
Part VIII, Chapter 38

Discontinuous Galerkin

The goal of this chapter is to study the approximation of an elliptic model
problem by the discontinuous Galerkin (dG) method. The distinctive feature
of dG methods is that the trial and the test spaces are broken finite element
spaces (see §18.1.2). Inspired by the boundary penalty method from Chap-
ter 37, dG formulations are obtained by adding a consistency term at all the
mesh interfaces and boundary faces, boundary conditions are weakly enforced
à la Nitsche, and continuity across the mesh interfaces is weakly enforced by
penalizing the jumps. The dG method we study here is called symmetric inte-
rior penalty (SIP) because the consistency term is symmetrized to maintain
the symmetry of the discrete bilinear form. Incidentally, the symmetry prop-
erty is important to derive optimal L2-error estimates assuming full elliptic
regularity pickup. We also discuss a useful reformulation of the dG method
by lifting the jumps, leading to the important notion of discrete gradient
reconstruction.

38.1 Model problem

For simplicity, we focus on the Poisson equation with homogeneous Dirichlet
boundary conditions:

{
Find u ∈ V := H1

0 (D) such that

a(u,w) = ℓ(w), ∀w ∈ V,
(38.1)

with a(v, w) :=
∫
D∇v·∇w dx, ℓ(w) :=

∫
D fw dx, f ∈ L2(D), and D is a

Lipschitz polyhedron in Rd. This problem is well-posed owing to the Lax–
Milgram lemma and the Poincaré–Steklov inequality in H1

0 (D). We refer the
reader to §41.4 for the more general PDE −∇·(λ∇u) = f with contrasted
diffusivity λ.
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38.2 Symmetric interior penalty

In this section, we derive the dG approximation of the model problem (38.1)
using the SIP method and show that the discrete problem is well-posed.

38.2.1 Discrete problem

Although dG methods can be used on general meshes composed of polyhedral
cells, we consider for simplicity a shape-regular sequence (Th)h∈H of affine
matching meshes so that each mesh coversD exactly. LetW 1,1(Th;Rq), q ≥ 1,
be the broken Sobolev space introduced in Definition 18.1. Recall that every
interface F := ∂Kl∩∂Kr ∈ F◦

h is oriented by the fixed unit normal vector nF
pointing from Kl to Kr, i.e., nF := nKl = −nKr , and that the jump across
F of a function v ∈ W 1,1(Th;Rq) is defined by setting [[v]]F := v|Kl − v|Kr
a.e. on F . We also need the following notion of face average.

Definition 38.1 (Average). For all F := ∂Kl ∩ ∂Kr ∈ F◦
h, the average of

a function v ∈ W 1,1(Th;Rq) on F is defined as

{v}F :=
1

2

(
v|Kl + v|Kr

)
a.e. on F . (38.2)

As for jumps, the subscript F is dropped when the context is unambiguous.

To be more concise, it is customary in the dG literature dedicated to elliptic
PDEs to define the jump and the average of a function at the boundary faces
by setting [[v]]F := {v}F := v|Kl a.e. on F := ∂Kl ∩ ∂D ∈ F∂

h (i.e., Kl is the
unique mesh cell having the boundary face F among its faces).

Let (K̂, P̂ , Σ̂) be the reference finite element which we assume to be of
degree k ≥ 1. Let us consider the broken finite element space (see (18.4)) s.t.

Vh := P b
k (Th) := {vh ∈ L∞(D) | ψK(vh|K) ∈ P̂ , ∀K ∈ Th}, (38.3)

where ψK(v) := v ◦ TK is the pullback by the geometric mapping TK . The
approximation setting in dG methods is nonconforming since functions in Vh
can jump across the mesh interfaces and can have nonzero boundary values,
whereas membership in V := H1

0 (D) requires continuity across the interfaces
(see Theorem 18.8) and zero boundary values. Nonconformity implies that
we cannot work with the bilinear form a. The construction of the discrete
bilinear form ah on Vh×Vh is a bit more involved than for the Crouzeix–
Raviart finite element method from Chapter 36, where it was sufficient to
replace the weak gradient ∇ by the broken gradient ∇h (see Definition 36.3)
to build ah from a. Instead, the SIP method hinges on the following discrete
bilinear form:
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ah(vh, wh) :=

∫

D

∇hvh·∇hwh dx−
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]] ds

−
∑

F∈Fh

∫

F

[[vh]]{∇hwh}·nF ds+
∑

F∈Fh
̟(hF )

∫

F

[[vh]][[wh]] ds, (38.4)

where the second and the fourth terms on the right-hand side are remi-
niscent of Nitsche’s boundary penalty method. The second term is called
consistency term since it is important to establish consistency/boundedness
(see Lemma 38.9). The third term, which is called adjoint consistency term,
makes the discrete bilinear form ah symmetric and it is important to estab-
lish an improved L2-error estimate (see Theorem 38.12). The fourth term is
important to establish coercivity (see Lemma 38.6). It penalizes jumps across
interfaces and values at boundary faces and is, therefore, called penalty term.
Coercivity requires that the penalty parameter be s.t. ̟(hF ) := ̟0h

−1
F ,

where ̟0 > 0 has to be chosen large enough, and on shape-regular mesh
sequences, the local length scale hF can be taken to be the diameter of F .

