
Part X, Chapter 48

Nonsymmetric problems

In this chapter, we continue our investigation of the finite element approx-
imation of eigenvalue problems, but this time we do not assume symmetry
and we explore techniques that can handle nonconforming approximation
settings. The main abstract results used in the present chapter are based on
a theory popularized in the landmark review article by Babuška and Osborn
[38]. Some results are simplified to avoid invoking spectral projections. Our
objective is to show how to apply this abstract theory to the conforming and
nonconforming approximation of eigenvalue problems arising from variational
formulations.

48.1 Abstract theory

In this section, we present an abstract theory for the approximation of the
spectrum of compact operators in complex Banach spaces, and we show how
to apply it to spectral problems arising from variational formulations.

48.1.1 Approximation of compact operators

Let L be a complex Banach space and T ∈ L(L) be a compact operator. We
assume that we have at hand a sequence of compact operators Tn : L → L,
n ∈ N, that converges in norm to T i.e., we assume that

lim
n→∞

‖T − Tn‖L(L) = 0. (48.1)

We want to estimate how the eigenpairs of each member in the sequence
(Tn)n∈N approximate some of the eigenpairs of T .

Recall that σ(T )\{0} = σp(T )\{0} and that the nonzero eigenvalues of
T are isolated since T is compact; see Items (ii)-(iii) in Theorem 46.14. Let
µ ∈ σp(T )\{0} be a nonzero eigenvalue of T . Let α be the ascent of µ.
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Recall that α is the smallest integer with the property that ker(µIL − T )α =
ker(µIL − T )α+1. Denoting by T ∗ : L′ → L′ the adjoint of T , we set

Gµ := ker(µIL − T )α, G∗
µ := ker(µIL′ − T ∗)α, (48.2a)

m := dim(Gµ) = dim(G∗
µ). (48.2b)

Members of Gµ and G∗
µ are called generalized eigenvectors. The generalized

eigenvectors are all eigenvectors only if α = 1. Recall that m is the algebraic
multiplicity of µ and that m ≥ α; see (46.5). Owing to the above assumption
on norm convergence, it can be shown that there are m eigenvalues of Tn, say
{µn,j}j∈{1:m} (counted with their algebraic multiplicities), that converge to
µ as n→ ∞. Let αn,j be the ascent of µn,j and let us set

Gn,µ :=
∑

j∈{1:m}
ker(µn,jIL − Tn)

αn,j . (48.3)

We want to evaluate how close the subspaces Gµ and Gn,µ are, and for this
purpose we define the notion of gap. Given two closed subspaces of L, Y,
and Z, we define δ(Y, Z) := supy∈Y ;‖y‖L=1 dist(y, Z), where dist(y, Z) :=

infz∈Z ‖y − z‖L. The gap between Y and Z is defined by δ̂(Y, Z) :=
max(δ(Y, Z), δ(Z, Y )).

Theorem 48.1 (Bound on eigenspace gap). Assume (48.1). Let µ ∈
σp(T )\{0}. Let Gµ be defined in (48.2a) and let Gn,µ be defined in (48.3).
There is c, depending on µ, such that for all n ∈ N,

δ̂(Gµ, Gn,µ) ≤ c ‖(T − Tn)|Gµ‖L(Gµ;L). (48.4)

Proof. See Osborn [321, Thm. 1] or Babuška and Osborn [38, Thm. 7.1]. ⊓⊔

Let us now examine the convergence of the eigenvalues. When α, the ascent
of µ, is larger than one, it is interesting to consider the convergence of the
arithmetic mean of the eigenvalues µn,j . We will see that this quantity con-
verges faster than any of the µn,j (for instance, compare (48.5) and (48.6),
and see (48.21) in Theorem 48.8).

Theorem 48.2 (Convergence of eigenvalues). Assume (48.1). Let µ ∈
σp(T )\{0} with algebraic multiplicity m. Let {µn,j}j∈{1:m} be the eigenval-

ues of Tn that converge to µ and set 〈µn〉 := 1
m

∑
j∈{1:m} µn,j. There is c,

depending on µ, such that for all n ∈ N,

|µ− 〈µn〉| ≤
1

m
max

(v,w)∈Gµ×G∗
µ

|〈w, (T − Tn)(v)〉L′,L|
‖w‖L′‖v‖L

+ c ‖(T − Tn)|Gµ‖L(Gµ;L)‖(T − Tn)
∗
|G∗
µ
‖L(G∗

µ;L
′), (48.5)

and for all j ∈ {1:m},
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|µ− µn,j | ≤ c

(
max

(v,w)∈Gµ×G∗
µ

|〈w, (T − Tn)(v)〉L′,L|
‖w‖L′‖v‖L

+ ‖(T − Tn)|Gµ‖L(Gµ;L)‖(T − Tn)
∗
|G∗
µ
‖L(G∗

µ;L
′)

) 1
α

. (48.6)

Proof. See [321, Thm. 3&4], [38, Thm. 7.2&7.3], and Exercise 48.3. ⊓⊔
Finally, we evaluate how the vectors in Gn,µ approximate those in Gµ.

