
Part X, Chapter 46

Symmetric elliptic eigenvalue problems

The three chapters composing Part X deal with the finite element approxi-
mation of the spectrum of elliptic differential operators. Ellipticity is crucial
here to provide a compactness property that guarantees that the spectrum of
the operators in question is well structured. We start by recalling fundamen-
tal results on compact operators and symmetric operators in Hilbert spaces.
Then, we study the finite element approximation of the spectrum of compact
operators. We first focus on the H1-conforming approximation of symmet-
ric operators, then we treat the (possibly nonconforming) approximation of
nonsymmetric operators.

The present chapter contains a brief introduction to the spectral theory of
compact operators together with illustrative examples. Eigenvalue problems
occur when analyzing the response of devices, buildings, or vehicles to vibra-
tions, or when performing the linear stability analysis of dynamical systems.

46.1 Spectral theory

We briefly recall in this section some essential facts regarding the spectral
theory of linear operators. Most of the proofs are omitted since the material is
classical and can be found in Brezis [89, Chap. 6], Chatelin [116, pp. 95-120],
Dunford and Schwartz [179, Part I, pp. 577-580], Lax [278, Chap. 21&32],
Kreyszig [271, pp. 365-521]. In the entire section, L is a complex Banach
space, we use the shorthand notation L(L) := L(L;L), and IL denotes the
identity operator in L.

46.1.1 Basic notions and examples

Definition 46.1 (Resolvent, spectrum, eigenvalues, eigenvectors).
Let T ∈ L(L). The resolvent set of T , ρ(T ), and the spectrum of T , σ(T ),
are subsets of C defined as follows:
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ρ(T ) := {µ ∈ C | µIL − T is bijective}, (46.1a)

σ(T ) := C\ρ(T ) = {µ ∈ C | µIL − T is not bijective}. (46.1b)

(Since L is a Banach space, µ ∈ ρ(T ) iff (µIL−T )−1 ∈ L(L).) The spectrum
of T is decomposed into the following disjoint union:

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ), (46.2)

where the point spectrum, σp(T ), the continuous spectrum, σc(T ), and the
residual spectrum, σr(T ), are defined as follows:

σp(T ) := {µ ∈ C | µIL − T is not injective},
σc(T ) := {µ ∈ C | µIL − T is injective, not surjective, im(µIL − T ) = L},
σr(T ) := {µ ∈ C | µIL − T is injective, not surjective, im(µIL − T ) 6= L}.

Whenever σp(T ) is nonempty, members of σp(T ) are called eigenvalues, and
the nonzero vectors in ker(µIL − T ) are called eigenvectors associated with
µ, i.e., 0 6= z ∈ L is an eigenvector associated with µ iff T (z) = µz.

Example 46.2 (Finite dimension). If L is finite-dimensional, ker(µIL −
T ) 6= {0} iff (µIL − T ) is not invertible. In this case, the spectrum of T only
consists of eigenvalues, i.e., σ(T ) = σp(T ) and σc(T ) = σr(T ) = ∅. ⊓⊔

Example 46.3 (Volterra operator). Let L := L2((0, 1);C) and let us

identify L and L′ by setting 〈l′, l〉L′,L :=
∫ 1

0
l′(x)l(x) dx. Let T : L → L

be s.t. T (f)(x) :=
∫ x
0
f(t) dt for a.e. x ∈ (0, 1). We have ρ(T ) = C\{0},

σp(T ) = ∅, σc(T ) = {0}, and σr(T ) = ∅; see Exercise 46.4. ⊓⊔

Theorem 46.4 (Spectral radius). Let T ∈ L(L). (i) The subsets ρ(T ) and
σ(T ) are both nonempty. (ii) σ(T ) is a compact subset of C. (iii) Let

r(T ) := max
µ∈σ(T )

|µ| (46.3)

be the spectral radius of T . Then

r(T ) = lim
n→∞

‖T n‖
1
n

L(L) ≤ ‖T ‖L(L). (46.4)

Proof. See Kreyszig [271], Thm. 7.5.4 for (i), Thm. 7.3.4 for (ii), and
Thm. 7.5.5 for (iii). ⊓⊔

Remark 46.5 ((46.4)). The identity r(T ) = limn→∞ ‖T n‖
1
n

L(L) is often

called Gelfand’s formula (see [213, p. 11]). The inequality limn→∞ ‖T n‖
1
n

L(L) ≤
‖T ‖L(L) may sometimes be strict. For instance, r(T ) = 0 if σ(T ) = {0}, but it
can happen in that case that ‖T ‖L(L) > 0. A simple example is the operator
T : R2 → R2 s.t. T (X) := AX with A := ( 0 1

0 0 ). ⊓⊔
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Let us consider more specifically the eigenvalues of T . Assume that
σp(T ) 6= ∅ and let µ ∈ σp(T ). Let us setKi := ker(µIL−T )i for all i ∈ N\{0}.
One readily verifies that the spaces Ki are invariant under T . Moreover,
K1 ⊂ K2 . . ., and if there is an integer j ≥ 1 such that Kj = Kj+1, then
Kj = Kj′ for all j

′ > j.

