Part VIII, Chapter 37

Nitsche’s boundary penalty method

The main objective of this chapter is to present a technique to treat Dirichlet
boundary conditions in a natural way using a penalty method. This technique
is powerful and has many extensions. In particular, the idea is reused in the
next chapter for discontinuous Galerkin methods. Another objective of this
chapter is to illustrate the abstract error analysis of Chapter 27.

37.1 Main ideas and discrete problem

Let D be a Lipschitz domain in R?. We assume for simplicity that D is a
polyhedron. Let f € L2(D) be the source term, and let g € Hz (9D) be the
Dirichlet boundary data. We consider the Poisson equation with Dirichlet
conditions

—Au=f in D, ~v8(u) =g on 0D, (37.1)

where 78 : H'(D) — Hz(dD) is the trace map. Let u, € H'(D) be a lifting
of g, i.e., v8(u,) = g (recall that 48 : H'(D) — H=(8D) is the trace map).
We seek ug € H (D) s.t. a(ug, w) = €(w) — a(ug, w) for all w € H} (D), with

a(v, w) ::/DVU~dea:, (w) ::/wad:z:. (37.2)

This problem is well-posed in H¢ (D) owing to the Lax—Milgram lemma and
the Poincaré-Steklov inequality in Hg (D). Then the unique weak solution
to (37.1) is w := ug + ug (see §31.2.2).

In this chapter, we take a route that is different from the above approach to
construct an approximation of the solution. Instead of enforcing the Dirichlet
boundary condition strongly, we are going to construct an H'-conforming dis-
cretization of (37.1) that enforces this condition naturally. This means that
we no longer require that the discrete test functions vanish at the boundary.
The discrete counterpart of the bilinear form a must then be modified accord-
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ingly. To motivate the modification in question, let us proceed informally by
assuming that all the functions we manipulate are sufficiently smooth. Testing
(37.1) with a function w which we do not require to vanish at the boundary,
the integration by parts formula (4.8b) gives

a(u, w) — /a (e Vuwds = fw) (37.3)

The idea of Nitsche is to modify (37.3) by adding a term proportional to
I op Uwds on both sides of the above identity. This leads to

a(u,w) — / (n-Vu)wds + w vwds = (w) +w gwds, (37.4)
aD aD aD

where the boundary value of v has been replaced by ¢ in the boundary integral
on the right-hand side. The yet unspecified parameter w is assumed to be
positive. Heuristically, if u satisfies (37.4) and if w is large, one expects u to
be close to g at the boundary. For this reason, w is called penalty parameter.

The above ideas lead to an approximation method employing discrete trial
and test spaces composed of functions that are not required to vanish at the
boundary. Let 7}, be a mesh from a shape-regular sequence of meshes so that
each mesh covers D exactly. Let .7-',? be the collection of the boundary faces.
Let P£(Ty) be the H'-conforming finite element space of degree k > 1 based
on Tp; see (19.10). We consider the following discrete problem:

{Find up, € Vi, i= P (Tn) such that (37.5)

ah(uh,wh) = éh(wh), th S Vh,

where the discrete forms aj, and ¢}, are inspired from (37.4):

(n-Voup)wp, ds + Z w(hp)/ vpwp, ds,

FeFp r

ap(vp, wp) == a(vy, wy) —/

oD

Cp(wp) = L(wy) + Z w(hp)/Fgwhds.

FeF?

The second term in the definition of ay, is called consistency term (this term
plays a key role when estimating the consistency error) and the third one is
called penalty term. The penalty parameter w(hr) > 0, yet to be defined,
depends on the diameter of the face F' (or a uniformly equivalent local length
scale). The stability analysis will reveal that w(hp) should scale like h;l. The
approximation setting associated with Nitsche’s boundary penalty method is
nonconforming, i.e., Vj, ¢ V := Hg(D), since functions in V}, may not vanish
at the boundary, whereas functions in V' do.

Remark 37.1 (Literature, extensions). The boundary penalty method
has been introduced by Nitsche [314] to treat Dirichlet boundary condi-
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tions. It was extended in Juntunen and Stenberg [262] to Robin bound-
ary conditions. We refer the reader to §41.3 where the more general PDE
—V:(AVu) = f with contrasted diffusivity A is treated. O

