
Part VI, Chapter 26

Basic error analysis

In Part VI, composed of Chapters 26 to 30, we introduce the Galerkin ap-
proximation technique and derive fundamental stability results and error es-
timates. We also investigate implementation aspects of the method (quadra-
tures, linear algebra, assembling, storage). In this chapter, we consider the
following problem, introduced in Chapter 25, and study its approximation by
the Galerkin method:

{
Find u ∈ V such that

a(u,w) = ℓ(w), ∀w ∈W.
(26.1)

Here, V andW are Banach spaces, a is a bounded sesquilinear form on V×W,
and ℓ is a bounded antilinear form on W. We focus on the well-posedness of
the approximate problem, and we derive a bound on the approximation error
in a simple setting. This bound is known in the literature as Céa’s lemma.
We also characterize the well-posedness of the discrete problem by using the
notion of Fortin operator.

To stay general, we consider complex vector spaces. The case of real vector
spaces is recovered by replacing the field C by R, by removing the real part
symbol ℜ(·) and the complex conjugate symbol ·, and by interpreting the
symbol |·| as the absolute value instead of the modulus. Moreover, sesquilinear
forms become bilinear forms, and antilinear forms are just linear forms. We
denote by α and ‖a‖V×W the inf-sup and the boundedness constants of the
sesquilinear form a on V×W, i.e.,

α := inf
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

≤ sup
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

=: ‖a‖V×W . (26.2)

We assume that (26.1) is well-posed, i.e., 0 < α and ‖a‖V×W <∞. Whenever
the context is unambiguous, we write ‖a‖ instead of ‖a‖V×W .
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26.1 The Galerkin method

The central idea in the Galerkin method is to replace in (26.1) the infinite-
dimensional spaces V and W by finite-dimensional spaces Vh and Wh (we
always assume that Vh 6= {0} and Wh 6= {0}). The subscript h ∈ H refers
to the fact that these spaces are constructed as explained in Volume I using
finite elements and a mesh Th belonging to some sequence of meshes (Th)h∈H.
The discrete problem takes the following form:

{
Find uh ∈ Vh such that

ah(uh, wh) = ℓh(wh), ∀wh ∈Wh,
(26.3)

where ah is a bounded sesquilinear form on Vh×Wh and ℓh is a bounded
antilinear form on Wh. Notice that ah and ℓh possibly differ from a and
ℓ, respectively. Since the spaces Vh and Wh are finite-dimensional, (26.3) is
called discrete problem. The space Vh is called discrete trial space (or discrete
solution space), and Wh discrete test space.

Definition 26.1 (Standard Galerkin, Petrov–Galerkin). The discrete
problem (26.3) is called standard Galerkin approximation when Wh = Vh and
Petrov–Galerkin approximation otherwise.

Definition 26.2 (Conforming setting). The approximation is said to be
conforming if Vh ⊂ V and Wh ⊂W.

There are circumstances when considering nonconforming approximations
is useful. Two important examples are discontinuous Galerkin methods where
discrete functions are discontinuous across the mesh interfaces (see Chap-
ters 38 and 60) and boundary penalty methods where boundary conditions
are enforced weakly (see Chapters 37 for elliptic PDEs and Chapters 57–59
for Friedrichs’ systems). Very often, nonconforming approximations make it
necessary to work with discrete forms that differ from their continuous coun-
terparts. For instance, the bilinear form

∫
D
∇v·∇w dx does not make sense if

the functions v and w are discontinuous. Another important example leading
to a modification of the forms at the discrete level is the use of quadratures
(see Chapter 30).

26.2 Discrete well-posedness

Our goal in this section is to study the well-posedness of the discrete prob-
lem (26.3). We equip Vh and Wh with norms denoted by ‖·‖Vh and ‖·‖Wh

,
respectively. These norms can differ from those of V and W. One reason can
be that the approximation is nonconforming and the norm ‖·‖V is meaning-
less on Vh. This is the case for instance if the norm ‖·‖V includes the H1-norm
and the discrete functions are allowed to jump across the mesh interfaces.
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26.2.1 Discrete Lax–Milgram

Lemma 26.3 (Discrete Lax–Milgram). Let Vh be a finite-dimensional
space. Assume that Wh = Vh in (26.3). Let ah be a bounded sesquilinear
form on Vh×Vh and let ℓh ∈ V ′

h. Assume that ah is coercive on Vh, i.e., there
is a real number αh > 0 and a complex number ξ with |ξ| = 1 such that

ℜ (ξah(vh, vh)) ≥ αh‖vh‖2Vh , ∀vh ∈ Vh. (26.4)

Then (26.3) is well-posed with the a priori estimate ‖uh‖Vh ≤ 1
αh

‖ℓh‖V ′
h
.

