Part IX, Chapter 44

Maxwell's equations: control on the divergence

The analysis of Chapter 43 requires a coercivity property in \boldsymbol{H} (curl). There is, however, a loss of coercivity when the lower bound on the model parameter ν becomes very small. This situation occurs in the following two situations: (i) in the low frequency limit $(\omega \rightarrow 0)$ when $\nu:=\mathrm{i} \omega \mu$ as in the eddy current problem; (ii) if $\kappa \in \mathbb{R}$ and $\sigma \ll \omega \epsilon$ when $\nu:=-\omega^{2} \epsilon+\mathrm{i} \omega \sigma$ as in the timeharmonic problem. We have also seen in Chapter 43 that a compactness property needs to be established to deduce an improved \boldsymbol{L}^{2}-error estimate by the duality argument. We show in this chapter that robust coercivity and compactness can be achieved by a weak control on the divergence of the discrete solution. The material of this chapter is based on [188].

44.1 Functional setting

In this section, we present the assumptions on the model problem and introduce a functional setting leading to a key smoothness result on the curl operator.

44.1.1 Model problem

We consider the model problem (43.9) on a Lipschitz domain D in \mathbb{R}^{3}. For simplicity, we restrict the scope to the homogeneous Dirichlet boundary condition $\boldsymbol{A}_{\mid \partial D} \times \boldsymbol{n}=\mathbf{0}$ (so that $\partial D_{\mathrm{d}}=\partial D$). The weak formulation is

$$
\left\{\begin{array}{l}
\text { Find } \boldsymbol{A} \in \boldsymbol{V}_{0}:=\boldsymbol{H}_{0}(\operatorname{curl} ; D) \text { such that } \tag{44.1}\\
a_{\nu, \kappa}(\boldsymbol{A}, \boldsymbol{b})=\ell(\boldsymbol{b}), \quad \forall \boldsymbol{b} \in \boldsymbol{V}_{0},
\end{array}\right.
$$

with $a_{\nu, \kappa}(\boldsymbol{a}, \boldsymbol{b}):=\int_{D}(\nu \boldsymbol{a} \cdot \overline{\boldsymbol{b}}+\kappa \nabla \times \boldsymbol{a} \cdot \nabla \times \overline{\boldsymbol{b}}) \mathrm{d} x$ and $\ell(\boldsymbol{b}):=\int_{D} \boldsymbol{f} \cdot \overline{\boldsymbol{b}} \mathrm{~d} x$. We assume that $\boldsymbol{f} \in \boldsymbol{L}^{2}(D)$ and that $\nabla \cdot \boldsymbol{f}=0$. The divergence-free condition on \boldsymbol{f} implies the following important property on the solution \boldsymbol{A} :

$$
\begin{equation*}
\nabla \cdot(\nu \boldsymbol{A})=0 \tag{44.2}
\end{equation*}
$$

Concerning the material properties ν and κ, we make the following assumptions: (i) Boundedness: $\nu, \kappa \in L^{\infty}(D ; \mathbb{C})$ and we set $\nu_{\sharp}:=\|\nu\|_{L^{\infty}(D ; \mathbb{C})}$ and $\kappa_{\sharp}:=\|\kappa\|_{L^{\infty}(D ; \mathbb{C})}$. (ii) Rotated positivity: there are real numbers $\theta, \nu_{b}>0$, and $\kappa_{b}>0$ s.t. (43.12) is satisfied, i.e.,

$$
\begin{equation*}
\underset{\boldsymbol{x} \in D}{\operatorname{ess} \inf } \Re\left(e^{\mathrm{i} \theta} \nu(\boldsymbol{x})\right) \geq \nu_{b}, \quad \underset{\boldsymbol{x} \in D}{\operatorname{ess} \inf } \Re\left(e^{\mathrm{i} \theta} \kappa(\boldsymbol{x})\right) \geq \kappa_{b} \tag{44.3}
\end{equation*}
$$

We define the contrast factors $\nu_{\sharp / b}:=\frac{\nu_{\sharp}}{\nu_{b}}$ and $\kappa_{\sharp / b}:=\frac{\kappa_{\sharp}}{\kappa_{b}}$. We also define the magnetic Reynolds number $\gamma_{\nu, \kappa}:=\nu_{\sharp} \ell_{D}^{2} \kappa_{\sharp}^{-1}$. Several magnetic Reynolds numbers can be defined if the material is highly contrasted, but we will not explore this situation further. (iii) Piecewise smoothness: there is a partition of D into M disjoint Lipschitz polyhedra $\left\{D_{m}\right\}_{m \in\{1: M\}}$ s.t. $\nu_{\mid D_{m}}, \kappa_{\mid D_{m}} \in$ $W^{1, \infty}\left(D_{m}\right)$ for all $m \in\{1: M\}$. The reader who is not comfortable with this assumption may think of ν, κ being constant without missing anything essential in the analysis.

44.1.2 A key smoothness result on the curl operator

Let us define the (complex-valued) functional spaces

$$
\begin{equation*}
M_{0}:=H_{0}^{1}(D), \quad M_{*}:=\left\{q \in H^{1}(D) \mid(q, 1)_{L^{2}(D)}=0\right\} \tag{44.4}
\end{equation*}
$$

as well as the following subspaces of $\boldsymbol{H}(\operatorname{curl} ; D)$:

$$
\begin{align*}
\boldsymbol{X}_{0 \nu} & :=\left\{\boldsymbol{b} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D) \mid(\nu \boldsymbol{b}, \nabla m)_{\boldsymbol{L}^{2}(D)}=0, \forall m \in M_{0}\right\} \tag{44.5a}\\
\boldsymbol{X}_{* \kappa^{-1}} & :=\left\{\boldsymbol{b} \in \boldsymbol{H}(\operatorname{curl} ; D) \mid\left(\kappa^{-1} \boldsymbol{b}, \nabla m\right)_{\boldsymbol{L}^{2}(D)}=0, \forall m \in M_{*}\right\}, \tag{44.5b}
\end{align*}
$$

where $(\cdot, \cdot)_{\boldsymbol{L}^{2}(D)}$ denotes the inner product in $\boldsymbol{L}^{2}(D)$. The main motivation for introducing the above subspaces is that $\boldsymbol{A} \in \boldsymbol{X}_{0 \nu}$ owing to (44.2). Moreover, we will see below that $\kappa \nabla \times \boldsymbol{A} \in \boldsymbol{X}_{* \kappa^{-1}}$. Taking $m \in C_{0}^{\infty}(D)$ in (44.5a) shows that for all $\boldsymbol{b} \in \boldsymbol{X}_{0 \nu}$, the field $\nu \boldsymbol{b}$ has a weak divergence in $L^{2}(D)$ and $\nabla \cdot(\nu \boldsymbol{b})=0$. Similarly, the definition (44.5b) implies that for all $\boldsymbol{b} \in \boldsymbol{X}_{* \kappa^{-1}}$, the field $\kappa^{-1} \boldsymbol{b}$ has a weak divergence in $L^{2}(D)$ and $\nabla \cdot\left(\kappa^{-1} \boldsymbol{b}\right)=0$. Invoking the integration by parts formula (4.12) and the surjectivity of the trace map $\gamma^{\mathrm{g}}: H^{1}(D) \rightarrow H^{\frac{1}{2}}(\partial D)$ then shows that $\gamma^{\mathrm{d}}\left(\kappa^{-1} \boldsymbol{b}\right)=0$ for all $\boldsymbol{b} \in \boldsymbol{X}_{* \kappa^{-1}}$, where γ^{d} is the normal trace operator (recall that $\gamma^{\mathrm{d}}(\boldsymbol{v})=\boldsymbol{v}_{\mid \partial D} \cdot \boldsymbol{n}$ if the field \boldsymbol{v} is smooth).