We consider the following discrete problem:

{
Find uh ∈ Vh such that

ah(uh, wh) = ℓh(wh), ∀wh ∈ Vh,
(38.5)

where the discrete linear form is given by

ℓh(wh) :=

∫

D

fwh dx, ∀wh ∈ Vh. (38.6)

This choice for ℓh is possible since the source term in the model problem (38.1)
is assumed to be in L2(D). A more general setting, e.g., f ∈ H−1(D),
is discussed in Remark 36.5. Furthermore, it is legitimate to extend ah to
(H1+r(D) + Vh)×Vh, r > 1

2 , since ∇u ∈ Hr(D) implies that (∇u)|F is well
defined as an integrable function for all F ∈ Fh. To motivate the appearance
of the consistency term in the definition of ah, let us prove the following
important result.

Lemma 38.2 (Consistency term). Assume that u ∈ H1+r(D), r > 1
2 .

Then we have ah(u,wh) = ℓh(wh) for all wh ∈ Vh.

Proof. We have [[u]]F = 0 a.e. on all F ∈ Fh (use Theorem 18.8 for F ∈
F◦
h and γg(u) = 0 for F ∈ F∂

h ) and ∇hu = ∇u (see Lemma 18.9). Since
∇u ∈ Hr(D), r > 1

2 , we also have [[∇u]]·nF = 0 a.e. on all F ∈ F◦
h (see

Remark 18.4). We infer that

ah(u,wh) =

∫

D

∇u·∇hwh dx−
∑

F∈Fh

∫

F

(∇u·nF )[[wh]] ds.

We conclude by performing elementwise integration by parts as follows:
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∫

D

∇u·∇hwh dx =

∫

D

−(∆u)wh dx+
∑

K∈Th

∑

F∈FK

∫

F

(∇u·nK)wh|K ds

= ℓh(wh) +
∑

F∈Fh

∫

F

(∇u·nF )[[wh]] ds. ⊓⊔

Remark 38.3 (Literature). The SIP approximation has been analyzed
in Arnold [15] (see also Baker [44], Wheeler [394]). ⊓⊔

Remark 38.4 (Nonmatching meshes). It is possible to consider non-
matching meshes if the diameter of each interface F ∈ F◦

h is uniformly equiv-
alent to the diameter of the two cells sharing F . ⊓⊔

38.2.2 Coercivity and well-posedness

We equip the space Vh with the following norm:

‖vh‖2Vh := ‖∇hvh‖2L2(D) + |vh|2J, |vh|2J :=
∑

F∈Fh

1

hF
‖[[vh]]‖2L2(F ). (38.7)

That ‖·‖Vh is a norm on Vh (and not just a seminorm) can be verified directly:
If ‖vh‖Vh = 0, then vh is piecewise constant and [[vh]]F = 0 for all F ∈ Fh.
This means that vh is constant on D and vanishes at ∂D, so that vh = 0. Our
first step in the analysis is to bound from above the consistency term. Recall
that TF := {K ∈ Th | F ∈ FK} is the collection of the mesh cells having F
as face. Let |TF | denote the cardinality of the set TF (|TF | = 2 for all F ∈ F◦

h

and |TF | = 1 for all F ∈ F∂
h ).

Lemma 38.5 (Consistency term). Let us set for all (vh, wh) ∈ Vh×Vh,

nh(vh, wh) := −
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]] ds. (38.8)

Then the following holds true for all vh ∈ Vh:

sup
wh∈Vh

|nh(vh, wh)|
|wh|J

≤
( ∑

F∈Fh

1

|TF |
∑

K∈TF
hF ‖nF ·∇(vh|K)‖2L2(F )

) 1
2

. (38.9)

Proof. The Cauchy–Schwarz inequality leads to

|nh(vh, wh)| ≤
∑

F∈Fh
h

1
2

F ‖nF ·{∇hvh}‖L2(F ) × h
− 1

2

F ‖[[wh]]‖L2(F )

≤
( ∑

F∈Fh
hF ‖nF ·{∇hvh}‖2L2(F )

) 1
2

|wh|J,
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Letting gh := ∇hvh, (38.9) follows from {gh}F = 1
|TF |

∑
K∈TF gh|K and

‖nF ·{gh}‖2L2(F ) =
1

|TF |2

∥∥∥∥∥
∑

K∈TF
nF ·gh|K

∥∥∥∥∥

2

L2(F )

≤ 1

|TF |
∑

K∈TF
‖nF ·gh|K‖2L2(F ).