Proof. A simple proof just consists of invoking the Lax–Milgram lemma (see
Lemma 25.2). We now propose an elementary proof that relies on Vh be-
ing finite-dimensional. Let Ah : Vh → V ′

h be the linear operator such that
〈Ah(vh), wh〉V ′

h,Vh
:= ah(vh, wh) for all vh, wh ∈ Vh. Problem (26.3) amounts

to seeking uh ∈ Vh such that Ah(uh) = ℓh in V ′
h. Hence, (26.3) is well-posed

iff Ah is an isomorphism. Since dim(Vh) = dim(V ′
h) < ∞ this is equivalent

to require that Ah be injective, i.e., ker(Ah) = {0}. Let vh ∈ ker(Ah) so
that 0 = ξ〈Ah(vh), vh〉V ′

h
,Vh = ξah(vh, vh). From coercivity, we deduce that

0 ≥ αh‖vh‖2Vh , which proves that vh = 0. Hence, ker(Ah) = {0}, thereby
proving that Ah is bijective. ⊓⊔
Example 26.4 (Sufficient condition). (26.4) holds true if Vh ⊂ V (con-
formity), ah := a|Vh×Vh , and a is coercive on V×V. ⊓⊔
Remark 26.5 (Variational formulation). As in the continuous setting
(see Proposition 25.8), if Vh is a real Hilbert space and if ah is symmetric and
coercive (with ξ := 1 andWh = Vh), then uh solves (26.3) iff uh minimizes the
functional Eh(vh) :=

1
2ah(vh, vh)− ℓh(vh) over Vh. If Vh ⊂ V, ah := a|Vh×Vh ,

and ℓh := ℓ|Vh , then Eh = E|Vh (E is the exact energy functional), and
E(uh) ≥ E(u) since u minimizes E over the larger space V. ⊓⊔

26.2.2 Discrete BNB

Theorem 26.6 (Discrete BNB). Let Vh,Wh be finite-dimensional spaces.
Let ah be a bounded sesquilinear form on Vh×Wh and let ℓh ∈ W ′

h. Then the
problem (26.3) is well-posed iff

inf
vh∈Vh

sup
wh∈Wh

|ah(vh, wh)|
‖vh‖Vh‖wh‖Wh

=: αh > 0, (26.5a)

dim(Vh) = dim(Wh). (26.5b)

(Recall that arguments in the above infimum and supremum are understood
to be nonzero.) Moreover, we have the a priori estimate ‖uh‖Vh ≤ 1

αh
‖ℓh‖W ′

h
.

Proof. Let Ah : Vh →W ′
h be the linear operator such that

〈Ah(vh), wh〉W ′
h
,Wh

:= ah(vh, wh), ∀(vh, wh) ∈ Vh×Wh. (26.6)
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The well-posedness of (26.3) is equivalent to Ah being an isomorphism, which
owing to the finite-dimensional setting and the rank nullity theorem, is equiv-
alent to (i) ker(Ah) = {0} (i.e., Ah is injective) and (ii) dim(Vh) = dim(W ′

h).
Since dim(Wh) = dim(W ′

h), (26.5b) is equivalent to (ii). Let us prove that (i)
is equivalent to the inf-sup condition (26.5a). By definition, we have

sup
wh∈Wh

|ah(vh, wh)|
‖wh‖Wh

= sup
wh∈Wh

|〈Ah(vh), wh〉W ′
h
,Wh

|
‖wh‖Wh

=: ‖Ah(vh)‖W ′
h
.

Assume first that (26.5a) holds true and let vh ∈ Vh be s.t. Ah(vh) = 0.
Then we have αh ‖vh‖Vh ≤ ‖Ah(vh)‖W ′

h
= 0, which shows that vh = 0.

Hence, (26.5a) implies the injectivity of Ah. Conversely, assume ker(Ah) =
{0} and let us prove (26.5a). An equivalent statement of (26.5a) is that there
is n0 ∈ N∗ such that for all vh ∈ Vh with ‖vh‖Vh = 1, one has ‖Ah(vh)‖W ′

h
>

1
n0
. Reasoning by contradiction, consider a sequence (vhn)n∈N∗ in Vh with

‖vhn‖Vh = 1 and ‖Ah(vhn)‖W ′
h
≤ 1

n . Since Vh is finite-dimensional, its unit
sphere is compact. Hence, there is vh ∈ Vh such that, up to a subsequence,
vhn → vh. The limit vh satisfies ‖vh‖Vh = 1 and Ah(vh) = 0, i.e., vh ∈
ker(Ah) = {0}, which contradicts ‖vh‖Vh = 1. Hence, the injectivity of Ah
implies (26.5a). In conclusion, ker(Ah) = {0} iff (26.5a) holds true. Finally,
the a priori estimate follows from αh‖uh‖Vh ≤ ‖Ah(uh)‖W ′

h
= ‖ℓh‖W ′

h
. ⊓⊔

Remark 26.7 (Link with BNB theorem). Condition (26.5a) is identical
to (bnb1) from Theorem 25.9 applied to (26.3), and it is equivalent to the
following inf-sup condition:

∃αh > 0, αh‖vh‖Vh ≤ sup
wh∈Wh

|ah(vh, wh)|
‖wh‖Wh

, ∀vh ∈ Vh. (26.7)

Condition (26.5b) seemingly differs from (bnb2) applied to (26.3), which
reads

∀wh ∈Wh, [ ah(vh, wh) = 0, ∀vh ∈ Vh ] =⇒ [wh = 0 ]. (26.8)