Definition 46.6 (Ascent, algebraic and geometric multiplicity). As-
sume that σp(T ) 6= ∅ and let µ ∈ σp(T ). We say that µ has finite ascent if
there is j ∈ N \ {0} such that Kj = Kj+1, and the smallest integer satisfy-
ing this property is called ascent of µ and is denoted by α(µ) (or simply α).
Moreover, if Kα is finite-dimensional, then the algebraic multiplicity of µ,
say m, and the geometric multiplicity of µ, say g, are defined as follows:

m := dim(Kα) ≥ dim(K1) =: g. (46.5)

Whenever α ≥ 2, nonzero vectors in Kα are called generalized eigenvectors.

If the eigenvalue µ has finite ascent α and if Kα is finite-dimensional, then
elementary arguments from linear algebra show that α+g−1 ≤ m ≤ αg (note
that α = 1 iffm = g). This inequalities are proved by showing that g1+i−1 ≤
gi ≤ gi−1 + g1 for all i ∈ {1:α} with gi := dim(Ki); see Exercise 46.2. All
the eigenvalues have a finite ascent and a finite multiplicity if L is finite-
dimensional, or if the operator T is compact (see Theorem 46.14(iv)), but
this may not be the case in general.

Example 46.7 (Ascent, algebraic and geometric multiplicity). To
illustrate Definition 46.6 in a finite-dimensional setting, we consider the op-
erator T : R4 → R4 defined by T (X) := AX for all X ∈ L := R4, where

A :=




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 .

Then µ = 1 is the only eigenvalue of T . Since

I4 − A =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 , (I4 − A)2 =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 , (I4 − A)3 = O4,

we have ker(IL − T ) = span{e1, e4}, ker(IL − T )2 = span{e1, e2, e4}, and
ker(IL − T )3 = ker(IL − T )4 = span{e1, e2, e3, e4}, where {e1, e2, e3, e4} is
the canonical Cartesian basis of R4. Thus, the ascent of µ = 1 is α = 3,
its algebraic multiplicity is m = dim(ker(IL − T )3) = 4, and its geometric
multiplicity is g = dim(ker(IL − T )) = 2. Notice that α + g − 1 = 4 = m ≤
6 = αg. ⊓⊔
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Let us finally explore the relation between the spectrum of T and that of
its adjoint T ∗ : L′ → L′ s.t. 〈T ∗(l′), l〉L′,L := 〈l′, T (l)〉L′,L for all l ∈ L and
all l′ ∈ L′ (see Definition C.29). Recall that we have adopted the convention
that dual spaces are composed of antilinear forms (see Definition A.11 and
§C.4), so that (λT )∗ = λT ∗ for all λ ∈ C. (The reader should be aware that
a usual convention in the mathematical physics literature is that dual spaces
are composed of linear forms, in which case (λT )∗ = λT ∗.) Moreover, for any
subset A ⊂ C, we denote conj(A) := {µ ∈ C | µ ∈ A}.

Lemma 46.8 (Spectrum of T ∗). Let T ∈ (L). The following holds true:

σ(T ∗) = conj(σ(T )), σr(T ) ⊂ conj(σp(T
∗)) ⊂ σr(T ) ∪ σp(T ). (46.6)

Proof. Corollary C.52 implies that µIL − T is not bijective iff (µIL − T )∗ =
µIL′ −T ∗ is not bijective. This proves the first equality. See Exercise 46.1 for
the proof of the other two inclusions. ⊓⊔

Example 46.9 (Left and right shifts). Let p ∈ (1,∞) and let ℓp be the
Banach space composed of the complex-valued sequences x := (xn)n∈N s.t.∑

n∈N
|xn|p <∞. We can identify the dual space of ℓp with ℓp

′

, where 1
p+

1
p′ =

1, by setting 〈x, y〉ℓp′ ,ℓp :=
∑
n∈N

xnyn with x := (xn)n∈N and y := (yn)n∈N.

Consider the left shift operator L : ℓp
′ → ℓp

′

defined by L(x) := (x1, x2, . . .)
and the right shift operator R : ℓp → ℓp defined by R(x) := (0, x0, x1, . . .).
Then 〈x,R(y)〉ℓp′ ,ℓp :=

∑
n≥1 xnyn−1 =

∑
n≥0 xn+1yn = 〈L(x), y〉ℓp′ ,ℓp . This

shows that L = R∗. Similarly, R = L∗ once the dual of ℓp
′

is identified with
ℓp. Observe that ‖R‖L(ℓp;ℓp) = ‖L‖L(ℓp′ ;ℓp′) = 1, so that both σ(R) and σ(L)

are contained in the unit disk {λ ∈ C | |λ| ≤ 1} owing to Theorem 46.4(iii).
Notice that 0 6∈ σp(R) since R is injective. Assume that there exists µ ∈ σp(R),
i.e., there is a nonzero x ∈ ℓp s.t. (µx0, µx1 − x0, µx2 − x1, . . .) = 0. Then
xn = 0 for all n ∈ N, i.e., x = 0, which is absurd (recall that µ 6= 0).
Hence, σp(R) = ∅. Lemma 46.8 in turn implies that σr(L) = ∅ because L∗ =
R. Similarly, Lemma 46.8 implies that σr(R) ⊂ conj(σp(L)) ⊂ σr(R), i.e.,
σr(R) = conj(σp(L)). Assuming that µ ∈ σp(L), there is a nonzero vector

