
Part IX, Chapter 43

Maxwell’s equations: H(curl)-approximation

The objective of this chapter is to introduce some model problems derived
from Maxwell’s equations that all fit the Lax-Milgram formalism in H(curl).
The approximation is performed using H(curl)-conforming edge (Nédélec)
finite elements. The analysis relies on a coercivity argument in H(curl) that
exploits the presence of a uniformly positive zero-order term in the formula-
tion. A more robust technique controlling the divergence of the approximated
field is presented in Chapter 44. The space dimension is 3 in the entire chapter
(d = 3), and D is a Lipschitz domain in R3.

43.1 Maxwell’s equations

We start by recalling some basic facts about Maxwell’s equations. The reader
is referred to Bossavit [74, Chap. 1], Monk [303, Chap. 1], Assous et al. [27,
Chap. 1] for a detailed discussion on this model. Maxwell’s equations are
partial differential equations providing a macroscopic description of electro-
magnetic phenomena. These equations describe how the electric field E, the
magnetic field H , the electric displacement field D, and the magnetic induc-
tion B (sometimes called magnetic flux density) interact through the action
of currents j and charges ρ:

∂tD −∇×H = −j (Ampère’s law), (43.1a)

∂tB +∇×E = 0 (Faraday’s law of induction), (43.1b)

∇·D = ρ (Gauss’s law for electricity), (43.1c)

∇·B = 0 (Gauss’s law for magnetism). (43.1d)

Notice that if (∇·B)|t=0 = 0, taking the divergence of (43.1b) implies that
(43.1d) is satisfied at all times. Similarly, assuming (∇·D)|t=0 = ρ|t=0 and
that the charge conservation equation ∂tρ+∇·j = 0 is satisfied at all times
implies that (43.1c) is satisfied at all times. This shows that if the data ρ,
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j, B|t=0, and D|t=0 satisfy the proper constraints, Gauss’s laws are just
consequences of Ampère’s law and Faraday’s law.

The system (43.1) is closed by relating the fields through constitutive laws
describing microscopic mechanisms of polarization and magnetization:

D − ε0E = P , B = µ0(H +M), (43.2)

where ε0 and µ0 are the electric permittivity and the magnetic permeability
of vacuum, and P andM are the polarization and the magnetization fields,
respectively. These quantities are the average representatives at the macro-
scopic scale of complex microscopic interactions that must be modeled. The
models in question always involve parameters that need to be identified by
measurements or other techniques like homogenization or multiscale mod-
els. We have P := 0 and M := 0 in vacuum, and it is common to use
P := ε0εrE and M := µrH to model isotropic homogeneous dielectric and
magnetic materials, where εr is the electric susceptibility and µr is the mag-
netic susceptibility. In the rest of the chapter, we assume that

D := ǫE and B := µH , (43.3)

where ǫ and µ are given coefficients that may be space-dependent. The cur-
rent j and charge density ρ are a priori given, but it is also possible to make
these quantities depend on the other fields through phenomenological mech-
anisms. For instance, it is possible to further decompose the current into one
component that depends on the material and another one that is a source.
The simplest model doing that is Ohm’s law, j = js + σE, where σ is the
electrical conductivity and js an imposed current.

We now formulate Maxwell’s equations in two different regimes: the time-
harmonic regime and the eddy current limit.

43.1.1 The time-harmonic regime

We first consider Maxwell’s equations in the time-harmonic regime where the
time-dependence is assumed to be of the form eiωt with i2 = −1 and ω is a
given angular frequency. The time-harmonic version of (43.1a)-(43.1b) is

iωǫE + σE −∇×H = −js, in D, (43.4a)

iωµH +∇×E = 0, in D, (43.4b)

H|∂Dd
×n = ad, E|∂Dn

×n = an, on ∂D, (43.4c)

where {∂Dd, ∂Dn} forms a partition of the boundary ∂D ofD. The dependent
variables are the electric field E and the magnetic field H . The data are the
conductivity σ, the permittivity ǫ, the permeability µ, the current js, and the
boundary data ad and an. The material coefficients ǫ and µ can be complex-
valued. The system (43.4) models for instance a microwave oven; see e.g.,
[74, Chap. 9]. The conditions H|∂Dd

×n = 0 and E|∂Dn
×n = 0 are usually
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called perfect magnetic conductor and perfect electric conductor boundary
conditions, respectively.