To see that (26.5b) is equivalent to (26.8) provided (26.5a) holds true, let us
introduce the adjoint operator A∗

h : Wh → V ′
h (note that the space Wh is

reflexive since it is finite-dimensional) such that

〈A∗
h(wh), vh〉V ′

h,Vh
= ah(vh, wh), ∀(vh, wh) ∈ Vh×Wh. (26.9)

Then (26.8) says that A∗
h is injective, and this statement is equivalent to

(26.5b) if ker(Ah) = {0}; see Exercise 26.1. In summary, when the setting is
finite-dimensional, the key property guaranteeing well-posedness is (26.5a),
whereas the other condition (26.5b) is very simple to verify. ⊓⊔

Remark 26.8 (A∗
h). Ah is an isomorphism iff A∗

h is an isomorphism; see
Exercise 26.2. Moreover, owing to Lemma C.53 (note that the space Vh is
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reflexive since it is finite-dimensional), Ah and A∗
h satisfy the inf-sup condi-

tion (26.5a) with the same constant αh, i.e.,

inf
vh∈Vh

sup
wh∈Wh

|〈Ah(vh), wh〉W ′
h
,Wh

|
‖vh‖Vh‖wh‖Wh

= inf
wh∈Wh

sup
vh∈Vh

|〈Ah(vh), wh〉W ′
h
,Wh

|
‖vh‖Vh‖wh‖Wh

.

(26.10)
Note that 〈Ah(vh), wh〉W ′

h
,Wh

= 〈A∗
h(wh), vh〉V ′

h
,Vh . As shown in Remark C.54,

the identity (26.10) may fail if Ah is not an isomorphism. ⊓⊔

26.2.3 Fortin’s lemma

We focus on a conforming approximation, i.e., Vh ⊂ V and Wh ⊂ W, we
equip the spaces Vh and Wh with the norms of V and W, respectively, and
we assume that ah := a|Vh×Wh

. Our goal is to devise a criterion to ascertain
that ah satisfies the inf-sup condition (26.5a). To this purpose, we would like
to use the inf-sup condition (26.2) satisfied by a on V×W. Unfortunately, this
condition does not imply its discrete counterpart on Vh×Wh. Since Vh ⊂ V,

(26.2) implies that α‖vh‖V ≤ supw∈W
|a(vh,w)|
‖w‖W for all vh ∈ Vh, but it is

not clear that the bound still holds when restricting the supremum to the
subspace Wh. The Fortin operator provides the missing ingredient.

Lemma 26.9 (Fortin). Let V,W be Hilbert spaces and let a be a bounded
sesquilinear form on V×W. Let α and ‖a‖ be the inf-sup and boundedness
constants of a defined in (26.2). Let Vh ⊂ V and letWh ⊂W be equipped with
the norms of V and W, respectively. Consider the following two statements:

(i) There exists a map Πh :W →Wh, called Fortin operator such that: (i.a)
a(vh, Πh(w) − w) = 0 for all (vh, w) ∈ Vh×W ; (i.b) There is γΠh > 0
such that γΠh‖Πh(w)‖W ≤ ‖w‖W for all w ∈W.

(ii) The discrete inf-sup condition (26.5a) holds true.

Then (i) =⇒ (ii) with αh ≥ γΠhα. Conversely, (ii) =⇒ (i) with γΠh ≥ αh
‖a‖

and Πh can be constructed to be linear and idempotent (Πh ◦Πh = Πh).

Proof. (1) Let us assume (i). Let ǫ > 0. We have for all vh ∈ Vh,

sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

≥ sup
w∈W

|a(vh, Πh(w))|
‖Πh(w)‖W + ǫ‖w‖W

= sup
w∈W

|a(vh, w)|
‖Πh(w)‖W + ǫ‖w‖W

≥ γΠh sup
w∈W

|a(vh, w)|
‖w‖W (1 + ǫγΠh)

≥ γΠh
1 + ǫγΠh

α ‖vh‖V ,

since a satisfies (bnb1) and Vh ⊂ V. This proves (26.5a) with αh ≥ γΠhα
since ǫ can be taken arbitrarily small. (Since Πh cannot be injective, we
introduced ǫ > 0 to avoid dividing by zero whenever w ∈ ker(Πh).)
(2) Conversely, let us assume that a satisfies (26.5a). Let Ah : Vh → W ′

h be
defined in (26.6). Condition (26.5a) means that ‖Ah(vh)‖W ′

h
≥ αh‖vh‖V for

all vh ∈ Vh (‖·‖W ′
h
should not be confused with ‖·‖W ′). Hence, the operator
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B := Ah satisfies the assumptions of Lemma C.44 with Y := Vh, Z := W ′
h,

and β := αh. We infer that A∗
h : Wh → V ′

h has a (linear) right inverse

A∗†
h : V ′

h → Wh such that ‖A∗†
h ‖L(V ′

h,Wh) ≤ α−1
h . Let us now consider the

operator B :W → V ′
h s.t. 〈B(w), vh〉V ′

h
,Vh := a(vh, w) for all (vh, w) ∈ Vh×W,

and let us set Πh := A∗†
h ◦B :W →Wh. We have

a(vh, Πh(w)) = 〈Ah(vh), A∗†
h (B(w))〉W ′

h
,Wh

= 〈B(w), vh〉V ′
h
,Vh = a(vh, w),

so that a(vh, Πh(w) − w) = 0. Moreover, we have ‖Πh(w)‖W ≤ ‖a‖
αh

‖w‖W
since ‖A∗†

h ‖L(V ′
h;Wh) = α−1

h and ‖B‖L(W ;V ′
h)