37.2 Stability and well-posedness

The main objective of this section is to prove that the discrete bilinear form
ap, is coercive on Vj, if the penalty parameter is large enough. This is done
by showing that the consistency term can be appropriately bounded. For
all F' € .7-',‘3 , let us denote by K; the unique mesh cell having F' as a face,
ie., F := 0K, NdD. Let T2P be the collection of the mesh cells having
at least one boundary face, i.e., TP = UFeF,?{Kl}' (The set T,2P should

not be confused with the larger set 7,2 defined in (22.28), which is the col-
lection of the mesh cells touching the boundary.) Let ng denote the max-
imum number of boundary faces that a mesh cell in 7716[’ can have, i.e.,
ny ‘= maxgeron card(Fx N F?) (ns < d for simplicial meshes). Owing
to the regularity of the mesh sequence, the discrete trace inequality from
Lemma 12.8 (with p = ¢ := 2) implies that there is cq; such that for all
vp € Vi, all F € FY, and all h € H,

_1
||’I’I,~V1)h||L2(F) S CdthF2 ||vvh||L2(Kl)- (376)
Lemma 37.2 (Bound on consistency term). The following holds true for

all vy, € Vy,:

1
1 2 1 2
<ofea( X 19uleun) (X mlonlieon

KeTpP FeFp

/ (n-Vup)vp, ds
oD

Proof. Let v, € Vj. Let F € ]-",? . Using the Cauchy—Schwarz inequality,
bounding the normal component of the gradient by its Euclidean norm, and
using the discrete trace inequality (37.6) componentwise, we infer that

1 1
2 1 2
< ( > hF||n~Vvh||2L2<F>> < ) EW”QN(F))

/ (n-Vop)vp ds
oD

FeF? Fery

1 1

2 : 1 2 ’

<ea X 1Vl (i)
FeFP FeF? e

Finally, we have ZFG}-}? H'H%ﬂ(K;) = ZKGT}?D card(Fx N ]-',‘?)H-H%Q(K) <
no ZKeThf?D ||'||§,2(K)- O

We equip the space V}, with the following norm:
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1
lvnll%, = IVoRllzecpy + [val3,  Joald = D> h—llvhl\%zm- (37.7)
FeFp

Note that ||vp||v;, = 0 implies that vy, is constant on D and vanishes on 9D,
so that v, = 0. Hence, ||-||y;, is a norm on Vj. Note also that the two terms
composing the norm ||-||y; are dimensionally consistent.

Lemma 37.3 (Coercivity, well-posedness). Assume that the penalty pa-
rameter w(hp) is defined s.t.

1

w(hp) = Z07 VF e FP, (37.8)

with wgy > %nacﬁt. (i) The following coercivity property holds true:
ap(vp,vp) > OéHUhH%/h, Yo, € Vy, (37.9)
wo—inacit

1+4wg

Proof. Let vy, € V},. We have

with « 1= >0, (ii) The discrete problem (37.5) is well-posed.

an(vn, vn) = [[Vonllz2(p) —/ (n-Vup)vp, ds + wo|vn|3-
oD

. L 1
Setting z := (ZKET;I\T,?D ||Vvh||i2(K))z , X = (ZKGT,?D HVvhHQLQ(K))z , and
y = |vn s, and using Lemma 37.2, we infer that

1
an(vn,vp) > 22 + (2* — ngcatry + woy?).

Coercivity follows from the inequality z? — 282y + woy? > Tjr—;iz(xz +y?)

1
applied with 3 := %ng car (see Exercise 37.2) and since ?ﬂr;iz < % < 1.

Finally, well-posedness follows from the Lax—Milgram lemma. a

Remark 37.4 (Choice of penalty parameter). Ensuring the stability
condition wy > %nacﬁt requires in practice to know a reasonable upper bound
on the constant cq;. The results of §12.2 show that cq; scales like the poly-
nomial degree k. More precisely, Lemma 12.10 shows that for simplices one
can take cq := ((k+ 1)(k + d)/d)? with hp := |K;|/|F|. O

37.3 Error analysis

In this section, we derive an energy error estimate, that is, we bound the
error by using the coercivity norm and the abstract error estimate from
Lemma 27.5. We also derive an improved L2-error estimate by means of
a duality argument.
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37.3.1 Energy error estimate

We perform the error analysis under the assumption that the solution to
(37.1) is in H'*"(D) with r > 3, i.e., we set
. 147 1

Vo:=H (D), r> 3 (37.10)
The assumption u € V5 is reasonable in the setting of the Poisson equation
with Dirichlet conditions in a Lipschitz polyhedron since it is consistent with
the elliptic regularity theory (see Theorem 31.33). The important property
that we use is that for any function v € Vi, the normal derivative n-Vuv at
the boundary is meaningful in L?(0D). We consider the space Vi=Vs+ 1V
equipped with the norm

olI%, = IVollZap) + [0l + > hrllnVollZa ), (37.11)
FeF?

with |v]3 = ZFGF,? % Hv||%2(F). A discrete trace inequality shows that there
is ¢y s.t. [lvnllv, < csllonllv, for all v, € Vi, and all h € H, i.e., (27.5) holds
true. Recall from Definition 27.3 that the consistency error is defined by

setting <5h(Uh)7wh>V,{,Vh =Ly (wp) — ap(vp, wy) for all vy, wy, € V.