Let us assume that the modulus of the magnetic permeability µ is bounded
away from zero uniformly in D. It is then possible to eliminate H by using
H = i(ωµ)−1∇×E. The system then takes the following form:

(−ω2ǫ+ iωσ)E +∇×(µ−1∇×E) = −iωjs, in D, (43.5a)

(∇×E)|∂Dd
×n = −iωµad, E|∂Dn

×n = an, on ∂D. (43.5b)

Notice that Gauss’s law for electricity is contained in (43.5a) since taking the
divergence of the equation yields ∇·((−ω2ǫ + iωσ)E) = ∇·(−iωjs), which is
the time-harmonic counterpart of (43.1c) combined with (43.1a). The sys-
tem (43.5) is often used to model the propagation of electromagnetic waves
through various media.

43.1.2 The eddy current problem

When the time scale of interest, say τ , is such that the ratio ǫ/(τσ) ≪ 1,
it is legitimate to neglect the displacement current in Ampère’s law (i.e.,
Maxwell’s correction ∂tD). This situation occurs in particular in systems
with moving parts (either solid or fluids) whose characteristic speed is much
slower than the speed of light. The resulting system, called eddy current
problem, is as follows:

σE −∇×H = −js, in D, (43.6a)

∂t(µH) +∇×E = 0, in D, (43.6b)

H|∂Dd
×n = ad, E|∂Dn

×n = an, on ∂D, (43.6c)

where {∂Dd, ∂Dn} forms a partition of the boundary ∂D of D. The sys-
tem (43.6) arises in magneto-hydrodynamics (MHD). In this case, js is fur-
ther decomposed into js = j′s + σu×B, where u is the velocity of the
fluid occupying the domain D, i.e., the actual current is decomposed into
j = j′s + σ(E + u×B).

Let us assume that σ is bounded from below away from zero uniformly
in D. It is then possible to eliminate the electric field from (43.6) by using
E = σ−1(∇×H − js). The new system to be solved is rewritten as follows:

∂t(µH) +∇×(σ−1∇×H − u×(µH)) = ∇×(σ−1j′s), in D, (43.7a)

H|∂Dd
×n = ad, (σ−1∇×H − u×(µH))|∂Dn

×n = cn, on ∂D, (43.7b)

where cn := an + (σ−1j′s)|∂Dn
×n. At this point, it is possible to further

simplify the problem by assuming that either the time evolution is har-
monic, i.e., H(x, t) := Hsp(x)e

iωt, or the time derivative is approximated
as ∂tH(x, t) ≈ τ−1(H(x, t) − H(x, t − τ)), where τ is the time step of
the time discretization. After appropriately renaming the dependent variable
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and the data, say either µ̃ := iωµ and f := ∇×(σ−1j′s), or µ̃ := µτ−1 and
f := ∇×(σ−1j′s) + µ̃H(x, t − τ), the above system reduces to solving the
following problem:

µ̃H +∇×(σ−1∇×H − u×(µH)) = f , in D, (43.8a)

H|∂Dd
×n = ad, (σ−1∇×H − u×(µH))|∂Dn

×n = cn, on ∂D. (43.8b)

Notice that ∇·f = 0 in both cases. Hence, Gauss’s law for magnetism
is contained in (43.8a) since taking the divergence of the equation yields
∇·(µH) = 0 whether µ̃ := iωµ or µ̃ := µτ−1.

43.2 Weak formulation

The time-harmonic problem and the eddy current problem have a very similar
structure. After lifting the boundary condition (either on ∂Dn for the time-
harmonic problem or on ∂Dd for the eddy current problem) and making
appropriate changes of notation, the above two problems (43.5) and (43.8)
can be reformulated as follows: Find A : D → C3 such that

νA+∇×(κ∇×A) = f , A|∂Dd
×n = 0, (κ∇×A)|∂Dn

×n = 0, (43.9)

where ν, κ, and f are complex-valued. We have taken u := 0 in the MHD
problem for simplicity. We have also assumed that the Neumann data is zero
to avoid unnecessary technicalities. We have ν := −ω2ǫ + iωσ and κ := µ−1

for the time-harmonic problem, and ν := iωµ or ν := µτ−1 and κ := σ−1 for
the eddy current problem.