≤ ‖a‖. Finally, since B|Wh
= A∗

h,

we have Πh ◦Πh = (A∗†
h ◦B) ◦ (A∗†

h ◦B) = A∗†
h ◦ (A∗

h ◦A∗†
h ) ◦B = Πh, which

proves that Πh is idempotent. ⊓⊔

Remark 26.10 (Dimension, equivalence). We did not assume that Vh
and Wh have the same dimension. This level of generality is useful to apply
Lemma 26.9 to mixed finite element approximations; see Chapter 50. The
implication (i) =⇒ (ii) in Lemma 26.9 is known in the literature as Fortin’s
lemma [201], and is useful to analyze mixed finite element approximations
(see, e.g., Chapter 54 on the Stokes equations). The converse implication can
be found in Girault and Raviart [217, p. 117]. This statement is useful in the
analysis of Petrov–Galerkin methods; see Carstensen et al. [111], Muga and
van der Zee [308], and also Exercise 50.7. Note that the gap in the stability
constant γΠh between the direct and the converse statements is equal to the

condition number κ(a) := ‖a‖
α of the sesquilinear form a (see Remark 25.12).

Finally, we observe that the Fortin operator is not uniquely defined. ⊓⊔

Remark 26.11 (Banach spaces). Lemma 26.9 can be extended to Banach
spaces. Such a construction is done in [187], where Lemma C.42 is invoked
to build a (bounded) right inverse of A∗

h, and where the proposed map Πh

is nonlinear. Whether one can always construct a Fortin operator Πh that is
linear in Banach spaces seems to be an open question. ⊓⊔

26.3 Basic error estimates

In this section, we assume that the exact problem (26.1) and the discrete
problem (26.3) are well-posed. Our goal is to bound the approximation error
(u−uh) in the simple setting where the approximation is conforming (Vh ⊂ V,
Wh ⊂W, ah := a|Vh×Wh

, and ℓh := ℓ|Wh
).

26.3.1 Strong consistency: Galerkin orthogonality

The starting point of the error analysis is to make sure that the discrete prob-
lem (26.3) is consistent with the original problem (26.1). Loosely speaking
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one way of checking consistency is to insert the exact solution into the dis-
crete problem and to verify that the discrepancy is small. We say that there
is strong consistency whenever this operation is possible and the discrepancy
is actually zero. A more general definition of consistency is given in the next
chapter. The following result, known as the Galerkin orthogonality property,
expresses the fact that strong consistency holds true in the present setting.

Lemma 26.12 (Galerkin orthogonality). Assume that Vh ⊂ V, Wh ⊂W,
ah := a|Vh×Wh

, and ℓh := ℓ|Wh
. The following holds true:

a(u,wh) = ℓ(wh) = a(uh, wh), ∀wh ∈Wh. (26.11)

In particular, we have a(u− uh, wh) = 0 for all wh ∈Wh.

Proof. The first equality follows from Wh ⊂ W and the second one from
ah := a|Vh×Wh

and ℓh := ℓ|Wh
. ⊓⊔

26.3.2 Céa’s and Babuška’s lemmas

Lemma 26.13 (Céa). Assume that Wh = Vh ⊂ V =W, ah := a|Vh×Vh , and
ℓh := ℓ|Vh . Assume that the sesquilinear form a is V -coercive with constant
α > 0 and let ‖a‖ be its boundedness constant defined in (26.2) (withW = V ).
Then the following error estimate holds true:

‖u− uh‖V ≤ ‖a‖
α

inf
vh∈Vh

‖u− vh‖V . (26.12)

Moreover, if the sesquilinear form a is Hermitian, the error estimate (26.12)
can be sharpened as follows:

‖u− uh‖V ≤
(‖a‖
α

) 1
2

inf
vh∈Vh

‖u− vh‖V . (26.13)

Proof. Invoking the coercivity of a (stability), followed by the Galerkin or-
thogonality property (strong consistency) and the boundedness of a, gives

α ‖u− uh‖2V ≤ ℜ(ξa(u − uh, u− uh)) = ℜ(ξa(u − uh, u− vh))

≤ ‖a‖ ‖u− uh‖V ‖u− vh‖V ,

for all vh in Vh. This proves the error estimate (26.12). Assume now that
the sesquilinear form a is Hermitian. Let vh be arbitrary in Vh. Let us set
e := u− uh and ηh := uh− vh. The Galerkin orthogonality property and the
Hermitian symmetry of a imply that a(e, ηh) = a(ηh, e) = 0. Hence, we have

a(u− vh, u− vh) = a(e + ηh, e+ ηh) = a(e, e) + a(ηh, ηh),

and the coercivity of a implies that ℜ(ξa(e, e)) ≤ ℜ(ξa(u − vh, u − vh)).
Combining this bound with the stability and boundedness properties of a
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yields

α ‖u− uh‖2V ≤ ℜ(ξa(u − uh, u− uh)) = ℜ(ξa(e, e))
≤ ℜ(ξa(u − vh, u− vh)) ≤ ‖a‖ ‖u− vh‖2V .

