
Part IX, Chapter 44

Maxwell’s equations: control on the divergence

The analysis of Chapter 43 requires a coercivity property in H(curl). There
is, however, a loss of coercivity when the lower bound on the model parameter
ν becomes very small. This situation occurs in the following two situations:
(i) in the low frequency limit (ω → 0) when ν := iωµ as in the eddy current
problem; (ii) if κ ∈ R and σ ≪ ωǫ when ν := −ω2ǫ + iωσ as in the time-
harmonic problem. We have also seen in Chapter 43 that a compactness
property needs to be established to deduce an improved L2-error estimate
by the duality argument. We show in this chapter that robust coercivity and
compactness can be achieved by a weak control on the divergence of the
discrete solution. The material of this chapter is based on [188].

44.1 Functional setting

In this section, we present the assumptions on the model problem and in-
troduce a functional setting leading to a key smoothness result on the curl
operator.

44.1.1 Model problem

We consider the model problem (43.9) on a Lipschitz domain D in R3. For
simplicity, we restrict the scope to the homogeneous Dirichlet boundary con-
dition A|∂D×n = 0 (so that ∂Dd = ∂D). The weak formulation is

{
Find A ∈ V0 :=H0(curl;D) such that

aν,κ(A, b) = ℓ(b), ∀b ∈ V0,
(44.1)

with aν,κ(a, b) :=
∫
D
(νa·b + κ∇×a·∇×b) dx and ℓ(b) :=

∫
D
f ·b dx. We

assume that f ∈ L2(D) and that ∇·f = 0. The divergence-free condition on
f implies the following important property on the solution A:
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∇·(νA) = 0. (44.2)

Concerning the material properties ν and κ, we make the following assump-
tions: (i) Boundedness: ν, κ ∈ L∞(D;C) and we set ν♯ := ‖ν‖L∞(D;C) and
κ♯ := ‖κ‖L∞(D;C). (ii) Rotated positivity: there are real numbers θ, ν♭ > 0,
and κ♭ > 0 s.t. (43.12) is satisfied, i.e.,

ess inf
x∈D

ℜ
(
eiθν(x)

)
≥ ν♭, ess inf

x∈D
ℜ
(
eiθκ(x)

)
≥ κ♭. (44.3)

We define the contrast factors ν♯/♭ :=
ν♯
ν♭

and κ♯/♭ :=
κ♯
κ♭
. We also define

the magnetic Reynolds number γν,κ := ν♯ℓ
2
Dκ

−1
♯ . Several magnetic Reynolds

numbers can be defined if the material is highly contrasted, but we will not
explore this situation further. (iii) Piecewise smoothness: there is a partition
of D into M disjoint Lipschitz polyhedra {Dm}m∈{1:M} s.t. ν|Dm , κ|Dm ∈
W 1,∞(Dm) for all m ∈ {1:M}. The reader who is not comfortable with
this assumption may think of ν, κ being constant without missing anything
essential in the analysis.

44.1.2 A key smoothness result on the curl operator

Let us define the (complex-valued) functional spaces

M0 := H1
0 (D), M∗ := {q ∈ H1(D) | (q, 1)L2(D) = 0}, (44.4)

as well as the following subspaces of H(curl;D):

X0ν := {b ∈H0(curl;D) | (νb,∇m)L2(D) = 0, ∀m ∈M0}, (44.5a)

X∗κ−1 := {b ∈H(curl;D) | (κ−1b,∇m)L2(D) = 0, ∀m ∈M∗}, (44.5b)

where (·, ·)L2(D) denotes the inner product in L
2(D). The main motivation for

introducing the above subspaces is that A ∈ X0ν owing to (44.2). Moreover,
we will see below that κ∇×A ∈ X∗κ−1 . Taking m ∈ C∞

0 (D) in (44.5a)
shows that for all b ∈X0ν , the field νb has a weak divergence in L2(D) and
∇·(νb) = 0. Similarly, the definition (44.5b) implies that for all b ∈ X∗κ−1 ,
the field κ−1b has a weak divergence in L2(D) and ∇·(κ−1b) = 0. Invoking
the integration by parts formula (4.12) and the surjectivity of the trace map

γg : H1(D) → H
1
2 (∂D) then shows that γd(κ−1b) = 0 for all b ∈ X∗κ−1 ,

where γd is the normal trace operator (recall that γd(v) = v|∂D·n if the field
v is smooth).