Let us first state a simple result related to the Helmholtz decomposition of vector fields in $\boldsymbol{V}_{0}:=\boldsymbol{H}_{0}$ (curl; D) using the subspace $\boldsymbol{X}_{0 \nu}$ (a similar result is available on $\boldsymbol{H}(\operatorname{curl} ; D)$ using the subspace $\left.\boldsymbol{X}_{* \kappa^{-1}}\right)$.

Lemma 44.1 (Helmholtz decomposition). The following holds true:

$$
\begin{equation*}
\boldsymbol{V}_{0}=\boldsymbol{X}_{0 \nu} \oplus \nabla M_{0} \tag{44.6}
\end{equation*}
$$

Proof. Let $\boldsymbol{b} \in \boldsymbol{V}_{0}$ and let $p \in M_{0}$ solve $(\nu \nabla p, \nabla q)_{\boldsymbol{L}^{2}(D)}=(\nu \boldsymbol{b}, \nabla q)_{\boldsymbol{L}^{2}(D)}$ for all $q \in M_{0}$. Our assumptions on ν imply that there is a unique solution to this problem. Then we set $\boldsymbol{v}:=\boldsymbol{b}-\nabla p$ and observe that $\boldsymbol{v} \in \boldsymbol{X}_{0 \nu}$. The sum is direct because if $\mathbf{0}=\boldsymbol{v}+\nabla p$, then the identity $\int_{D} \nu \nabla p \cdot \overline{\boldsymbol{v}} \mathrm{~d} x=0$, which holds true for all $p \in M_{0}$ and all $\boldsymbol{v} \in \boldsymbol{X}_{0 \nu}$, implies that $\nabla p=\mathbf{0}=\boldsymbol{v}$.

We can now state the main result of this section. This result extends Lemma 43.3 to heterogeneous domains. Given a smoothness index $s>0$, we set $\|\boldsymbol{b}\|_{\boldsymbol{H}^{s}(D)}:=\left(\|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}+\ell_{D}^{2 s}|\boldsymbol{b}|_{\boldsymbol{H}^{s}(D)}^{2}\right)^{\frac{1}{2}}$, where ℓ_{D} is some characteristic length of D, e.g., $\ell_{D}:=\operatorname{diam}(D)$.

Lemma 44.2 (Regularity pickup). Let D be a Lipschitz domain in \mathbb{R}^{3}. (i) Assume that the boundary ∂D is connected and that ν is piecewise smooth. There exist $s>0$ and $\check{C}>0$ (depending on D and the contrast factor $\nu_{\sharp / b}$ but not on ν_{b} alone) such that

$$
\begin{equation*}
\check{C} \ell_{D}^{-1}\|\boldsymbol{b}\|_{\boldsymbol{H}^{s}(D)} \leq\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{0 \nu} . \tag{44.7}
\end{equation*}
$$

(ii) Assume that D is simply connected and that κ is piecewise smooth. There exist $s^{\prime}>0$ and $\check{C}^{\prime}>0$ (depending on D and the contrast factor $\kappa_{\sharp / b}$ but not on κ_{b} alone) such that

$$
\begin{equation*}
\check{C}^{\prime} \ell_{D}^{-1}\|\boldsymbol{b}\|_{\boldsymbol{H}^{s^{\prime}}(D)} \leq\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{* \kappa^{-1}} \tag{44.8}
\end{equation*}
$$

Proof. See Jochmann [259], Bonito et al. [70].
Remark 44.3 (Smoothness index). There are some situations where the smoothness indices s, s^{\prime} can be larger than $\frac{1}{2}$. One example is that of isolated inclusions in an otherwise homogeneous material. We refer the reader to Ciarlet [121, §5.2] for further insight and examples.

Lemma 44.2 has two important consequences. First, by restricting the smoothness index s to zero in (44.7), we obtain the following important stability result on the curl operator.

Lemma 44.4 (Poincaré-Steklov). Assume that the boundary ∂D is connected and that ν is piecewise smooth. There is $\hat{C}_{\mathrm{PS}}>0$ (depending on D and the contrast factor $\nu_{\sharp / b}$) such that the following Poincaré-Steklov inequality holds true:

$$
\begin{equation*}
\hat{C}_{\mathrm{PS}} \ell_{D}^{-1}\|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)} \leq\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}, \quad \forall \boldsymbol{b} \in \boldsymbol{X}_{0 \nu} \tag{44.9}
\end{equation*}
$$

The bound (44.9) is what we need to establish a coercivity property on $\boldsymbol{X}_{0 \nu}$ that is robust w.r.t. ν_{b}. Indeed, we have

$$
\begin{align*}
\Re\left(e^{\mathrm{i} \theta} a_{\nu, \kappa}(\boldsymbol{b}, \boldsymbol{b})\right) & \geq \nu_{b}\|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}+\kappa_{b}\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} \geq \kappa_{b}\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2} \\
& \geq \frac{1}{2} \kappa_{b}\left(\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}+\hat{C}_{\mathrm{PS}}^{2} \ell_{D}^{-2}\|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}\right) \\
& \geq \frac{1}{2} \kappa_{b} \ell_{D}^{-2} \min \left(1, \hat{C}_{\mathrm{PS}}^{2}\right)\|\boldsymbol{b}\|_{\boldsymbol{H}(\text { curl } ; D)}^{2} \tag{44.10}
\end{align*}
$$

for all $\boldsymbol{b} \in \boldsymbol{X}_{0 \nu}$, where we recall that $\boldsymbol{H}(\operatorname{curl} ; D)$ is equipped with the norm $\|\boldsymbol{b}\|_{\boldsymbol{H}(\operatorname{curl} ; D)}:=\left(\|\boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}+\ell_{D}^{2}\|\nabla \times \boldsymbol{b}\|_{\boldsymbol{L}^{2}(D)}^{2}\right)^{\frac{1}{2}}$. This shows that the sesquilinear form $a_{\nu, \kappa}$ is coercive on $\boldsymbol{X}_{0 \nu}$ with a coercivity constant depending on the contrast factor $\nu_{\sharp / b}$ but not on ν_{b} alone (whereas the coercivity constant on the larger space \boldsymbol{V}_{0} is $\min \left(\nu_{b}, \ell_{D}^{-2} \kappa_{b}\right)($ see (43.13a))).

