
Part VIII, Chapter 37

Nitsche’s boundary penalty method

The main objective of this chapter is to present a technique to treat Dirichlet
boundary conditions in a natural way using a penalty method. This technique
is powerful and has many extensions. In particular, the idea is reused in the
next chapter for discontinuous Galerkin methods. Another objective of this
chapter is to illustrate the abstract error analysis of Chapter 27.

37.1 Main ideas and discrete problem

Let D be a Lipschitz domain in Rd. We assume for simplicity that D is a
polyhedron. Let f ∈ L2(D) be the source term, and let g ∈ H

1
2 (∂D) be the

Dirichlet boundary data. We consider the Poisson equation with Dirichlet
conditions

−∆u = f in D, γg(u) = g on ∂D, (37.1)

where γg : H1(D) → H
1
2 (∂D) is the trace map. Let ug ∈ H1(D) be a lifting

of g, i.e., γg(ug) = g (recall that γg : H1(D) → H
1
2 (∂D) is the trace map).

We seek u0 ∈ H1
0 (D) s.t. a(u0, w) = ℓ(w)− a(ug, w) for all w ∈ H1

0 (D), with

a(v, w) :=

∫

D

∇v·∇w dx, ℓ(w) :=

∫

D

fw dx. (37.2)

This problem is well-posed in H1
0 (D) owing to the Lax–Milgram lemma and

the Poincaré–Steklov inequality in H1
0 (D). Then the unique weak solution

to (37.1) is u := u0 + ug (see §31.2.2).
In this chapter, we take a route that is different from the above approach to

construct an approximation of the solution. Instead of enforcing the Dirichlet
boundary condition strongly, we are going to construct anH1-conforming dis-
cretization of (37.1) that enforces this condition naturally. This means that
we no longer require that the discrete test functions vanish at the boundary.
The discrete counterpart of the bilinear form a must then be modified accord-
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ingly. To motivate the modification in question, let us proceed informally by
assuming that all the functions we manipulate are sufficiently smooth. Testing
(37.1) with a function w which we do not require to vanish at the boundary,
the integration by parts formula (4.8b) gives

a(u,w)−
∫

∂D

(n·∇u)w ds = ℓ(w). (37.3)

The idea of Nitsche is to modify (37.3) by adding a term proportional to∫
∂D

uw ds on both sides of the above identity. This leads to

a(u,w)−
∫

∂D

(n·∇u)w ds+̟

∫

∂D

uw ds = ℓ(w) +̟

∫

∂D

gw ds, (37.4)

where the boundary value of u has been replaced by g in the boundary integral
on the right-hand side. The yet unspecified parameter ̟ is assumed to be
positive. Heuristically, if u satisfies (37.4) and if ̟ is large, one expects u to
be close to g at the boundary. For this reason, ̟ is called penalty parameter.

The above ideas lead to an approximation method employing discrete trial
and test spaces composed of functions that are not required to vanish at the
boundary. Let Th be a mesh from a shape-regular sequence of meshes so that
each mesh covers D exactly. Let F∂

h be the collection of the boundary faces.
Let P g

k (Th) be the H1-conforming finite element space of degree k ≥ 1 based
on Th; see (19.10). We consider the following discrete problem:

{
Find uh ∈ Vh := P g

k (Th) such that

ah(uh, wh) = ℓh(wh), ∀wh ∈ Vh,
(37.5)

where the discrete forms ah and ℓh are inspired from (37.4):

ah(vh, wh) := a(vh, wh)−
∫

∂D

(n·∇vh)wh ds+
∑

F∈F∂h

̟(hF )

∫

F

vhwh ds,

ℓh(wh) := ℓ(wh) +
∑

F∈F∂h

̟(hF )

∫

F

gwh ds.

The second term in the definition of ah is called consistency term (this term
plays a key role when estimating the consistency error) and the third one is
called penalty term. The penalty parameter ̟(hF ) > 0, yet to be defined,
depends on the diameter of the face F (or a uniformly equivalent local length
scale). The stability analysis will reveal that ̟(hF ) should scale like h−1

F . The
approximation setting associated with Nitsche’s boundary penalty method is
nonconforming, i.e., Vh 6⊂ V := H1

0 (D), since functions in Vh may not vanish
at the boundary, whereas functions in V do.