43.2.1 Functional setting

Let us assume that f ∈ L2(D) := L2(D;C3) and ν, κ ∈ L∞(D;C). A weak
formulation of (43.9) is obtained by multiplying the PDE by the complex
conjugate of a smooth test function b with zero tangential component over
∂Dd and integrating by parts. Recalling (4.11), we obtain

∫

D

(νA·b+ κ∇×A·∇×b) dx =

∫

D

f ·b dx.

The integral on the left-hand side makes sense if A, b ∈ H(curl;D). To be
dimensionally coherent, we equip H(curl;D) with the norm ‖b‖H(curl;D) :=

(‖b‖2
L2(D) + ℓ2D‖∇×b‖2

L2(D))
1
2 , where ℓD is some characteristic length of D,

e.g., ℓD := diam(D).

Let γc : H(curl;D) → H− 1
2 (∂D) denote the tangential trace opera-

tor introduced in (4.11) and let 〈·, ·〉∂D denote the duality pairing between
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H− 1
2 (∂D) and H

1
2 (∂D). Since the Dirichlet condition γc(A) = 0 is en-

forced on ∂Dd only, we must consider the restriction of the linear forms in

H− 1
2 (∂D) to functions that are only defined on ∂Dd. Let H̃

1
2 (∂Dd) be com-

posed of the functions θ defined on ∂Dd whose zero-extension to ∂D, say θ̃, is
in H

1
2 (∂D). Then for all b ∈H(curl;D), the restriction γc(b)|∂Dd

is defined

in H̃
1
2 (∂Dd)

′ by using the duality product 〈γc(b)|∂Dd
, θ〉∂Dd

:= 〈γc(b), θ̃〉∂D
for all θ ∈ H̃ 1

2 (∂Dd). A weak formulation of (43.9) is the following:

{
Find A ∈ Vd := {b ∈H(curl;D) | γc(b)|∂Dd

= 0} such that

aν,κ(A, b) = ℓ(b), ∀b ∈ Vd,
(43.10)

with the following sesquilinear and antilinear forms:

aν,κ(a, b) :=

∫

D

(νa·b+ κ∇×a·∇×b) dx, ℓ(b) :=

∫

D

f ·b dx. (43.11)

43.2.2 Well-posedness

We assume that there are real numbers θ, ν♭ > 0, and κ♭ > 0 s.t.

ess inf
x∈D

ℜ
(
eiθν(x)

)
≥ ν♭ and ess inf

x∈D
ℜ
(
eiθκ(x)

)
≥ κ♭. (43.12)

Let us set ν♯ := ‖ν‖L∞(D;C) and κ♯ := ‖κ‖L∞(D;C).

Theorem 43.1 (Coercivity, well-posedness). (i) Assume f ∈ L2(D),
ν, κ ∈ L∞(D;C), and (43.12). Then the sesquilinear form aν,κ is coercive
and bounded:

ℜ
(
eiθaν,κ(b, b)

)
≥ min(ν♭, ℓ

−2
D κ♭)‖b‖2H(curl;D), (43.13a)

|aν,κ(a, b)| ≤ max(ν♯, ℓ
−2
D κ♯)‖a‖H(curl;D)‖b‖H(curl;D), (43.13b)

for all a, b ∈H(curl;D). (ii) The problem (43.10) is well-posed.