Let us now examine the consequences of Lemma 44.2 on the Sobolev smoothness index of \boldsymbol{A} and $\nabla \times \boldsymbol{A}$. Owing to (44.7), there is $s>0$ s.t. $\boldsymbol{A} \in \boldsymbol{H}^{s}(D)$. We will see in $\S 44.3$ that the embedding $\boldsymbol{H}^{s}(D) \hookrightarrow \boldsymbol{L}^{2}(D)$ is the compactness property that we need to apply the duality argument and derive an improved \boldsymbol{L}^{2}-error estimate. Furthermore, the field $\boldsymbol{R}:=\kappa \nabla \times \boldsymbol{A}$ is in $\boldsymbol{X}_{* \kappa^{-1}}$ (notice in particular that $\nabla \times \boldsymbol{R}=\boldsymbol{f}-\nu \boldsymbol{A} \in \boldsymbol{L}^{2}(D)$), so that we deduce from (44.8) that there is $s^{\prime}>0$ s.t. $\boldsymbol{R} \in \boldsymbol{H}^{s^{\prime}}(D)$. In addition, the material property κ being piecewise smooth, we infer that the following multiplier property holds true (see [259, Lem. 2] and [70, Prop. 2.1]): There exists $\tau>0$ and $C_{\kappa^{-1}}$ s.t.

$$
\begin{equation*}
\left|\kappa^{-1} \boldsymbol{\xi}\right|_{\boldsymbol{H}^{\tau^{\prime}}(D)} \leq C_{\kappa^{-1}}|\boldsymbol{\xi}|_{\boldsymbol{H}^{\tau^{\prime}}(D)}, \quad \forall \boldsymbol{\xi} \in \boldsymbol{H}^{\tau}(D), \quad \forall \tau^{\prime} \in[0, \tau] \tag{44.11}
\end{equation*}
$$

Letting $s^{\prime \prime}:=\min \left(s^{\prime}, \tau\right)>0$, we conclude that $\nabla \times \boldsymbol{A} \in \boldsymbol{H}^{s^{\prime \prime}}(D)$.

44.2 Coercivity revisited for edge elements

In this section, we revisit the \boldsymbol{H} (curl)-error analysis for the approximation of the weak problem (44.1) using Nédélec (or edge) elements (see Chapters 15 and 19). The key tool we are going to use is a discrete counterpart of the Poincaré-Steklov inequality (44.9). We consider a shape-regular sequence of affine meshes $\left(\mathcal{T}_{h}\right)_{h \in \mathcal{H}}$ of D. We assume that D is a Lipschitz polyhedron and that each mesh covers D exactly.

44.2.1 Discrete Poincaré-Steklov inequality

Let $\boldsymbol{V}_{h 0}$ be the \boldsymbol{H}_{0} (curl)-conforming space using Nédélec elements of order $k \geq 0$ defined by

$$
\begin{equation*}
\boldsymbol{V}_{h 0}:=\boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right):=\left\{\boldsymbol{b}_{h} \in \boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathcal{T}_{h}\right) \mid \boldsymbol{b}_{h \mid \partial D} \times \boldsymbol{n}=\mathbf{0}\right\} . \tag{44.12}
\end{equation*}
$$

Observe that the Dirichlet condition is enforced strongly in $\boldsymbol{V}_{h 0}$. The discrete problem is formulated as follows:

$$
\left\{\begin{array}{l}
\text { Find } \boldsymbol{A}_{h} \in \boldsymbol{V}_{h 0} \text { such that } \tag{44.13}\\
a_{\nu, \kappa}\left(\boldsymbol{A}_{h}, \boldsymbol{b}_{h}\right)=\ell\left(\boldsymbol{b}_{h}\right), \quad \forall \boldsymbol{b}_{h} \in \boldsymbol{V}_{h 0} .
\end{array}\right.
$$

Since it is not reasonable to consider the space $\left\{\boldsymbol{b}_{h} \in \boldsymbol{V}_{h 0} \mid \nabla \cdot\left(\nu \boldsymbol{b}_{h}\right)=0\right\}$, because the normal component of $\nu \boldsymbol{b}_{h}$ may jump across the mesh interfaces, we are going to consider instead the subspace

$$
\begin{equation*}
\boldsymbol{X}_{h 0 \nu}:=\left\{\boldsymbol{b}_{h} \in \boldsymbol{V}_{h 0} \mid\left(\nu \boldsymbol{b}_{h}, \nabla m_{h}\right)_{\boldsymbol{L}^{2}(D)}=0, \forall m_{h} \in M_{h 0}\right\} \tag{44.14}
\end{equation*}
$$

where $M_{h 0}:=P_{k+1,0}^{\mathrm{g}}\left(\mathcal{T}_{h} ; \mathbb{C}\right)$ is conforming in $H_{0}^{1}(D ; \mathbb{C})$. Note that the polynomial degrees of the finite element spaces $M_{h 0}$ and $\boldsymbol{V}_{h 0}$ are compatible in the sense that $\nabla M_{h 0} \subset \boldsymbol{V}_{h 0}$. Using this property and proceeding as in Lemma 44.1 proves the following discrete Helmholtz decomposition:

$$
\begin{equation*}
\boldsymbol{V}_{h 0}=\boldsymbol{X}_{h 0 \nu} \oplus \nabla M_{h 0} \tag{44.15}
\end{equation*}
$$

Lemma 44.5 (Discrete solution). Let $\boldsymbol{A}_{h} \in \boldsymbol{V}_{h 0}$ be the unique solution to (44.13). Then $\boldsymbol{A}_{h} \in \boldsymbol{X}_{h 0 \nu}$.
Proof. We must show that $\left(\nu \boldsymbol{A}_{h}, \nabla m_{h}\right)_{\boldsymbol{L}^{2}(D)}=0$ for all $m_{h} \in M_{h 0}$. Since $\nabla m_{h} \in \nabla M_{h 0} \subset \boldsymbol{V}_{h 0}, \nabla m_{h}$ is an admissible test function in (44.13). Recalling that $\nabla \cdot \boldsymbol{f}=0$, we infer that

$$
0=\ell\left(\nabla m_{h}\right)=a_{\nu, \kappa}\left(\boldsymbol{A}_{h}, \nabla m_{h}\right)=\left(\nu \boldsymbol{A}_{h}, \nabla m_{h}\right)_{\boldsymbol{L}^{2}(D)}
$$

since $\nabla \times\left(\nabla m_{h}\right)=\mathbf{0}$. This completes the proof.
We now establish a discrete counterpart to the Poincaré-Steklov inequality (44.9). This result is not straightforward since $\boldsymbol{X}_{h 0 \nu}$ is not a subspace of $\boldsymbol{X}_{0 \nu}$. The key tool that we are going to invoke is the stable commuting quasi-interpolation projections from §23.3.3.

Theorem 44.6 (Discrete Poincaré-Steklov). Under the assumptions of Lemma 44.4, there is a constant $\hat{C}_{\mathrm{PS}}^{\prime}>0$ (depending on \hat{C}_{PS}, the polynomial degree k, the regularity of the mesh sequence, and the contrast factor $\nu_{\sharp / b}$, but not on ν_{b} alone) s.t. for all $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$ and all $h \in \mathcal{H}$,

$$
\begin{equation*}
\hat{C}_{\mathrm{PS}}^{\prime} \ell_{D}^{-1}\left\|\boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \leq\left\|\nabla \times \boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \tag{44.16}
\end{equation*}
$$

Proof. Let $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$ be a nonzero discrete field. Let $\phi\left(\boldsymbol{x}_{h}\right) \in M_{0}:=H_{0}^{1}(D)$ be the solution to the following well-posed Poisson problem:

$$
\left(\nu \nabla \phi\left(\boldsymbol{x}_{h}\right), \nabla m\right)_{\boldsymbol{L}^{2}(D)}=\left(\nu \boldsymbol{x}_{h}, \nabla m\right)_{\boldsymbol{L}^{2}(D)}, \quad \forall m \in M_{0}
$$

