ to the three Lagrange nodes on F.
The enumeration of the Lagrange nodes of
K implies that Nf(,ﬁ = {1,3,5} and that
FE(1) = 3, 355(2) = 5, 55(3) = 1.

every | € {0:k}, where the points 0 = ap < ... < ag = 1 are all distinct

in the interval [0, 1] and satisfy the symmetry property oy = 1 — ag—; for
all 1 € {0:|%4]}. The Gauss-Lobatto nodes satisfy these assumptions (up to
rescaling from [—1, 1] to [0, 1]); see §6.2. O

Example 20.9 (P, 4 Lagrange elements). The simplicial Lagrange ele-
ment described in Proposition 7.12 also satisfies the assumption on invariance
by vertex permutation. In dimension two, for instance, the edge nodes are
invariant under symmetry about the midpoint as shown in the left panel of
Figure 20.3 (for k = 2). Note that it is possible to use a set of Lagrange nodes
that is different from the one introduced in Proposition 7.12 provided the ver-
tex permutation assumption holds true (in addition to the face unisolvence).
For instance, one can use the Fekete points mentioned in Remark 7.14. O

IAVEVA VA VAN

Fig. 20.3 P32 Lagrange element: two-dimensional example (left) and counterexample
(center) for Assumptlon 20.3 (the triangles K; and K, are drawn shghtly apart). In the
rightmost panel, Assumption 20.3 is satisfied but not Assumption 20.7. This illustrates the
fact that Assumption 20.7 is not needed to establish Assumption 20.3 if one enforces extra
constraints on the way adjacent mesh cells come into contact.

Lemma 20.10 (Face matching, (ii)). Assume that K is either a simplex
or a cuboid. Let F:= 0K;NOK, € F;. Let Assumption 20.7 on invariance
by vertex permutation be fulfilled. Then Yk, r = Xk, F.

Proof. Let i € Nk, r = Nz 5 and let ak, ; be the corresponding Lagrange

node of K, located on F. Then TI}Tl (ak, i) = @; is a Lagrange node on ﬁr.
Let m € Npa-. be such that i = ji¥ (m), that is, @; = Tp (8). Since we
have established above that the mapping S,; := TF:z o TK \F© Ty B, © T%
is affine, there is a permutation xg,, : Nﬁd,l — Nﬁd,l such that S,(8,) =
Sys,, (m) forallm € Nga—:1- Then the identity Syi(5m) = 8y ,(m) means that
(TKT‘}; oT% )(8m) = (TKzIﬁz o Tp )(8ys,, (m)), which can also be rewritten as
aijfA (m) = QK ji (s, ()" Hence, we have
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Ok, Fy m) (@) =A@, g5 ) = UK 5% (xs,, (m) = TR EE (s, (m) (@):

for all ¢ € Pr and all m € Nﬁd,l. This proves that Yy, p = Yk, r since
-fc

i oxs. © (j%cr)*l is bijective. O
Remark 20.11 (Serendipity and prismatic elements). The reader is
invited to verify that the face unisolvence assumption 20.1 holds true also for
the serendipity elements described in §6.4.3 and for the prismatic elements
described in Remark 7.16. The face matching assumption 20.3 holds true
for the serendipity elements since the face dofs are the same as those of the
corresponding Qy, 4 element. The assumption 20.3 can also be shown to hold
true for the prismatic elements provided the Lagrange nodes on the triangular
faces and the Lagrange nodes on the quadrangular faces each satisfy the
vertex permutation assumption. a

20.3 Generalization of the two gluing assumptions

In this section, we generalize the theory developed in §20.1 to enforce the
jump condition [vy]} = 0 across all the mesh interfaces F' € Fy for x €
{g,c,d} and v, € P,f’b(ﬂl;Rq). We are going to rephrase §20.1 in a slightly
more abstract language. Recall from (18.8) that [vn]% = vk, p(vnk,) —
YV, F(Unk,) with F' := 0K; N 0K, and the trace operator vj p defined
in (18.7) for every mesh cell K € T, and every face F' € Fx of K. We drop
the superscript x whenever the context is unambiguous.