Taking the infimum over vh ∈ Vh proves the error estimate (26.13). ⊓⊔

We now extend Céa’s lemma to the more general case where stability relies
on a discrete inf-sup condition rather than a coercivity argument. Thus, the
discrete spaces Vh and Wh can differ.

Lemma 26.14 (Babuška). Assume that Vh ⊂ V, Wh ⊂W, ah := a|Vh×Wh
,

ℓh := ℓ|Wh
, and dim(Vh) = dim(Wh). Equip Vh and Wh with the norms of V

and W, respectively. Assume the following discrete inf-sup condition:

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

=: αh > 0. (26.14)

Let ‖a‖ be the boundedness constant of a defined in (26.2). The following
error estimate holds true:

‖u− uh‖V ≤
(
1 +

‖a‖
αh

)
inf

vh∈Vh
‖u− vh‖V . (26.15)

Proof. Let vh ∈ Vh. Using stability (i.e., (26.14)), strong consistency (i.e., the
Galerkin orthogonality property), and the boundedness of a, we infer that

αh ‖uh − vh‖V ≤ sup
wh∈Wh

|a(uh − vh, wh)|
‖wh‖W

= sup
wh∈Wh

|a(u − vh, wh)|
‖wh‖W

≤ ‖a‖ ‖u− vh‖V ,

and (26.15) follows from the triangle inequality. ⊓⊔

The error estimates from Lemma 26.13 and from Lemma 26.14 are said to
be quasi-optimal since infvh∈Vh ‖u− vh‖V is the best-approximation error of
u by an element in Vh, and by definition ‖u − uh‖V cannot be smaller than
the best-approximation error, i.e., the following two-sided error bound holds:

inf
vh∈Vh

‖u− vh‖V ≤ ‖u− uh‖V ≤ c inf
vh∈Vh

‖u− vh‖V , (26.16)

with c := ‖a‖
α for Céa’s lemma and c := 1 + ‖a‖

αh
for Babuška’s lemma. One

noteworthy consequence of (26.16) is that uh = u whenever the exact solution
turns out to be in Vh.

Corollary 26.15 (Convergence). We have limh→0 ‖u − uh‖V = 0 if the
assumptions of Lemma 26.14 hold true together with the following properties:
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(i) Uniform stability: αh ≥ α0 > 0 for all h ∈ H.
(ii) Approximability: limh→0(infvh∈Vh ‖v − vh‖V ) = 0 for all v ∈ V.

Proof. Direct consequence of the assumptions. ⊓⊔
Remark 26.16 (Céa). In the context of Céa’s lemma, uniform stability
follows from coercivity. Thus, approximability implies convergence. ⊓⊔
Remark 26.17 (Literature). Lemma 26.13 is derived in [114, Prop. 3.1]
and is usually called Céa’s lemma in the literature; see, e.g., Ciarlet [124,
Thm. 2.4.1], Brenner and Scott [87, Thm. 2.8.1]. Lemma 26.14 is derived in
Babuška [33, Thm. 2.2]. ⊓⊔

26.3.3 Approximability by finite elements

Let us present an important example where the approximability property
identified in Corollary 26.15 holds true. Let V := H1(D) where D is a Lip-
schitz polyhedron in Rd. Let Vh := P g

k (Th) ⊂ H1(D) be the H1-conforming
finite element space of degree k ≥ 1 (see (20.1)), where (Th)h∈H is a shape-
regular sequence of affine meshes so that each mesh covers D exactly. One
way to prove approximability is to consider the Lagrange interpolation op-
erator or the canonical interpolation operator (see §19.3), i.e., let us set ei-
ther Ih := IL

h or Ih := Ig
h (we omit the subscript k for simplicity), so that

Ih : V g(D) → P g
k (Th) with domain V g(D) := Hs(D), s > d

2 (see (19.19) with

p := 2). Let l be the smallest integer s.t. l > d
2 . Setting r := min(l − 1, k),

Corollary 19.8 with m := 1 (note that r ≥ 1) implies that

inf
vh∈Vh

‖v − vh‖H1(D) ≤ ‖v − Ih(v)‖H1(D) ≤ c hrℓD|v|H1+r(D),

for all v ∈ H1+r(D), where ℓD is a characteristic length of D, e.g., ℓD :=
diam(D). Another possibility consists of using the quasi-interpolation oper-
ator Ig,av

h : L1(D) → Vh from Chapter 22 since Theorem 22.6 implies that

inf
vh∈Vh

‖v − vh‖H1(D) ≤ ‖v − Ig,av
h (v)‖H1(D) ≤ c hrℓD|v|H1+r(D),

for all v ∈ H1+r(D) and all r ∈ (0, k]. We now establish approximability by
invoking a density argument. Let v ∈ V and let ǫ > 0. Since H1+r(D) is
dense in V for all r > 0, there is vǫ ∈ H1+r(D) s.t. ‖v− vǫ‖H1(D) ≤ ǫ. Using
the triangle inequality and the above interpolation estimates, we infer that

inf
vh∈Vh

‖v − vh‖H1(D) ≤ ‖v − Ig,av
h (vǫ)‖H1(D)

≤ ‖v − vǫ‖H1(D) + ‖vǫ − Ig,av
h (vǫ)‖H1(D)

≤ ǫ+ c hrℓD|vǫ|H1+r(D).