Let us define the curl-preserving lifting of \boldsymbol{x}_{h} s.t. $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right):=\boldsymbol{x}_{h}-\nabla \phi\left(\boldsymbol{x}_{h}\right)$, and let us notice that $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) \in \boldsymbol{X}_{0 \nu}$. Upon invoking the quasi-interpolation operators $\mathcal{J}_{h 0}^{\mathrm{c}}$ and $\mathcal{J}_{h 0}^{\mathrm{d}}$ introduced in $\S 23.3 .3$, we observe that

$$
\boldsymbol{x}_{h}-\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{x}_{h}-\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)=\mathcal{J}_{h 0}^{\mathrm{c}}\left(\nabla\left(\phi\left(\boldsymbol{x}_{h}\right)\right)\right)=\nabla\left(\mathcal{J}_{h 0}^{\mathrm{g}}\left(\phi\left(\boldsymbol{x}_{h}\right)\right)\right),
$$

where we used that $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{x}_{h}\right)=\boldsymbol{x}_{h}$ and the commuting properties of $\mathcal{J}_{h 0}^{\mathrm{g}}$ and $\mathcal{J}_{h 0}^{\mathrm{c}}$. Since $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$, we infer that $\left(\nu \boldsymbol{x}_{h}, \nabla\left(\mathcal{J}_{h 0}^{\mathrm{g}}\left(\phi\left(\boldsymbol{x}_{h}\right)\right)\right)\right)_{\boldsymbol{L}^{2}(D)}=0$, so that

$$
\begin{aligned}
\left(\nu \boldsymbol{x}_{h}, \boldsymbol{x}_{h}\right)_{\boldsymbol{L}^{2}(D)} & =\left(\nu \boldsymbol{x}_{h}, \boldsymbol{x}_{h}-\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right)_{\boldsymbol{L}^{2}(D)}+\left(\nu \boldsymbol{x}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right)_{\boldsymbol{L}^{2}(D)} \\
& =\left(\nu \boldsymbol{x}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right)_{\boldsymbol{L}^{2}(D)}
\end{aligned}
$$

Multiplying by $e^{\mathrm{i} \theta}$, taking the real part, and using the Cauchy-Schwarz inequality, we infer that

$$
\nu_{b}\left\|\boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)}^{2} \leq \nu_{\sharp}\left\|\boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)}\left\|\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right\|_{\boldsymbol{L}^{2}(D)}
$$

The uniform boundedness of $\mathcal{J}_{h 0}^{\text {c }}$ on $\boldsymbol{L}^{2}(D)$, together with the PoincaréSteklov inequality (44.9) and the identity $\nabla \times \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)=\nabla \times \boldsymbol{x}_{h}$, implies that

$$
\begin{aligned}
\left\|\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right\|_{\boldsymbol{L}^{2}(D)} & \leq\left\|\mathcal{J}_{h 0}^{\mathrm{c}}\right\|_{\mathcal{L}\left(\boldsymbol{L}^{2} ; \boldsymbol{L}^{2}\right)}\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)} \\
& \leq\left\|\mathcal{J}_{h 0}^{\mathrm{c}}\right\|_{\mathcal{L}\left(\boldsymbol{L}^{2} ; \boldsymbol{L}^{2}\right)} \hat{C}_{\mathrm{PS}}^{-1} \ell_{D}\left\|\nabla \times \boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)}
\end{aligned}
$$

so that (44.16) holds true with $\hat{C}_{\mathrm{PS}}^{\prime}:=\nu_{\sharp / b}^{-1}\left\|\mathcal{J}_{h 0}^{\mathrm{c}}\right\|_{\mathcal{L}\left(\boldsymbol{L}^{2} ; \boldsymbol{L}^{2}\right)}^{-1} \hat{C}_{\mathrm{PS}}$.
Remark 44.7 (Literature). There are many ways to prove the discrete Poincaré-Steklov inequality (44.16). One route described in Hiptmair [244, §4.2] consists of invoking subtle regularity estimates from Amrouche et al. [10, Lem. 4.7]. Another one, which avoids invoking regularity estimates, is based on an argument by Kikuchi [267] which is often called discrete compactness; see also Monk and Demkowicz [304], Caorsi et al. [106]. The proof is not constructive and is based on an argument by contradiction. The technique used in the proof of Theorem 44.6, inspired from Arnold et al. [23, Thm. 5.11] and Arnold et al. [26, Thm. 3.6], is more recent, and uses the stable commuting quasi-interpolation projections $\mathcal{J}_{h}^{\mathrm{c}}$ and $\mathcal{J}_{h 0}^{\mathrm{c}}$. It was already observed in Boffi [61] that the existence of stable commuting quasi-interpolation operators would imply the discrete compactness property.

44.2.2 \boldsymbol{H} (curl)-error analysis

We are now in a position to revisit the error analysis of $\S 43.3$. Let us first show that $\boldsymbol{X}_{h 0 \nu}$ has the same approximation properties as $\boldsymbol{V}_{h 0}$ in $\boldsymbol{X}_{0 \nu}$.

Lemma 44.8 (Approximation in $\boldsymbol{X}_{h 0 \nu}$). There is c, uniform w.r.t. the model parameters, s.t. for all $\boldsymbol{A} \in \boldsymbol{X}_{0 \nu}$ and all $h \in \mathcal{H}$,

$$
\begin{equation*}
\inf _{\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}}\left\|\boldsymbol{A}-\boldsymbol{x}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} \leq c \nu_{\sharp / b} \inf _{\boldsymbol{b}_{h} \in \boldsymbol{V}_{h 0}}\left\|\boldsymbol{A}-\boldsymbol{b}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} . \tag{44.17}
\end{equation*}
$$

Proof. Let $\boldsymbol{A} \in \boldsymbol{X}_{0 \nu}$. We start by computing the Helmholtz decomposition of $\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})$ in $\boldsymbol{V}_{h 0}$ as stated in (44.15). Let $p_{h} \in M_{h 0}$ be the unique solution to the discrete Poisson problem $\left(\nu \nabla p_{h}, \nabla q_{h}\right)_{\boldsymbol{L}^{2}(D)}=\left(\nu \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A}), \nabla q_{h}\right)_{\boldsymbol{L}^{2}(D)}$ for all $q_{h} \in M_{h 0}$. Let us define $\boldsymbol{y}_{h}:=\mathcal{J}_{h 0}^{c}(\boldsymbol{A})-\nabla p_{h}$. By construction, $\boldsymbol{y}_{h} \in \boldsymbol{X}_{h 0 \nu}$ and
$\nabla \times \boldsymbol{y}_{h}=\nabla \times \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})$. Hence, $\left\|\nabla \times\left(\boldsymbol{A}-\boldsymbol{y}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)}=\left\|\nabla \times\left(\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right)\right\|_{\boldsymbol{L}^{2}(D)}$. Since $\nabla \cdot(\nu \boldsymbol{A})=0$, we also infer that

$$
\left(\nu \nabla p_{h}, \nabla p_{h}\right)_{\boldsymbol{L}^{2}(D)}=\left(\nu \mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A}), \nabla p_{h}\right)_{\boldsymbol{L}^{2}(D)}=\left(\nu\left(\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})-\boldsymbol{A}\right), \nabla p_{h}\right)_{\boldsymbol{L}^{2}(D)},
$$

which in turn implies that $\left\|\nabla p_{h}\right\|_{L^{2}(D)} \leq \nu_{\sharp / b}\left\|\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})-\boldsymbol{A}\right\|_{L^{2}(D)}$. The above argument shows that

$$
\begin{aligned}
\left\|\boldsymbol{A}-\boldsymbol{y}_{h}\right\|_{\boldsymbol{L}^{2}(D)} & \leq\left\|\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right\|_{\boldsymbol{L}^{2}(D)}+\left\|\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})-\boldsymbol{y}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \\
& \leq\left\|\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right\|_{\boldsymbol{L}^{2}(D)}+\left\|\nabla p_{h}\right\|_{\boldsymbol{L}^{2}(D)} \\
& \leq\left(1+\nu_{\sharp / b}\right)\left\|\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right\|_{\boldsymbol{L}^{2}(D)} .
\end{aligned}
$$