Theorem 48.3 (Convergence of eigenvectors). Assume (48.1). Let µ ∈
σp(T )\{0} with algebraic multiplicity m. Let {µn,j}j∈{1:m} be the eigenvalues
of Tn that converge to µ. For all integers j ∈ {1:m} and ℓ ∈ {1:α}, let wn,j
be a unit vector in ker(µn,jIL − Tn)

ℓ. There is c, depending on µ, such that

for every integer ℓ′ ∈ {ℓ:α}, there is a unit vector uℓ′ ∈ ker(µIL − T )ℓ
′ ⊂ Gµ

such that for all n ∈ N,

‖uℓ′ − wn,j‖L ≤ c ‖(T − Tn)|Gµ‖
ℓ′−ℓ+1
α

L(Gµ;L)
. (48.7)

Proof. See [321, Thm. 5] or [38, Thm. 7.4]. ⊓⊔
Remark 48.4 (Literature). The above theory has been developed by
Bramble and Osborn [78], Osborn [321], Descloux et al. [161, 162]; see
Vainikko [368, 369], Strang and Fix [359] for earlier references. Overviews
can also be found in Boffi [62], Chatelin [116, Chap. 6]. ⊓⊔
Remark 48.5 (Sharper bounds). The bounds in Theorem 48.2 are sim-
plified versions of the estimates given in [321, Thm. 3&4]. Therein, instead of

max(v,w)∈Gµ×G∗
µ

|〈w,(T−Tn)(v)〉L′,L|
‖w‖L′‖v‖L , one has

∑
j∈{1:m}|〈φ∗j , (T−Tn)(φj)〉L′,L|,

where {φj}j∈{1:m} is a basis of Gµ and {φ∗j}j∈{1:m} is a dual basis of G∗
µ,

i.e., 〈φ∗j , φk〉L′,L = δjk and the action of the forms φ∗j outside Gµ is defined
by selecting an appropriate complement of Gµ. The expressions given in The-
orem 48.2 will suffice for our purpose. ⊓⊔

48.1.2 Application to variational formulations

Let V →֒ L be a complex Banach space with compact embedding and let a :
V×V → C be a bounded sesquilinear form. We assume that the sesquilinear
form a satisfies the two conditions of the BNB theorem (Theorem 25.9), but
we do not assume that a is Hermitian. Let b : L×L→ C be another bounded
sesquilinear form. We now consider the following eigenvalue problem:

{
Find ψ ∈ V \{0} and λ ∈ C such that

a(ψ,w) = λb(ψ,w), ∀w ∈ V.
(48.8)

If (λ, ψ) solves (48.8), we say that (λ, ψ) is an eigenpair of the form a relative
to the form b, or simply (λ, ψ) is an eigenpair of (48.8) when the context is
unambiguous.
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To reformulate (48.8) so as to fit the approximation theory of the spectrum
of compact operators from §48.1.1, we define the solution operator T : L →
V →֒ L such that

a(T (v), w) := b(v, w), ∀v ∈ L, ∀w ∈ V. (48.9)

Note that T (v) is well defined for all v ∈ L since a satisfies the two BNB
conditions. Notice also that im(T ) ⊂ V and that T is injective.

Proposition 48.6 (Spectrum of T ). (i) 0 6∈ σp(T ). (ii) (µ, ψ) ∈ C×V is
an eigenpair of T iff (µ−1, ψ) ∈ C×V is an eigenpair of (48.8).

