
Part XI, Chapter 49

Well-posedness for PDEs in mixed form

In Part XI, composed of Chapters 49 to 55, we study the well-posedness and
the finite element approximation of PDEs formulated in mixed form. Mixed
formulations are often obtained from elliptic PDEs by introducing one or
more auxiliary variables. One reason for introducing these variables can be
that they have some physical relevance. For instance, one can think of the
flux in Darcy’s equations (see Chapter 51). Another reason can be to relax
a constraint imposed on a variational formulation. This is the case for the
Stokes equations where the pressure results from the incompressibility con-
straint enforced on the velocity field (see Chapter 53). The PDEs considered
in this part enjoy a coercivity property on the primal variable, but not on the
auxiliary variable, so that the analysis relies on inf-sup conditions. The goal
of the present chapter is to identify necessary and sufficient conditions for
the well-posedness of a model problem that serves as a prototype for PDEs
in mixed form. The finite element approximation of this model problem is
investigated in Chapter 50.

49.1 Model problems

We introduce in this section some model problems illustrating the concept of
PDEs in mixed form. Let D be a domain in Rd, i.e., D is a nonempty, open,
bounded, connected subset of Rd (see Definition 3.1).

49.1.1 Darcy

Consider the elliptic PDE −∇·(d∇p) = f inD; see §31.1. Introducing the flux
(or filtration velocity) σ := −d∇p leads to the following mixed formulation
known as Darcy’s equations (see §24.1.2):
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d

−1σ +∇p = 0 in D, (49.1a)

∇·σ = f in D. (49.1b)

Here, (49.1a) is a phenomenological law relating the flux to the gradient of
the primal unknown p (a nonzero right-hand side can be considered as well).
The equation (49.1b) expresses mass conservation. For simplicity, we assume
that (49.1) is equipped with the boundary condition p|∂D = 0.

Let us give a more abstract form to the above problem by setting

V := L2(D), Q := H1
0 (D). (49.2)

Consider the linear operators A : V → V ′ = L2(D) (owing to the Riesz–
Fréchet representation theorem) and B : V → Q′ = H−1(D) defined by
setting A(τ ) := d

−1τ and B(τ ) := −∇·τ . Under appropriate bounded-
ness assumptions on d

−1, the linear operators A and B are bounded. Us-
ing the identification (H1

0 (D))′′ = H1
0 (D), we have B∗ : Q → V ′ and

〈B∗(q), τ 〉V ′,V = 〈q, B(τ )〉H1
0 (D),H−1(D) = (∇q, τ )L2(D) for all q ∈ H1

0 (D)

and all τ ∈ L2(D). Hence, B∗(q) = ∇q for all q ∈ H1
0 (D).

An alternative point of view consists of setting

V :=H(div;D), Q := L2(D). (49.3)

Then A : V → V ′ is defined by setting A(τ ) := d

−1τ (where we use

that V →֒ L2(D) ≡ L2(D)
′ →֒ V ′) and B : V → Q′ = L2(D)

(owing to the Riesz–Fréchet representation theorem) is defined by setting
B(τ ) := −∇·τ . The adjoint operator B∗ : Q → V ′ is s.t. 〈B∗(q), τ 〉V ′,V =
(q, B(τ ))L2(D) = (q,−∇·τ )L2(D) for all q ∈ L2(D) and all τ ∈ H(div;D).
Let us have a closer look at B∗. Let q ∈ L2(D) and assume that there
exists g ∈ L2(D) so that 〈B∗(q), τ 〉V ′,V = (g, τ )L2(D). This implies that
(q,−∇·τ )L2(D) = (g, τ )L2(D) for all τ ∈ H(div;D). Taking τ ∈ C∞

0 (D)
shows that q has a weak derivative and ∇q = g. Hence, q ∈ H1(D) and
(q,∇·τ )L2(D) + (∇q, τ )L2(D) = 0 for all τ ∈ H(div;D). Moreover, consider-

ing the trace of q on ∂D, γg(q) ∈ H
1
2 (∂D), and using the surjectivity of the

normal trace operator γd : H(div;D) → H− 1
2 (∂D) (see Theorem 4.15), we

infer that for all φ ∈ H− 1
2 (∂D), there is τφ ∈ H(div;D) s.t. γd(τφ) =

φ. Then 〈φ, γg(q)〉
H− 1

2 ,H
1
2

= 〈γd(τφ), γg(q)〉
H− 1

2 ,H
1
2

= (q,∇·τφ)L2(D) +

(∇q, τφ)L2(D) = 0 for all φ ∈ H− 1
2 (∂D). Hence, γg(q) = 0, i.e., q|∂D = 0.