Let us first state a simple result related to the Helmholtz decomposition
of vector fields in V0 :=H0(curl;D) using the subspaceX0ν (a similar result
is available on H(curl;D) using the subspace X∗κ−1).

Lemma 44.1 (Helmholtz decomposition). The following holds true:

V0 =X0ν ⊕∇M0. (44.6)
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Proof. Let b ∈ V0 and let p ∈ M0 solve (ν∇p,∇q)L2(D) = (νb,∇q)L2(D) for
all q ∈ M0. Our assumptions on ν imply that there is a unique solution to
this problem. Then we set v := b−∇p and observe that v ∈ X0ν . The sum
is direct because if 0 = v + ∇p, then the identity

∫
D
ν∇p·v dx = 0, which

holds true for all p ∈M0 and all v ∈X0ν , implies that ∇p = 0 = v. ⊓⊔

We can now state the main result of this section. This result extends
Lemma 43.3 to heterogeneous domains. Given a smoothness index s > 0, we
set ‖b‖Hs(D) := (‖b‖2

L2(D) + ℓ2sD |b|2
Hs(D))

1
2 , where ℓD is some characteristic

length of D, e.g., ℓD := diam(D).

Lemma 44.2 (Regularity pickup). Let D be a Lipschitz domain in R3. (i)
Assume that the boundary ∂D is connected and that ν is piecewise smooth.
There exist s > 0 and Č > 0 (depending on D and the contrast factor ν♯/♭
but not on ν♭ alone) such that

Čℓ−1
D ‖b‖Hs(D) ≤ ‖∇×b‖L2(D), ∀b ∈X0ν . (44.7)

(ii) Assume that D is simply connected and that κ is piecewise smooth. There
exist s′ > 0 and Č′ > 0 (depending on D and the contrast factor κ♯/♭ but not
on κ♭ alone) such that

Č′ℓ−1
D ‖b‖Hs′(D) ≤ ‖∇×b‖L2(D), ∀b ∈X∗κ−1 . (44.8)

Proof. See Jochmann [259], Bonito et al. [70]. ⊓⊔

Remark 44.3 (Smoothness index). There are some situations where the
smoothness indices s, s′ can be larger than 1

2 . One example is that of isolated
inclusions in an otherwise homogeneous material. We refer the reader to
Ciarlet [121, §5.2] for further insight and examples. ⊓⊔

Lemma 44.2 has two important consequences. First, by restricting the
smoothness index s to zero in (44.7), we obtain the following important sta-
bility result on the curl operator.

Lemma 44.4 (Poincaré–Steklov). Assume that the boundary ∂D is con-
nected and that ν is piecewise smooth. There is Ĉps > 0 (depending on D and
the contrast factor ν♯/♭) such that the following Poincaré–Steklov inequality
holds true:

Ĉpsℓ
−1
D ‖b‖L2(D) ≤ ‖∇×b‖L2(D), ∀b ∈X0ν . (44.9)

The bound (44.9) is what we need to establish a coercivity property on
X0ν that is robust w.r.t. ν♭. Indeed, we have
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ℜ
(
eiθaν,κ(b, b)

)
≥ ν♭‖b‖2L2(D) + κ♭‖∇×b‖2L2(D) ≥ κ♭‖∇×b‖2L2(D)

≥ 1

2
κ♭(‖∇×b‖2L2(D) + Ĉ2

psℓ
−2
D ‖b‖2L2(D))

≥ 1

2
κ♭ℓ

−2
D min(1, Ĉ2

ps)‖b‖2H(curl;D), (44.10)

for all b ∈ X0ν , where we recall that H(curl;D) is equipped with the norm

‖b‖H(curl;D) := (‖b‖2
L2(D)+ ℓ

2
D‖∇×b‖2

L2(D))
1
2 . This shows that the sesquilin-

ear form aν,κ is coercive on X0ν with a coercivity constant depending on the
contrast factor ν♯/♭ but not on ν♭ alone (whereas the coercivity constant on

the larger space V0 is min(ν♭, ℓ
−2
D κ♭) (see (43.13a))).