Lemma 37.5 (Consistency/boundedness). Assume (37.10). There is wy,
uniform w.r.t. u € Vg, s.t. for all vy, € Vi, and all h € H,

[0n(vn)llv; < wy llu — vnllv;- (37.12)

Proof. Let vy, wp, € Vp. Since the normal derivative n-Vu is meaningful at
the boundary, using the PDE and the boundary condition in (37.1), we infer
that

1
Ly (w :/—Auwd:z:—l— w—/gwds
) = [ ~(Awupde+ 3 @ [ g

FeFp

1
= Vu-thdx—/ n-Vu)wy, ds + wo—/ uwy, ds.
/D BD( ) Z he Jp

F
FeFp

Letting 1 := u — vy, this implies that

(O (vn), wn)vy v, = / Vn-Vuwy, dx—/ (n-Vn)wy, ds
D oD

Using the Cauchy—Schwarz inequality, we obtain the estimate (37.12) with
wg := max(1, o). O
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Theorem 37.6 (Convergence). Let u solve (37.1) and let up solve (37.5)
with the penalty parameter wo > tnacd,. Assume (37.10). (i) There is ¢ s.t.
the following quasi-optimal error estimate holds true for all h € H:

lu—unllv, <c inf [lu—wply,. (37.13)
VR EVY

(ii) Letting t := min(k,r), we have

1
3
lu—unllv, < c( Z h%|u|§{1+t(m> . (37.14)
KeTy

Proof. (i) The estimate (37.13) follows from Lemma 27.5 combined with sta-
bility (Lemma 37.3) and consistency/boundedness (Lemma 37.5).
(ii) The proof of (37.14) is left as an exercise. O

37.3.2 L?*-norm estimate

We derive an improved error estimate of the form |[u—up| £2(py < ch 0y |lu—
up||v, for some real number v > 0, where /p is a length scale associated with
D, e.g., {p := diam(D). Proceeding as in §36.3.2, we invoke a duality argu-
ment. We consider the adjoint solution ¢, € V := H(D) for all r € L*(D)
such that

a(v,¢r) = (v,7) L2 (D), Yv eV, (37.15)

i.e., ¢ solves —A(. = r in D and 78(¢,) = 0. (Note that we enforce a ho-
mogeneous Dirichlet condition on the adjoint solution.) Owing to the elliptic
regularity theory (see §31.4), there is s € (0, 1] and a constant cgmo such that

||<T||H1+S(D) < Csmo €2DHT||L2(D)7 Vr € L2(D) (3716)

In the present setting of the Poisson equation with Dirichlet conditions in a
Lipschitz polyhedron, it is reasonable to assume that s € (%, 1].

Theorem 37.7 (L?-estimate). Let u solve (37.1) and let uy solve (37.5).
Assume that the elliptic reqularity index satisfies s € (%, 1]. There is ¢ s.t.
for allh € H,

1

[ = un|L2(py < ch203|u— upllv,. (37.17)
Proof. Set e := u—wujp. We apply the abstract error estimate of Lemma 36.14
with V; := Vi + V}, as above, Zs :== H'T(D) N H}(D), Y}, := V,, N H}(D),
and Zy 1= Zs +Y), equipped with the H'-seminorm. We consider the bilin-
ear form ay(v,w) = (Vv, Vw)r2(p). Notice that ay is bounded on V;x Zj.
Moreover, ag(e,yr) = 0 for all y, € Y}, since Y, C H}(D), i.e., the Galerkin
orthogonality property (36.28) holds true. Lemma 36.14 implies that

g Ce / \Y% e — 2
[[6°4(Ce)llv + inf V(e —yn)llL (D))|€”Vw

lellzz(py  wneYa lellz2(p)

lellzo) < <
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where the first and the second term between parentheses are the adjoint
consistency error and the interpolation error on the adjoint solution, respec-
tively. Let us first bound the adjoint consistency error. Recall that §*%((.) is
defined in such a way that the following identity holds true: For all v € V},

(64 (Ce), U>Vu/.,Vu = —(v, Ace)L2(D) - aﬁ(vv Ce) = —(Uvn'VCe)m(aD)-
The Cauchy—Schwarz inequality implies that
adj 1 1
[(0°¥(Ce)s v)vy v | < B2 [ VCellL2opy vl < A2 ([ Vel 2oy [v]lvg