Proof. (i) If (0, ψ) is an eigenpair of T (i.e., ψ 6= 0), then a(ψ, v) = 0 for
all v ∈ V, and the inf-sup condition on a implies that ψ = 0, which is a
contradiction.
(ii) Let (µ, ψ) be an eigenpair of T , i.e., µ−1T (ψ) = ψ (notice that µ 6= 0
since T is injective). We infer that

µ−1b(ψ,w) = b(µ−1ψ,w) = a(T (µ−1ψ), w) = a(µ−1T (ψ), w) = a(ψ,w),

for all w ∈ V. Hence, (µ−1, ψ) is an eigenpair of (48.8). The proof of the
converse statement is identical. ⊓⊔

We refer the reader to §46.2 for various examples of spectral problems
that can be put into the variational form (48.8). For instance, the model
problem (46.21) leads to a sesquilinear form a that is not Hermitian since
we have a(v, w) :=

∫
D(g

′(usw)∇v·∇w + vg′′(usw)∇usw·∇w − f ′(usw)vw) dx,
V := H1

per(D), and b(v, w) :=
∫
D
vw dx. An example with a sesquilin-

ear form b that is not the L2-inner product is obtained from the vibrat-
ing string model from §46.2.1 by assuming that the string has a nonuni-
form bounded linear density ρ. In this case, one recovers the model prob-
lem (48.8) with V := H1

0 (D;R), D := (0, ℓ), where ℓ is the length of the
string, a(v, w) :=

∫
D τ∂xv∂xw dx, where τ > 0 is the uniform tension of the

string, and b(v, w) :=
∫
D
ρvw dx.

48.2 Conforming approximation

The goal of this section is to illustrate the approximation theory from §48.1
when applied to the conforming approximation of the model problem (48.8).
Let V be a closed subspace of H1(D) which, depending on the boundary
conditions that are enforced, satisfies H1

0 (D) ⊆ V ⊆ H1(D). We assume that
V is equipped with a norm that is equivalent to that of H1(D). We assume
also that the V -norm is rescaled so the operator norm of the embedding
V →֒ L2(D) is at most one, e.g., one could set ‖v‖V := C−1

ps ℓD‖∇v‖L2(D) if
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V := H1
0 (D), where Cps is the constant from the Poincaré–Steklov inequal-

ity (31.12) in H1
0 (D) and ℓD is a characteristic length associated with D, e.g.,

ℓD := diam(D).
Let T : L2(D) → L2(D) be the compact operator defined in (48.9). We

identify L and L′, so that T ∗ = TH (see Lemma 46.15). We want to approx-
imate the spectrum of T assuming that we have at hand an H1-conforming
approximation setting. More precisely, assume that D is a Lipschitz polyhe-
dron and let (Th)h∈H be a shape-regular sequence of affine meshes so that
each mesh covers D exactly. Let k ≥ 1 be the polynomial degree of the ap-
proximation. We denote by Vh the H1-conforming finite element space based
on Th such that P g

k,0(Th) ⊆ Vh ⊆ P g
k (Th) and Vh ⊂ V (see §19.2.1 or §19.4).

To avoid being specific on the type of finite element we use, we assume the
following best-approximation result:

min
vh∈Vh

‖v − vh‖V ≤ c hrℓD|v|H1+r(D), (48.10)

for all v ∈ H1+r(D) ∩ V and all r ∈ [0, k]. We assume that there is α0 > 0
such that for all h ∈ H,

inf
vh∈Vh

sup
wh∈Vh

|a(vh, wh)|
‖vh‖H1(D)‖wh‖H1(D)

≥ α0. (48.11)

Since the sesquilinear form b may differ from the L2-inner product, we
additionally introduce the linear operator S∗ : L2(D) → V →֒ L2(D) s.t.

a(v, S∗(w)) = (v, w)L2(D), ∀v ∈ V, ∀w ∈ L2(D). (48.12)

Notice that we use the L2-inner product on the right-hand side of (48.12)
instead of the sesquilinear form b as we did for the definition of T in (48.9).
We also assume that the following elliptic regularity pickup holds true for T
and S∗ (see §31.4.2): There are real numbers τ, τ∗ ∈ (0, 1] such that

T ∈ L(L2(D);H1+τ (D)), S∗ ∈ L(L2(D);H1+τ∗

(D)). (48.13)

We have τ = τ∗ := 1 when maximal elliptic regularity occurs.
The discrete counterpart of the eigenvalue problem (48.8) is formulated as

follows: {
Find ψh ∈ Vh\{0} and λh ∈ C such that

a(ψh, wh) = λhb(ψh, wh), ∀wh ∈ Vh.
(48.14)

We define the discrete solution operator Th : L2(D) → Vh ⊂ L2(D) s.t. for
all v ∈ L2(D), Th(v) ∈ Vh is the unique solution to the following problem:

a(Th(v), wh) = b(v, wh), ∀wh ∈ Vh.
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Notice that 0 cannot be an eigenvalue of (48.14) owing to the inf-sup con-
dition (48.11) satisfied by a on Vh×Vh. Moreover, (λh, ψh) is an eigenpair of
(48.14) iff (λ−1

h , ψh) is an eigenpair of Th.