⊓⊔
We shall use the same discrete trace inequality as in Chapter 37 to prove

a coercivity property. Let cdt be the smallest constant such that

‖nF ·∇hwh|K‖L2(F ) ≤ cdth
− 1

2

F ‖∇hwh‖L2(K), (38.10)

for all wh ∈ Vh, all K ∈ Th, all F ∈ FK , and all h ∈ H. Let n∂ :=
maxK∈Th |FK | be the largest number of faces per mesh cell, i.e., n∂ ≤ d + 1
for simplicial meshes (the definition of n∂ differs from that of Chapter 37).

Lemma 38.6 (Coercivity, well-posedness). Let the penalty parameter be
s.t. ̟(hF ) := ̟0h

−1
F with ̟0 > n∂c

2
dt. (i) We have

ah(vh, vh) ≥ α‖vh‖2Vh , ∀vh ∈ Vh, (38.11)

with α :=
̟0−n∂c2dt

1+̟0
> 0. (ii) The discrete problem (38.5) is well-posed.

Proof. Let vh ∈ Vh. Our starting observation is that

ah(vh, vh) = ‖∇hvh‖2L2(D) + 2nh(vh, vh) +̟0|vh|2J.

Using (38.9) and (38.10), we infer that

|nh(vh, vh)| ≤
(

sup
wh∈Vh

|nh(vh, wh)|
|wh|J

)
|vh|J ≤ n

1
2

∂ cdt‖∇hvh‖L2(D)|vh|J,

since |TF | ≥ 1,
∑
F∈Fh

∑
K∈TF (·) =

∑
K∈Th

∑
F∈FK (·), and |FK | ≤ n∂ , so

that
∑

F∈Fh
∑

K∈TF ‖gh|K‖2L2(K) ≤ n∂
∑

K∈Th ‖gh|K‖2L2(K) = n∂‖gh‖2L2(D)

with gh := ∇hvh. This leads to the lower bound

ah(vh, vh) ≥ ‖∇hvh‖2L2(D) − 2n
1
2

∂ cdt‖∇hvh‖L2(D)|vh|J +̟0|vh|2J,

whence we infer the coercivity property (38.11) by using the quadratic in-
equality from Exercise 37.2. Finally, the well-posedness of (38.5) follows from
the Lax–Milgram lemma. ⊓⊔
Remark 38.7 (Penalty parameter). As in the boundary penalty method
from Chapter 37, one needs a (reasonable) upper bound on the constant cdt
to choose a value of ̟0 that guarantees coercivity. The results of §12.2 show
that cdt scales essentially as k2. An alternative penalty strategy allowing
for an easy-to-compute value of ̟0 is discussed in Remark 38.17, but this
technique requires local inversions of small mass matrices. ⊓⊔
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Remark 38.8 (Discrete Sobolev inequality). Let ℓD be a length scale
associated with D, e.g., ℓD := diam(D). One can show that there is Csob > 0
such that Csob‖vh‖Lq(D) ≤ ℓD‖vh‖Vh for all vh ∈ Vh, all h ∈ H, and all q ∈
[1,∞) if d = 2 and q ∈ [1, 2d

d−2 ] if d ≥ 3; see Buffa and Ortner [95], Di Pietro
and Ern [164]. The reader is referred to Arnold [15], Brenner [86] for similar
estimates in broken Hilbert Sobolev spaces (q = 2). ⊓⊔

38.2.3 Variations on boundary conditions

The non-homogeneous Dirichlet boundary condition u = g on ∂D with g ∈
H

1
2 (∂D) is discretized by modifying the right-hand side in (38.5) as follows:

ℓnDh (wh) := ℓ(wh)−
∑

F∈F∂h

∫

F

g(nF ·∇hwh −̟(hF )wh) ds. (38.12)

For the Robin boundary condition γu + n·∇u = g on ∂D with g ∈ L2(∂D)
and γ ∈ L∞(∂D) taking nonnegative values on ∂D (γ := 0 corresponds to
the Neumann problem), the discrete bilinear form and the right-hand side
become

aRb
h (vh, wh) :=

∫

D

∇hvh·∇hwh dx−
∑

F∈F◦
h

∫

F

{∇hvh}·nF [[wh]] ds (38.13a)

−
∑

F∈F◦
h

∫

F

[[vh]]{∇hwh}·nF ds+
∑

F∈F◦
h

̟(hF )

∫

F

[[vh]][[wh]] ds+
∑

F∈F∂h

∫

F

γvhwh ds,

ℓRb
h (wh) := ℓ(wh) +

∑

F∈F∂h

∫

F

gwh ds. (38.13b)

One can verify that Lemma 38.2 still holds true in both cases.