Let us now examine the consequences of Lemma 44.2 on the Sobolev
smoothness index of A and ∇×A. Owing to (44.7), there is s > 0 s.t.
A ∈ Hs(D). We will see in §44.3 that the embedding Hs(D) →֒ L2(D)
is the compactness property that we need to apply the duality argument and
derive an improved L2-error estimate. Furthermore, the field R := κ∇×A
is in X∗κ−1 (notice in particular that ∇×R = f − νA ∈ L2(D)), so that
we deduce from (44.8) that there is s′ > 0 s.t. R ∈ Hs′(D). In addition,
the material property κ being piecewise smooth, we infer that the following
multiplier property holds true (see [259, Lem. 2] and [70, Prop. 2.1]): There
exists τ > 0 and Cκ−1 s.t.

|κ−1ξ|Hτ′ (D) ≤ Cκ−1 |ξ|Hτ′ (D), ∀ξ ∈Hτ (D), ∀τ ′ ∈ [0, τ ]. (44.11)

Letting s′′ := min(s′, τ) > 0, we conclude that ∇×A ∈Hs′′(D).

44.2 Coercivity revisited for edge elements

In this section, we revisit theH(curl)-error analysis for the approximation of
the weak problem (44.1) using Nédélec (or edge) elements (see Chapters 15
and 19). The key tool we are going to use is a discrete counterpart of the
Poincaré–Steklov inequality (44.9). We consider a shape-regular sequence of
affine meshes (Th)h∈H of D. We assume that D is a Lipschitz polyhedron and
that each mesh covers D exactly.

44.2.1 Discrete Poincaré–Steklov inequality

Let Vh0 be the H0(curl)-conforming space using Nédélec elements of order
k ≥ 0 defined by

Vh0 := P c
k,0(Th) := {bh ∈ P c

k (Th) | bh|∂D×n = 0}. (44.12)

Observe that the Dirichlet condition is enforced strongly in Vh0. The discrete
problem is formulated as follows:
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{
Find Ah ∈ Vh0 such that

aν,κ(Ah, bh) = ℓ(bh), ∀bh ∈ Vh0.
(44.13)

Since it is not reasonable to consider the space {bh ∈ Vh0 | ∇·(νbh) = 0},
because the normal component of νbh may jump across the mesh interfaces,
we are going to consider instead the subspace

Xh0ν := {bh ∈ Vh0 | (νbh,∇mh)L2(D) = 0, ∀mh ∈Mh0}, (44.14)

where Mh0 := P g
k+1,0(Th;C) is conforming in H1

0 (D;C). Note that the poly-
nomial degrees of the finite element spaces Mh0 and Vh0 are compatible
in the sense that ∇Mh0 ⊂ Vh0. Using this property and proceeding as in
Lemma 44.1 proves the following discrete Helmholtz decomposition:

Vh0 =Xh0ν ⊕∇Mh0. (44.15)

Lemma 44.5 (Discrete solution). Let Ah ∈ Vh0 be the unique solution
to (44.13). Then Ah ∈Xh0ν .

Proof. We must show that (νAh,∇mh)L2(D) = 0 for all mh ∈ Mh0. Since
∇mh ∈ ∇Mh0 ⊂ Vh0,∇mh is an admissible test function in (44.13). Recalling
that ∇·f = 0, we infer that

0 = ℓ(∇mh) = aν,κ(Ah,∇mh) = (νAh,∇mh)L2(D),

since ∇×(∇mh) = 0. This completes the proof. ⊓⊔
We now establish a discrete counterpart to the Poincaré–Steklov inequal-

ity (44.9). This result is not straightforward since Xh0ν is not a subspace
of X0ν . The key tool that we are going to invoke is the stable commuting
quasi-interpolation projections from §23.3.3.
Theorem 44.6 (Discrete Poincaré–Steklov). Under the assumptions of
Lemma 44.4, there is a constant Ĉ′

ps > 0 (depending on Ĉps, the polynomial
degree k, the regularity of the mesh sequence, and the contrast factor ν♯/♭, but
not on ν♭ alone) s.t. for all xh ∈Xh0ν and all h ∈ H,

Ĉ′
psℓ

−1
D ‖xh‖L2(D) ≤ ‖∇×xh‖L2(D). (44.16)

Proof. Let xh ∈Xh0ν be a nonzero discrete field. Let φ(xh) ∈M0 := H1
0 (D)

be the solution to the following well-posed Poisson problem:

(ν∇φ(xh),∇m)L2(D) = (νxh,∇m)L2(D), ∀m ∈M0.