Proof. Let us first verify that Vd is a closed subspace of H(curl;D). Let
(bn)n∈N be a Cauchy sequence in Vd. Then bn → b in H(curl;D), and for

all θ ∈ H̃ 1
2 (∂Dd), we have

0 = 〈γc(bn)|∂Dd
, θ〉∂Dd

:= 〈γc(bn), θ̃〉∂D → 〈γc(b), θ̃〉∂D =: 〈γc(b), θ〉∂Dd
,

so that b ∈ Vd. (Recall that (4.11) implies that γc :H(curl;D) →H− 1
2 (∂D)

is continuous.) Moreover, coercivity follows from (43.12) since we have

ℜ(eiθaν,κ(b, b)) =
∫

D

(
ℜ(eiθν)|b|2 + ℜ(eiθκ)|∇×b|2

)
dx

≥
∫

D

(
ν♭|b|2 + κ♭|∇×b|2

)
dx ≥ min(ν♭, ℓ

−2
D κ♭)‖b‖2H(curl;D).
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Similarly, the boundedness of aν,κ follows from ν, κ ∈ L∞(D;C), and the
boundedness of ℓ follows from f ∈ L2(D). Finally, well-posedness follows
from the complex version of the Lax–Milgram lemma. ⊓⊔

Example 43.2 (Property (43.12)). Assume to fix the ideas that κ is real
and uniformly positive. If ν is also real and uniformly positive, (43.12) is satis-
fied with θ := 0, κ♭ := ess infx∈D κ(x), and ν♭ := ess infx∈D ν(x). If instead ν
is purely imaginary with a uniformly positive imaginary part, (43.12) is satis-

fied with θ := −π
4 , κ♭ :=

√
2
2 ess infx∈D κ(x), and ν♭ :=

√
2
2 ess infx∈D ℑ(ν(x)).

More generally, if ν := ρνe
iθν with ess infx∈D ρν(x) =: ρ♭ > 0 and θν(x) ∈

[θmin, θmax] ⊂ (−π, π) a.e. in D, then setting δ := θmax − θmin and as-
suming that δ < π, (43.12) is satisfied with θ := − 1

2 (θmin + θmax)
π

2π−δ ,
ν♭ := min(cos(θmin + θ), cos(θmax + θ))ρ♭ and κ♭ := cos(θ) ess infx∈D κ(x)
(see Exercise 43.3). An important example where the condition (43.12) fails
is when the two complex numbers ν and κ are collinear and point in opposite
directions. In this case, resonances may occur and (43.10) has to be replaced
by an eigenvalue problem. ⊓⊔

43.2.3 Regularity

In the case of constant or smooth coefficients, a smoothness property on the
solution to (43.10) can be inferred from the following important result.

Lemma 43.3 (Regularity). Let D be a Lipschitz domain in R3. (i) There
is c > 0 s.t. the following holds true:

c ℓsD|v|Hs(D) ≤ ‖v‖L2(D) + ℓD‖∇×v‖L2(D) + ℓD‖∇·v‖L2(D), (43.14)

with s := 1
2 , for all vector fields v ∈H(curl;D)∩H(div;D) with either zero

normal trace or zero tangential trace over ∂D. (ii) The estimate remains valid
with s ∈ (12 , 1] if D is a Lipschitz polyhedron, and with s := 1 if D is convex.

Proof. (i) For the proof of (43.14), see Birman and Solomyak [57, Thm. 3.1]
and Costabel [142, Thm. 2]. (ii) See Amrouche et al. [10, Prop. 3.7] when D
is a Lipschitz polyhedron and [10, Thm. 2.17] when D is convex. ⊓⊔

Let us consider the problem (43.10) and assume that f ∈ H(div;D) and
ν is constant (or smooth) over D. Then the unique solution A is such that
∇·A = ν−1∇·f ∈ L2(D). Hence, A ∈ H(curl;D) ∩H(div;D). Moreover,
(43.9) implies that ∇×(κ∇×A) ∈ L2(D) so that, assuming that κ is constant
(or smooth) overD, we infer that∇×A ∈H(curl;D)∩H(div;D). In addition
to the above assumptions on ν and κ, let us also assume that ∂Dn = ∅ (i.e.,
A has a zero tangential trace, which implies that ∇×A has a zero normal
trace a.e. on ∂D). Lemma 43.3 implies that there exists r > 0 so that

A ∈Hr(D), ∇×A ∈Hr(D), (43.15)
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with r := 1
2 in general, r ∈ (12 , 1] if D is a Lipschitz polyhedron, and r := 1 if

D is convex. In the more general case of heterogeneous coefficients, we will see
in the next chapter (see Lemma 44.2) that the smoothness assumption (43.15)
is still valid with a smoothness index r > 0 under appropriate assumptions
on ν. In the rest of this chapter, we are going to assume that (43.15) holds
true with r > 0.