38.3 Error analysis

In this section, we derive an energy error estimate, that is, we bound the
error by using the coercivity norm and the abstract error estimate from
Lemma 27.5. We also derive an improved L2-error estimate by means of
a duality argument. We assume that u ∈ Vs with

Vs := H1+r(D) ∩H1
0 (D), r >

1

2
. (38.14)

The assumption u ∈ Vs is reasonable in the setting of the Poisson equation
with Dirichlet conditions in a Lipschitz polyhedron since it is consistent with
the elliptic regularity theory (see Theorem 31.33). The important property
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that we use is that for any function v ∈ Vs the normal derivative nK ·∇v is
meaningful in L2(∂K) for all K ∈ Th. Recall that the discrete space is Vh :=
P b
k (Th) equipped with the ‖·‖Vh-norm defined in (38.7). We set V♯ := Vs+Vh

and we equip this space with the norm

‖v‖2V♯ := ‖∇hv‖2L2(D) + |v|2J +
∑

K∈Th
hK‖nK ·∇v|K‖2L2(∂K), (38.15)

with |v|2J :=
∑

F∈Fh
1
hF

‖[[v]]‖2L2(F ). A discrete trace inequality shows that

there is c♯ s.t. ‖vh‖V♯ ≤ c♯‖vh‖Vh for all vh ∈ Vh and all h ∈ H, i.e., (27.5)
holds true. Using the discrete bilinear forms ah and ℓh defined in (38.4)
and (38.6), respectively, the consistency error is s.t. 〈δh(vh), wh〉V ′

h,Vh
:=

ℓh(wh)− ah(vh, wh) for all vh, wh ∈ Vh.

Lemma 38.9 (Consistency/boundedness). Assume (38.14). There is ω♯,
uniform w.r.t. u ∈ Vs, s.t. for all vh ∈ Vh and all h ∈ H,

‖δh(vh)‖V ′
h
≤ ω♯ ‖u− vh‖V♯ . (38.16)

Proof. Let vh ∈ Vh and let us set η := u − vh. Owing to Lemma 38.2 and
since [[u]]F = 0 for all F ∈ Fh, we infer that for all wh ∈ Wh,

〈δh(vh), wh〉V ′
h
,Vh =

∫

D

∇hη·∇hwh dx+ n♯(η, wh)

−
∑

F∈Fh

∫

F

[[η]]{∇hwh}·nF ds+
∑

F∈Fh

̟0

hF

∫

F

[[η]][[wh]] ds,

where n♯(v, wh) := −∑F∈Fh
∫
F {∇hv}·nF [[wh]] ds is understood as an exten-

sion to V♯×Vh of the discrete bilinear form nh originally defined on Vh×Vh
by (38.8). (Note that the assumption r > 1

2 in the definition of Vs is crucial
for this extension to make sense.) The Cauchy–Schwarz inequality implies
that

∣∣∣∣
∫

D

∇hη·∇hwh dx+
∑

F∈Fh

̟0

hF

∫

F

[[η]][[wh]] ds

∣∣∣∣

≤ ‖∇hη‖L2(D)‖∇hwh‖L2(D) +̟0|η|J|wh|J ≤ max(1, ̟0)‖η‖V♯‖wh‖Vh .

Since the bound (38.9) is still valid for n♯(η, wh), we also have

|n♯(η, wh)| ≤
( ∑

F∈Fh

1

|TF |
∑

K∈TF
hF ‖nF ·∇(η|K)‖2L2(F )

) 1
2

|wh|J

≤ c ‖η‖V♯ |wh|J ≤ c ‖η‖V♯‖wh‖Vh .

(This is where we use the contribution of the normal derivative to the ‖·‖V♯-
norm.) Proceeding as in the proof of Lemma 38.5, we finally infer that



198 Chapter 38. Discontinuous Galerkin

∣∣∣∣∣
∑

F∈Fh

∫

F

[[η]]{∇hwh}·nF ds

∣∣∣∣∣ ≤ |η|J
( ∑

F∈Fh

1

|TF |
∑

K∈TF
hF ‖∇(wh|K)‖2L2(F )

) 1
2

≤ n
1
2

∂ cdt|η|J‖∇hwh‖L2(D) ≤ n
1
2

∂ cdt‖η‖V♯‖wh‖Vh ,

where we used the discrete trace inequality (38.10) as in the proof of
Lemma 38.6. Collecting the above bounds shows that |〈δh(vh), wh〉V ′

h,Vh
| ≤

c‖η‖V♯‖wh‖Vh , i.e., (38.16) holds true. ⊓⊔

Theorem 38.10 (Convergence). Let u solve (38.1) and let uh solve (38.5)
with the penalty parameter ̟0 > c2dtn∂. Assume (38.14). (i) There is c s.t.
the following holds true for all h ∈ H:

‖u− uh‖V♯ ≤ c inf
vh∈Vh

‖u− vh‖V♯ . (38.17)

(ii) Letting t := min(k, r), we have

‖u− uh‖V♯ ≤ c

( ∑

K∈Th
h2tK |u|2H1+t(K)

) 1
2

. (38.18)

Proof. (i) The estimate (38.17) follows from Lemma 27.5 combined with sta-
bility (Lemma 38.6) and consistency/boundedness (Lemma 38.9).