This shows that B∗(q) ∈ L2(D) encodes the boundary condition q|∂D = 0 in
a weak sense.

In conclusion, regardless of the chosen setting, the Darcy problem (49.1)
can be reformulated as follows:





Find σ ∈ V and p ∈ Q such that

A(σ) +B∗(p) = 0,

B(σ) = −f.
(49.4)
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The mixed finite element approximation of (49.4) is studied in Chapter 51.

49.1.2 Stokes

The Stokes equations model steady incompressible flows in which inertia
forces are negligible. The problem is written in the following mixed form:

∇·(−µe(u)) +∇p = f in D, (49.5a)

∇·u = 0 in D, (49.5b)

where µ > 0 is the viscosity, u : D → Rd the velocity field with the (lin-
earized) strain rate tensor e(u) := 1

2 (∇u + (∇u)T) : D → Rd×d, p : D → R

the pressure, and f : D → Rd the body force. The equation (49.5a) ex-
presses the momentum balance in the flow, and (49.5b) the mass balance.
For simplicity, we assume that (49.5) is equipped with the boundary condi-
tion u|∂D = 0.

Let us set
V :=H1

0 (D), Q := L2(D), (49.6)

and let us define A : V → V ′ =H−1(D), B : V → Q′ = L2(D) (owing to the
Riesz–Fréchet representation theorem) by setting A(v) := −∇·(µe(v)) and
B(v) := −∇·v. The adjoint operator B∗ : Q → V ′ is s.t. 〈B∗(q),v〉V ′,V =
(q,−∇·v)L2(D) for all v ∈ V and all q ∈ Q. This means that B∗(q) = ∇q for
all q ∈ L2(D). In conclusion, the Stokes problem (49.5) can be reformulated
as follows: 




Find v ∈ V and p ∈ Q such that

A(v) +B∗(p) = f ,

B(v) = 0.

(49.7)

The finite element approximation of (49.7) is studied in Chapters 53 to 55.

49.1.3 Maxwell

Consider the model problem (43.4) for Maxwell’s equations in the time-
harmonic regime (see §43.1.1) in the limit ω → 0 and with the boundary con-
dition H|∂D×n = 0. Ampère’s equation (43.4a) gives −E + 1

σ∇×H = 1
σjs,

and Faraday’s equation (43.4b) gives ∇·(µH) = 0 and ∇×E = 0 (since ω →
0). Setting κ := σ−1 the strong form of this problem consists of looking for a
fieldH : D → R3 such that ∇×(κ∇×H) = f , with f := ∇×(κjs) : D → R3,
H|∂D×n = 0, and under the constraint ∇·(µH) = 0. The dual variable of
this constraint is a scalar-valued function φ : D → R with the boundary
condition φ|∂D = 0, leading to the following mixed formulation (see, e.g.,
Kanayama et al. [263]):

∇×(κ∇×H) + ν∇φ = f in D, (49.8a)

∇·(µH) = 0 in D. (49.8b)
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Let us set
V :=H0(curl;D), Q := H1

0 (D), (49.9)

and let us define A : V → V ′, B : V → Q′ = H−1(D) by set-
ting A(v) := ∇×(κ∇×v) and B(v) := −∇·(νv). Using the identifica-
tion (H1

0 (D))′′ = H1
0 (D), the adjoint operator B∗ : Q → V ′ is s.t.

〈B∗(ψ),v〉V ′,V = 〈ψ,−∇·(νv)〉H1
0 (D),H−1(D) = (ν∇ψ,v)L2(D) for all v ∈ V

and all ψ ∈ Q. This means that B∗(ψ) = ν∇ψ for all ψ ∈ H1
0 (D). In conclu-

sion, the Maxwell problem (49.8) can be reformulated as follows:





Find H ∈ V and φ ∈ Q such that

A(H) +B∗(φ) = f ,

B(H) = 0.

(49.10)

Some further aspects of this problem are considered in Exercise 49.6.