Let us define the curl-preserving lifting of xh s.t. ξ(xh) := xh − ∇φ(xh),
and let us notice that ξ(xh) ∈ X0ν . Upon invoking the quasi-interpolation
operators J c

h0 and J d
h0 introduced in §23.3.3, we observe that

xh − J c
h0(ξ(xh)) = J c

h0(xh − ξ(xh)) = J c
h0(∇(φ(xh))) = ∇(J g

h0(φ(xh))),
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where we used that J c
h0(xh) = xh and the commuting properties of J g

h0 and
J c
h0. Since xh ∈Xh0ν , we infer that (νxh,∇(J g

h0(φ(xh))))L2(D) = 0, so that

(νxh,xh)L2(D) = (νxh,xh − J c
h0(ξ(xh)))L2(D) + (νxh,J c

h0(ξ(xh)))L2(D)

= (νxh,J c
h0(ξ(xh)))L2(D).

Multiplying by eiθ, taking the real part, and using the Cauchy–Schwarz in-
equality, we infer that

ν♭‖xh‖2L2(D) ≤ ν♯‖xh‖L2(D)‖J c
h0(ξ(xh))‖L2(D).

The uniform boundedness of J c
h0 on L2(D), together with the Poincaré–

Steklov inequality (44.9) and the identity ∇×ξ(xh) = ∇×xh, implies that

‖J c
h0(ξ(xh))‖L2(D) ≤ ‖J c

h0‖L(L2;L2)‖ξ(xh)‖L2(D)

≤ ‖J c
h0‖L(L2;L2)Ĉ

−1
ps ℓD‖∇×xh‖L2(D),

so that (44.16) holds true with Ĉ′
ps

:= ν−1
♯/♭‖J c

h0‖−1
L(L2;L2)Ĉps. ⊓⊔

Remark 44.7 (Literature). There are many ways to prove the discrete
Poincaré–Steklov inequality (44.16). One route described in Hiptmair [244,
§4.2] consists of invoking subtle regularity estimates from Amrouche et al. [10,
Lem. 4.7]. Another one, which avoids invoking regularity estimates, is based
on an argument by Kikuchi [267] which is often called discrete compactness ;
see also Monk and Demkowicz [304], Caorsi et al. [106]. The proof is not
constructive and is based on an argument by contradiction. The technique
used in the proof of Theorem 44.6, inspired from Arnold et al. [23, Thm. 5.11]
and Arnold et al. [26, Thm. 3.6], is more recent, and uses the stable com-
muting quasi-interpolation projections J c

h and J c
h0. It was already observed

in Boffi [61] that the existence of stable commuting quasi-interpolation oper-
ators would imply the discrete compactness property. ⊓⊔

44.2.2 H(curl)-error analysis

We are now in a position to revisit the error analysis of §43.3. Let us first
show that Xh0ν has the same approximation properties as Vh0 in X0ν .

Lemma 44.8 (Approximation in Xh0ν). There is c, uniform w.r.t. the
model parameters, s.t. for all A ∈ X0ν and all h ∈ H,

inf
xh∈Xh0ν

‖A− xh‖H(curl;D) ≤ c ν♯/♭ inf
bh∈Vh0

‖A− bh‖H(curl;D). (44.17)

Proof. Let A ∈X0ν . We start by computing the Helmholtz decomposition of
J c
h0(A) in Vh0 as stated in (44.15). Let ph ∈Mh0 be the unique solution to the

discrete Poisson problem (ν∇ph,∇qh)L2(D) = (νJ c
h0(A),∇qh)L2(D) for all

qh ∈Mh0. Let us define yh := J c
h0(A)−∇ph. By construction, yh ∈ Xh0ν and
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∇×yh = ∇×J c
h0(A). Hence, ‖∇×(A−yh)‖L2(D) = ‖∇×(A−J c

h0(A))‖L2(D).
Since ∇·(νA) = 0, we also infer that

(ν∇ph,∇ph)L2(D) = (νJ c
h0(A),∇ph)L2(D) = (ν(J c

h0(A)−A),∇ph)L2(D),

which in turn implies that ‖∇ph‖L2(D) ≤ ν♯/♭‖J c
h0(A)−A‖L2(D). The above

argument shows that

‖A− yh‖L2(D) ≤ ‖A− J c
h0(A)‖L2(D) + ‖J c

h0(A) − yh‖L2(D)

≤ ‖A− J c
h0(A)‖L2(D) + ‖∇ph‖L2(D)

≤ (1 + ν♯/♭)‖A− J c
h0(A)‖L2(D).