We start by identifying two structural properties of the finite element
which we will call face unisolvence and face matching assumptions. We pro-
ceed in two steps. First, given a mesh cell K € Tj, we use the local finite
element (K, Pr,Xr) with local shape functions {0k ;}icn and local dofs
{0k i}tien, and invoke the face unisolvence assumption to construct a fi-
nite element attached to each face F' € Fg. Then for every mesh interface
F:=0K,NOK, € F;, we invoke the face matching assumption to make sure
that the two face elements built on F' from K and from K, are identical (note
that F' € Fg, N Fk, since the mesh is matching). The theory is illustrated
with various examples in §20.4. In this section (and the next one), we restrict
the maps {0k ; }ien and v F to Pk, so that the kernels of these maps are to
be understood as subspaces of Pk (for simplicity, we keep the same notation
for the restrictions). Our first key assumption is the following.

Assumption 20.12 (Face unisolvence). For all K € Tj, and oll F' € F,
there is a nonempty subset N p C N s.t. ker(vx r) = Nicnre » KeT(0ki),
i.e., for all p € Py, ’

[ok,i(p) =0,Vi e Nk r] < [yx,r(p) =0]. (20.8)
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Equivalently, we have ker(vxk,r) = span{0x i }ign -

Let Nk r C N be defined according to Assumption 20.12. Let us define
the corresponding trace space Pk r by setting

Pr r = v 7 (Px) = span{ vk r(0K i) bieNk.p - (20.9)

Notice that v r(fk,;) # 0 for all i € Nk r by construction. The inclusion
ker(vx r) C ker(ok ;) for alli € Nk, p (which follows from Assumption 20.12)
implies that there is a unique linear map ox r; : Px,r — R st. o, =
ok, ri ok F (see Exercise 20.2). Finally, let us set

YK F = {UK,F,i}ieNK,F- (20.10)

We can now state an important consequence of Assumption 20.12.

Lemma 20.13 (Face element). Let K € Tj, and F € F. Under Assump-
tion 20.12, the triple (F, Pk r, Xk F) is a finite element.

Proof. We use Remark 5.3 to prove unisolvence. Since Assumption 20.12
means that ker(yx r) = span{fx ;}igny -, we infer that dim(ker(yvx,r)) =
card(N) — card(Nk r). The rank nullity theorem implies that

dim(PKﬁF) = dlm(PK) — dim(ker(’yKyp)) = card(NKﬁp) = card(EKyp).

Let now g € P p bes.t. ok r,i(q) = 0 for all i € N . The definition of P
implies that there is p € Px s.t. ¢ = vk, r(p). Hence, ok i(p) = ok ri(q) =0
for alli € Nk p. In other words, p € MNien r ker(ok,i). Hence, p € ker(vk,r).
We conclude that ¢ = vk r(p) = 0. 0

Let (IA( , ﬁ, b5 ) be the reference element and let ¢ be the functional trans-
formation that has been used to generate (K, Px,Y). Let F € Fg and
consider the face F := T (F) of K. We are going to assume that for all
p € Pr, vik r(p) =0 iff Vg, 7(P) = 0 with p:= Y (p), i.e., we assume that

ker(vi,r) = ker(vg 7 o ¥k). (20.11)

This assumption holds true if ¥k is the pullback by the geometric mapping
T or one of the Piola transformations. Then Assumption 20.12 can be formu-
lated on the reference element, and this assumption amounts to requiring that
there exists a nonempty subset Nz 5 C N s.t. ﬂiei\/ﬁ’ﬁ ker(6;) = ker(vz 7)-
Then we have

Nkr=Ngp=Ngripy VKET, VFEFk. (20.12)

Our second key assumption is the following.