x ∈ ℓp
′

s.t. L(x) = µx, which means that x = x0(1, µ, µ
2, . . .). This vector is

in ℓp
′

iff |µ| < 1. Hence, σp(L) = {µ ∈ C | |µ| < 1}. Since σp(L) is invariant
under complex conjugation, we conclude that σr(R) = σp(L). Finally, since
σ(L) is closed (see Theorem 46.4(ii)) and ‖L‖L(ℓp′ ;ℓp′) = 1, we have σ(L) ⊂
{µ ∈ C | |µ| ≤ 1}. But σ(L) must also contain the closure in C of σp(L) =
{µ ∈ C | |µ| < 1}. Hence, σ(L) = {µ ∈ C | |µ| ≤ 1}. This, in turn, implies
that σc(L) = {µ ∈ C | |µ| = 1}. In conclusion, we have established that

σp(L) = {µ ∈ C | |µ| < 1} = σr(R),

σc(L) = {µ ∈ C | |µ| = 1} = σc(R),

σr(L) = ∅ = σp(R). ⊓⊔
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46.1.2 Compact operators in Banach spaces

Since we are going to focus later our attention on the approximation of the
eigenvalues and eigenspaces of compact operators, we now recall important
facts about such operators. Given two Banach spaces V, W, we say that
T ∈ L(V ;W ) is compact if T maps the unit ball of V into a relatively
compact set inW (see Definition A.17). Let us also recall (see Theorem A.21)
that if there exists a sequence (Tn)n∈N of operators in L(V ;W ) of finite
rank s.t. limn→∞ ‖T − Tn‖L(V ;W ) = 0, then T is compact. Conversely, if
W is a Hilbert space and T ∈ L(V ;W ) is a compact operator, then there
exists a sequence of operators in L(V ;W ) of finite rank, (Tn)n∈N, such that
limn→∞ ‖T − Tn‖L(V ;W ) = 0.

Example 46.10 (Rellich–Kondrachov). For every bounded Lipschitz do-
mainD, the Rellich–Kondrachov theorem states that the injectionW s,p(D) →֒
Lq(D) is compact for all q ∈ [1, pd

d−sp ) if sp ≤ d (see Theorem 2.35). ⊓⊔

Example 46.11 (Hilbert–Schmidt operators). Let K ∈ L2(D×D;C),
where D is a bounded set in Rd. Then the Hilbert–Schmidt operator T :
L2(D;C) → L2(D;C) s.t. T (f)(x) :=

∫
D
f(y)K(x, y) dy a.e. in D is compact

(see Brezis [89, Thm. 6.12]). Note that T ∗(f)(x) :=
∫
D f(y)K(y, x) dy. ⊓⊔

Example 46.12 (Identity). The identity Iℓp : ℓp → ℓp, p ∈ [1,∞], is
not compact. Indeed, consider the sequence en := (δmn)m∈N. For all N ≥ 0

and n,m ≥ N, n 6= m, we have ‖en − em‖ℓp = 2
1
p for all p ∈ [1,∞), and

‖en − em‖ℓ∞ = 1. Hence, one cannot extract any Cauchy subsequence in ℓp

from (en)n∈N. ⊓⊔

Let us now state some important results on compact operators.

Theorem 46.13 (Fredholm alternative). Let T ∈ L(L) be a compact
operator. The following properties hold true for all µ ∈ C\{0}:
(i) µIL − T is injective iff µIL − T is surjective.
(ii) ker(µIL − T ) is finite-dimensional.
(iii) im(µIL − T ) is closed, i.e., im(µIL − T ) = ker(µIL′ − T ∗)⊥.
(iv) dim ker(µIL − T ) = dimker(µIL′ − T ∗).

Proof. See Brezis [89, Thm. 6.6]. ⊓⊔

The Fredholm alternative usually refers to Item (i), which implies that
every nonzero member of the spectrum of T is an eigenvalue when T is
compact. The key result for compact operators is the following theorem.

Theorem 46.14 (Spectrum of compact operators). Let T ∈ L(L) be a
compact operator with dim(L) = ∞. The following holds true:

(i) 0 ∈ σ(T ).
(ii) σ(T )\{0} = σp(T )\{0}.
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(iii) One of the following three cases holds: (1) σ(T ) = {0}; (2) σ(T )\{0} is
a finite set; (3) σ(T )\{0} is a sequence converging to 0.

(iv) Any µ ∈ σ(T )\{0} has a finite ascent α, and the space ker(µIL−T )α is
finite-dimensional, i.e., µ has finite algebraic and geometric multiplicity.

(v) µ ∈ σ(T ) iff µ ∈ σ(T ∗), i.e., σ(T ∗) = conj(σ(T )). The ascent, algebraic
and geometric multiplicities of µ ∈ σ(T )\{0} and of µ are equal.

Proof. See Brezis [89, Thm. 6.8], Lax [278, p. 238], or Kreyszig [271, Thm. 8.3.1
& 8.4.4] for (i)-(iii) and [271, Thm. 8.4.3] for (iv)-(v). ⊓⊔

The first two items in Theorem 46.14 imply that either T is not injective
(i.e., 0 ∈ σp(T )) and then σ(T ) = σp(T ) (and σc(T ) = σr(T ) = ∅), or T is
injective (i.e., 0 6∈ σp(T )) and then σ(T ) = σp(T ) ∪ {0} (and σc(T ) = {0},
σr(T ) = ∅ or σr(T ) = {0}, σc(T ) = ∅).