49.2 Well-posedness in Hilbert spaces

Consider two real Hilbert spaces V and Q, and two operators A ∈ L(V ;V ′),
B ∈ L(V ;Q′). We identify Q′′ = Q. Our goal in this section is to investigate
the well-posedness of the following mixed model problem:





Find u ∈ V and p ∈ Q such that

A(u) +B∗(p) = f,

B(u) = g,

(49.11)

for all (f, g) ∈ V ′×Q′. We assume in the entire section that A is self-adjoint
and coercive. This assumption simplifies many arguments. In particular, we
establish the well-posedness of (49.11) by means of a coercivity argument on
the Schur complement. The complete theory for well-posedness in Banach
spaces is done in §49.4. Let α be the coercivity constant of A,

inf
v∈V

〈A(v), v〉V ′,V

‖v‖2V
=: α > 0. (49.12)

We also assume that B is surjective, i.e., recalling Lemma C.40,

inf
q∈Q

‖B∗(q)‖V ′

‖q‖Q
=: β > 0. (49.13)

We denote ‖a‖ := ‖A‖L(V ;V ′) and ‖b‖ := ‖B‖L(V ′;Q).
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49.2.1 Schur complement

Let JQ : Q → Q′ be the Riesz–Fréchet isometric isomorphism (see Theo-
rem C.24), i.e., 〈JQ(q), r〉Q′ ,Q := (q, r)Q for all q, r ∈ Q. We call Schur
complement of A on Q the linear operator S : Q→ Q defined by

S := J−1
Q BA−1B∗. (49.14)

(S is sometimes defined with the opposite sign in the literature.)

Lemma 49.1 (Coercivity and boundedness of S). Let S be defined
in (49.14). Then S is symmetric and bijective with

β2

‖a‖‖q‖
2
Q ≤ (S(q), q)Q ≤ ‖b‖2

α
‖q‖2Q, ∀q ∈ Q. (49.15)

Proof. (1) Symmetry. Since A−1 is self-adjoint, we infer that for all q, r ∈ Q,

(S(q), r)Q = 〈BA−1B∗(q), r〉Q′ ,Q = 〈A−1B∗(q), B∗(r)〉V,V ′

= 〈A−1B∗(r), B∗(q)〉V,V ′ = (S(r), q)Q.

(2) Bounds (49.15). The self-adjointness and coercivity of A imply that
‖A−1‖L(V ′;V ) = α−1 (see Lemma C.51) and 〈A−1(φ), φ〉V,V ′ ≥ 1

‖a‖‖φ‖2V ′

for all φ ∈ V ′ (see Lemma C.63). Moreover, the definitions of ‖b‖ and β
mean that ‖B∗‖L(Q;V ′) = ‖b‖ and ‖B∗(q)‖V ′ ≥ β‖q‖Q for all q ∈ Q. Since
(S(q), q)Q = 〈A−1(B∗(q)), B∗(q)〉V,V ′ for all q ∈ Q, we conclude that (49.15)
holds true. Finally, S is bijective since S is Q-coercive and bounded. ⊓⊔

Lemma 49.2 (Equivalence with (49.11)). Let (u, p) ∈ V×Q. Then the
pair (u, p) solves (49.11) iff (u, p) solves

S(p) = J−1
Q (BA−1(f)− g), A(u) = f −B∗(p). (49.16)

Proof. Let (u, p) ∈ V×Q solve (49.11). Since A is bijective, we have u =
A−1(f −B∗(p)), so that B(u) = BA−1(f −B∗(p)) = g. This in turn implies
that J−1

Q BA−1(f−B∗(p)) = J−1
Q (g), finally giving S(p) = J−1

Q (BA−1(f)−g)
and A(u) = f − B∗(p). This means that (u, p) solves (49.16). Conversely,
assume that (u, p) ∈ V×Q solves (49.16). Then BA−1B∗(p) = BA−1(f)− g,
that is, BA−1(f − B∗(p)) = g. But A−1(f − B∗(p)) = u. Hence, B(u) = g
and A(u) = f −B∗(p), which means that (u, p) solves (49.11). ⊓⊔

Theorem 49.3 (Well-posedness). The problem (49.11) is well-posed.