Lemma 48.7 (Bound on (T−Th)). There is c such that for all t, t∗ ∈ [0, k],
all v ∈ L2(D) s.t. T (v) ∈ H1+t(D), all w ∈ L2(D) s.t. S∗(w) ∈ H1+t∗(D),
and all h ∈ H,

∣∣((T−Th)(v), w)L2(D)

∣∣ ≤ c ht+t
∗‖a‖ℓ2D|T (v)|H1+t(D)|S∗(w)|H1+t∗ (D). (48.15)

Proof. Lemma 26.14 and the best-approximation property (48.10) imply that
‖(T − Th)(v)‖V ≤ chtℓD|T (v)|H1+t(D). Since (T − Th)(v) ∈ V, the Galerkin
orthogonality property and the boundedness of a imply that

∣∣((T − Th)(v), w)L2(D)

∣∣ = |a((T − Th)(v), S∗(w))|
≤ inf

wh∈Vh
|a((T − Th)(v), S∗(w) − wh)|

≤ ‖a‖ ‖(T − Th)(v)‖V inf
wh∈Vh

‖S∗(w) − wh‖V .

Using the above bound on (T − Th)(v) and the best-approximation prop-
erty (48.10) to bound ‖S∗(w) − wh‖V leads to the expected estimate. ⊓⊔

The estimate (48.15) with t := τ and t∗ := τ∗ combined with the regularity
property (48.13) implies that

‖T − Th‖L(L2;L2) ≤ c hτ+τ
∗(‖a‖ℓ2D‖T ‖L(L2;H1+τ )‖S∗‖L(L2;H1+τ∗ )

)
. (48.16)

Since τ + τ∗ > 0, this means that Th → T in operator norm as h → 0,
that is, the key assumption (48.1) holds true. It is then legitimate to use the
approximation results for compact operators stated in Theorems 48.1 to 48.3.

Let µ be a nonzero eigenvalue of T of ascent α and algebraic multiplicity
m, and let

Gµ := ker(µIL2 − T )α, G∗
µ := ker(µIL2 − TH)α, (48.17)

so that m := dim(Gµ) = dim(G∗
µ) (see (48.2)). Recall that Proposition 48.6

implies that λ := µ−1 is an eigenvalue for (48.8). Since the smoothness of the
generalized eigenvectors may differ from one eigenvalue to the other, we now
define τµ and τ∗µ to be the two largest real numbers in (0, k] such that

T|Gµ ∈ L(Gµ;H1+τµ(D)), S∗|G∗
µ
∈ L(G∗

µ;H
1+τ∗

µ(D)), (48.18)

where Gµ and G∗
µ are equipped with the L2-norm. The two real numbers τµ

and τ∗µ measure the smoothness of the generalized eigenvectors in Gµ and
G∗
µ, respectively. Notice that τµ ∈ [τ, k] and τ∗µ ∈ [τ∗, k], where τ and τ∗

are defined in (48.13) and are both in (0, 1]. We can set τµ = τ∗µ := k when
maximal smoothness is available. It may happen that τµ < τ∗µ even if a is
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Hermitian. For instance, this may be the case if b(v, w) :=
∫
D
ρvw dx, where

the function ρ is a bounded discontinuous function.
Owing to the norm convergence of Th to T as h → 0, there are m eigen-

values of Th, say {µh,j}j∈{1:m} (counted with their algebraic multiplicities),
that converge to µ as h→ 0. Let

Gh,µ :=
∑

j∈{1:m}
ker(µh,jIL2 − Th)

αh,j , (48.19)

where αh,j is the ascent of µh,j . We are now in the position to state the main
result of this section.