In conclusion, we have proved that

inf
xh∈Xh0ν

‖A− xh‖H(curl;D) ≤ ‖A− yh‖H(curl;D)

≤ (1 + ν♯/♭)‖A− J c
h0(A)‖H(curl;D).

Invoking the commutation and approximation properties of the quasi-inter-
polation operators, we infer that

‖A− J c
h0(A)‖2H(curl;D) = ‖A− J c

h0(A)‖2L2(D) + ℓ2D‖∇×(A− J c
h0(A))‖2L2(D)

= ‖A− J c
h0(A)‖2L2(D) + ℓ2D‖∇×A− J d

h0(∇×A)‖2L2(D)

≤ c inf
bh∈P c

0 (Th)
‖A− bh‖2L2(D) + c′ℓ2D inf

dh∈P d
0 (Th)

‖∇×A− dh‖2L2(D)

≤ c inf
bh∈P c

0 (Th)
‖A− bh‖2L2(D) + c′ℓ2D inf

bh∈P c
0 (Th)

‖∇×(A− bh)‖2L2(D),

where the last bound follows by restricting the minimization set to∇×P c
0 (Th)

since ∇×P c
0 (Th) ⊂ P d

0 (Th). The conclusion follows readily. ⊓⊔

Theorem 44.9 (H(curl)-error estimate). Let A solve (44.1) and let Ah

solve (44.13). Assume that ∂D is connected and that ν is piecewise smooth.
There is c, which depends on the discrete Poincaré–Steklov constant Ĉ′

ps and
the contrast factors ν♯/♭ and κ♯/♭, s.t. for all h ∈ H,

‖A−Ah‖H(curl;D) ≤ c γ̂ν,κ inf
bh∈Vh0

‖A− bh‖H(curl;D), (44.18)

with γ̂ν,κ := max(1, γν,κ) and the magnetic Reynolds number γν,κ := ν♯ℓ
2
Dκ

−1
♯ .

Proof. Owing to Lemma 44.5, Ah also solves the following problem: Find
Ah ∈ Xh0ν s.t.

aν,κ(Ah,xh) = ℓ(xh), ∀xh ∈ Xh0ν .

Using the discrete Poincaré–Steklov inequality (44.16) and proceeding as
in (44.10), we infer that
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ℜ
(
eiθaν,κ(xh,xh)

)
≥ 1

2
κ♭ℓ

−2
D min(1, (Ĉ′

ps)
2)‖xh‖2H(curl;D),

for all xh ∈ Xh0ν . Hence, the above problem is well-posed. Recalling the
boundedness property (43.13b) of the sesquilinear form aν,κ and invoking
the abstract error estimate (26.18) leads to

‖A−Ah‖H(curl;D) ≤
2max(ν♯, ℓ

−2
D κ♯)

κ♭ℓ
−2
D min(1, (Ĉ′

ps)
2)

inf
xh∈Xh0ν

‖A− xh‖H(curl;D).

We conclude the proof by invoking Lemma 44.8. ⊓⊔

Remark 44.10 (Neumann boundary condition). The above analysis
can be adapted to handle the Neumann condition (κ∇×A)|∂D×n = 0; see
Exercise 44.3. This condition implies that (∇×(κ∇×A))|∂D·n = 0. Moreover,
assuming f|∂D·n = 0 and taking the normal component of the equation
νA +∇×(κ∇×A) = f at the boundary gives A|∂D·n = 0. Since ∇·f = 0,
we also have ∇·(νA) = 0. In other words, we have

A ∈ X∗ν := {b ∈H(curl;D) | (νb,∇m)L2(D) = 0, ∀m ∈M∗}.

The discrete spaces are now Vh := P c
k (Th) and Mh∗ := P g

k+1(Th;C) ∩M∗.
Using Vh for the discrete trial and test spaces, we infer that

Ah ∈ Xh∗ν := {bh ∈ Vh | (νbh,∇mh)L2(D) = 0, ∀mh ∈Mh∗}.