43.3 Approximation using edge elements

We assume that the hypotheses of Theorem 43.1 are satisfied so that the
boundary-value problem (43.10) is well-posed.

43.3.1 Discrete setting

We consider a shape-regular sequence of affine meshes (Th)h∈H of D. We as-
sume thatD is a Lipschitz polyhedron so that each mesh coversD exactly. We
also assume that the meshes are compatible with the partition of the bound-
ary into {∂Dd, ∂Dn}. We consider the Nédélec (or edge) finite elements of
some order k ≥ 0 from Chapter 15 and the correspondingH(curl)-conforming
finite element space P c

k (Th) built in Chapter 19. Let Vhd be the subspace of
P c
k (Th) defined by

Vhd := {bh ∈ P c
k (Th) | bh|∂Dd

×n = 0}. (43.16)

Since the Dirichlet boundary condition is strongly enforced in Vhd, the ap-
proximation setting is conforming, i.e., Vhd ⊂ Vd. The discrete formulation
of (43.10) is {

Find Ah ∈ Vhd such that

aν,κ(Ah, bh) = ℓ(bh), ∀bh ∈ Vhd.
(43.17)

The Lax–Milgram lemma together with the conformity of the approximation
setting implies that (43.17) has a unique solution.

43.3.2 H(curl)-error estimate

Theorem 43.4 (H(curl)-error estimate). (i) Under the assumptions of
Theorem 43.1, there is c s.t. for all h ∈ H,

‖A−Ah‖H(curl;D) ≤ c inf
bh∈Vhd

‖A− bh‖H(curl;D). (43.18)

(ii) Assuming that either ∂Dd = ∂D or ∂Dn = ∂D and that there is r ∈
(0, k + 1] s.t. A ∈Hr(D) and ∇×A ∈ Hr(D), where k ≥ 0 is the degree of
the finite element used to build Vhd, we have
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‖A−Ah‖H(curl;D) ≤ c hr(|A|Hr(D) + ℓD|∇×A|Hr(D)). (43.19)

Proof. (i) The estimate (43.18) is a direct consequence of Céa’s lemma.
(ii) We prove the estimate (43.19) when ∂Dd = ∂D, that is, when Vhd :=
P c
k,0(Th) := {bh ∈ P c

k (Th) | bh|∂D×n = 0}. We estimate the infimum

in (43.18) by taking bh := J c
h0(A), where J c

h0 : L1(D) → P c
k,0(Th) is the

commuting quasi-interpolation operator with zero tangential trace introduced
in §23.3.3. Owing to the items (ii) and (iii) in Theorem 23.12, we infer that

‖A− J c
h0(A)‖H(curl;D) ≤ ‖A− J c

h0(A)‖L2(D) + ℓD‖∇×(A− J c
h0(A))‖L2(D)

= ‖A− J c
h0(A)‖L2(D) + ℓD‖∇×A− J d

h0(∇×A)‖L2(D)

≤ c inf
bh∈P c

k,0
(Th)

‖A− bh‖L2(D) + c′ℓD inf
dh∈P d

k,0(Th)
‖∇×A− dh‖L2(D)

≤ c′′ hr(|A|Hr(D) + ℓD|∇×A|Hr(D)),

where the last step follows from Corollary 22.16. The proof for ∂Dn = ∂D is
similar if one uses J c

h , J d
h instead of J c

h0, J d
h0. ⊓⊔

Remark 43.5 (ν♭-dependency). The coercivity and boundedness prop-
erties in (43.13) show that the constant in the error estimate (43.18) is

c =
max(ν♯,ℓ

−2
D κ♯)

min(ν♭,ℓ
−2
D κ♭)