In conclusion, we have proved that

$$
\begin{aligned}
\inf _{\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}}\left\|\boldsymbol{A}-\boldsymbol{x}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl} ; D)} & \leq\left\|\boldsymbol{A}-\boldsymbol{y}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} \\
& \leq\left(1+\nu_{\sharp / b}\right)\left\|\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right\|_{\boldsymbol{H}(\mathrm{curl} ; D)} .
\end{aligned}
$$

Invoking the commutation and approximation properties of the quasi-interpolation operators, we infer that

$$
\begin{aligned}
\| \boldsymbol{A} & -\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\left\|_{\boldsymbol{H}\left(\operatorname{curl}^{2} D\right)}^{2}=\right\| \boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\left\|_{\boldsymbol{L}^{2}(D)}^{2}+\ell_{D}^{2}\right\| \nabla \times\left(\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right) \|_{\boldsymbol{L}^{2}(D)}^{2} \\
& =\left\|\boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{A})\right\|_{\boldsymbol{L}^{2}(D)}^{2}+\ell_{D}^{2}\left\|\nabla \times \boldsymbol{A}-\mathcal{J}_{h 0}^{\mathrm{d}}(\nabla \times \boldsymbol{A})\right\|_{\boldsymbol{L}^{2}(D)}^{2} \\
& \leq c \inf _{\boldsymbol{b}_{h} \in \boldsymbol{P}_{0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{A}-\boldsymbol{b}_{h}\right\|_{\boldsymbol{L}^{2}(D)}^{2}+c^{\prime} \ell_{D}^{2} \inf _{\boldsymbol{d}_{h} \in \boldsymbol{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)}\left\|\nabla \times \boldsymbol{A}-\boldsymbol{d}_{h}\right\|_{\boldsymbol{L}^{2}(D)}^{2} \\
& \leq c \inf _{\boldsymbol{b}_{h} \in \boldsymbol{P}_{0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)}\left\|\boldsymbol{A}-\boldsymbol{b}_{h}\right\|_{\boldsymbol{L}^{2}(D)}^{2}+c^{\prime} \ell_{D}^{2} \inf _{\boldsymbol{b}_{h} \in \boldsymbol{P}_{0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)}\left\|\nabla \times\left(\boldsymbol{A}-\boldsymbol{b}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)}^{2},
\end{aligned}
$$

where the last bound follows by restricting the minimization set to $\nabla \times \boldsymbol{P}_{0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)$ since $\nabla \times \boldsymbol{P}_{0}^{\mathrm{c}}\left(\mathcal{T}_{h}\right) \subset \boldsymbol{P}_{0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right)$. The conclusion follows readily.

Theorem 44.9 (\boldsymbol{H} (curl)-error estimate). Let \boldsymbol{A} solve (44.1) and let \boldsymbol{A}_{h} solve (44.13). Assume that ∂D is connected and that ν is piecewise smooth. There is c, which depends on the discrete Poincaré-Steklov constant $\hat{C}_{\mathrm{PS}}^{\prime}$ and the contrast factors $\nu_{\sharp / b}$ and $\kappa_{\sharp / b}$, s.t. for all $h \in \mathcal{H}$,

$$
\begin{equation*}
\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} \leq c \hat{\gamma}_{\nu, \kappa} \inf _{\boldsymbol{b}_{h} \in \boldsymbol{V}_{h 0}}\left\|\boldsymbol{A}-\boldsymbol{b}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} \tag{44.18}
\end{equation*}
$$

with $\hat{\gamma}_{\nu, \kappa}:=\max \left(1, \gamma_{\nu, \kappa}\right)$ and the magnetic Reynolds number $\gamma_{\nu, \kappa}:=\nu_{\sharp} \ell_{D}^{2} \kappa_{\sharp}^{-1}$.
Proof. Owing to Lemma 44.5, \boldsymbol{A}_{h} also solves the following problem: Find $\boldsymbol{A}_{h} \in \boldsymbol{X}_{h 0 \nu}$ s.t.

$$
a_{\nu, \kappa}\left(\boldsymbol{A}_{h}, \boldsymbol{x}_{h}\right)=\ell\left(\boldsymbol{x}_{h}\right), \forall \boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu} .
$$

Using the discrete Poincaré-Steklov inequality (44.16) and proceeding as in (44.10), we infer that

$$
\Re\left(e^{\mathrm{i} \theta} a_{\nu, \kappa}\left(\boldsymbol{x}_{h}, \boldsymbol{x}_{h}\right)\right) \geq \frac{1}{2} \kappa_{b} \ell_{D}^{-2} \min \left(1,\left(\hat{C}_{\mathrm{PS}}^{\prime}\right)^{2}\right)\left\|\boldsymbol{x}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)}^{2}
$$

for all $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$. Hence, the above problem is well-posed. Recalling the boundedness property (43.13b) of the sesquilinear form $a_{\nu, \kappa}$ and invoking the abstract error estimate (26.18) leads to

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)} \leq \frac{2 \max \left(\nu_{\sharp}, \ell_{D}^{-2} \kappa_{\sharp}\right)}{\kappa_{b} \ell_{D}^{-2} \min \left(1,\left(\hat{C}_{\mathrm{PS}}^{\prime}\right)^{2}\right)} \inf _{\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}}\left\|\boldsymbol{A}-\boldsymbol{x}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl} ; D)} .
$$

We conclude the proof by invoking Lemma 44.8.
Remark 44.10 (Neumann boundary condition). The above analysis can be adapted to handle the Neumann condition $(\kappa \nabla \times \boldsymbol{A})_{\mid \partial D} \times \boldsymbol{n}=\mathbf{0}$; see Exercise 44.3. This condition implies that $(\nabla \times(\kappa \nabla \times \boldsymbol{A}))_{\mid \partial D} \cdot \boldsymbol{n}=0$. Moreover, assuming $\boldsymbol{f}_{\mid \partial D} \cdot \boldsymbol{n}=0$ and taking the normal component of the equation $\nu \boldsymbol{A}+\nabla \times(\kappa \nabla \times \boldsymbol{A})=\boldsymbol{f}$ at the boundary gives $\boldsymbol{A}_{\mid \partial D} \cdot \boldsymbol{n}=0$. Since $\nabla \cdot \boldsymbol{f}=0$, we also have $\nabla \cdot(\nu \boldsymbol{A})=0$. In other words, we have

$$
\boldsymbol{A} \in \boldsymbol{X}_{* \nu}:=\left\{\boldsymbol{b} \in \boldsymbol{H}(\operatorname{curl} ; D) \mid(\nu \boldsymbol{b}, \nabla m)_{\boldsymbol{L}^{2}(D)}=0, \forall m \in M_{*}\right\} .
$$

The discrete spaces are now $\boldsymbol{V}_{h}:=\boldsymbol{P}_{k}^{\mathrm{c}}\left(\mathcal{T}_{h}\right)$ and $M_{h *}:=P_{k+1}^{\mathrm{g}}\left(\mathcal{T}_{h} ; \mathbb{C}\right) \cap M_{*}$. Using \boldsymbol{V}_{h} for the discrete trial and test spaces, we infer that

$$
\boldsymbol{A}_{h} \in \boldsymbol{X}_{h * \nu}:=\left\{\boldsymbol{b}_{h} \in \boldsymbol{V}_{h} \mid\left(\nu \boldsymbol{b}_{h}, \nabla m_{h}\right)_{\boldsymbol{L}^{2}(D)}=0, \forall m_{h} \in M_{h *}\right\}
$$

The Poincaré-Steklov inequality (44.16) still holds true provided the assumption that ∂D is connected is replaced by the assumption that D is simply connected. The error analysis from Theorem 44.9 can be readily adapted.