Assumption 20.14 (Face matching). For all F := 0K; N 0K, € F}, we
have (1) PKL,F = PKT,F =: PF and (11) EKL,F = EKT,F = EF, i.e., there
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is a bijective map X : NKL-,F — NKT.,F 8.1 OK, Fi = OK, Fyu.(i) for all
1€ NKL.,F-

We are now in a position to state the main result of this section.

Lemma 20.15 (Zero y-jump). Let vy, € PP(Ti;R?) and F € F5. Under
Assumptions 20.12 and 20.14, the following equivalence holds true:

[[[Uh]]p = 0] < [UKL,i(Uh\KL) = O'K’I",XZT(i)(’Uh|K7‘)7 Vi e NK;,F]- (20.13)

Proof. Since vy, € PP(Ty;R?), we have vk, € Pk, and vk, € Pk,.
Set v; == K, F(vnk,) and v, = Yk, F(Vhx,), so that [vn]r = v — v,
Note that v; € vk, r(Pk,) = Pk, r. Similarly, v, € Pk, p, and As-
sumption 20.14 implies that v, € Py, r, ie., vy — v, € Pk, p. Since
(F, Pk, r, XKk, r) is a finite element owing to Lemma 20.13 (which fol-
lows from Assumption 20.12), we infer that [uop]r = v, — v, = 0 iff
o, ri(vp —v,) = 0 for all i« € N, p. To conclude the proof, we need to
show that o, ri(vi — v:) = 0k,i(VhK,) — 0K, xu()(Vn|K, ). On the one
hand we have o, ri(vi) = 0k, Fi(VK, F(VhK,)) = 0K, i(Vh K, ), and on the
other hand Assumption 20.14 implies that o, ri(vr) = 0k, Fi,.)(0r) =
Ok, Foar (i) (VK F (VR K,)) = Ok, (i) (Vn| K, )- O

20.4 Verification of the two gluing assumptions

We now present examples of finite elements satisfying the two structural as-
sumptions of §20.3. These assumptions have already been shown in §20.2 to
hold true for Lagrange elements. In the present section, we focus on affine sim-
plicial matching meshes and assume that the mesh is oriented in a generation-
compatible way (see §10.2). We invite the reader to verify that these examples
can be adapted to affine Cartesian meshes.

20.4.1 Raviart—-Thomas elements

Let £ > 0 and let us show that the RT) 4 Raviart-Thomas elements intro-
duced in §14.3 can be used to build discrete functions with integrable diver-
gence. Let K € T;, and F € Fx. We consider the y4-trace defined by (18.7c),
ie., ”y‘;()F(v) := v|p-np where np is the unit normal vector orienting F. Fol-

lowing §14.4, consider the face dofs a%)m(v) = ﬁ Jr(ve)(Cm o lelF) ds,
where vp = |Flnp, Tip = Ty poTp : S0 — F, Tp : 8971 — Fis
an affine bijective mapping, {Gm}meqi:nt y 1 a fixed basis of P a1, and
ni, = dim(Py 4-1) (see (14.12a)).

Lemma 20.16 (Face unisolvence). Assumption 20.12 holds true with

Nip:={i € N'| 3m(i) € {1:nfy,}, ok = 0} (20.14)
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i.e., N collects all the indices of the dofs involving an integral over F.

Proof. We first observe that the subset N p is nonempty. Since 7?(1 (V) =0
implies that vjp-nr = 0 and since ng and vF are collinear, we infer that
oki(v) = 0 for all i € Ngp and all v € ker(yk p), ie., ker(yg p) C
Mien - Xer(ox,i). The converse inclusion results from Lemma 14.14. Hence,
Assumption 20.12 holds true. O

Lemma 20.17 (Pg ). We have P  := 75 p(RTyq) = Pra_1 0 TglF

Proof. We have P%F C Pra—1 oTI}}F owing to Lemma 14.7, and the equality
follows by observing that dim(PIdQF) = nih = dim(Pg 4-1)- O