Theorem 48.8 (Convergence of eigenspace gap, eigenvalues, and
eigenvectors). Let µ ∈ σp(T ) \ {0} with algebraic multiplicity m and let
{µh,j}j∈{1:m} be the eigenvalues of Th that converge to µ. Let Gµ be defined
in (48.17) and let Gh,µ be defined in (48.19). There is c, depending on µ,
such that for all h ∈ H,

δ̂(Gµ, Gh,µ) ≤ c hτµ+t
∗

, (48.20)

and letting 〈µh〉 := 1
m

∑
j∈{1:m} µh,j, we have

|µ− 〈µh〉| ≤ c hτµ+τ
∗
µ , |µ− µh,j | ≤ c h

1
α (τµ+τ

∗
µ), ∀j ∈ {1:m}. (48.21)

Moreover, for all integers j ∈ {1:m} and ℓ ∈ {1:α}, let wh,j be a unit vector
in ker(µh,jIL2 −Th)

ℓ. There is c, depending on µ, such that for every integer

ℓ′ ∈ {ℓ:α}, there is a unit vector uℓ′ ∈ ker(µIL2 −T )ℓ
′ ⊂ Gµ such that for all

h ∈ H,

‖uℓ′ − wh,j‖L2(D) ≤ c h
ℓ′−ℓ+1
α (τµ+τ

∗). (48.22)

In the above estimates, the constant c depends on ‖a‖ℓ2D and on the operator
norms resulting from (48.13) and (48.18).

Proof. Using t := τµ and t∗ := τ∗ in (48.15), we infer that

‖(T − Th)|Gµ‖L(Gµ;L2) = sup
v∈Gµ

sup
w∈L2

((T − Th)(v), w)L2

‖v‖L2‖w‖L2

≤ c hτµ+τ
∗

.

Similarly, using t := τ and t∗ := τ∗µ in (48.15), and recalling that T ∗ = TH in
the present case, we infer that

‖(T − Th)
∗|G∗

µ
‖L(G∗

µ;L
2) = sup

v∈L2

sup
w∈G∗

µ

(v, (TH − TH
h )(w))L2

‖v‖L2‖w‖L2

= sup
v∈L2

sup
w∈G∗

µ

((T − Th)(v), w)L2

‖v‖L2‖w‖L2

≤ c hτ+τ
∗
µ .

Finally, using t := τµ and t∗ := τ∗µ in (48.15), we infer that
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sup
v∈Gµ

sup
w∈G∗

µ

((T − Th)(v), w)L2

‖v‖L2‖w‖L2

≤ c hτµ+τ
∗
µ .

The conclusion follows by applying Theorems 48.1-48.3. ⊓⊔

Remark 48.9 (Convergence rates). Notice that among the two terms
that compose the right-hand side in (48.5), it is the first one that dominates
when the meshsize goes to zero. The first term scales like O(hτµ+τ

∗
µ ), whereas

the second one scales like O(hτµ+τ
∗
µ+τ+τ

∗

) with τ + τ∗ > 0. The same obser-
vation is valid for (48.6). ⊓⊔

Remark 48.10 (Symmetric case). The estimate (48.21) coincides with
the estimate (47.16), and the estimate (48.22) (with α = ℓ = ℓ′ := 1) co-
incides with the estimate (47.21) when T is symmetric. Notice though that
the estimates from Chapter 47 for the i-th eigenpair depend on the smooth-
ness of all the unit eigenfunctions {ψn}n∈{1: i} (counting the multiplicities),
whereas the estimates (48.21)-(48.22) depend only on the smoothness of the
unit eigenvectors in Gµi ; see Remark 47.12. ⊓⊔

48.3 Nonconforming approximation

We revisit the theory presented above in a nonconforming context. Typi-
cal examples we have in mind are the Crouzeix–Raviart approximation from
Chapter 36, Nitsche’s boundary penalty technique from Chapter 37, and the
discontinuous Galerkin method from Chapter 38. The theory is also applica-
ble to the hybrid high-order method from Chapter 39.

48.3.1 Discrete formulation

We consider again the model problem (48.8) and we want to approximate
the spectrum of the operator T : L2(D) → L2(D) defined in (48.9) using an
approximation setting that is not conforming in V.

To stay general, we assume that we have at hand a sequence of discrete
spaces (Vh)h∈H with Vh 6⊂ V. For all h ∈ H, the sesquilinear form a is approx-
imated by a discrete sesquilinear form ah : Vh×Vh → C, and for simplicity we
assume that the sesquilinear form b is meaningful on Vh×Vh, i.e., we assume
that Vh ⊂ L2(D). The discrete eigenvalue problem is formulated as follows:

{
Find ψh ∈ Vh\{0} and λh ∈ C such that

ah(ψh, wh) = λhb(ψh, wh), ∀wh ∈ Vh.
(48.23)

The discrete solution operator Th : L2(D) → Vh ⊂ L2(D) and the adjoint
discrete solution operator S∗h : L2(D) → Vh ⊂ L2(D) are defined as follows:
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ah(Th(v), wh) := b(v, wh), ∀(v, wh) ∈ L2(D)×Vh, (48.24a)

ah(vh, S∗h(w)) := (vh, w)L2(D), ∀(vh, w) ∈ Vh×L2(D). (48.24b)