44.3 The duality argument for edge elements

Our goal is to derive an improved error estimate in the \boldsymbol{L}^{2}-norm using a duality argument that invokes a weak control on the divergence. The subtlety is that, as already mentioned, the setting is nonconforming since $\boldsymbol{X}_{h 0 \nu}$ is not a subspace of $\boldsymbol{X}_{0 \nu}$. We assume in the section that the boundary ∂D is connected and that the domain D is simply connected. Recalling the smoothness indices $s, s^{\prime}>0$ from Lemma 44.2 together with the index $\tau>0$ from the multiplier property (44.11) and letting $s^{\prime \prime}:=\min \left(s^{\prime}, \tau\right)$, we have $\boldsymbol{A} \in \boldsymbol{H}^{s}(D)$ and $\nabla \times \boldsymbol{A} \in \boldsymbol{H}^{s^{\prime \prime}}(D)$ with $s, s^{\prime \prime}>0$. In what follows, we set

$$
\begin{equation*}
\sigma:=\min \left(s, s^{\prime \prime}\right) \tag{44.19}
\end{equation*}
$$

Let us first start with an approximation result on the curl-preserving lifting operator $\boldsymbol{\xi}: \boldsymbol{X}_{h 0 \nu} \rightarrow \boldsymbol{X}_{0 \nu}$ defined in the proof of Theorem 44.6. Recall that
for all $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$, the field $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) \in \boldsymbol{X}_{0 \nu}$ is s.t. $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right):=\boldsymbol{x}_{h}-\nabla \phi\left(\boldsymbol{x}_{h}\right)$ with $\phi\left(\boldsymbol{x}_{h}\right) \in H_{0}^{1}(D)$, implying that $\nabla \times \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)=\nabla \times \boldsymbol{x}_{h}$.

Lemma 44.11 (Curl-preserving lifting). Let $s>0$ be the smoothness index introduced in (44.7). There is c, depending on the constant \check{C}_{D} from (44.7) and the contrast factor $\nu_{\sharp / b}$, s.t. for all $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$ and all $h \in \mathcal{H}$,

$$
\begin{equation*}
\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)-\boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \leq c h^{s} \ell_{D}^{1-s}\left\|\nabla \times \boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \tag{44.20}
\end{equation*}
$$

Proof. Let us set $\boldsymbol{e}_{h}:=\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)-\boldsymbol{x}_{h}$. We have seen in the proof of Theorem 44.6 that $\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)-\boldsymbol{x}_{h} \in \nabla M_{h 0}$, so that $\left(\nu \boldsymbol{e}_{h}, \mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)-\boldsymbol{x}_{h}\right)_{\boldsymbol{L}^{2}(D)}=0$ since $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) \in \boldsymbol{X}_{0 \nu}, M_{h 0} \subset M_{0}$, and $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$. Since $\boldsymbol{e}_{h}=\left(I-\mathcal{J}_{h 0}^{\mathrm{c}}\right)\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)+$ $\left(\mathcal{J}_{h 0}^{\mathrm{c}}\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)-\boldsymbol{x}_{h}\right)$, we infer that

$$
\left(\nu \boldsymbol{e}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(D)}=\left(\nu \boldsymbol{e}_{h},\left(I-\mathcal{J}_{h 0}^{\mathrm{c}}\right)\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right)_{\boldsymbol{L}^{2}(D)},
$$

thereby implying that $\left\|\boldsymbol{e}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \leq \nu_{\sharp / b}\left\|\left(I-\mathcal{J}_{h 0}^{\mathrm{c}}\right)\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)\right\|_{\boldsymbol{L}^{2}(D)}$. Using the approximation properties of $\mathcal{J}_{h 0}^{c}$ yields

$$
\left\|\boldsymbol{e}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \leq c \nu_{\sharp / b} h^{s}\left|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right|_{\boldsymbol{H}^{s}(D)},
$$

and we conclude using the bound $\left|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right|_{\boldsymbol{H}^{s}(D)} \leq \check{C}_{D} \ell_{D}^{1-s}\left\|\nabla \times \boldsymbol{x}_{h}\right\|_{\boldsymbol{L}^{2}(D)}$ which follows from (44.7) since $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) \in \boldsymbol{X}_{0, \nu}$ and $\nabla \times \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)=\nabla \times \boldsymbol{x}_{h}$.

Lemma 44.12 (Adjoint solution). Let $\boldsymbol{y} \in \boldsymbol{X}_{0 \nu}$ and let $\boldsymbol{\zeta} \in \boldsymbol{X}_{0 \nu}$ solve the (adjoint) problem $\nu \boldsymbol{\zeta}+\nabla \times(\kappa \nabla \times \boldsymbol{\zeta}):=\nu_{b}^{-1} \nu \boldsymbol{y}$. There is c, depending on the constants \hat{C}_{PS} from (44.9), \check{C}, \check{C}^{\prime} from (44.7)-(44.8), and the contrast factors $\nu_{\sharp / b}, \kappa_{\sharp / b}$, and $\kappa_{\sharp} C_{\kappa^{-1}}$, s.t. for all $h \in \mathcal{H}$,

$$
\begin{align*}
|\boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)} & \leq c \nu_{\sharp}^{-1} \gamma_{\nu, \kappa} \ell_{D}^{-\sigma}\|\boldsymbol{y}\|_{L^{2}(D)} \tag{44.21a}\\
|\nabla \times \boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)} & \leq c \nu_{\sharp}^{-1} \gamma_{\nu, \kappa} \hat{\gamma}_{\nu, \kappa} \ell_{D}^{-1-\sigma}\|\boldsymbol{y}\|_{L^{2}(D)} \tag{44.21b}
\end{align*}
$$

Proof. Proof of (44.21a). Testing the adjoint problem with $e^{-\mathrm{i} \theta} \boldsymbol{\zeta}$ leads to $\kappa_{b}\|\nabla \times \boldsymbol{\zeta}\|_{L^{2}(D)}^{2} \leq \nu_{\sharp / b}\|\boldsymbol{y}\|_{L^{2}(D)}\|\boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)}$. Using the Poincaré-Steklov inequality (44.9), we can bound $\|\boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)}$ by $\|\nabla \times \boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)}$, and altogether this gives

$$
\begin{equation*}
\|\nabla \times \boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)} \leq \kappa_{\mathrm{b}}^{-1} \nu_{\sharp / b} \hat{C}_{\mathrm{PS}}^{-1} \ell_{D}\|\boldsymbol{y}\|_{\boldsymbol{L}^{2}(D)} . \tag{44.22}
\end{equation*}
$$