Remark 37.1 (Literature, extensions). The boundary penalty method
has been introduced by Nitsche [314] to treat Dirichlet boundary condi-
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tions. It was extended in Juntunen and Stenberg [262] to Robin bound-
ary conditions. We refer the reader to §41.3 where the more general PDE
−∇·(λ∇u) = f with contrasted diffusivity λ is treated. ⊓⊔

37.2 Stability and well-posedness

The main objective of this section is to prove that the discrete bilinear form
ah is coercive on Vh if the penalty parameter is large enough. This is done
by showing that the consistency term can be appropriately bounded. For
all F ∈ F∂

h , let us denote by Kl the unique mesh cell having F as a face,
i.e., F := ∂Kl ∩ ∂D. Let T ∂D

h be the collection of the mesh cells having
at least one boundary face, i.e., T ∂D

h :=
⋃
F∈F∂h {Kl}. (The set T ∂D

h should

not be confused with the larger set T ∂
h defined in (22.28), which is the col-

lection of the mesh cells touching the boundary.) Let n∂ denote the max-
imum number of boundary faces that a mesh cell in T ∂D

h can have, i.e.,
n∂ := maxK∈T ∂Dh card(FK ∩ F∂

h ) (n∂ ≤ d for simplicial meshes). Owing
to the regularity of the mesh sequence, the discrete trace inequality from
Lemma 12.8 (with p = q := 2) implies that there is cdt such that for all
vh ∈ Vh, all F ∈ F∂

h , and all h ∈ H,

‖n·∇vh‖L2(F ) ≤ cdth
− 1

2

F ‖∇vh‖L2(Kl). (37.6)

Lemma 37.2 (Bound on consistency term). The following holds true for
all vh ∈ Vh:

∣∣∣∣
∫

∂D

(n·∇vh)vh ds
∣∣∣∣ ≤ n

1
2

∂ cdt

( ∑

K∈T ∂Dh

‖∇vh‖2L2(K)

) 1
2
( ∑

F∈F∂h

1

hF
‖vh‖2L2(F )

) 1
2

.

Proof. Let vh ∈ Vh. Let F ∈ F∂
h . Using the Cauchy–Schwarz inequality,

bounding the normal component of the gradient by its Euclidean norm, and
using the discrete trace inequality (37.6) componentwise, we infer that

∣∣∣∣
∫

∂D

(n·∇vh)vh ds
∣∣∣∣ ≤

( ∑

F∈F∂
h

hF ‖n·∇vh‖2L2(F )

) 1
2
( ∑

F∈F∂
h

1

hF
‖vh‖2L2(F )

) 1
2

≤ cdt

( ∑

F∈F∂h

‖∇vh‖2L2(Kl)

) 1
2
( ∑

F∈F∂h

1

hF
‖vh‖2L2(F )

) 1
2

.

Finally, we have
∑
F∈F∂

h
‖·‖2L2(Kl)

=
∑

K∈T ∂D
h

card(FK ∩ F∂
h )‖·‖2L2(K) ≤

n∂
∑

K∈T ∂Dh ‖·‖2
L2(K). ⊓⊔

We equip the space Vh with the following norm:
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‖vh‖2Vh := ‖∇vh‖2L2(D) + |vh|2∂ , |vh|2∂ :=
∑

F∈F∂h

1

hF
‖vh‖2L2(F ). (37.7)

Note that ‖vh‖Vh = 0 implies that vh is constant on D and vanishes on ∂D,
so that vh = 0. Hence, ‖·‖Vh is a norm on Vh. Note also that the two terms
composing the norm ‖·‖Vh are dimensionally consistent.

Lemma 37.3 (Coercivity, well-posedness). Assume that the penalty pa-
rameter ̟(hF ) is defined s.t.

̟(hF ) := ̟0
1

hF
, ∀F ∈ F∂

h , (37.8)

with ̟0 >
1
4n∂c

2
dt. (i) The following coercivity property holds true:

ah(vh, vh) ≥ α‖vh‖2Vh , ∀vh ∈ Vh, (37.9)

with α :=
̟0− 1

4n∂c
2
dt

1+̟0
> 0, (ii) The discrete problem (37.5) is well-posed.

Proof. Let vh ∈ Vh. We have

ah(vh, vh) = ‖∇vh‖2L2(D) −
∫

∂D

(n·∇vh)vh ds+̟0|vh|2∂ .