46.1.3 Symmetric operators in Hilbert spaces

In this section, L denotes a complex Hilbert space. The reader is invited
to review §C.3 for basic facts about Hilbert spaces. Let T ∈ L(L). The
(Hermitian) transpose of T , say TH ∈ L(L), is defined by setting

(TH(w), v)L := (w, T (v))L, ∀v, w ∈ L. (46.7)

Let (Jrf
L )−1 : L′ → L be the Riesz–Fréchet representation operator (see

Theorem C.24), that is, ((Jrf
L )−1(l′), l)L := 〈l′, l〉L′,L for all l′ ∈ L′ and

l ∈ L. We recall that Jrf
L and (Jrf

L )−1 are linear operators because we have
chosen dual spaces to be composed of antilinear forms (see Exercise 46.5 and
Remark C.26).

Lemma 46.15 (Transpose and adjoint). Let T ∈ L(L). We have TH =
(Jrf
L )−1 ◦ T ∗ ◦ Jrf

L , and

σp(T
∗) = σp(T

H), σc(T
∗) = σc(T

H), σr(T
∗) = σr(T

H). (46.8)

Finally, if the duality paring is identified with the inner product of L, i.e., if
L and L′ are identified, we have TH = T ∗.

Proof. The identities ((Jrf
L )−1T ∗(l′), l)L = 〈T ∗(l′), l〉L′,L = 〈l′, T (l)〉L′,L =

((Jrf
L )−1(l′), T (l))L show that TH = (Jrf

L )−1 ◦ T ∗ ◦ Jrf
L . This proves the first

assertion. To prove (46.8), we observe that for all µ ∈ C, we have µIL′ −T ∗ =
µIL′ −Jrf

L ◦TH◦(Jrf
L )−1 = Jrf

L ◦(µIL−TH)◦(Jrf
L )−1. The assertion (46.8) on

the spectrum follows readily. Finally, if L and L′ are identified, Jrf
L becomes

the identity operator so that TH = T ∗. ⊓⊔

Definition 46.16 (Symmetric operator). Let T ∈ L(L). We say that T
is (Hermitian) symmetric if T = TH.
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Theorem 46.17 (Spectrum, spectral radius, ascent). Let T ∈ L(L) be
a symmetric operator. The following holds true: (i) σ(T ) ⊂ R, σr(T ) = ∅,
and

{a, b} ⊂ σ(T ) ⊂ [a, b], (46.9)

with a := infv∈L,‖v‖L=1(T (v), v)L and b := supv∈L,‖v‖L=1(T (v), v)L. (ii)
‖T ‖L(L) = r(T ) = max(|a|, |b|). (iii) The ascent of any µ ∈ σp(T ) is equal to
1, i.e., every generalized eigenvector is an eigenvector, and if T is compact,
the algebraic multiplicity and the geometric multiplicity of µ are equal.

Proof. See Lax [278, p. 356], Kreyszig [271, §9.2], and Exercise 46.6 for a
proof of (i). See Exercise 46.6(iii) for a proof of (iii). ⊓⊔

Corollary 46.18 (Characterization of σ(T )). Let T ∈ L(L) be a symmet-
ric operator. Then µ ∈ σ(T ) iff there is a sequence (vn)n∈N in L such that
‖vn‖L = 1 for all n ∈ N and ‖T (vn)− µvn‖L → 0 as n→ ∞.

Proof. Identifying L and L′, we apply Corollary C.50 which says that (µIL−
T ) is not bijective iff there exists a sequence (vn)n∈N in L such that ‖vn‖L = 1
and ‖µvn − T (vn)‖L ≤ 1

n+1 . ⊓⊔

For the reader’s convenience, we now recall the notion of Hilbert basis in
a separable Hilbert space (separability is defined in Definition C.8).

Definition 46.19 (Hilbert basis). Let L be a separable Hilbert space. A
sequence (en)n∈N in L is said to be a Hilbert basis of L if it satisfies the
following two properties:

(i) (em, en)L = δmn for all m,n ∈ N.
(ii) The linear space composed of all the finite linear combinations of the

vectors in (en)n∈N is dense in L.

Not every Hilbert space is separable, but all the Hilbert spaces encountered
in this book are separable (or by default are always assumed to be separable).

Lemma 46.20 (Pareseval). Let L be a separable Hilbert space and let
(en)n∈N be a Hilbert basis of L. For all u ∈ L, set un :=

∑
k∈{0:n}(u, ek)Lek.

The following holds true:

lim
n→∞

‖u− un‖L = 0 and ‖u‖2L =
∑

k∈N

|(u, ek)L|2. (46.10)

Conversely, let (αn)n∈N be a sequence in ℓ2(C) and set uα,n :=
∑

k∈{0:n} αkek.
Then the sequence (uα,n)n∈N converges to some uα in L such that (uα, en)V =
αn for all n ∈ N, and we have ‖uα‖2L = limn→∞

∑
k∈{0:n} α

2
k.