Letting h→ 0 shows that lim suph→0(infvh∈Vh ‖v− vh‖H1(D)) ≤ ǫ, and since
ǫ > 0 is arbitrary, we conclude that approximability holds true, i.e., the best-
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approximation error in Vh of any function v ∈ V tends to zero as h → 0.
The above arguments can be readily adapted when homogeneous Dirichlet
conditions are strongly enforced.

26.3.4 Sharper error estimates

We now sharpen the constant appearing in the error estimate (26.15) from
Lemma 26.14. Let Vh ⊂ V and Wh ⊂ W with dim(Vh) = dim(Wh), and let
a be a bounded sesquilinear form on V×W satisfying the discrete inf-sup
condition (26.14) on Vh×Wh. We define the discrete solution map Gh : V →
Vh s.t. for all v ∈ V, Gh(v) is the unique element in Vh satisfying

a(Gh(v)− v, wh) = 0, ∀wh ∈ Wh. (26.17)

Note that Gh(v) is well defined owing to the discrete inf-sup condition (26.14)
and since a(v, ·) : Wh → C is a bounded antilinear form on Wh. Moreover,
Gh is linear and Vh is pointwise invariant under Gh.

Lemma 26.18 (Xu–Zikatanov). Let {0} ( Vh ( V and Wh ⊂ W with
dim(Vh) = dim(Wh) where V, W are Hilbert spaces, and let a be a bounded
sesquilinear form on V×W with constant ‖a‖ defined in (26.2) satisfying the
discrete inf-sup condition (26.14) on Vh×Wh with constant αh. Then,

‖u− uh‖V ≤ ‖a‖
αh

inf
vh∈Vh

‖u− vh‖V . (26.18)

Proof. Since Gh is linear and Vh is pointwise invariant under Gh, we have

u− uh = u−Gh(u) = (u− vh)−Gh(u − vh),

for all vh ∈ Vh. We infer that

‖u− uh‖V ≤ ‖I −Gh‖L(V )‖u− vh‖V = ‖Gh‖L(V )‖u− vh‖V ,

where the last equality follows from the fact that in any Hilbert space H ,
any operator T ∈ L(H) such that 0 6= T ◦ T = T 6= I verifies ‖T ‖L(H) =
‖I−T ‖L(H) (see the proof of Theorem 5.14). We can apply this result to the
discrete solution map since Gh 6= 0 (since Vh 6= {0}), Gh ◦Gh = Gh (since Vh
is pointwise invariant under Gh), and Gh 6= I (since Vh 6= V ). To conclude
the proof, we bound ‖Gh‖L(V ) as follows: For all v ∈ V,

αh ‖Gh(v)‖V ≤ sup
wh∈Wh

|a(Gh(v), wh)|
‖wh‖W

= sup
wh∈Wh

|a(v, wh)|
‖wh‖W

≤ ‖a‖ ‖v‖V ,

which shows that ‖Gh‖L(V ) ≤ ‖a‖
αh

. ⊓⊔
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Let Λ be the smallest c so that the inequality ‖u−uh‖V
infvh∈Vh

‖u−vh‖V ≤ c holds for

every u ∈ V. Then Λ = supu∈V supvh∈Vh
‖u−Gh(u)‖V
‖u−vh‖V since uh = Gh(u). But

the proof of Lemma 26.18 shows that Λ = ‖I−Gh‖L(V ) = ‖Gh‖L(V ). Hence,
‖Gh‖L(V ) is the smallest constant such that the following quasi-optimal error
estimate holds:

‖u− uh‖V ≤ ‖Gh‖L(V ) inf
vh∈Vh

‖u− vh‖V .

Thus, sharp estimates on ‖Gh‖L(V ) are important to determine whether the
approximation error is close or not to the best-approximation error. The
following result shows in particular that ‖Gh‖L(V ) is, up to a factor in the
interval [α, ‖a‖], proportional to the inverse of the discrete inf-sup constant
αh.

Lemma 26.19 (Tantardini–Veeser). Under the assumptions of Lemma 26.18,
the following holds true:

‖Gh‖L(V ) = sup
wh∈Wh

(
sup
v∈V

|a(v, wh)|
‖v‖V

)

(
sup
vh∈Vh

|a(vh, wh)|
‖vh‖V

) ≥ 1, (26.19a)

α

αh
≤ ‖Gh‖L(V ) ≤

‖a‖
αh

. (26.19b)

Proof. (1) Let A ∈ L(V ;W ′) be the operator associated with the sesquilinear
form a, i.e., 〈A(v), w〉W ′ ,W := a(v, w) for all (v, w) ∈ V×W, and let A∗ ∈
L(W ;V ′) be its adjoint (where we used the reflexivity of W ). We have

α ‖w‖W ≤ ‖A∗(w)‖V ′ = sup
v∈V

|a(v, w)|
‖v‖V

≤ ‖a‖ ‖w‖W , (26.20)

for all w ∈ W. Indeed, the first bound follows from Lemma C.53 and the
inf-sup stability of a, and the second one follows from the boundedness of a.
This shows that the norms ‖·‖W and ‖A∗(·)‖V ′ are equivalent on W.
(2) Since Wh ⊂W, we have A∗(wh) ∈ V ′ for all wh ∈Wh. Upon setting