Setting z := (
∑

K∈Th\T ∂Dh ‖∇vh‖2L2(K))
1
2 , x := (

∑
K∈T ∂Dh ‖∇vh‖2L2(K))

1
2 , and

y := |vh|∂ , and using Lemma 37.2, we infer that

ah(vh, vh) ≥ z2 + (x2 − n
1
2

∂ cdtxy +̟0y
2).

Coercivity follows from the inequality x2 − 2βxy +̟0y
2 ≥ ̟0−β2

1+̟0
(x2 + y2)

applied with β := 1
2n

1
2

∂ cdt (see Exercise 37.2) and since ̟0−β2

1+̟0
≤ ̟0

1+̟0
≤ 1.

Finally, well-posedness follows from the Lax–Milgram lemma. ⊓⊔
Remark 37.4 (Choice of penalty parameter). Ensuring the stability
condition̟0 >

1
4n∂c

2
dt requires in practice to know a reasonable upper bound

on the constant cdt. The results of §12.2 show that cdt scales like the poly-
nomial degree k. More precisely, Lemma 12.10 shows that for simplices one
can take cdt := ((k + 1)(k + d)/d)

1
2 with hF := |Kl|/|F |. ⊓⊔

37.3 Error analysis

In this section, we derive an energy error estimate, that is, we bound the
error by using the coercivity norm and the abstract error estimate from
Lemma 27.5. We also derive an improved L2-error estimate by means of
a duality argument.
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37.3.1 Energy error estimate

We perform the error analysis under the assumption that the solution to
(37.1) is in H1+r(D) with r > 1

2 , i.e., we set

Vs := H1+r(D), r >
1

2
. (37.10)

The assumption u ∈ Vs is reasonable in the setting of the Poisson equation
with Dirichlet conditions in a Lipschitz polyhedron since it is consistent with
the elliptic regularity theory (see Theorem 31.33). The important property
that we use is that for any function v ∈ Vs, the normal derivative n·∇v at
the boundary is meaningful in L2(∂D). We consider the space V♯ := Vs + Vh
equipped with the norm

‖v‖2V♯ := ‖∇v‖2L2(D) + |v|2∂ +
∑

F∈F∂h

hF ‖n·∇v‖2L2(F ), (37.11)

with |v|2∂ :=
∑

F∈F∂h
1
hF

‖v‖2L2(F ). A discrete trace inequality shows that there

is c♯ s.t. ‖vh‖V♯ ≤ c♯‖vh‖Vh for all vh ∈ Vh and all h ∈ H, i.e., (27.5) holds
true. Recall from Definition 27.3 that the consistency error is defined by
setting 〈δh(vh), wh〉V ′

h,Vh
:= ℓh(wh)− ah(vh, wh) for all vh, wh ∈ Vh.

Lemma 37.5 (Consistency/boundedness). Assume (37.10). There is ω♯,
uniform w.r.t. u ∈ Vs, s.t. for all vh ∈ Vh and all h ∈ H,

‖δh(vh)‖V ′
h
≤ ω♯ ‖u− vh‖V♯ . (37.12)

Proof. Let vh, wh ∈ Vh. Since the normal derivative n·∇u is meaningful at
the boundary, using the PDE and the boundary condition in (37.1), we infer
that

ℓh(wh) =

∫

D

−(∆u)wh dx+
∑

F∈F∂
h

̟0
1

hF

∫

F

gwh ds

=

∫

D

∇u·∇wh dx−
∫

∂D

(n·∇u)wh ds+
∑

F∈F∂h

̟0
1

hF

∫

F

uwh ds.

Letting η := u− vh, this implies that

〈δh(vh), wh〉V ′
h
,Vh =

∫

D

∇η·∇wh dx−
∫

∂D

(n·∇η)wh ds

+
∑

F∈F∂
h

̟0
1

hF

∫

F

ηwh ds.

Using the Cauchy–Schwarz inequality, we obtain the estimate (37.12) with
ω♯ := max(1, ̟0). ⊓⊔
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Theorem 37.6 (Convergence). Let u solve (37.1) and let uh solve (37.5)
with the penalty parameter ̟0 >

1
4n∂c

2
dt. Assume (37.10). (i) There is c s.t.

the following quasi-optimal error estimate holds true for all h ∈ H:

‖u− uh‖V♯ ≤ c inf
vh∈Vh

‖u− vh‖V♯ . (37.13)

(ii) Letting t := min(k, r), we have

‖u− uh‖V♯ ≤ c

( ∑

K∈Th
h2tK |u|2H1+t(K)