Proof. See Brezis [89, Cor. 5.10]. ⊓⊔
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Theorem 46.21 (Symmetric compact operator). Let L be a separable
Hilbert space and let T ∈ L(L) be a symmetric compact operator. Then there
exists a Hilbert basis of L composed of eigenvectors of T .

Proof. See [89, Thm. 6.11]. ⊓⊔

The above results mean that the eigenvectors of a symmetric compact
operator T form a sequence (vn)n∈N s.t. (vm, vn)L = δmn for all m,n ∈ N.
Moreover, for all u ∈ L, letting αn := (u, vn)L and un :=

∑
k∈{0:n} αkvk, the

sequence (un)n∈N converges to u in L and we have ‖u‖2L =
∑
k∈N

|αk|2.

46.2 Introductory examples

We review in this section some typical examples that give rise to an eigenvalue
problem, and we illustrate some of the concepts introduced in §46.1.

46.2.1 Example 1: Vibrating string

Consider a vibrating string of linear density ρ, length ℓ, attached at x = 0 and
x = ℓ, and maintained under tension with the force τ . Let us set D := (0, ℓ),
J := (0, Tmax ), Tmax > 0, and denote by u : D×J → R the displacement
of the string in the direction orthogonal to the x-axis. Denoting by u0(x)
and u1(x) the initial position and the initial velocity (i.e., the time derivative
of the displacement), the displacement of the string can be modeled by the
linear wave equation

∂ttu(x, t)− c2∂xxu(x, t) = 0 in D×J, (46.11a)

u(0, t) = 0, u(ℓ, t) = 0 in J, (46.11b)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in D, (46.11c)

where the wave speed is c := ( τρ )
1
2 . The method of the separation of variables

gives the following representation of the solution:

u(x, t) =
∑

n≥1

(αn cos(ωnt) + βn sin(ωnt))ψn(x), (46.12)

with ωn := cλ
1
2
n , λn := n2π2

ℓ2 , ψn(x) := sin(nπ xℓ ), αn := 2
ℓ

∫ ℓ
0
u0(x)ψn(x) dx,

and βn := 2
cnπ

∫ ℓ
0 u1(x)ψn(x) dx. A remarkable fact is that for all n ≥ 1,

(λn, ψn) is an eigenpair for the Laplace eigenvalue problem

−∂xxψn(x) = λnψn(x), ψn(0) = 0, ψn(ℓ) = 0. (46.13)
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The eigenfunctions ψn are called normal modes. In musical language, they are

called harmonics of the string. Note that αn =
∫ ℓ
0
u0(x)ψn(x) dx/

∫ ℓ
0
ψ2
n(x) dxand

ωnβn =
∫ ℓ
0 u1(x)ψn(x) dx/

∫ ℓ
0 ψ

2
n(x) dx.

We say that (46.13) is the spectral problem associated with the vibrating
string. This problem can be reformulated in the following weak form:

{
Find ψ ∈ H1

0 (D)\{0} and λ ∈ R such that∫
D ∂xψ∂xw dx = λ

∫
D ψw dx, ∀w ∈ H1

0 (D).
(46.14)

Let L := L2(D) and let T : L → L be defined so that for all f ∈ L,
T (f) ∈ H1

0 (D) solves
∫
D
∂x(T (f))∂xw dx :=

∫
D
fw dx for all w ∈ H1

0 (D).
The operator T is compact since the injection H1

0 (D) →֒ L2(D) is com-
pact owing to the Rellich–Kondrachov theorem. This compactness prop-
erty will be important for approximation purposes. Upon observing that∫
D fT (g) dx =

∫
D ∂x(T (f))∂x(T (g)) dx =

∫
D T (f)g dx, we infer that T is

symmetric according to Definition 46.16. Owing to Theorem 46.17, all the
eigenvalues of T are real and σr(T ) = 0. According to Theorem 46.14, the
eigenvalues of T are well separated and form a sequence that goes to 0.
Note that T is injective, that is, 0 is not an eigenvalue. According to The-
orem 46.14, this means that σc(T ) = {0}. Let (µ, ψ) be an eigenpair of T .
Then µ

∫
D
∂xψ∂xw dx =

∫
D
∂x(T (ψ))∂xw dx =

∫
D
ψw dx. Hence, (µ−1, ψ)

solves (46.14). Conversely, one readily sees that if (λ, ψ) solves (46.14), then
(λ−1, ψ) is an eigenpair of T . Thus, we have established that (λ, ψ) solves
(46.14) iff (λ−1, ψ) is an eigenpair of T . Finally, Theorem 46.21 asserts that
there exists a Hilbert basis of L consisting of eigenvectors of T , and the basis
in question is ((2ℓ )

1
2ψn)n≥1.