We assume that Th and S∗h are both well defined, i.e., we assume that ah
satisfies an inf-sup condition on Vh×Vh uniformly w.r.t. h ∈ H. As above,
(λh, ψh) is an eigenpair of (48.23) iff (λ−1

h , ψh) is an eigenpair of Th.
To avoid unnecessary technicalities and to stay general, we make the fol-

lowing assumptions:
(i) There exists a dense subspace Vs →֒ V such that the solution operators T
and S∗ satisfy

T (v) ∈ Vs, S∗(w) ∈ Vs, ∀v, w ∈ L2(D). (48.25)

(ii) There is a sesquilinear form a♯ extending ah to V♯×V♯, with V♯ := Vs+Vh,
i.e., a♯(vh, wh) = ah(vh, wh) for all vh, wh ∈ Vh. The space V♯ is equipped with
a norm ‖·‖V♯ s.t. there is ‖a♯‖ such that

|a♯(v, w)| ≤ ‖a♯‖ ‖v‖V♯‖w‖V♯ , ∀v, w ∈ V♯, ∀h ∈ H. (48.26)

(iii) The sesquilinear forms a♯ and a coincide on Vs×Vs so that

a♯(T (v), S∗(w)) = a(T (v), S∗(w)), ∀v, w ∈ L2(D). (48.27)

(iv) Restricted Galerkin orthogonality and restricted adjoint Galerkin orthog-
onality, i.e., we have the following identities:

a♯(T (v), wh) = ah(Th(v), wh), ∀(v, wh) ∈ L2(D)×(Vh ∩ V ), (48.28a)

a♯(vh, S∗(w)) = ah(vh, S∗h(w)), ∀(vh, w) ∈ (Vh ∩ V )×L2(D). (48.28b)

(Notice that discrete test functions are restricted to Vh ∩ V.)
(v) There is c such that for all h ∈ H,

‖T (v)− Th(v)‖V♯ ≤ c inf
vh∈Vh∩V

‖T (v)− vh‖V♯ , (48.29a)

‖S∗(w) − S∗h(w)‖V♯ ≤ c inf
wh∈Vh∩V

‖S∗(w)− wh‖V♯ . (48.29b)

Moreover, there is an integer k ≥ 1, and there is c such that the following
best-approximation property holds true for all t ∈ [0, k], all v ∈ H1+t(D)∩V,
and all h ∈ H:

inf
vh∈Vh∩V

‖v − vh‖V♯ ≤ c ℓDh
t|v|H1+t(D). (48.30)

The reader is invited to verify whether all the above conditions are sat-
isfied, with Vs := V ∩ H1+r(D) and r > 1

2 , by the Crouzeix–Raviart ap-
proximation from Chapter 36, Nitsche’s boundary penalty technique from
Chapter 37, and the Discontinuous Galerkin method from Chapter 38.
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48.3.2 Error analysis

We are going to use the general approximation results for compact operators
stated in Theorems 48.1-48.3. Let t0 ≥ 0 be the smallest real number such
that H1+t0(D) ∩ V ⊂ Vs. We assume that t0 ≤ k, i.e., the interval [t0, k] is
nonempty. In the applications we have in mind, t0 is a number close to 1

2 and
k ≥ 1.

Lemma 48.11 (Bound on (T − Th)). There is c s.t. for all t, t∗ ∈ [t0, k],
all v ∈ L2(D) s.t. T (v) ∈ H1+t(D), all w ∈ L2(D) s.t. S∗(w) ∈ H1+t∗(D),
and all h ∈ H,

∣∣((T − Th)(v), w)L2(D)

∣∣ ≤ c ht+t
∗‖a♯‖ℓ2D|T (v)|H1+t(D)|S∗(w)|H1+t∗ (D).

(48.31)

Proof. Let v ∈ L2(D) be s.t. T (v) ∈ H1+t(D), and let w ∈ L2(D) be s.t.
S∗(w) ∈ H1+t∗(D). We have T (v) ∈ H1+t(D) ∩ V ⊂ Vs since t ≥ t0, and
S∗(w) ∈ H1+t∗(D) ∩ V ⊂ Vs since t∗ ≥ t0. Using the definitions of S∗ and
S∗h, the assumption (48.27), i.e., that a♯ and a coincide on Vs×Vs (and that
a♯ and ah coincide over Vh×Vh), and elementary manipulations, we infer that

((T − Th)(v),w)L2(D) = a(T (v), S∗(w)) − ah(Th(v), S∗h(w))

= a♯(T (v), S∗(w)) − a♯(Th(v), S∗h(w))

= a♯(T (v)− Th(v), S∗(w)) + a♯(Th(v), S∗(w) − S∗h(w))

= a♯(T (v)− Th(v), S∗(w)− S∗h(w)) + a♯(T (v)− Th(v), S∗h(w))

+ a♯(Th(v), S∗(w) − S∗h(w)) =: T1 + T2 + T3.