Proof. Owing to Lemma 49.2, it suffices to show that (49.16) is well-posed,
but this is a consequence of Lemma 49.1 and the Lax–Milgram lemma. ⊓⊔
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49.2.2 Formulation with bilinear forms

We now reformulate the mixed problem (49.11) using bilinear forms. This for-
malism will be used in Chapters 50 to 55 where we consider various Galerkin
approximations to (49.11). Let us set

a(v, w) := 〈A(v), w〉V ′,V , b(w, q) := 〈q, B(w)〉Q,Q′ , (49.17)

for all v, w ∈ V and all q ∈ Q (recall that we have identified Q′′ and Q).
The assumed boundedness of A and B implies that a and b are bounded on
V×V and on V×Q, respectively. The abstract problem (49.11) can then be
reformulated in the following equivalent form:





Find u ∈ V and p ∈ Q such that

a(u,w) + b(w, p) = f(w), ∀w ∈ V,

b(u, q) = g(q), ∀q ∈ Q,

(49.18)

with the shorthand notation f(w) := 〈f, w〉V ′,V and g(q) := 〈g, q〉Q′,Q. The
definitions (49.12) and (49.13) of α and β are then equivalent to

inf
v∈V

|a(v, v)|
‖v‖2V

=: α > 0, inf
q∈Q

sup
v∈V

|b(v, q)|
‖v‖V ‖q‖Q

=: β > 0. (49.19)

Let X := V×Q and consider the bilinear form t : X×X → R defined by

t((v, q), (w, r)) := a(v, w) + b(w, q) + b(v, r), (49.20)

for all (v, q), (w, r) ∈ X. Then (u, p) ∈ X solves (49.11) iff

t((u, p), (w, r)) = f(w) + g(r), ∀(w, r) ∈ X. (49.21)

49.2.3 Sharper a priori estimates

We collect in this section some additional results regarding the operator S,
and we give a priori estimates on the solution to the mixed problem (49.11).
Recall from Definition 46.1 the notions of spectrum and eigenvalues.

Corollary 49.4 (Spectrum of S). The spectrum of S is such that σ(S) ⊂[
β2

‖a‖ ,
‖b‖2

α

]
, and ‖S‖L(Q;Q) ≤ ‖b‖2

α , ‖S−1‖L(Q;Q) ≤ ‖a‖
β2 .

Proof. These statements are consequences of (49.15) and Theorem 46.17.
Recall that Theorem 46.17 asserts in particular that σ(S) ⊂ R, ‖S‖L(Q;Q) =
supλ∈σ(S) |λ| and ‖S−1‖L(Q;Q) = supλ∈σ(S) |λ|−1. See also Exercise 49.3. ⊓⊔

Remark 49.5 (Spectrum of S). Corollary 49.4 can be refined by equip-

ping V with the energy norm ‖·‖2a := a(·, ·) 1
2 (recall that a is symmetric and

coercive) which is equivalent to ‖·‖V . Setting βa := infq∈Q supv∈V
|b(v,q)‖

‖v‖a‖q‖Q
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and ‖b‖a := supq∈Q supv∈V
|b(v,q)|

‖v‖a‖q‖Q , we have ‖b‖2a = ‖S‖L(Q;Q), β
−2
a =

‖S−1‖L(Q;Q), and {β2
a, ‖b‖2a} ⊂ σ(S) ⊂ [β2

a, ‖b‖2a]. ⊓⊔
We define the linear operator T : X → X such that

T (v, q) := (v +A−1B∗(q), S−1J−1
Q B(v)), (49.22)

for all (v, q) ∈ V×Q. With a slight abuse of notation regarding the column

vector convention, we can also write T :=
(

IV A−1B∗

S−1J−1
Q B 0

)
, where IV is

the identity in V. We have T ∈ L(X ;X), and upon introducing the weighted
inner product (x, y)X̃ := a(v, w) + (S(q), r)Q for all x := (v, q) and y :=
(w, r) in X, we also have (T (x), y)X̃ = a(v, w) + b(v, r) + b(w, q), that is,
(T (x), y)X̃ = t(x, y). This identity implies that T is symmetric with respect
to the weighted inner product (x, y)X̃ . The following result, due to Bacuta
[42], provides a complete characterization of the spectrum of T . We refer the
reader to §50.3.2 for the algebraic counterpart of this result.