46.2.2 Example 2: Vibrating drum

Consider a two-dimensional elastic homogeneous membrane occupying at rest
the domain D ⊂ R2 and attached to a rigid frame on ∂D, as shown in
Figure 46.1. We assume that D is embedded in R3 and denote by ez the
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Fig. 46.1 Vibrating membrane attached to a rigid frame. Left: reference configuration D,
externally applied load f , and equilibrium displacement u. Right: one normal mode.

third direction. Assume that the membrane is of uniform thickness, has area
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density ρ, and that the tension tensor in the membrane, t, is uniform and
isotropic, i.e., it is of the form t = τI2 for some positive real number τ (force
per unit surface). Consider a time-dependent load f(x, t) := ρg(x) cos(ωt)
with angular frequency ω for all (x, t) ∈ D×J with J := (0, Tmax ), Tmax >
0. Under the small strain assumption, the time-dependent displacement of
the membrane in the ez direction, u : D×J → R, is modeled by the two-
dimensional wave equation

∂ttu− c2∆u = g(x) cos(ωt) in D×J, (46.15a)

u(·, t)|∂D = 0 in J, (46.15b)

u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) in D, (46.15c)

where the wave speed is c := ( τρ )
1
2 . As in §46.2.1, the solution to this problem

can be expressed in terms of the normal modes (eigenmodes) of the mem-
brane, (λn, ψn)n≥1, which satisfy

−∆ψn = λnψn in D, ψn|∂D = 0. (46.16)

Setting ωn := cλ
1
2
n , a straightforward calculation shows that if ω 6∈ {ωn}n≥1,

u(x, t) =
∑

n≥1

{
αn cos(ωnt)+βn sin(ωnt)+

γn
2

sin
(
ω−ωn

2 t
)

ω−ωn
2

sin
(
ω+ωn

2 t
)

ω+ωn
2

}
ψn(x),

where αn := (u0, ψn)L2(D)/‖ψn‖2L2(D), ωnβn := (u1, ψn)L2(D)/‖ψn‖2L2(D),

γn := (g, ψn)L2(D)/‖ψn‖2L2(D). As the forcing angular frequency ω gets close

to one of the ωn’s, a resonance phenomenon occurs. When ω = ωn, |u(x, t)|
grows linearly in time like t| sin(ωnt)|.

The spectral problem associated with the vibrating drum can be rewritten
in weak form as follows:

{
Find ψ ∈ H1

0 (D)\{0} and λ ∈ R such that∫
D∇ψ·∇w dx = λ

∫
D ψw dx, ∀w ∈ H1

0 (D).
(46.17)

If the tension tensor t in the membrane is not uniform and/or not isotropic
(think of a membrane made of composite materials), and if the area density
ρ is not uniform, the above spectral problem takes the following form:

{
Find ψ ∈ H1

0 (D)\{0} and λ ∈ R such that∫
D(t∇ψ)·∇w dx = λ

∫
D ρψw dx, ∀w ∈ H1

0 (D).
(46.18)

By proceeding as in §46.2.1 and under reasonable assumptions on t and ρ,
one can show that the solution operator associated with (46.18) is symmetric
and compact from L2(D) to L2(D). Hence, the eigenvalues associated with
the eigenvalue problem (46.18) are countable, isolated, and grow to infinity.
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46.2.3 Example 3: Stability analysis of PDEs

It is common that one has to study the stability of physical systems modeled
by PDEs. For instance, the following nonlinear reaction-diffusion equation
(sometimes referred to as the Kolmogorov–Petrovsky–Piskounov equation):

∂tu−∆g(u)− f(u) = 0 in D×J, (46.19)

models the spreading of biological populations when f(u) := u(1 − u), the
Rayleigh–Benard convection when f(u) := u(1 − u2), and combustion pro-
cesses when f(u) := u(1 − u)(u − α) with α ∈ (0, 1). We assume here
that D := (0, 1)d, periodic boundary conditions are enforced, f and g
are smooth, and g′ is bounded from below by some positive constant. As-
suming that this problem admits a particular time-independent solution
(a standing wave), usw, the natural question that follows is to determine
whether this solution is stable under infinitesimal perturbations. Writing
u(x, t) := usw(x) + ψ(x)e−λt, λ ∈ C, where ψ is assumed to be small com-
pared to usw, one obtains the following linearized form of the PDE:

−λψ −∆(g′(usw)ψ)− f ′(usw)ψ = 0 in D×J. (46.20)

Since ∇(g′(usw)ψ) = g′(usw)∇ψ + ψg′′(usw)∇usw, this problem leads to the
following eigenvalue problem:

{
Find ψ ∈ H1

per(D)\{0} and λ ∈ C such that ∀w ∈ H1
per(D),∫

D

(
(g′(usw)∇ψ + ψ g′′(usw)∇usw)·∇w − f ′(usw)ψw

)
dx = λ

∫
D ψw dx,

(46.21)
where H1

per(D) is composed of the functions in H1(D) that are periodic over
D. The particular solution usw is said to be linearly stable if all the eigenvalues
have a positive real part. Here again, it is the solution operator T : L2(D) →
L2(D) that is of interest, where for all s ∈ L2(D), T (s) ∈ H1

per(D) ⊂ L2(D)

solves
∫
D

(
(g′(usw)∇T (s) + T (s) g′′(usw)∇usw)·∇w − T (s)f ′(usw)w

)
dx =∫

D
sw dx for all w ∈ H1

per(D). Under reasonable assumptions on f, g, usw,
the operator T can be shown to be compact.

46.2.4 Example 4: Schrödinger equation and hydrogen atom

The vibrating string and the drum are typical examples where compactness
directly results from the boundedness of the domain D. We now give an
example where compactness results from an additional potential in the PDE.