) 1
2

. (37.14)

Proof. (i) The estimate (37.13) follows from Lemma 27.5 combined with sta-
bility (Lemma 37.3) and consistency/boundedness (Lemma 37.5).
(ii) The proof of (37.14) is left as an exercise. ⊓⊔

37.3.2 L2-norm estimate

We derive an improved error estimate of the form ‖u−uh‖L2(D) ≤ chγℓ1−γD ‖u−
uh‖V♯ for some real number γ > 0, where ℓD is a length scale associated with
D, e.g., ℓD := diam(D). Proceeding as in §36.3.2, we invoke a duality argu-
ment. We consider the adjoint solution ζr ∈ V := H1

0 (D) for all r ∈ L2(D)
such that

a(v, ζr) = (v, r)L2(D), ∀v ∈ V, (37.15)

i.e., ζr solves −∆ζr = r in D and γg(ζr) = 0. (Note that we enforce a ho-
mogeneous Dirichlet condition on the adjoint solution.) Owing to the elliptic
regularity theory (see §31.4), there is s ∈ (0, 1] and a constant csmo such that

‖ζr‖H1+s(D) ≤ csmo ℓ
2
D‖r‖L2(D), ∀r ∈ L2(D). (37.16)

In the present setting of the Poisson equation with Dirichlet conditions in a
Lipschitz polyhedron, it is reasonable to assume that s ∈ (12 , 1].

Theorem 37.7 (L2-estimate). Let u solve (37.1) and let uh solve (37.5).
Assume that the elliptic regularity index satisfies s ∈ (12 , 1]. There is c s.t.
for all h ∈ H,

‖u− uh‖L2(D) ≤ c h
1
2 ℓ

1
2

D‖u− uh‖V♯ . (37.17)

Proof. Set e := u−uh. We apply the abstract error estimate of Lemma 36.14
with V♯ := Vs + Vh as above, Zs := H1+s(D) ∩ H1

0 (D), Yh := Vh ∩ H1
0 (D),

and Z♯ := Zs + Yh equipped with the H1-seminorm. We consider the bilin-
ear form a♯(v, w) := (∇v,∇w)L2(D). Notice that a♯ is bounded on V♯×Z♯.
Moreover, a♯(e, yh) = 0 for all yh ∈ Yh since Yh ⊂ H1

0 (D), i.e., the Galerkin
orthogonality property (36.28) holds true. Lemma 36.14 implies that

‖e‖L2(D) ≤
(‖δadj(ζe)‖V ′

♯

‖e‖L2(D)
+ inf
yh∈Yh

‖∇(ζe − yh)‖L2(D)

‖e‖L2(D)

)
‖e‖V♯ ,
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where the first and the second term between parentheses are the adjoint
consistency error and the interpolation error on the adjoint solution, respec-
tively. Let us first bound the adjoint consistency error. Recall that δadj(ζe) is
defined in such a way that the following identity holds true: For all v ∈ V♯,

〈δadj(ζe), v〉V ′
♯ ,V♯

= −(v,∆ζe)L2(D) − a♯(v, ζe) = −(v,n·∇ζe)L2(∂D).

The Cauchy–Schwarz inequality implies that

|〈δadj(ζe), v〉V ′
♯
,V♯ | ≤ h

1
2 ‖∇ζe‖L2(∂D)|v|∂ ≤ h

1
2 ‖∇ζe‖L2(∂D)‖v‖V♯

≤ c h
1
2 ℓ

− 3
2

D ‖ζe‖H1+s(D)‖v‖V♯ ,

since s > 1
2 . Using (37.16), we infer that ‖δadj(ζe)‖V ′

♯
≤ ch

1
2 ℓ

1
2

D‖e‖L2(D). To

bound the interpolation error on the adjoint solution, we consider the quasi-
interpolation operator Ig,av

h0 from §22.4. Since Ig,av
h0 (ζe) ∈ Yh, we deduce that

inf
yh∈Yh

‖∇(ζe − yh)‖L2(D) ≤ ‖∇(ζe − Ig,av
h0 (ζe))‖L2(D)