Owing to the boundedness of a♯ on V♯×V♯ and the approximation proper-
ties (48.29)-(48.30), we have

|T1| ≤ c ht+t
∗‖a♯‖ℓ2D|T (v)|H1+t(D)|S∗(w)|H1+t∗ (D).

The other two terms have a similar structure that can be dealt with by
invoking the restricted Galerkin orthogonality (48.28). For instance, we have

|T2| = inf
wh∈Vh∩V

|a♯((T − Th)(v), S∗h(w) − wh)|

≤ ‖a♯‖‖(T − Th)(v)‖V♯ inf
wh∈Vh∩V

‖S∗h(w)− wh‖V♯
≤ c ‖a♯‖‖(T − Th)(v)‖V♯(‖S∗h(w)− S∗(w)‖V♯ + inf

vh∈Vh∩V
‖S∗(w)− wh‖V♯)

≤ c′ ht+t
∗‖a♯‖ℓ2D|T (v)|H1+t(D)|S∗(w)|H1+t∗ (D).

The term T3 is estimated similarly. ⊓⊔
We assume now that the following elliptic regularity pickup holds true for

T and S∗ (see §31.4.2): There are real numbers τ ∈ (0, 1] and τ∗ ∈ (0, 1] such
that (48.13) holds true. The estimate (48.31) with t := τ and t∗ := τ∗ implies
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that ‖T − Th‖L(L2,L2) ≤ c ‖a♯‖ℓ2D‖T ‖L(L2;H1+τ )‖S∗‖L(L2;H1+τ∗ )h
τ+τ∗

. Since
τ+τ∗ > 0, this means that Th → T in operator norm as h→ 0, that is, the key
assumption (48.1) holds true. It is then legitimate to use the approximation
results for compact operators stated in Theorems 48.1-48.3.

Let µ be a nonzero eigenvalue of T of ascent α and algebraic multiplicitym,
and let Gµ, Gµ be defined in (48.17). Proposition 48.6 implies that λ := µ−1

is an eigenvalue for (48.8). Let τµ and τ∗µ be the two largest real numbers less
than or equal to k satisfying (48.18). Recall that τµ ∈ [τ, k] and τ∗µ ∈ [τ∗, k].
Moreover, we can set τµ = τ∗µ := k when maximal smoothness is available.

Owing to the norm convergence Th to T as h→ 0, there are m eigenvalues
of Th, say {µh,j}j∈{1:m} (counted with their algebraic multiplicities), that
converge to µ as h → 0. Let Gh,µ be defined in (48.19). We are now in the
position to state the main result of this section.

Theorem 48.12 (Convergence of eigenspace gap, eigenvalues, and
eigenvectors). Let µ ∈ σp(T )\{0} with algebraic multiplicity m and let
{µh,j}j∈{1:m} be the eigenvalues of Th that converge to µ. There is c, de-
pending on µ, s.t. for all h ∈ H,

δ̂(Gµ, Gh,µ) ≤ c hτµ+τ
∗
µ , (48.32)

and letting 〈µh〉 := 1
m

∑
j∈{1:m} µh,j, we have

|µ− 〈µh〉| ≤ c hτµ+τ
∗
µ , |µ− µh,j | ≤ c h

1
α (τµ+τ

∗
µ), ∀j ∈ {1:m}. (48.33)

Moreover, for all integers j ∈ {1:m} and ℓ ∈ {1:α}, let wh,j be a unit vector
in ker(µh,jIL2 −Th)

ℓ. There is c, depending on µ, such that for every integer

ℓ′ ∈ {ℓ:α}, there is a unit vector uℓ′ ∈ ker(µIL2 −T )ℓ
′ ⊂ Gµ such that for all

h ∈ H,

‖uℓ′ − wh,j‖L2(D) ≤ c h
ℓ′−ℓ+1
α (τµ+τ

∗). (48.34)

In the above estimates, the constant c depends on ‖a♯‖ℓ2D and on the operator
norms defined in (48.13) and (48.18).