Let us set Nz, , := {l:nf } and for all F e Fz, let us introduce the
bijective map j% : Nga-w — N 5 defined by setting j3(m) := i for all
m € Ngg_1, where i is s.t. ; = U% . Then Lemma 20.16 applied on the

reference element means that Nz ﬁ1 = j%Nga1). Owing to (20.12), we
infer that we have for all K € Ty, and all F € Fk,

Nir =Ng g2 p) = 31 () Ngamr)- (20.15)

Lemma 20.18 (Face matchlng) () (F, Pg p, X% ) is a modal scalar-
valued finite element with O'K7F7Z- = [o(lmo TK)F)(bds, i:= JTI; (F)( m),
for all ¢ € PI‘;F and all m € ./\/'gd,l. (ii) For all F := 0K; N 0K, € F},
we have Pf p = Pt p = Pg. (iii) Xy, p = Y% p = ¢ if the basis
{Cm}m@\/gdfl of Pr.a—1 is invariant under any vertex permutation of S%~1,
e., for every affine bijective mapping S : Gd-1 §d_1, there exists a
permutation xs of Nga_., such that G 0 S = (yg(m) for all m € Ng,_,.
Proof. (i) The first claim is a consequence of Lemma 20.17 and of the defini-
tion of the face dofs of the RTy 4 element.
(ii) Let F := 0K, N 0K, € Fy, and set by =T (F) and F, := T (F).
Recalling that the mapping Sy = T}, F o Tk, r is affine, as shown in Fig-
ure 20.1, we observe that
PR, p=Pra10Tg p = Pra-1081) 0 Tl p = Pra-1 0T} p = P p,

as in the proof of Lemma 20.6.
(iii) Letting xs,, be the index permutation associated with the mapping S,,
the following holds true for all m € N Ga—1:

O'?(l Fig m) (@) = /(Cm oTK p)pds = / (N oTI;leF)gbds

/(<Xs (m) OTK F)ods = UK S (Xsﬂ(m))(@
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i.e., any dof 0?{1 ;AN E‘;ﬁ p is also in E(Iiﬂ r» and conversely. a

Remark 20.19 (Basis). Let us give two examples of a permutation-invariant
basis of Py, q—1. Let {So, ..., 84—1} be the vertices of S4=1 Let Apa—1 :={a €
N?=1 | |a| < k} and consider the Lagrange nodes {@a}aca, , , defined by
a, = §0+Zi6{1:d_1} % (8i—30). Then the Lagrange polynomials associated
with {@q }aca, ,_, form a permutation-invariant basis of P q—1. Likewise the
modal basis {:\\g" . ng_’ll, Bo+ ...+ Ba—1 = k}, where (XO, - ,Xd,l) are
the barycentric coordinates in §d_1, is also a permutation-invariant basis of
Py a—1 (see Exercise 7.4(v)). O

20.4.2 Nédélec elements

Let £ > 0 and let us show that the Ny, 4 Nédélec elements introduced in §15.3
can be used to build discrete functions with integrable curl. We assume that
d = 3 (the construction is analogous but simpler for d = 2). Let K € 7}, and
F € Fr. We consider the y°-trace defined in (18.7b), i.e., 7§ (v) := v|p XN F
where np is the unit normal vector orienting F. Proceeding as in §15.4,
we consider the edge dofs 0%, (v) = ﬁ [ (Wte)(pm © T}?E) dl, where

Tk = TK|E oT5 : St E, Tz : S! - E is an affine bijective mapping,
tp is the edge vector orienting F, {Hm}me{l:ngh} is a fixed basis of Py, 1,
and ng, = dim(Pg1). If £ > 1, we also consider the face dofs a%yjﬁm(v) =
‘—}PlfF(v-tF)j)(Cm o T lp)ds, where Tk p = w7 Tp 52 o F, T; :
52 — Fis an affine bijective mapping, {tr;};jec1,2} are the two edge vectors
orienting F', {Gm }imeq1:nf 3 is a fixed basis of Pr_1 2, and ni = dim(Pg_12).
For all F' € Fg, let £p be the collection of the three edges composing the
boundary of F. Let

Nip = {i e N[ 3(E(i),m(1)) € Epx{Ling}, oki = 0BG me}
be the collection of the indices of the edge dofs associated with F' and
Nicr ={i € N |30 (0), m(i)) € {1, 2} x{1:nf,}, 0k = 0500y

be the collection of the indices of the face dofs associated with F' (k > 1).
We adopt the convention that le(F =0if k=0.