An important example of eigenvalue problem in physics is the Schrödinger
equation. For instance, the normalized Schrödinger equation takes the fol-
lowing form for the one-dimensional quantum harmonic oscillator over R:

−1

2
ψ′′ +

1

2
x2ψ = Eψ in R. (46.22)
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The function ψ is the wave function of the oscillator, and the quantity ψ2 is
its probability distribution function. The eigenvalue E is called energy. This
problem has a countable (quantified) set of eigenpairs

ψn(x) :=
1

(2nn!)
1
2π

1
4

e−
x2

2 Hn(x), En := n+
1

2
, (46.23)

where Hn(x) := (−1)nex
2 dn

dxn e
−x2

is the Hermite polynomial of order n. A
natural functional space for this problem is

B1(R) := {v ∈ H1(R) | xv ∈ L2(R)}. (46.24)

In addition to being in H1(R), functions in B1(R) satisfy
∫
R
x2v2(x) dx <∞.

It is shown in Exercise 46.8 that the embedding B1(R) →֒ L2(R) is compact,
whereas it is shown in Exercise 46.7 that the embedding H1(R) →֒ L2(R) is
not compact. Hence, the sesquilinear form a(v, w) =

∫
R
(v′w′ + x2vw) dx is

bounded and coercive on B1(R), and the operator T : B1(R) → B1(R) s.t.
a(T (u), w) =

∫
R
uw dx for all w ∈ B1(R), is symmetric and compact.

The hydrogen atom is a model for which the Schrödinger equation has the
following simple form:

− ~2

2me
∆ψ − q2

4πǫ0r
ψ = Eψ in R3. (46.25)

Here, ~ is the Planck constant, me the mass of the electron, ǫ0 the permit-
tivity of free space, q the electron charge, and r := ‖x‖ℓ2 the Euclidean
distance of the electron to the nucleus. This problem is far more difficult
than the one-dimensional quantum harmonic oscillator because the Coulomb

potential − q2

4πǫ0r
is negative and vanishes at infinity. The sign problem can be

handled as for the Helmholtz problem (see Chapter 35) by invoking G̊arding’s

inequality after making use of Hardy’s inequality |u|2H1(Rd) ≥
(d−2)2

4

∫
Rd

u2

r2 dx

for all u ∈ H1(Rd). The spectrum of the solution operator is composed of the
point spectrum and the continuous spectrum. The residual spectrum is empty
because the solution operator is symmetric. There is a countable (quantified)
set of eigenpairs. Using spherical coordinates, they are given for all n ≥ 1 by

ψn,l,m(r, θ, φ) := Cn,la
− 3

2
0 e−

ρ
2 ρlL2l+1

n−l−1(ρ)Y
m
l (θ, φ),

En := − ~2

2mea20

1

n2
,

where l ∈ {0:n−1}, m ∈ {−l:l}, Cn,l :=
(
2
n

) 3
2

(
(n−l−1)!

2n((n+l)!)3

) 1
2

, a0 := 4πǫ0~
2

meq2

is the Bohr radius, ρ := 2r
na0

, Lγβ(r) :=
r−γer

β!
dβ

drβ
(e−rrγ+β) is the generalized

Laguerre polynomial of degree β, and Y ml is the spherical harmonic function
of degree l and order m.
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Exercises

Exercise 46.1 (Spectrum). Let L be a complex Banach space. Let T ∈
L(L). (i) Show that (λT )∗ = λT ∗ for all λ ∈ C. (ii) Show that σr(T ) ⊂
conj(σp(T

∗)) ⊂ σr(T )∪σp(T ). (Hint : use Corollary C.15.) (iii) Show that the

spectral radius of T verifies r(T ) ≤ lim supn→∞ ‖T n‖
1
n

L(L). (Hint : consider∑
n∈N

(µ−1T )n and use the root test: the complex-valued series
∑

n∈N
an

converges absolutely if lim supn→∞ |an|
1
n < 1.)

Exercise 46.2 (Ascent, algebraic and geometric multiplicities). (i)
Let T ∈ L(L). Let µ be an eigenvalue of T and let Ki := ker(µIL − T )i for
all i ∈ N\{0}. Prove that K1 ⊂ K2 . . ., and assuming that there is j ≥ 1 s.t.
Kj = Kj+1, show that Kj = Kj′ for all j′ > j. (ii) Assume that µ has a
finite ascent α, and finite algebraic multiplicity m and geometric multiplicity
g. Show that α + g − 1 ≤ m ≤ αg. (Hint : letting gi := dim(Ki) for all
i ∈ {1:α}, prove that g1 + i− 1 ≤ gi and gi ≤ gi−1 + g1.) (iii) Compute the
ascent, algebraic multiplicity, and geometric multiplicity of the eigenvalues
of following matrices and verify the two inequalities from Step (i):




1 1 0 0
0 1 2 0
0 0 1 0
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

Exercise 46.3 (Eigenspaces). The following three questions are indepen-
dent. (i) Suppose V = V1⊕V2 and consider T ∈ L(V ) defined by T (v1+v2) :=
v1 for all v1 ∈ V1 and all v2 ∈ V2. Find all the eigenvalues and eigenspaces of
T . (ii) Let T ∈ L(V ). Assume that S is invertible. Prove that S−1TS and T
have the same eigenvalues. What is the relationship between the eigenvectors
of T and those of S−1TS? (iii) Let V be a finite-dimensional vector space.
Let {vn}n∈{1:m} ⊂ V, m ≥ 1. Show that the vectors {vn}n∈{1:m} are linearly
independent iff there exists T ∈ L(V ) such that {vn}n∈{1:m} are eigenvectors
of T corresponding to distinct eigenvalues.