(ii) We bound the infimum in (38.17) by taking vh := I♯h(u), where I♯h :
L1(D) → P b

k (Th) is the L1-stable interpolation operator from §18.3. We

need to bound ‖∇(η|K)‖L2(K) + h
1
2

K‖∇(η|K)‖L2(∂K) for all K ∈ Th and

h
− 1

2

F ‖[[η]]F ‖L2(F ) for all F ∈ Fh, with η := u− I♯h(u). Theorem 18.14 implies
that ‖∇(η|K)‖L2(K) ≤ chtK |u|H1+t(K). Moreover, Corollary 18.15 implies that

h
1
2

K‖∇(η|K)‖L2(∂K) ≤ chtK |u|H1+t(K) and that ‖η|K‖L2(F ) ≤ ch
t+ 1

2

K |u|H1+t(K)

for any face F ∈ FK . Since [[η]]F := η|Kl for all F := ∂Kl ∩ ∂D ∈ F∂
h and

[[η]]F := η|Kl − η|Kr for all F := ∂Kl ∩ ∂Kr ∈ F◦
h , we can use the shape-

regularity of the mesh sequence and the triangle inequality for the jump to

infer that h
− 1

2

F ‖[[η]]F ‖L2(F ) ≤ c
∑
K∈TF h

t
K |u|H1+t(K) for all F ∈ Fh. This

leads to (38.18). ⊓⊔

Remark 38.11 (L2-orthogonal projection). Note that, as shown in Re-

mark 18.18, I♯h is the L2-orthogonal projection onto P b
k (Th) since ψK is the

pullback by the geometric mapping TK . ⊓⊔

We now derive an L2-error estimate by invoking a duality argument as
in §36.3.3. For all g ∈ L2(D), we consider the adjoint solution ζg ∈ V :=
H1

0 (D) s.t. a(v, ζg) = (v, g)L2(D) for all v ∈ V, i.e., −∆ζg = g in D and
γg(ζg) = 0. Owing to the elliptic regularity theory (see §31.4), there is s ∈
(0, 1] and a constant csmo such that ‖ζg‖H1+s(D) ≤ csmoℓ

2
D‖g‖L2(D) for all

g ∈ L2(D). In the present setting of the Poisson equation with Dirichlet
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conditions in a Lipschitz polyhedron, it is reasonable to assume that s ∈
(12 , 1].

Theorem 38.12 (L2-estimate). Under the assumptions of Theorem 38.10
and assuming that the elliptic regularity index satisfies s ∈ (12 , 1], there is c
such that for all h ∈ H,

‖u− uh‖L2(D) ≤ c hsℓ1−sD ‖u− uh‖V♯ . (38.19)

Proof. Apply Lemma 36.14 and use exact adjoint consistency; see Exer-
cise 38.3. ⊓⊔

Remark 38.13 (Variations on symmetry). Let us set

ah(vh, wh) :=

∫

D

∇hvh·∇hwh dx−
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]] ds

− θ
∑

F∈Fh

∫

F

{∇hwh}·nF [[vh]] ds+
∑

F∈Fh
̟(hF )

∫

F

[[vh]][[wh]] ds, (38.20)

where θ is a real number (θ := 1 corresponds to the SIP formulation). The
choice θ := −1 gives the method usually called nonsymmetric interior penalty
(NIP). This choice is interesting since it simplifies the analysis of the coerciv-
ity in that the consistency term cancels with the added nonsymmetric term.
The original idea can be traced back to the method in Oden et al. [318],
where the nonsymmetric method is introduced without the penalty term.
The convergence analysis when the penalty term is included can be found
in Rivière et al. [335, 336], where it is shown that coercivity only requires
̟0 > 0; see also Larson and Niklasson [274] for the inf-sup stability analy-
sis. The incomplete interior penalty (IIP) method corresponds to the choice
θ := 0. Similarly to SIP, a minimal threshold on the penalty parameter ̟0

is required for the coercivity; see Dawson et al. [157]. Whenever θ 6= 1, the
analysis of the L2-error estimate proceeds as in §37.3.2 (accounting for an ad-

joint consistency error), and one only obtains ‖u−uh‖L2(D) ≤ ch
1
2 ‖u−uh‖V♯

even if full elliptic regularity holds true (s = 1). ⊓⊔

Remark 38.14 (L∞-estimates). Pointwise dG error estimates are found
in Kanschat and Rannacher [264], Chen and Chen [117], Guzmán [233]. ⊓⊔

38.4 Discrete gradient and fluxes

In this section, we introduce the notion of discrete gradient and use it to
derive an alternative viewpoint on the SIP bilinear form. One interesting
outcome is a reformulation of the discrete problem (38.5) in terms of local
problems with numerical fluxes.
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38.4.1 Liftings