Proof. See Exercise 48.4. ⊓⊔

Remark 48.13 (Literature). The nonconforming approximation of the el-
liptic eigenvalue problem has been studied in Antonietti et al. [12] for discon-
tinuous Galerkin (dG) methods, Gopalakrishnan et al. [220] for hybridizable
discontinuous Galerkin (HDG) methods, and Calo et al. [103] for hybrid high-
order (HHO) methods. We refer the reader to Canuto [105], Mercier et al.
[301], Durán et al. [182], Boffi et al. [63] for mixed and hybrid mixed meth-
ods and to Carstensen and Gedicke [109], Liu [287] for guaranteed eigenvalue
lower bounds using Crouzeix–Raviart elements. ⊓⊔
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Exercises

Exercise 48.1 (Linearity). Consider the setting of §48.1.2. Let V →֒ L be
two complex Banach spaces and a : V×V → C be a bounded sesquilinear
form satisfying the two conditions of the BNB theorem. Let b : L×L → C

be bounded sesquilinear form. (i) Let T : L → L be such that a(T (v), w) :=
b(v, w) for all v ∈ L and all w ∈ V. Show that T is well defined and linear.
(ii) Let T∗ : L → L be such that a(v, T∗(w)) := b(v, w) for all v ∈ V and all
w ∈ L. Show that T∗ is well defined and linear.

Exercise 48.2 (Invariant sets). (i) Let S, T ∈ L(V ) be such that ST =
TS. Prove that ker(S) and im(S) are invariant under T . (ii) Let T ∈ L(V )
and letW1, . . . ,Wm be subspaces of V that are invariant under T . Prove that
W1 + . . . +Wm and

⋂
i∈{1:m}Wi are invariant under T . (iii) Let T ∈ L(V )

and let {v1, . . . , vn} be a basis of V. Show that the following statements
are equivalent: (a) The matrix of T with respect to {v1, . . . , vn} is upper
triangular; (b) T (vj) ∈ span{v1, . . . , vj} for all j ∈ {1:n}; (c) span{v1, . . . , vj}
is invariant under T for all j ∈ {1:n}. (iv) Let T ∈ L(V ). Let µ be an
eigenvalue of T . Prove that im(µIV − T ) is invariant under T . Prove that
ker(µIV − T )α is invariant under T for every integer α ≥ 1.

Exercise 48.3 (Trace). (i) Let V be a complex Banach space. Let G ⊂ V
be a subspace of V of dimension m. Let {φj}j∈{1:m} and {ψj}j∈{1:m} be
two bases of G, and let {φ′j}j∈{1:m} and {ψ′

j}j∈{1:m} be corresponding dual
bases, i.e., 〈φ′i, φj〉V ′,V = δij , etc. (the way the antilinear forms {φ′j}j∈{1:m}
and {ψ′

j}j∈{1:m} are extended to V does not matter). Let T ∈ L(V ) and
assume that G is invariant under T . Show that

∑
j∈{1:m}〈ψ′

j , T (ψj)〉V ′,V =∑
j∈{1:m}〈φ′j , T (φj)〉V ′,V . (ii) LetB ∈ Cm×m be s.t. T (φi) =:

∑
j∈{1:m}Bjiφj

(recall that G is invariant under T ). Let V := (〈φ′j , v〉V ′,V )
T
j∈{1:m} for all

v ∈ G. Prove that Tα(v) =
∑

j∈{1:m}(B
αV)jφj for all α ∈ N. (Hint :

use an induction argument.) (iii) Let µ ∈ C, α ≥ 1, and S ∈ L(V ). As-
sume that G := ker(µIV − S)α is finite-dimensional and nontrivial (i.e.,
dim(G) := m ≥ 1). Prove that

∑
j∈{1:m}〈φ′j , S(φj)〉V,V ′ = mµ. (Hint : con-

sider the m×m matrix A with entries 〈φ′i, (µIV − S)(φj)〉V ′,V and show that
Aα = 0.)

Exercise 48.4 (Theorem 48.12). Prove the estimates in Theorem 48.12.
(Hint : see the proof of Theorem 48.8.)

Exercise 48.5 (Nonconforming approximation). Consider the Laplace
operator with homogeneous Dirichlet boundary conditions in a Lipschitz
polyhedron D with b(v, w) :=

∫
D
ρvw dx, where ρ ∈ C∞(D;R). Verify that

the assumptions (48.25) to (48.30) hold true for the Crouzeix–Raviart ap-
proximation.