Invoking (44.7) with $\sigma \leq s$ yields

$$
|\boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)} \leq \check{C}_{D}^{-1} \ell_{D}^{1-\sigma}\|\nabla \times \boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)} \leq \kappa_{b}^{-1} \nu_{\sharp / b} \check{C}_{D}^{-1} \hat{C}_{\mathrm{PS}}^{-1} \ell_{D}^{2-\sigma}\|\boldsymbol{y}\|_{\boldsymbol{L}^{2}(D)},
$$

which proves (44.21a) since $\kappa_{b}^{-1} \ell_{D}^{2}=\kappa_{\sharp / b} \nu_{\sharp}^{-1} \gamma_{\nu, \kappa}$.
Proof of (44.21b). Invoking (44.8) with $\sigma \leq s^{\prime}$ for $\boldsymbol{b}:=\kappa \nabla \times \boldsymbol{\zeta}$, which is a member of $\boldsymbol{X}_{* \kappa^{-1}}$, we infer that

$$
\begin{aligned}
\check{C}_{D}^{\prime} \ell_{D}^{-1+\sigma}|\boldsymbol{b}|_{\boldsymbol{H}^{\sigma}(D)} & \leq\|\nabla \times \boldsymbol{b}\|_{L^{2}(D)}=\|\nabla \times(\kappa \nabla \times \boldsymbol{\zeta})\|_{L^{2}(D)} \\
& \leq \nu_{\sharp / b}\|\boldsymbol{y}\|_{L^{2}(D)}+\nu_{\sharp}\|\boldsymbol{\zeta}\|_{L^{2}(D)},
\end{aligned}
$$

by definition of the adjoint solution $\boldsymbol{\zeta}$ and the triangle inequality. Invoking again the Poincaré-Steklov inequality (44.9) to bound $\|\zeta\|_{L^{2}(D)}$ by $\|\nabla \times \boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)}$ and using (44.22) yields $\|\boldsymbol{\zeta}\|_{\boldsymbol{L}^{2}(D)} \leq \kappa_{b}^{-1} \nu_{\sharp / b} \hat{C}_{\mathrm{PS}}^{-2} \ell_{D}^{2}\|\boldsymbol{y}\|_{L^{2}(D)}$. As a result, we obtain

$$
\check{C}_{D}^{\prime} \ell_{D}^{-1+\sigma}|\boldsymbol{b}|_{\boldsymbol{H}^{\sigma}(D)} \leq \nu_{\sharp / b}\left(1+\nu_{\sharp} \kappa_{b}^{-1} \hat{C}_{\mathrm{PS}}^{-2} \ell_{D}^{2}\right)\|\boldsymbol{y}\|_{\boldsymbol{L}^{2}(D)},
$$

and this concludes the proof of $(44.21 \mathrm{~b})$ since $|\nabla \times \boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)} \leq C_{\kappa^{-1}}|\boldsymbol{b}|_{\boldsymbol{H}^{\sigma}(D)}$ owing to the multiplier property (44.11) and $\sigma \leq \tau$.

We can now state the main result of this section.
Theorem 44.13 (Improved \boldsymbol{L}^{2}-error estimate). Let \boldsymbol{A} solve (44.1) and let \boldsymbol{A}_{h} solve (44.13). There is c, depending on the constants \hat{C}_{PS} from (44.9), \check{C}, \breve{C}^{\prime} from (44.7)-(44.8), and the contrast factors $\nu_{\sharp / b}, \kappa_{\sharp / b}$, and $\kappa_{\sharp} C_{\kappa^{-1}}$, s.t. for all $h \in \mathcal{H}$,

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{L}^{2}(D)} \leq c \inf _{\boldsymbol{v}_{h} \in \boldsymbol{V}_{h 0}}\left(\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(D)}+\hat{\gamma}_{\nu, \kappa}^{3} h^{\sigma} \ell_{D}^{-\sigma}\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl})}\right)
$$

Proof. In this proof, we use the symbol c to denote a generic positive constant that can have the same parametric dependencies as in the above statement. Let $\boldsymbol{v}_{h} \in \boldsymbol{X}_{h 0 \nu}$ and let us set $\boldsymbol{x}_{h}:=\boldsymbol{A}_{h}-\boldsymbol{v}_{h}$. We observe that $\boldsymbol{x}_{h} \in \boldsymbol{X}_{h 0 \nu}$. Let $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)$ be the image of \boldsymbol{x}_{h} by the curl-preserving lifting operator and let $\boldsymbol{\zeta} \in \boldsymbol{X}_{0 \nu}$ be the solution to the following adjoint problem:

$$
\nu \boldsymbol{\zeta}+\nabla \times(\kappa \nabla \times \boldsymbol{\zeta}):=\nu_{b}^{-1} \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) .
$$

(1) Let us first bound $\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)}$ from above. Recalling that $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)-\boldsymbol{x}_{h}=$ $-\nabla \phi\left(\boldsymbol{x}_{h}\right)$ and that $\left(\nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right), \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)-\boldsymbol{x}_{h}\right)_{\boldsymbol{L}^{2}(D)}=-\left(\nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right), \nabla \phi\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)}=$ 0 , we infer that

$$
\begin{aligned}
\left(\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right),\right. & \left.\nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)}=\left(\boldsymbol{x}_{h}, \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)} \\
& =\left(\boldsymbol{A}-\boldsymbol{v}_{h}, \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)}+\left(\boldsymbol{A}_{h}-\boldsymbol{A}, \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)} \\
& =\left(\boldsymbol{A}-\boldsymbol{v}_{h}, \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)}+\nu_{b} a_{\nu, \kappa}\left(\boldsymbol{A}_{h}-\boldsymbol{A}, \boldsymbol{\zeta}\right) \\
& =\left(\boldsymbol{A}-\boldsymbol{v}_{h}, \nu \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right)_{\boldsymbol{L}^{2}(D)}+\nu_{b} a_{\nu, \kappa}\left(\boldsymbol{A}_{h}-\boldsymbol{A}, \boldsymbol{\zeta}-\mathcal{J}_{h 0}^{\mathrm{c}}(\boldsymbol{\zeta})\right)
\end{aligned}
$$

where we used the Galerkin orthogonality property on the fourth line. Since we have $\left|a_{\nu, \kappa}(\boldsymbol{a}, \boldsymbol{b})\right| \leq \kappa_{\sharp} \ell_{D}^{-2} \hat{\gamma}_{\nu, \kappa}\|\boldsymbol{a}\|_{\boldsymbol{H}(\operatorname{curl} ; D)}\|\boldsymbol{b}\|_{\boldsymbol{H}(\text { curl; } D)}$ by (43.13b), we infer from the commutation and approximation properties of the quasiinterpolation operators that

$$
\begin{aligned}
& \left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{L^{2}(D)}^{2} \leq \nu_{\sharp / b}\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{L^{2}(D)}\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)} \\
& \quad+c \kappa_{\sharp} \ell_{D}^{-2} \hat{\gamma}_{\nu, \kappa} h^{\sigma}\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)}\left(|\boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)}+\ell_{D}|\nabla \times \boldsymbol{\zeta}|_{\boldsymbol{H}^{\sigma}(D)}\right) .
\end{aligned}
$$

Owing to the bounds from Lemma 44.12 on the adjoint solution with $\boldsymbol{y}:=$ $\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)$, we conclude that

$$
\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)} \leq \nu_{\sharp / b}\left(\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{L}^{2}(D)}+c \hat{\gamma}_{\nu, \kappa}^{2} h^{\sigma} \ell_{D}^{-\sigma}\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{H}(\operatorname{curl} ; D)}\right) .
$$