The Poincaré–Steklov inequality (44.16) still holds true provided the assump-
tion that ∂D is connected is replaced by the assumption that D is simply
connected. The error analysis from Theorem 44.9 can be readily adapted. ⊓⊔

44.3 The duality argument for edge elements

Our goal is to derive an improved error estimate in the L2-norm using a
duality argument that invokes a weak control on the divergence. The subtlety
is that, as already mentioned, the setting is nonconforming sinceXh0ν is not a
subspace ofX0ν . We assume in the section that the boundary ∂D is connected
and that the domain D is simply connected. Recalling the smoothness indices
s, s′ > 0 from Lemma 44.2 together with the index τ > 0 from the multiplier
property (44.11) and letting s′′ := min(s′, τ), we have A ∈ Hs(D) and
∇×A ∈Hs′′(D) with s, s′′ > 0. In what follows, we set

σ := min(s, s′′). (44.19)

Let us first start with an approximation result on the curl-preserving lifting
operator ξ : Xh0ν → X0ν defined in the proof of Theorem 44.6. Recall that
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for all xh ∈ Xh0ν , the field ξ(xh) ∈ X0ν is s.t. ξ(xh) := xh −∇φ(xh) with
φ(xh) ∈ H1

0 (D), implying that ∇×ξ(xh) = ∇×xh.

Lemma 44.11 (Curl-preserving lifting). Let s > 0 be the smooth-
ness index introduced in (44.7). There is c, depending on the constant ČD
from (44.7) and the contrast factor ν♯/♭, s.t. for all xh ∈Xh0ν and all h ∈ H,

‖ξ(xh)− xh‖L2(D) ≤ c hsℓ1−sD ‖∇×xh‖L2(D). (44.20)

Proof. Let us set eh := ξ(xh)−xh. We have seen in the proof of Theorem 44.6
that J c

h0(ξ(xh))−xh ∈ ∇Mh0, so that (νeh,J c
h0(ξ(xh))−xh)L2(D) = 0 since

ξ(xh) ∈ X0ν , Mh0 ⊂ M0, and xh ∈ Xh0ν . Since eh = (I − J c
h0)(ξ(xh)) +

(J c
h0(ξ(xh))− xh), we infer that

(νeh, eh)L2(D) = (νeh, (I − J c
h0)(ξ(xh)))L2(D),

thereby implying that ‖eh‖L2(D) ≤ ν♯/♭‖(I − J c
h0)(ξ(xh))‖L2(D). Using the

approximation properties of J c
h0 yields

‖eh‖L2(D) ≤ c ν♯/♭h
s|ξ(xh)|Hs(D),

and we conclude using the bound |ξ(xh)|Hs(D) ≤ ČDℓ
1−s
D ‖∇×xh‖L2(D)

which follows from (44.7) since ξ(xh) ∈X0,ν and ∇×ξ(xh) = ∇×xh. ⊓⊔

Lemma 44.12 (Adjoint solution). Let y ∈X0ν and let ζ ∈ X0ν solve the
(adjoint) problem νζ +∇×(κ∇×ζ) := ν−1

♭ νy. There is c, depending on the

constants Ĉps from (44.9), Č, Č′ from (44.7)-(44.8), and the contrast factors
ν♯/♭, κ♯/♭, and κ♯Cκ−1 , s.t. for all h ∈ H,

|ζ|Hσ(D) ≤ c ν−1
♯ γν,κℓ

−σ
D ‖y‖L2(D), (44.21a)

|∇×ζ|Hσ(D) ≤ c ν−1
♯ γν,κγ̂ν,κℓ

−1−σ
D ‖y‖L2(D). (44.21b)

Proof. Proof of (44.21a). Testing the adjoint problem with e−iθζ leads to
κ♭‖∇×ζ‖2

L2(D) ≤ ν♯/♭‖y‖L2(D)‖ζ‖L2(D). Using the Poincaré–Steklov inequal-

ity (44.9), we can bound ‖ζ‖L2(D) by ‖∇×ζ‖L2(D), and altogether this gives

‖∇×ζ‖L2(D) ≤ κ−1
♭ ν♯/♭Ĉ

−1
ps ℓD‖y‖L2(D). (44.22)

Invoking (44.7) with σ ≤ s yields

|ζ|Hσ(D) ≤ Č−1
D ℓ1−σD ‖∇×ζ‖L2(D) ≤ κ−1

♭ ν♯/♭Č
−1
D Ĉ−1

ps ℓ
2−σ
D ‖y‖L2(D),

which proves (44.21a) since κ−1
♭ ℓ2D = κ♯/♭ν

−1
♯ γν,κ.