Loosely speaking the discrete gradient consists of the broken gradient plus a
correction associated with the jumps. This correction is formulated in terms of
local liftings introduced in Bassi and Rebay [46] and analyzed in Brezzi et al.
[93] (see also Perugia and Schötzau [323] for the hp-analysis). Let F ∈ Fh and
an integer l ≥ 0. Consider the local lifting operator LLLlF : L2(F ) → P b

l (Th) :=
P b
l (Th;Rd) s.t. for all ϕ ∈ L2(F ), the discrete function LLLlF (ϕ) is defined as

∫

D

LLLlF (ϕ)·τh dx :=

∫

F

{τh}·nFϕds, ∀τh ∈ P b
l (Th). (38.21)

By localizing the support of τh to a single mesh cell, we infer that LLLlF (ϕ) is
collinear to nF and is supported in the set DF := int(

⋃
K∈TF K). In practice,

the Cartesian components of the polynomial functionLLLlF (ϕ) can be computed
in each K ∈ TF by inverting the local mass matrix with entries MK,ij :=∫
K θK,iθK,j dx, where the functions θK,i are the local shape functions in K.
Consider now a function v ∈ H1(Th). We define the global lifting of the

jumps of v as follows:

LLLlh([[v]]) :=
∑

F∈Fh
LLLlF ([[v]]).

This makes sense since [[v]]F ∈ L2(F ) for all F ∈ Fh. A consequence of
supp(LLLlF ([[v]])) = DF is that LLLlh([[v]])|K :=

∑
F∈FK LLLlF ([[v]]) for all K ∈ Th,

i.e., only the jumps across the faces of K contribute to the restriction to K
of the global lifting LLLlh([[v]]).

Lemma 38.15 (Stability). The following holds true for all l ≥ 0:

‖LLLlF (ϕ)‖L2(DF ) ≤ cdth
− 1

2

F ‖ϕ‖L2(F ), ∀ϕ ∈ L2(F ), ∀F ∈ Fh, (38.22a)

‖LLLlh([[v]])‖L2(D) ≤ n
1
2

∂ cdt|v|J, ∀v ∈ H1(Th), (38.22b)

where cdt is the constant from the discrete trace inequality (38.10).

Proof. The proof of (38.22a) is proposed in Exercise 38.4. To prove (38.22b),
we use the Cauchy–Schwarz inequality and the definition of n∂ to infer that

‖LLLlh([[v]])‖2L2(K) =

∫

K

∣∣∣∣∣
∑

F∈FK
LLLlF ([[v]])

∣∣∣∣∣

2

dx ≤ n∂
∑

F∈FK
‖LLLlF ([[v]])‖2L2(K),

for all K ∈ Th. Summing over the mesh cells, recalling that the support of
LLLlF ([[v]]) is DF , and using (38.22a) yields (38.22b). ⊓⊔

Definition 38.16 (Discrete gradient). Let l ≥ 0. The discrete gradient
operator Glh : H1(Th) → L2(D) is defined as follows:
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Glh(v) := ∇hv −LLLlh([[v]]), ∀v ∈ H1(Th). (38.23)

We can now use Definition 38.16 to derive alternative expressions for the
SIP bilinear form ah defined in (38.4). Recalling that Vh := P b

k (Th), k ≥ 1,
we choose the polynomial degree of the liftings such that l ∈ {k−1, k}. Since
∇hvh,∇hwh ∈ PPPb

k−1(Th) ⊂ PPPb
l (Th) for all vh, wh ∈ Vh, we infer that

∫

D

∇hvh·∇hwh dx−
∑

F∈Fh

∫

F

(
{∇hvh}·nF [[wh]] + [[vh]]{∇hwh}·nF

)
ds

=

∫

D

Glh(vh)·Glh(wh) dx−
∫

D

LLLlh([[vh]])·LLLlh([[wh]]) dx. (38.24)

Recalling the expression (38.4) of ah, we obtain

ah(vh, wh) :=

∫

D

Glh(vh)·Glh(wh) dx + s̃h(vh, wh), (38.25)

with s̃h(vh, wh) :=
∑

F∈Fh ̟(hF )
∫
F
[[vh]][[wh]] ds −

∫
D
LLLlh([[vh]])·LLLlh([[wh]]) dx.

The estimate (38.22b) from Lemma 38.15 implies that

ah(vh, vh) ≥ ‖Glh(vh)‖2L2(D) + (̟0 − n∂c
2
dt)|vh|2J, (38.26)

for all vh ∈ Vh, showing again the relevance of the condition ̟0 > n∂c
2
dt for

coercivity (see Lemma 38.6).

Remark 38.17 (Alternative penalty strategy). It is possible to penal-
ize the liftings of the jumps instead of the jumps, leading to the following
modification of the SIP bilinear form:

ǎh(vh, wh) :=

∫

D

∇hvh·∇hwh dx−
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]] ds

−
∑

F∈Fh

∫

F

[[vh]]{∇hwh}·nF ds+
∑

F∈Fh
̟0

∫

D

LLLlF ([[vh]])·LLLlF ([[wh]]) dx.