Exercise 46.4 (Volterra operator). Let L := L2((0, 1);C) and let T :
L → L be s.t. T (f)(x) :=

∫ x
0
f(t) dt for a.e. x ∈ (0, 1). Notice that T is

a Hilbert–Schmidt operator, but this exercise is meant to be done without

using this fact. (i) Show that TH(g) =
∫ 1

x
g(t) dt for all g ∈ L2((0, 1);C). (ii)

Show that T is injective. (Hint : use Theorem 1.32.) (iii) Show that 0 ∈ σc(T ).
(iv) Show that σp(T ) = ∅. (v) Prove that µIL − T is bijective if µ 6= 0. (vi)
Determine ρ(T ), σp(T ), σc(T ), σr(T ). Do the same for TH.

Exercise 46.5 (Riesz–Fréchet). Let H be a finite-dimensional complex
Hilbert space with orthonormal basis {ei}i∈{1:n} and inner product (·, ·)H .
(i) Let g be an antilinear form on H , i.e., g ∈ H ′. Show that (Jrf

H )−1(g) =∑
i∈{1:n} g(ei)ei with g(ei) := 〈g, ei〉H′,H , ∀i ∈ {1:n}. Is (Jrf

H )−1 : H ′ → H
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linear or antilinear? (ii) Let g be a linear form on H . Show that xg :=∑
i∈{1:n} g(ei)ei is s.t. 〈g, y〉H′,H = (xg, y)H . Is the map H ′ ∋ g 7→ xg ∈ H

linear or antilinear?

Exercise 46.6 (Symmetric operator). Let L be a complex Hilbert space
and T ∈ L(L) be a symmetric operator. (i) Show that σ(T ) ⊂ R. (Hint :
compute ℑ((T (v) − µv, v)L and show that |ℑ(µ)|‖v‖2L ≤ |(T (v) − µv, v)L|
for all v ∈ L.) (ii) Prove that σr(T ) = ∅. (Hint : apply Corollary C.15.)
(iii) Show that the ascent of each µ ∈ σp(T ) is equal to 1. (Hint : compute
‖(µIL − T )(x)‖2L with x ∈ ker(µIL − T )2.)

Exercise 46.7 (H1(R) →֒ L2(R) is not compact). (i) Let χ(x) := 1 + x
if −1 ≤ x ≤ 0, χ(x) := 1 − x if 0 ≤ x ≤ 1 and χ(x) := 0 if |x| ≥ 1. Show
that χ ∈ H1(R). (ii) Let vn(x) := χ(x− n) for all n ∈ N. Show that (vn)n∈N

converges weakly to 0 in L2(R) (see Definition C.28). (iii) Show that the
embedding H1(R) →֒ L2(R) is not compact. (Hint : argue by contradiction
using Theorem C.23.)

Exercise 46.8 (B1(R) →֒ L2(R) is compact). (i) Show that the embedding
B1(R) →֒ L2(R) is compact, where B1(R) := {v ∈ H1(R) | xv ∈ L2(R)}.
(Hint : let (un)n∈N be a bounded sequence in B1(R), build nested subsets Jk ⊂
N, ∀k ∈ N\{0}, s.t. the sequence (un|(−k,k))n∈Jk converges in L2(−k, k).) (ii)
Give a sufficient condition on α ∈ R so that B1

α(R) →֒ L2(R) is compact,
where B1

α(R) := {v ∈ H1(R) | |x|αv ∈ L2(R)}.

Exercise 46.9 (Hausdorff–Toeplitz theorem). The goal of this exercise
is to prove that the numerical range of a bounded linear operator in a Hilbert
space is convex; see also Gustafson [231]. Let L be a complex Hilbert space
and let SL(1) := {x ∈ L | ‖x‖L = 1} be the unit sphere in L. Let T ∈ L(L)
and let W (T ) := {α ∈ C | ∃x ∈ SL(1), α = (T (x), x)L} be the numerical
range of T . Let γ, µ ∈W (T ), γ 6= µ, and x1, x2 ∈ SL(1) be s.t. (T (x1), x1)L =
γ, (T (x2), x2)L = µ. Let T ′ := 1

µ−γ (T − γIL). (i) Compute (T ′(x1), x1)L and

(T ′(x2), x2)L. (ii) Prove that there exists θ ∈ [0, 2π) s.t. ℑ(eiθ(T ′(x1), x2)L+
e−iθ(T ′(x2), x1)L) = 0. (iii) Let x′1 := eiθx1. Compute (T ′(x′1), x

′
1)L. (iv) Let

λ ∈ [0, 1]. Show that the following problem has at least one solution: Find
α, β ∈ R s.t. ‖αx′1 + βx2‖L = 1 and (T ′(αx′1 + βx2), αx

′
1 + βx2)L = λ. (Hint :

view the two equations as those of an ellipse and an hyperbola, respectively,
and determine how these curves cross the axes.) (v) Prove that W (T ) is
convex. (Hint : compute (T (αx′1 + βx2), αx

′
1 + βx2)L.)