≤ c hs|ζe|H1+s(D) ≤ c hsℓ−1−s
D ‖ζe‖H1+s(D) ≤ c csmo h

sℓ1−sD ‖e‖L2(D),

where we used the approximation properties of Ig,av
h0 from Theorem 22.14

and the estimate (37.16). Since s > 1
2 and h ≤ ℓD, we have hsℓ1−sD ≤ h

1
2 ℓ

1
2

D,
and this concludes the proof. ⊓⊔

37.3.3 Symmetrization

The estimate (37.17) is suboptimal by a factor hs−
1
2 , and this loss of op-

timality is caused by the adjoint consistency error which is only of order
h

1
2 . This shortcoming can be avoided by symmetrizing ah and modifying ℓh

consistently. More precisely, we define

asymh (vh, wh) := a(vh, wh)−
∫

∂D

(n·∇vh)wh ds−
∫

∂D

vh(n·∇wh) ds

+
∑

F∈F∂h

̟0
1

hF

∫

F

vhwh ds,

ℓsymh (wh) := ℓ(wh)−
∫

∂D

g(n·∇wh) ds+
∑

F∈F∂
h

̟0
1

hF

∫

F

gwh ds.

Consider the following discrete problem:

{
Find uh ∈ Vh such that

asymh (uh, wh) = ℓsymh (wh), ∀wh ∈ Vh.
(37.18)
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Adapting the proof of Lemma 37.3, one can show that the problem (37.18)
is well-posed if one chooses the stabilization parameter s.t. ̟0 > n∂c

2
dt.

Theorem 37.8 (L2-estimate). Let u solve (37.1) and let uh solve (37.18).
Assume ̟0 > n∂c

2
dt and that there is s ∈ (12 , 1] s.t. the adjoint solution

satisfies the a priori estimate (37.16). There is c s.t. for all h ∈ H,

‖u− uh‖L2(D) ≤ c hsℓ1−sD ‖u− uh‖V♯ . (37.19)

Proof. We proceed as in the proof of Theorem 37.7 with the same spaces V♯,
Z♯, and Yh, but now we set a♯(v, w) := (∇v,∇w)L2(D) − (v,n·∇w)L2(∂D).
We equip Z♯ with the same norm as V♯, so that a♯ is bounded on V♯×Z♯. The
Galerkin orthogonality property still holds true for a♯. Indeed, we have

a♯(u, yh) = (f, yh)L2(D) − (g,n·∇yh)L2(∂D)

= ℓsymh (yh) = asymh (uh, yh) = a♯(uh, yh), ∀yh ∈ Yh,

since γg(u) = g and yh vanishes on ∂D. Now the adjoint consistency error
vanishes, and we still have ‖ζe − Ig,av

h0 (ζe)‖Z♯ ≤ c hs|ζe|H1+s(D). ⊓⊔

Exercises

Exercise 37.1 (Poincaré–Steklov). Let Čps be defined in (31.23). Prove

that Čpsℓ
−1
D ‖v‖L2(D) ≤ (‖∇v‖2

L2(D) + |v|2∂)
1
2 for all v ∈ H1(D). (Hint : use

h ≤ ℓD and (31.23).)

Exercise 37.2 (Quadratic inequality). Prove that x2 − 2βxy + ̟0y
2 ≥

̟0−β2

1+̟0
(x2 + y2) for all real numbers x, y, ̟0 ≥ 0 and β ≥ 0.

Exercise 37.3 (Error estimate). Prove (37.14). (Hint : consider the quasi-
interpolation operator from §22.3.)

Exercise 37.4 (Gradient). Let U be an open bounded set in Rd, let s ∈
(0, 1), and set Hs

00(U) := [L2(U),H1
0 (U)]s,2. (i) Show that ∇ : H1−s(U) →

(Hs
00(U))′ is bounded for all s ∈ (0, 1). (Hint : use Theorems A.27 and A.30.)

(ii) Assume that U is Lipschitz. Show that ∇ : H1−s(U) → H−s(U) is
bounded for all s ∈ (0, 1), s 6= 1

2 . (Hint : see (3.7), Theorem 3.19; see also
Grisvard [223, Lem. 1.4.4.6].)

Exercise 37.5 (L2-estimate). (i) Modify the proof of Theorem 37.7 by
measuring the interpolation error on the adjoint solution with the operator
Ig,av
h instead of Ig,av

h0 , i.e., use Yh := Vh instead of Yh := Vh ∩H1
0 (D). (Hint :

set a♯(v, w) := (∇v,∇w)L2(D)−(n·∇v, w)L2(∂D)+
∑
F∈F∂h ̟0

1
hF

(v, w)L2(F ).)

(ii) Do the same for the proof of Theorem 37.8.