Lemma 20.20 (Face unisolvence). Assumption 20.12 holds true with the

subset N p := Nz p UN 1.

Proof. We first observe that the subset Nk p is nonempty. Let v € Pf be
such that 7%7},(1)) =0, ie., vpxng =0. Then ok ;(v) = 0 for all i € Nk F,
so that ker(yx r) C mieNK,F ker(ok ;). The converse inclusion results from
Lemma 15.15. O

Lemma 20.21 (P ). Py p =% p(Nka) = JI})TF(ng o Tg)lF)an.
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Proof. The inclusion PIC()F C J[_(TF (Nj.2 OTI;,lF) Xnp is shown as in the proof
of Lemma 15.8. Equality follows by invoking a dimension argument, i.e.,
dim(J " (Ng 2o Tt ) xnp) = dim(Ny, ) and card(N p) = 2dim(Py_1 ) +
3dim(Py.) = (k +1)(k + 3) = dim(Ny ») owing to Lemma 15.7. O

Lemma 20.22 (Face matching). (i) The triple (F, Pg p, X% ) is a two-
dimensional Raviart—Thomas finite element with dofs

1
0% pi(@) 1= —— dts) (im0 5py) Al Vi € Nz p, (20.16a
(@)= g7 @) 0 T l) ¢ p (20.16a)
C 1 — .
Tri(@®) = /F (685 506) Gy 0 Tic) ds, Vi€ Nk, (20.16b)

Jor all ¢ € Py p and all i € Nk r, with tjh:(i) = tpu)Xnp and t#_’j(i) =
tr oy xnr. (ii) For all F := 0KiNOK, € F}, we have Py, p =P p=: Pp.
(i) We have Xy, p = X p=: X% if the chosen bases {Gm}meqi:nt y and

{Nm}me{lzngh} are invariant under any vertexr permutation of S2 and §1,
respectively.

Proof. The expressions in (20.16) follow from the definition of the edge and
the face dofs of the Ny, 4 element and from the fact that (npx(hxng))-t =
h-t for all h € R3 and every vector ¢ that is tangent to F. The rest of the
proof is similar to that of Lemma 20.18. O

Remark 20.23 (Choice of basis). Examples of permutation-invariant
bases of Pr_12 and [P, ; are the nodal and the modal bases built by us-

ing either the Lagrange nodes in 52 and S or the barycentric coordinates in
S? and S as in Remark 20.19. 0

20.4.3 Canonical hybrid elements

Let £ > 1 and let us show that the canonical hybrid finite element introduced
in §7.6 can be used to build discrete functions with integrable gradient. As-
sume d = 3 (the case d = 2 is similar). As for the Lagrange elements, we
consider the 78-trace defined in (18.7a), i.e., 7% p(v) := vp for all F € F.
Recall that the dofs of the canonical hybrid element are defined in (7.11). Let
Nk . r be the collection of the dof indices of the following types: integrals over
F' of products with functions from the fixed basis {Cm}meqiint, ) Of Pr—s.2
(if £ > 3); integrals over the edges of F of products with functions from the
fixed basis {fim }me(1:ne,} of P21 (if k > 2); evaluation at the vertices of
F. Note that card(Ng r) = 3 + 3nS, + nl, if & > 3. Assume that the basis
{Hm}me{l:ngh} is invariant under every permutation of the vertices of the

unit simplex S, and the basis {Gn}me {1:nf,} in invariant under every per-

mutation of the vertices of the unit simplices 52, Then one can prove that
the canonical hybrid element satisfies the Assumptions 20.12 and 20.14; see
Exercise 20.6.
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Exercises