1 _3
<chzlp? ||Ce||H1+S(D)HU||Vw

1
since s > 3. Using (37.16), we infer that ||6adj(Ce)HVﬁ/ < ch%EBHeﬂLz(D). To
bound the interpolation error on the adjoint solution, we consider the quasi-
interpolation operator Z;3" from §22.4. Since Zj;3" (C.) € Y3, we deduce that

inf V(¢ —yn)llz2py < IV (¢ — Ziig™ (Ce))ll £2(p)
YnE€EYp
< ChS|C6|H1+s(D) < Chsgz)175||<e”H1+S(D) < € Csmo hsleisHGHLz(D),

where we used the approximation properties of Z;;y™ from Theorem 22.14

1
and the estimate (37.16). Since s > % and h < /p, we have hsfb_s < h%WD,
and this concludes the proof. O

37.3.3 Symmetrization

1

The estimate (37.17) is suboptimal by a factor h*"2, and this loss of op-
timality is caused by the adjoint consistency error which is only of order
hz. This shortcoming can be avoided by symmetrizing a; and modifying ¢,
consistently. More precisely, we define

a;" (op, wp) 1= a(vh,wh)—/ (n-Vvh)whds—/ vp(n-Vuwy,)ds
aD aD
1
— d
+ Z WOhF/thwh S,
Sym 1
G (wp) = é(wh)—/ g(n-Vwyp)ds + Z woh—/ gwy, ds.
op Ferp  TOF

Consider the following discrete problem:

sym (3718)

{Find uy, € Vj, such that
a (uh,wh) = f;ym(’wh), Ywy € V.
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Adapting the proof of Lemma 37.3, one can show that the problem (37.18)
is well-posed if one chooses the stabilization parameter s.t. @y > nac3,.

Theorem 37.8 (L*-estimate). Let u solve (37.1) and let uy, solve (37.18).
Assume wy > ngci, and that there is s € (%,1] s.t. the adjoint solution
satisfies the a priori estimate (37.16). There is ¢ s.t. for all h € H,

lw—unllz2(py < ch™5 *|lu — un|lv,. (37.19)

Proof. We proceed as in the proof of Theorem 37.7 with the same spaces Vj,
Zy, and Yy, but now we set ay(v,w) = (Vv,Vw)r2(p) — (v,n-Vw)r2ap).
We equip Z; with the same norm as V4, so that ay is bounded on V3 x Z;. The
Galerkin orthogonality property still holds true for ay. Indeed, we have

a’ﬁ(uvyh) =(f, yh)L2(D) - (gvn'Vyh)L2(6D)
= 07" (yn) = a7 (un, yn) = ag(un, yn), Yyn € Ya,

since v8(u) = g and y;, vanishes on dD. Now the adjoint consistency error
vanishes, and we still have ||¢c — Z5y™ (Ce) ||z, < ¢h®[Celgi+s(py- 0

Exercises

Exercise 37.1 (Poincaré—Steklov). Let Cps be defined in (31.23). Prove
that Coslp'|[v]|p2(py < (||VU||2L2(D) + [v]3)? for all v € H'(D). (Hint: use
h </¢p and (31.23).)

Exercise 37.2 (Quadratic inequality). Prove that 2% — 282y + woy? >

wo—fB°
1+wo

(22 + y?) for all real numbers z, y, wo > 0 and 3 > 0.

Exercise 37.3 (Error estimate). Prove (37.14). (Hint: consider the quasi-
interpolation operator from §22.3.)

Exercise 37.4 (Gradient). Let U be an open bounded set in R?, let s €
(0,1), and set H§,(U) := [L2(U), H}(U)]s,2. (i) Show that V : H'=%(U) —
(H3,(U)) is bounded for all s € (0,1). (Hint: use Theorems A.27 and A.30.)
(i) Assume that U is Lipschitz. Show that V : H!=5(U) — H*(U) is
bounded for all s € (0,1), s # 5. (Hint: see (3.7), Theorem 3.19; see also
Grisvard [223, Lem. 1.4.4.6].)

Exercise 37.5 (L?-estimate). (i) Modify the proof of Theorem 37.7 by
measuring the interpolation error on the adjoint solution with the operator
Zp™ instead of Z5;", i.e., use Y}, := Vj, instead of Y}, 1=V}, N H{(D). (Hint:
set ay(v, w) := (Vv, Vw)r2(py— (n-Vv,w) 2 op) +ZF€F,§? woﬁ(v, w)r2(F)-)
(ii) Do the same for the proof of Theorem 37.8.