, which becomes unbounded when ν♭ is very small. This

difficulty is addressed in Chapter 44. ⊓⊔

Remark 43.6 (Variants). It is possible to localize (43.19) by using The-
orem 22.14 instead of Corollary 22.16 when ∂Dd = ∂D, and using The-
orem 22.6 instead of Corollary 22.9 when ∂Dn = ∂D. Using that A ∈
H0(curl;D), ∇×A ∈ H0(div;D), and the regularity of the mesh sequence,
Theorem 22.14 and Theorem 22.6 imply that

‖A−Ah‖H(curl;D) ≤ c

( ∑

K∈Th
h2rK (|A|Hr(K) + ℓD|∇×A|Hr(K))

2

) 1
2

,

when r > 1
2 . The seminorm |·|Hr(K) has to be replaced by |·|Hr(DK) whenever

r ≤ 1
2 , where DK is the set of the points composing the mesh cells sharing a

degree of freedom with K. One can also extend the estimate (43.19) to the
case of mixed boundary conditions by adapting the construction of the quasi-
interpolation operator and of the commuting projection from Chapters 22
and 23. Finally, we refer the reader to Ciarlet [121, Prop. 4] for an alternative
proof of (43.19). ⊓⊔

43.3.3 The duality argument

Recalling the material from §32.3, we would like to apply the Aubin–Nitsche
duality argument to deduce an improved error estimate on ‖A−Ah‖L2(D).
It is at this point that we realize that the approach we have taken so far
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is too simplistic. To better understand the problem, let us consider the case
∂Dd = ∂D. In this context, we have Vd :=H0(curl;D) and L := L2(D), and
Theorem 32.8 tells us that the Aubin–Nitsche argument provides a better rate
of convergence in the L2-norm if and only if the embedding H0(curl;D) →֒
L2(D) is compact, which is not the case as shown in Exercise 43.1. The
conclusion of this argumentation is that the estimates we have derived so far
cannot yield an improved error estimate on ‖A −Ah‖L2(D). A way around
this obstacle is to find a space smaller than H0(curl;D), where the weak
solution A lives and that embeds compactly into L2(D), and to show that
Ah is a convergent nonconforming approximation of A in that space. We are
going to see in Chapter 44 that a good candidate isH0(curl;D)∩H(div;D),
as pointed out in Weber [391, Thm. 2.1-2.3]. Recall that the unknown field
A stands for E or H , and that the Gauss laws (43.1c)-(43.1d) combined
with (43.3) imply that ∇·(ǫE) = ∇·D = ρ and that ∇·(µH) = ∇·B = 0.
Thus, it is reasonable to expect some control on the divergence of A and,
therefore, to hope for an improved estimate on ‖A−Ah‖L2(D) provided∇·Ah

is controlled in some sense. This question is addressed in Chapter 44.

Exercises

Exercise 43.1 (Compactness). Let D := (0, 1)3 be the unit cube in R3.
Show that the embedding H0(curl;D) →֒ L2(D) is not compact. (Hint : con-
sider vn := ∇φn with φn(x1, x2, x3) := 1

nπ sin(nπx1) sin(nπx2) sin(nπx3),
n ≥ 1, and prove first that (vn)n≥1 weakly converges to zero in L2(D) (see
Definition C.28), then compute ‖vn‖L2(D) and argue by contradiction.)

Exercise 43.2 (Curl). (i) Let v be a smooth field. Show that ‖∇×v‖2ℓ2 ≤
2∇v:∇v. (Hint : relate ∇×v to the components of (∇v − ∇vT).) (ii) Show
that ‖∇×v‖L2(D) ≤ |v|H1(D) for all v ∈ H1

0 (D). (Hint : use an integration
by parts.)

Exercise 43.3 (Property (43.12)). Prove the claim in Example 43.2, i.e.,
for [θmin, θmax] ⊂ (−π, π) with δ := θmax − θmin < π, letting θ := − 1

2 (θmin +
θmax)

π
2π−δ , prove that θ ∈ (−π

2 ,
π
2 ) and [θmin + θ, θmax + θ] ⊂ (−π

2 ,
π
2 ).

Exercise 43.4 (Dirichlet/Neumann). Let v be a smooth vector field in
D such that v|∂Dd

×n = 0. Prove that (∇×v)|∂Dd
·n = 0. (Hint : compute∫

D(∇×v)·∇q dx with q well chosen.)