The main advantage of this formulation is that coercivity holds true as soon
as ̟0 > n∂ , thereby avoiding the constant cdt from (38.10). However, the
discretization stencil is larger since the dofs in two cells K,K ′ ∈ Th are
coupled if there is K ′′ ∈ Th s.t. ∂K ∩ ∂K ′′ ∈ F◦

h and ∂K ′ ∩ ∂K ′′ ∈ F◦
h (for

the usual penalty strategy the coupling condition is ∂K ∩ ∂K ′ ∈ F◦
h). ⊓⊔

Remark 38.18 (Choosing l). The computation of the discrete gradient
can be done with any l ≥ k−1. The minimal choice is l = k−1, but choosing
l = k may be more interesting from the implementation point of view since it
does not require the user to construct the finite element space P b

k−1(Th). ⊓⊔
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Remark 38.19 (Literature). The discrete gradient is an important notion
in the design and analysis of dG methods for nonlinear problems. We refer the
reader to Ten Eyck and Lew [364] for nonlinear mechanics, to Burman and
Ern [100], Buffa and Ortner [95] for Leray–Lions operators, and to Di Pietro
and Ern [164] for the incompressible Navier–Stokes equations. Moreover, an
important stability result established in John et al. [260] is that if l = k + 1,
then there is c s.t. ‖vh‖Vh ≤ c‖Glh(vh)‖L2(D) for all vh ∈ Vh and all h ∈ H.
Since the proof of this result invokes Raviart–Thomas functions, simplicial
meshes are required, but hanging nodes are still allowed under some assump-
tions. An interesting consequence of this stability result is that for l = k+1,
replacing ah defined in (38.4) by ãh(vh, wh) :=

∫
D Glh(vh)·Glh(wh) dx gives a

stable and optimally convergent dG discretization without any penalty pa-
rameters. Notice that ãh does not deliver exact consistency because liftings
are discrete objects; see Exercise 38.6. For the same reason, the bilinear form
ah defined in (38.4) coincides with the right-hand side of (38.25) on Vh×Vh,
but the two sides of the equality produce different results on V♯×Vh. ⊓⊔

38.4.2 Local formulation with fluxes

Let K ∈ Th and consider a smooth function ξ ∈ C1(K). Integration by parts
shows that the solution to (38.1), if it is smooth enough, satisfies

∫

K

fξ dx =

∫

K

−(∆u)ξ dx =

∫

K

∇u·∇ξ dx−
∫

∂K

(∇u·nK)ξ ds.

Splitting the boundary integral over the faces F ∈ FK yields

∫

K

∇u·∇ξ dx+
∑

F∈FK
ǫK,F

∫

F

ΦF (u)ξ ds =

∫

K

fξ dx, (38.27)

where ΦF (u) := −∇u·nF , ǫK,F = nK ·nF , and nK is the outward normal to
K (nK ·nF = ±1, for all F ∈ FK , depending on the orientation of F ). The
function ΦF is called exact flux since (38.27) expresses a balance between
the source term in K, the diffusion processes in K, and the fluxes across all
the faces in FK . An interesting feature of dG methods is that one obtains a
discrete counterpart of (38.27) when the test function is supported only in
the mesh cell K.

Lemma 38.20 (Local formulation). Let uh solve (38.5). Let the numerical
flux on a mesh face F ∈ Fh be defined by

Φ̂F (uh) := −{∇huh}·nF +̟(hF )[[uh]]. (38.28)

Then the following holds true for all q ∈ PK and all K ∈ Th:
∫

K

G
l
h(uh)·∇q dx+

∑

F∈FK
ǫK,F

∫

F

Φ̂F (uh)q ds =

∫

K

fq dx. (38.29)
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Proof. Let 1K be the indicator function ofK and let q be arbitrary in PK . Us-
ing the test function wh := q1K in (38.5), we obtain ah(uh, q1K) =

∫
K fq dx.

Then, (38.29) follows by invoking (38.24) and by making use of the identity
[[q1K ]]F = ǫK,F q if F ∈ FK and [[q1K ]]F = 0 otherwise. ⊓⊔

The numerical flux Φ̂F (uh) consists of a centered flux, −{∇huh}·nF , origi-
nating from the consistency term, plus a stabilization term, ̟(hF )[[uh]], orig-
inating from the penalty term. A unified presentation of dG methods for the
Poisson equation based on fluxes can be found in Arnold et al. [21].

38.4.3 Equilibrated H(div) flux recovery

The vector-valued function σ := −∇u is called diffusive flux. This function
is important in many applications where the underlying PDE expresses a
conservation principle in the form ∇·σ = f in D. Since σ ∈ H(div;D),
Theorem 18.10 implies that [[σ]]·nF = 0 for all F ∈ F◦

h (possibly in a weak
sense if σ is not smooth enough). From a physical viewpoint, this zero-jump
condition expresses the fact that what flows out of a mesh cell through one
of its faces flows into the neighboring mesh cell.