γh := inf
wh∈Wh

sup
vh∈Vh

|a(vh, wh)|
‖vh‖V ‖A∗(wh)‖V ′

,

we have γh ≥ αh
‖a‖ > 0 owing to the inf-sup condition satisfied by a on Vh×Wh,

the norm equivalence (26.20), and Lemma C.53. Recalling that ‖A∗(wh)‖V ′ =

supv∈V
|a(v,wh)|
‖v‖V , the assertion (26.19a) amounts to ‖Gh‖L(V ) = γ−1

h ≥ 1.

(3) Let wh ∈ Wh. Using the definition (26.17) of the discrete solution map
and the definition of the dual norm ‖A∗(wh)‖V ′ , we have
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‖A∗(wh)‖V ′ = sup
v∈V

|a(Gh(v), wh)|
‖v‖V

≤ sup
v∈V

|a(Gh(v), wh)|
‖Gh(v)‖V

sup
v∈V

‖Gh(v)‖V
‖v‖V

≤ sup
vh∈Vh

|a(vh, wh)|
‖vh‖V

‖Gh‖L(V ).

Rearranging the terms and taking the infimum over wh ∈ Wh shows that
γh ≥ ‖Gh‖−1

L(V ), i.e., ‖Gh‖L(V ) ≥ γ−1
h .

(4) Since γh > 0, Remark 26.8 implies that

γh = inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖A∗(wh)‖V ′

. (26.21)

Let v ∈ V. Applying the above identity to Gh(v) ∈ Vh, we infer that

γh‖Gh(v)‖V ≤ sup
wh∈Wh

|a(Gh(v), wh)|
‖A∗(wh)‖V ′

= sup
wh∈Wh

|a(v, wh)|
‖A∗(wh)‖V ′

≤ ‖v‖V ,

since |a(v, wh)| = |〈A∗(wh), v〉V ′,V | ≤ ‖A∗(wh)‖V ′‖v‖V . Taking the supre-
mum over v ∈ V shows that ‖Gh‖L(V ) ≤ γ−1

h . Thus, we have proved that

‖Gh‖L(V ) = γ−1
h , and the lower bound in (26.19a) is a direct consequence of

Vh ⊂ V.
(5) It remains to prove (26.19b). Using the norm equivalence (26.20) in (26.21)
to bound from below and from above ‖A∗(wh)‖V ′ , we infer that

1

‖a‖ inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

≤ γh ≤ 1

α
inf

vh∈Vh
sup

wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

,

so that αh
‖a‖ ≤ γh ≤ αh

α , and (26.19b) follows from ‖Gh‖L(V ) = γ−1
h . ⊓⊔

Remark 26.20 (Literature). Lemma 26.18 is proved in Xu and Zikatanov
[397, Thm. 2], and Lemma 26.19 in Tantardini and Veeser [361, Thm. 2.1].
See also Arnold et al. [18] for the lower bound α

αh
≤ ‖Gh‖L(V ). ⊓⊔

Remark 26.21 (Discrete dual norm). For all wh ∈ Wh, A
∗(wh) ∈ V ′

can be viewed as a member of V ′
h by restricting its action to the subspace

Vh ⊂ V. We use the same notation and simply write A∗(wh) ∈ V ′
h. The

statement (26.19a) in Lemma 26.19 can be rewritten as follows:

‖Gh‖L(V ) = sup
wh∈Wh

‖A∗(wh)‖V ′

‖A∗(wh)‖V ′
h

, (26.22)

where ‖A∗(wh)‖V ′
h
:= supvh∈Vh

|〈A∗(wh),vh〉V ′,V |
‖vh‖V = supvh∈Vh

|a(vh,wh)|
‖vh‖V . ⊓⊔

Example 26.22 (Orthogonal projection). Let V →֒ L be two Hilbert
spaces with continuous and dense embedding. Using the Riesz–Fréchet the-
orem (Theorem C.24), we identify L with its dual L′ by means of the in-
ner product (·, ·)L in L. This allows us to define the continuous embedding
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EV ′ : V → V ′ s.t. 〈EV ′(v), w〉V ′,V := (v, w)L for all v, w ∈ V. Note that EV ′

is self-adjoint. Consider a subspace {0} ( Vh ( V. Let Ph be the discrete so-
lution map associated with the sesquilinear form a(v, w) := 〈EV ′(v), w〉V ′,V

for all v, w ∈ V. Note that Ph is the L-orthogonal projection onto Vh since

(Ph(v), wh)L = 〈EV ′(Ph(v)), wh〉V ′,V := 〈EV ′(v), wh〉V ′,V = (v, wh)L,

for all v ∈ V and all wh ∈ Vh. Then Lemma 26.19 provides a precise estimate
on the V -stability of Ph in the form

‖Ph‖−1
L(V ) = inf

wh∈Vh

‖EV ′(wh)‖V ′
h

‖EV ′(wh)‖V ′

= inf
wh∈Vh

sup
vh∈Vh

|(wh, vh)L|
‖EV ′(wh)‖V ′‖vh‖V

. (26.23)