Proof of (44.21b). Invoking (44.8) with σ ≤ s′ for b := κ∇×ζ, which is a
member of X∗κ−1 , we infer that
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Č′
Dℓ

−1+σ
D |b|Hσ(D) ≤ ‖∇×b‖L2(D) = ‖∇×(κ∇×ζ)‖L2(D)

≤ ν♯/♭‖y‖L2(D) + ν♯‖ζ‖L2(D),

by definition of the adjoint solution ζ and the triangle inequality. Invok-
ing again the Poincaré–Steklov inequality (44.9) to bound ‖ζ‖L2(D) by

‖∇×ζ‖L2(D) and using (44.22) yields ‖ζ‖L2(D) ≤ κ−1
♭ ν♯/♭Ĉ

−2
ps ℓ

2
D‖y‖L2(D).

As a result, we obtain

Č′
Dℓ

−1+σ
D |b|Hσ(D) ≤ ν♯/♭(1 + ν♯κ

−1
♭ Ĉ−2

ps ℓ
2
D)‖y‖L2(D),

and this concludes the proof of (44.21b) since |∇×ζ|Hσ(D) ≤ Cκ−1 |b|Hσ(D)

owing to the multiplier property (44.11) and σ ≤ τ . ⊓⊔

We can now state the main result of this section.

Theorem 44.13 (Improved L2-error estimate). Let A solve (44.1) and
let Ah solve (44.13). There is c, depending on the constants Ĉps from (44.9),
Č, Č′ from (44.7)-(44.8), and the contrast factors ν♯/♭, κ♯/♭, and κ♯Cκ−1 , s.t.
for all h ∈ H,

‖A−Ah‖L2(D) ≤ c inf
vh∈Vh0

(‖A− vh‖L2(D) + γ̂3ν,κh
σℓ−σD ‖A− vh‖H(curl)).

Proof. In this proof, we use the symbol c to denote a generic positive constant
that can have the same parametric dependencies as in the above statement.
Let vh ∈ Xh0ν and let us set xh := Ah − vh. We observe that xh ∈ Xh0ν .
Let ξ(xh) be the image of xh by the curl-preserving lifting operator and let
ζ ∈ X0ν be the solution to the following adjoint problem:

νζ +∇×(κ∇×ζ) := ν−1
♭ νξ(xh).

(1) Let us first bound ‖ξ(xh)‖L2(D) from above. Recalling that ξ(xh)−xh =
−∇φ(xh) and that (νξ(xh), ξ(xh)− xh)L2(D) = −(νξ(xh),∇φ(xh))L2(D) =
0, we infer that

(ξ(xh), νξ(xh))L2(D) = (xh, νξ(xh))L2(D)

= (A− vh, νξ(xh))L2(D) + (Ah −A, νξ(xh))L2(D)

= (A− vh, νξ(xh))L2(D) + ν♭aν,κ(Ah −A, ζ)
= (A− vh, νξ(xh))L2(D) + ν♭aν,κ(Ah −A, ζ − J c

h0(ζ)),

where we used the Galerkin orthogonality property on the fourth line. Since
we have |aν,κ(a, b)| ≤ κ♯ℓ

−2
D γ̂ν,κ‖a‖H(curl;D)‖b‖H(curl;D) by (43.13b), we

infer from the commutation and approximation properties of the quasi-
interpolation operators that
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‖ξ(xh)‖2L2(D) ≤ ν♯/♭‖A− vh‖L2(D)‖ξ(xh)‖L2(D)

+ c κ♯ℓ
−2
D γ̂ν,κh

σ‖A−Ah‖H(curl;D)(|ζ|Hσ(D) + ℓD|∇×ζ|Hσ(D)).