The local formulation (38.29) provides a natural way of reconstructing
a discrete diffusive flux σh in H(div;D) that closely approximates σ. As-
suming that the mesh is matching and simplicial, we now describe a way to
reconstruct σh in the Raviart–Thomas finite element space P d

l (Th) defined
in (19.16) with l ∈ {k − 1, k}. The reconstruction is explicit and amounts
to prescribing the global degrees of freedom of σh in P d

h (Th); see Ern et al.
[193], Kim [268].

Lemma 38.21 (Flux recovery). Let σh ∈ P d
h (Th) be such that

∫

F

(σh·nF )(q ◦ T−1
F ) ds =

∫

F

Φ̂F (uh)(q ◦ T−1
F ) ds, ∀F ∈ Fh, ∀q ∈ Pl,d−1,

and if l ≥ 1,

∫

K

σh·r dx = −
∫

K

G
l
h(uh)·r dx, ∀K ∈ Th, ∀r ∈ PPPl−1,d,

where TF is an affine bijective mapping from the unit simplex of Rd−1 to
F for all F ∈ Fh. Let Ib

h denote the L2-orthogonal projection onto P b
l (Th).

Then we have
∇·σh = Ib

h(f). (38.30)

Proof. Integrating by parts on a cell K ∈ Th and using (38.29), we infer that

∫

K

(∇·σh)q dx = −
∫

K

σh·∇q dx+
∑

F∈FK

∫

F

(σh·nK)(q|F ◦TF )◦T−1
F ds

=

∫

K

fq dx,
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for all q ∈ Pl,d since ∇q ∈ PPPl−1,d and q|F ◦ TF ∈ Pl,d−1 (see Lemma 7.10).

Then (38.30) is a consequence of ∇·σh ∈ P b
l (Th). ⊓⊔

Equation (38.30) shows that ∇·σh optimally approximates the source
term. By proceeding as in Di Pietro and Ern [165, §5.5.3], it is possible to
show that ‖σ − σh‖L2(D) ≤ c(‖u− uh‖V♯ + h‖f − Ib

h(f)‖L2(D)).

Exercises

Exercise 38.1 (Elementary dG identities). (i) Let F := ∂Kl∩∂Kr ∈ F◦
h .

Prove that 2{σ·nKq} = ({σ}[[q]]+[[σ]]{q})·nF . (ii) Let θl, θr ∈ [0, 1] such that
θl + θr = 1. Let [[a]]θ := 2(θral − θlar) and {a}θ := θlal + θrar. Show that
{ab} = {a}{b}θ + 1

4 [[a]]θ[[b]].

Exercise 38.2 (Boundary conditions). (i) Assume that u solves the Pois-
son problem (38.1) with the non-homogeneous Dirichlet condition u = g on

∂D. Let aθh be defined in (38.20). Devise ℓθ,nDh so that exact consistency holds

for the following formulation: Find uh ∈ Vh such that aθh(uh, wh) = ℓθ,nDh (wh)
for all wh ∈ Vh. (ii) Assume that u solves the Poisson problem with the Robin
condition γu+n·∇u = g on ∂D. Let ℓRb

h be defined in (38.13b). Devise aRb
h

so that exact consistency holds for the following formulation: Find uh ∈ Vh
such that aθ,Rb

h (uh, wh) = ℓRb
h (wh) for all wh ∈ Vh.

Exercise 38.3 (L2-estimate). Prove Theorem 38.12. (Hint : see the proof
of Theorem 37.8.)

Exercise 38.4 (Local lifting). Prove (38.22a). (Hint : use (38.10).)

Exercise 38.5 (Local formulation). Write the local formulation of the
OBB, NIP, and IIP dG methods discussed in Remark 38.13.

Exercise 38.6 (Extending (38.25)). Let ãh (resp., ah) be defined by ex-
tending (38.25) (resp., (38.4)) to V♯×Vh. Show that ãh(v, wh) = ah(v, wh) +∑

F∈Fh
∫
F {∇hv − Ib

h(∇hv)}·nF [[wh]] ds for all (v, wh) ∈ V♯×Vh.

Exercise 38.7 (Discrete gradient). Let (vh)h∈H be a sequence in (Vh)h∈H
(meaning that vh ∈ Vh for all h ∈ H). Assume that there is C s.t. ‖vh‖Vh ≤ C
for all h ∈ H. One can show that there is v ∈ L2(D) such that, up to a
subsequence, vh → v in L2(D) as h → 0; see [165, Thm. 5.6]. (i) Show
that, up to a subsequence, Glh(vh) weakly converges to some G in L2(D)
as h → 0. (Hint : bound ‖Glh(vh)‖L2(D).) (ii) Show that G = ∇v and that
v ∈ H1

0 (D). (Hint : extend functions by zero outside D and prove first that∫
Rd

Glh(vh)·Φ dx = −
∫
Rd
vh∇·Φ dx+

∑
F∈Fh

∫
F {Φ− Ib

hΦ}·nF [[vh]] ds for all

Φ ∈ C∞
0 (Rd).)