See also Tantardini and Veeser [361, Prop. 2.5], Andreev [11, Lem. 6.2]. An
important example is V := H1

0 (D) and L := L2(D). The reader is referred to
§22.5 for further discussion on the L2-orthogonal projection onto conforming
finite element spaces (see in particular Remark 22.23 for sufficient conditions
on the underlying mesh to ensure H1-stability). ⊓⊔

Exercises

Exercise 26.1 ((bnb2)). Prove that (26.8) is equivalent to (26.5b) provided
(26.5a) holds true. (Hint : use that dim(Wh) = rank(Ah)+dim(ker(A∗

h)) (A
∗
h

is defined in (26.9)) together with the rank nullity theorem.)

Exercise 26.2 (Bijectivity of A∗
h). Prove that Ah is an isomorphism if and

only if A∗
h is an isomorphism. (Hint : use dim(Vh) = rank(A∗

h)+dim(ker(Ah))
and dim(Wh) = rank(Ah) + dim(ker(A∗

h)).)

Exercise 26.3 (Petrov–Galerkin). Let V,W be real Hilbert spaces, let
A ∈ L(V ;W ′) be an isomorphism, and let ℓ ∈ W ′. Consider a conforming
Petrov–Galerkin approximation with a finite-dimensional subspace Vh ⊂ V
and Wh := (Jrf

W )−1AVh ⊂ W , where Jrf
W : W → W ′ is the Riesz–Fréchet

isomorphism. The discrete bilinear form is ah(vh, wh) := 〈A(vh), wh〉W ′,W ,
and the discrete linear form is ℓh(wh) := ℓ(wh) for all vh ∈ Vh and all wh ∈
Wh. (i) Prove that the discrete problem (26.3) is well-posed. (ii) Show that
its unique solution minimizes the residual functional R(v) := ‖A(v) − ℓ‖W ′

over Vh.

Exercise 26.4 (Fortin’s lemma). (i) Prove that Πh in the converse state-

ment of Lemma 26.9 is idempotent. (Hint : prove that B ◦ A∗†
h = IV ′

h
.)

(ii) Assume that there are two maps Π1,h, Π2,h : W → Wh and two uni-
form constants c1, c2 > 0 such that ‖Π1,h(w)‖W ≤ c1‖w‖W , ‖Π2,h((I −
Π1,h)(w))‖W ≤ c2‖w‖W and a(vh, Π2,h(w) − w) = 0 for all vh ∈ Vh, w ∈ W.
Prove that Πh := Π1,h + Π2,h(I − Π1,h) is a Fortin operator. (iii) Write
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a variant of the direct statement in Lemma 26.9 assuming V,W reflexive,
A ∈ L(V ;W ′) bijective, and using this time an operator Πh : V → Vh such
that a(Πh(v)−v, wh) = 0 for all (v, wh) ∈ V×Wh and γΠh‖Πh(v)‖V ≤ ‖v‖V
for all v ∈ V for some γΠh > 0. (Hint : use (26.10) and Lemma C.53.)

Exercise 26.5 (Compact perturbation). Let V,W be Banach spaces with
W reflexive. Let A0 ∈ L(V ;W ′) be bijective, let T ∈ L(V ;W ′) be compact,
and assume that A := A0+T is injective. Let a0(v, w) := 〈A0(v), w〉W ′ ,W and
a(v, w) := 〈A(v), w〉W ′ ,W for all (v, w) ∈ V×W. Let Vh ⊂ V and Wh ⊂W be
s.t. dim(Vh) = dim(Wh) for all h ∈ H. Assume that approximability holds,
and that the sesquilinear form a0 satisfies the inf-sup condition

inf
vh∈Vh

sup
wh∈Wh

|a0(vh, wh)|
‖vh‖V ‖wh‖W

=: α0 > 0, ∀h ∈ H.

Following Wendland [392], the goal is to show that there is h0 > 0 s.t.

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

=: α > 0, ∀h ∈ H ∩ (0, h0].

(i) Prove that A ∈ L(V ;W ′) is bijective. (Hint : recall that a compact oper-
ator is bijective iff it is injective; this follows from the Fredholm alternative,
Theorem 46.13.) (ii) Consider Rh ∈ L(V ;Vh) s.t. for all v ∈ V, Rh(v) ∈ Vh
satisfies a0(Rh(v)−v, wh) = 0 for all wh ∈ Wh. Prove that Rh ∈ L(V ;Vh) and
that Rh(v) converges to v as h ↓ 0 for all v ∈ V. (Hint : proceed as in the proof
of Céa’s lemma.) (iii) Set L := IV +A−1

0 T and Lh := IV +RhA
−1
0 T where IV

is the identity operator in V (observe that both L and Lh are in L(V )). Prove
that Lh converges to L in L(V ). (Hint : use Remark C.5.) (iv) Show that if
h ∈ H is small enough, Lh is bijective and there is C, independent of h ∈ H,
such that ‖L−1

h ‖L(V ) ≤ C. (Hint : observe that L−1Lh = IV − L−1(L − Lh)
and consider the Neumann series.) (v) Conclude.