Owing to the bounds from Lemma 44.12 on the adjoint solution with y :=
ξ(xh), we conclude that

‖ξ(xh)‖L2(D) ≤ ν♯/♭(‖A− vh‖L2(D) + c γ̂2ν,κh
σℓ−σD ‖A−Ah‖H(curl;D)).

(2) The triangle inequality and the identity A −Ah = A − vh − xh imply
that

‖A−Ah‖L2(D) ≤ ‖A− vh‖L2(D) + ‖ξ(xh)− xh‖L2(D) + ‖ξ(xh)‖L2(D).

We use Lemma 44.11 to bound the second term on the right-hand side as

‖ξ(xh)− xh‖L2(D) ≤ c hσℓ1−σD ‖∇×xh‖L2(D)

≤ c hσℓ1−σD (‖∇×(A− vh)‖L2(D) + ‖∇×(A−Ah)‖L2(D)),

and we use (44.18) to infer that ‖A−Ah‖H(curl;D) ≤ cγ̂ν,κ‖A−vh‖H(curl;D).
For the third term on the right-hand side, we use the bound on ‖ξ(xh)‖L2(D)

from Step (1). We conclude by taking the infimum over vh ∈ Xh0ν , and we
use Lemma 44.8 to extend the infimum over Vh0. ⊓⊔
Remark 44.14 (Literature). The construction of the curl-preserving lift-
ing operator invoked in the proof of Theorem 44.6 and Theorem 44.13 is done
in Monk [302, pp. 249-250]. The statement in Lemma 44.11 is similar to that
in Monk [303, Lem. 7.6], but the present proof is simplified by the use of
the commuting quasi-interpolation operators. The curl-preserving lifting of
A − Ah is invoked in Arnold et al. [23, Eq. (9.9)] and denoted therein by
ψ. The estimate of ‖ψ‖L2(D) given one line above [23, Eq. (9.11)] is simi-
lar to (44.3) and is obtained by invoking the commuting quasi-interpolation
operators constructed in [23, §5.4] for natural boundary conditions. Note
that contrary to the above reference, we invoke the curl-preserving lifting of
Ah−vh instead ofA−Ah and make use of Lemma 44.11, which simplifies the
argument. Furthermore, the statement of Theorem 44.13 is similar to that of
Zhong et al. [405, Thm. 4.1], but the present proof is simpler and does not
require the smoothness index σ to be larger than 1

2 . ⊓⊔

Exercises

Exercise 44.1 (Gradient). Let φ ∈ H1
0 (D). Prove that ∇φ ∈H0(curl;D)

Exercise 44.2 (Vector potential). Let v ∈ L2(D) with (νv,∇mh)L2(D) =
0 for all mh ∈Mh0. Prove that (νv,wh)L2(D) = (∇×zh,∇×wh)L2(D) for all
wh ∈ Vh0, where zh solves a curl-curl problem on Xh0ν .
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Exercise 44.3 (Neumann condition). Recall Remark 44.10. Assume that
D is simply connected so that there is Ĉps > 0 such that Ĉpsℓ

−1
D ‖b‖L2(D) ≤

‖∇×b‖L2(D) for all b ∈ X∗ν . Prove that there is Ĉ′
ps > 0 such that

Ĉ′
psℓ

−1
D |bh‖L2(D) ≤ ‖∇×bh‖L2(D) for all bh ∈ Xh∗ν. (Hint : adapt the proof

of Theorem 44.6 using J c
h .)

Exercise 44.4 (Discrete Poincaré–Steklov for ∇·). Let ν be as in §44.1.1.
Let Y0ν := {v ∈ H0(div;D) | (νv,∇×φ)L2(D) = 0, ∀φ ∈ H0(curl;D)} and

accept as a fact that there is Ĉps > 0 such that Ĉpsℓ
−1
D ‖v‖L2(D) ≤ ‖∇·v‖L2(D)

for all v ∈ Y0ν . Let k ≥ 0 and consider the discrete space Yh0ν := {vh ∈
P d
k,0(Th) | (νvh,∇×φh)L2(D) = 0, ∀φh ∈ P c

k,0(Th;C)}. Prove that there is

Ĉ′
ps > 0 such that Ĉ′

ps‖vh‖L2(D) ≤ ℓD‖∇·vh‖L2(D) for all vh ∈ Yh0ν . (Hint :
adapt the proof of Theorem 44.6 using J d

h0.)