Exercise 20.1 (Affine mapping between faces). Let F := 0K, N 0K, €
Fy and set F = Tgll (F) and F, := Tg: (F). Prove that the mapping
T, = TI;llo K, |F, is affine. (Hint: let (l?,ﬁgeo, Egeo) be the geometric ref-
erence Lagrange finite element. Observe that the two face finite elements

~ o~ ~

(F, P 1 Yieo) and (F,, ﬁggeo)r, X% ..») can be constructed from the same
reference Lagrange finite element (F9~!, ﬁg‘;l, fggol).)

Exercise 20.2 (Linear maps). Let F,F,G be finite-dimensional vector
spaces, let A € L(E; F) and let T € L(F; G). Assume that ker(T) C ker(A).
Set G := T(E). (i) Prove that there is A € £L(G;F) s.t. A= AoT. (Hint:
build a right inverse of T using a direct sum E = Ey @ E with Ey := ker(T).)
(ii) Show that A is uniquely defined, i.e., does not depend on Es.

Exercise 20.3 (yx,r and Nk r). (i) Prove that Px = > pcr ker(vi r)
(nondirect sum of vector spaces) if and only if there is F' € Fx s.t. i € Nk p
for all ¢ € N. (ii) Let the face unisolvence assumption hold true. Let
F(K,i) := {F € Fg | ker(yk,r) C ker(ok,)}. Prove the following state-
ments: (ii.a) F' € F(K,iq) iff i € N r; (iib) F' € F(K,i) iff yx r(0xi) #0
where 0 ; is the local shape function associated with the dof i.

Exercise 20.4 (Reference face element). Let F be any face of K. Let
P = ﬁ%ﬁ(P) and let N 5 be the subset of N s.t. mieNg’ﬁ ker(og ;) =

ker(vz 7). Recall that this means that there exists Exﬁ)i : P p — Rosit.

o 7}‘?113 for all i € N p. Assume that Nz 7 is nonempty, that

~ P
g, = 04
H F.,i

the triple {F, PX, £%} with £* := {o% ,ien » is a finite element, and that

ji
there is a linear bijective map ¢r : Pg p — P* s.t. w;l ov}i( 5= Vi.F owgl.
Prove that Assumption 20.12 holds true and Nx r = Ny z. (Hint: show that
the finite element {F, Pg p, X% p} is generated from {F, P*, £*} using the

map Yr.)

Exercise 20.5 (Permutation invariance). Let S' := [0,1] and consider
the bases B := {p1(s) = 1—s, ua2(s) = s} and Ba := {p1(s) = 1, ua(s) = s}.
Are these bases invariant under permutation of the vertices of S'?

Exercise 20.6 (Canonical hybrid element, d = 3). Consider the assump-
tions made in §20.4.3. (i) Prove the face unisolvence assumption 20.12. (ii)
Let F' € Fk. Let Ty 52 — F be an affine bijective mapping, and let
Txp = Typ o Tp - 5% — F. Verify that P§ p = Py a1 0 Ty and that
{F, P, X% r} is a two-dimensional canonical hybrid element. (iii) Prove
that Pk p = Pk p=: Pgand X% = X% p=: X%
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Exercise 20.7 (Px ). Let K be the unit simplex in R? and let {ﬁ-}ie{o;g}
be the faces of K. Recall that for Py 4 scalar-valued elements, we have

Pg g = Vf?_ﬁi(kad)' (i) Compute a basis of Pg 7 for all i € {0:2} as-
suming that (K, P,Y) is the P; Lagrange element. Is (E,Pf( FoYRE) @

finite element? (ii) Compute a basis of Pz 5 for all i € {0:2} assuming that

(K,P,Y) is the P, Crouzeix-Raviart element. Is (E,Pf(
element?

7Y% p) a finite