(2) The triangle inequality and the identity $\boldsymbol{A}-\boldsymbol{A}_{h}=\boldsymbol{A}-\boldsymbol{v}_{h}-\boldsymbol{x}_{h}$ imply that

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{L^{2}(D)} \leq\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{L^{2}(D)}+\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)-\boldsymbol{x}_{h}\right\|_{L^{2}(D)}+\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{L^{2}(D)} .
$$

We use Lemma 44.11 to bound the second term on the right-hand side as

$$
\begin{aligned}
\| \boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right) & -\boldsymbol{x}_{h}\left\|_{\boldsymbol{L}^{2}(D)} \leq c h^{\sigma} \ell_{D}^{1-\sigma}\right\| \nabla \times \boldsymbol{x}_{h} \|_{\boldsymbol{L}^{2}(D)} \\
& \leq c h^{\sigma} \ell_{D}^{1-\sigma}\left(\left\|\nabla \times\left(\boldsymbol{A}-\boldsymbol{v}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)}+\left\|\nabla \times\left(\boldsymbol{A}-\boldsymbol{A}_{h}\right)\right\|_{\boldsymbol{L}^{2}(D)}\right)
\end{aligned}
$$

and we use (44.18) to infer that $\left\|\boldsymbol{A}-\boldsymbol{A}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl} ; D)} \leq c \hat{\gamma}_{\nu, \kappa}\left\|\boldsymbol{A}-\boldsymbol{v}_{h}\right\|_{\boldsymbol{H}(\mathrm{curl} ; D)}$. For the third term on the right-hand side, we use the bound on $\left\|\boldsymbol{\xi}\left(\boldsymbol{x}_{h}\right)\right\|_{L^{2}(D)}$ from Step (1). We conclude by taking the infimum over $\boldsymbol{v}_{h} \in \boldsymbol{X}_{h 0 \nu}$, and we use Lemma 44.8 to extend the infimum over $\boldsymbol{V}_{h 0}$.

Remark 44.14 (Literature). The construction of the curl-preserving lifting operator invoked in the proof of Theorem 44.6 and Theorem 44.13 is done in Monk [302, pp. 249-250]. The statement in Lemma 44.11 is similar to that in Monk [303, Lem. 7.6], but the present proof is simplified by the use of the commuting quasi-interpolation operators. The curl-preserving lifting of $\boldsymbol{A}-\boldsymbol{A}_{h}$ is invoked in Arnold et al. [23, Eq. (9.9)] and denoted therein by $\boldsymbol{\psi}$. The estimate of $\|\boldsymbol{\psi}\|_{L^{2}(D)}$ given one line above [23, Eq. (9.11)] is similar to (44.3) and is obtained by invoking the commuting quasi-interpolation operators constructed in [23, §5.4] for natural boundary conditions. Note that contrary to the above reference, we invoke the curl-preserving lifting of $\boldsymbol{A}_{h}-\boldsymbol{v}_{h}$ instead of $\boldsymbol{A}-\boldsymbol{A}_{h}$ and make use of Lemma 44.11, which simplifies the argument. Furthermore, the statement of Theorem 44.13 is similar to that of Zhong et al. [405, Thm. 4.1], but the present proof is simpler and does not require the smoothness index σ to be larger than $\frac{1}{2}$.

Exercises

Exercise 44.1 (Gradient). Let $\phi \in H_{0}^{1}(D)$. Prove that $\nabla \phi \in \boldsymbol{H}_{0}($ curl; $D)$
Exercise 44.2 (Vector potential). Let $\boldsymbol{v} \in \boldsymbol{L}^{2}(D)$ with $\left(\nu \boldsymbol{v}, \nabla m_{h}\right)_{\boldsymbol{L}^{2}(D)}=$ 0 for all $m_{h} \in M_{h 0}$. Prove that $\left(\nu \boldsymbol{v}, \boldsymbol{w}_{h}\right)_{\boldsymbol{L}^{2}(D)}=\left(\nabla \times \boldsymbol{z}_{h}, \nabla \times \boldsymbol{w}_{h}\right)_{L^{2}(D)}$ for all $\boldsymbol{w}_{h} \in \boldsymbol{V}_{h 0}$, where \boldsymbol{z}_{h} solves a curl-curl problem on $\boldsymbol{X}_{h 0 \nu}$.

Exercise 44.3 (Neumann condition). Recall Remark 44.10. Assume that D is simply connected so that there is $\hat{C}_{\mathrm{PS}}>0$ such that $\hat{C}_{\mathrm{PS}} \ell_{D}^{-1}\|\boldsymbol{b}\|_{L^{2}(D)} \leq$ $\|\nabla \times \boldsymbol{b}\|_{L^{2}(D)}$ for all $\boldsymbol{b} \in \boldsymbol{X}_{* \nu}$. Prove that there is $\hat{C}_{\mathrm{PS}}^{\prime}>0$ such that $\hat{C}_{\mathrm{PS}}^{\prime} \ell_{D}^{-1} \mid \boldsymbol{b}_{h}\left\|_{L^{2}(D)} \leq\right\| \nabla \times \boldsymbol{b}_{h} \|_{L^{2}(D)}$ for all $\boldsymbol{b}_{h} \in \boldsymbol{X}_{h * \nu}$. (Hint: adapt the proof of Theorem 44.6 using \mathcal{J}_{h}^{c}.)

Exercise 44.4 (Discrete Poincaré-Steklov for $\nabla \cdot$.). Let ν be as in §44.1.1. Let $\boldsymbol{Y}_{0 \nu}:=\left\{\boldsymbol{v} \in \boldsymbol{H}_{0}(\right.$ div $\left.; D) \mid(\nu \boldsymbol{v}, \nabla \times \boldsymbol{\phi})_{L^{2}(D)}=0, \forall \boldsymbol{\phi} \in \boldsymbol{H}_{0}(\operatorname{curl} ; D)\right\}$ and accept as a fact that there is $\hat{C}_{\mathrm{PS}}>0$ such that $\hat{C}_{\mathrm{PS}} \ell_{D}^{-1}\|\boldsymbol{v}\|_{L^{2}(D)} \leq\|\nabla \cdot \boldsymbol{v}\|_{L^{2}(D)}$ for all $\boldsymbol{v} \in \boldsymbol{Y}_{0 \nu}$. Let $k \geq 0$ and consider the discrete space $\boldsymbol{Y}_{h 0 \nu}:=\left\{\boldsymbol{v}_{h} \in\right.$ $\left.\boldsymbol{P}_{k, 0}^{\mathrm{d}}\left(\mathcal{T}_{h}\right) \mid\left(\nu \boldsymbol{v}_{h}, \nabla \times \boldsymbol{\phi}_{h}\right)_{\boldsymbol{L}^{2}(D)}=0, \forall \boldsymbol{\phi}_{h} \in \boldsymbol{P}_{k, 0}^{\mathrm{c}}\left(\mathcal{T}_{h} ; \mathbb{C}\right)\right\}$. Prove that there is $\hat{C}_{\mathrm{PS}}^{\prime}>0$ such that $\hat{C}_{\mathrm{PS}}^{\prime}\left\|\boldsymbol{v}_{h}\right\|_{L^{2}(D)} \leq \ell_{D}\left\|\nabla \cdot \boldsymbol{v}_{h}\right\|_{L^{2}(D)}$ for all $\boldsymbol{v}_{h} \in \boldsymbol{Y}_{h 0 \nu}$. (Hint: adapt the proof of Theorem 44.6 using $\mathcal{J}_{h 0}^{\mathrm{d}}$.)