Theorem 49.6 (Spectrum of T ). Let ̺ := 1+
√
5

2 be the golden ratio. As-
sume that ker(B) is nontrivial. Then

σ(T ) = σp(T ) = {−̺−1, 1, ̺}. (49.23)

Proof. Let λ ∈ σ(T ). Owing to Corollary 46.18, there is a sequence (xn)n∈N

in X such that ‖xn‖X = 1 for all n ∈ N and T (xn) − λxn → 0 in X as
n → ∞. Writing xn := (vn, qn), we infer that (1 − λ)vn + A−1B∗(qn) → 0
in V and S−1J−1

Q B(vn) − λqn → 0 in Q as n → ∞. Applying the bounded

operator J−1
Q B to the first limit and the bounded operator S to the second

one, we infer that (
1− λ 1
1 −λ

)(
J−1
Q B(vn)

S(qn)

)
→ 0.

Assume that λ 6∈ {−̺−1, 1, ̺}. The matrix on the left-hand side is invertible
since λ 6∈ {−̺−1, ̺}. This implies that S(qn) → 0 in Q, so that ‖qn‖Q →
0 since S is a bounded bijective operator. Since λ 6= 1 and recalling that
(1−λ)vn+A−1B∗(qn) → 0 in V, we conclude that ‖vn‖V → 0, providing the
expected contradiction with ‖xn‖X = 1. Hence, σ(T ) ⊂ {−̺−1, 1, ̺}. Finally,
we observe that λ = 1 is an eigenvalue associated with the eigenvectors
(v, 0)T for all v ∈ ker(B)\{0}, and ±̺±1 is an eigenvalue associated with the
eigenvectors (±̺±1A−1B∗(q), q)T for all q ∈ Q\{0}. This proves (49.23). ⊓⊔

Theorem 49.6 allows us to derive sharp stability estimates for the solution
of (49.18) in the weighted norm ‖(v, q)‖X̃ := (a(v, v) + (S(q), q)Q)

1
2 induced

by the weighted inner product for which T is symmetric. Equipping X with
this weighted norm and since ‖T ‖L(X;X) = supλ∈σ(T ) |λ| and ‖T−1‖L(X;X) =

supλ∈σ(T ) |λ|−1 (owing to Theorem 46.17), we infer from Theorem 49.6 that

‖T ‖L(X;X) = ‖T−1‖L(X;X) = ̺. (49.24)
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Recalling that t((v, q), (w, r)) = (T (v, q), (w, r))X̃ , we infer that

inf
x∈X

sup
y∈Y

|t(x, y)|
‖x‖X̃‖y‖X̃

= ‖T−1‖−1
L(X;X) = ̺−1, (49.25a)

sup
x∈X

sup
y∈Y

|t(x, y)|
‖x‖X̃‖y‖X̃

= ‖T ‖L(X;X) = ̺. (49.25b)

Corollary 49.7 (Stability). Let (u, p) ∈ X solve (49.18). The following
holds true:

̺−1

(
1

‖a‖‖f‖
2
V ′ +

α

‖b‖2 ‖g‖
2
Q′

) 1
2

≤ ‖(u, p)‖X̃ ≤ ̺

(
1

α
‖f‖2V ′ +

‖a‖
β2

‖g‖2Q′

) 1
2

.

Proof. Let us set x := (u, p). Then (49.18) amounts to T (x) = y with y :=
(A−1(f), S−1J−1

Q (g)). Hence, we have

‖T ‖−1
L(X;X)‖y‖X̃ ≤ ‖x‖X̃ ≤ ‖T−1‖L(X;X)‖y‖X̃ ,

and we use (49.24) to infer that ̺−1‖y‖X̃ ≤ ‖x‖X̃ ≤ ̺‖y‖X̃ . Finally, the
bounds in the proof of Lemma 49.1 imply that ‖y‖2

X̃
≥ 1

‖a‖‖f‖2V ′ + α
‖b‖2 ‖g‖2Q′

and ‖y‖2
X̃

≤ 1
α‖f‖2V ′ +

‖a‖
β2 ‖g‖2Q′ . ⊓⊔

Proposition 49.8 (Stability). Let (u, p) ∈ X solve (49.18). The following
holds true:

4

((4 ‖b‖2

α + 1)
1
2 + 1)2

(
1

‖a‖‖f‖
2
V ′ + ‖g‖2Q′

)
≤ a(u, u) + ‖p‖2Q

≤ 4

((4 β2

‖a‖ + 1)
1
2 − 1)2

(
1

α
‖f‖2V ′ + ‖g‖2Q′

)
. (49.26)

Proof. The proof is similar to that of Corollary 49.7 but uses the operator
T̃ ∈ L(X ;X) s.t. T̃ (v, q) := (v + A−1B∗(q), J−1

Q B(v)) for all (v, q) ∈ V×Q;
see [42] and Exercise 49.4. ⊓⊔

49.3 Saddle point problems in Hilbert spaces

In this section, we assume again that V and Q are real Hilbert spaces and the
bilinear form a is symmetric and coercive, i.e., A is self-adjoint and coercive.
We show that the mixed problem (49.18) has a saddle point structure.
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49.3.1 Finite-dimensional constrained minimization

We start by introducing some simple ideas in the finite-dimensional setting
of linear algebra. Let N,M be two positive integers, let A be a symmetric
positive definite matrix in RN×N and let F ∈ RN . Consider the functional
E : RN → R such that E(V) := 1

2 (AV,V)ℓ2(RN )− (F,V)ℓ2(RN ). Then E admits

a unique global minimizer over RN , say U, which is characterized by the Euler
condition DE(U)(W) = (AU− F,W)ℓ2(RN ) = 0 for all W ∈ RN , i.e., AU = F

(see Proposition 25.8 and Remark 26.5 for similar results expressed in terms
of bilinear forms).

Let now B ∈ RM×N , let G ∈ im(B) ⊂ RM , and consider the affine subspace
K := {V ∈ RN | BV = G}. Then E admits a unique global minimizer over
K, say U, which is characterized by the Euler condition DE(U)(W) = (AU−
F,W)ℓ2(RN ) = 0 for all W ∈ ker(B), i.e., AU− F ∈ ker(B)⊥. Since ker(B)⊥ =

im(BT), we infer that there is P ∈ RM such that AU + BTP = F. Recalling
that BU = G, the optimality condition is equivalent to solving the system

(
A BT

B O

)(
U

P

)
=

(
F

G

)
, (49.27)

where O is the zero matrix in RM×M . Moreover, P is unique if ker(BT) = {0},
i.e., if B has full row rank (note that this implies thatN ≥M). This argument
shows that the problem (49.27) (which is similar to (49.11)) is actually the
optimality condition characterizing the minimizer of the functional V 7→ E(V)
under the constraint V ∈ K.

Another way to look at the above problem consists of introducing the
Lagrange multiplier associated with the constraint V ∈ K, say Q, and con-
sidering the Lagrangian functional

L(V,Q) := E(V) + (Q,BV− G)ℓ2(RM ). (49.28)

Then the optimality conditions for a saddle point of L, say (U,P), are
DVL(U,P)(W) = (AU − F,W)ℓ2(RN ) + (BTP,W)ℓ2(RM ) = 0 for all W ∈ RN ,

and DQL(U,P)(R) = (R,BU − G)ℓ2(RM ) = 0 for all R ∈ RM , which again
gives (49.27).

49.3.2 Lagrangian

Let us now reformulate in a more general framework the computations we
have done in the previous section in finite dimension.

Definition 49.9 (Saddle point). Let V and Q be two sets and consider a
map F : V×Q→ R. A pair (u, p) ∈ V×Q is said to be a saddle point of F if

∀q ∈ Q, F(u, q) ≤ F(u, p) ≤ F(v, p), ∀v ∈ V. (49.29)

Equivalently, we have supq∈QF(u, q) = F(u, p) = infv∈V F(v, p).
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Lemma 49.10 (Inf-sup). The pair (u, p) ∈ V×Q is a saddle point of F iff

inf
v∈V

sup
q∈Q

F(v, q) = F(u, p) = sup
q∈Q

inf
v∈V

F(v, q). (49.30)

Proof. According to Definition 49.9, (u, p) ∈ V×Q is a saddle point of F iff

inf
v∈V

sup
q∈Q

F(v, q) ≤ sup
q∈Q

F(u, q) = F(u, p) = inf
v∈V

F(v, p) ≤ sup
q∈Q

inf
v∈V

F(v, q).

But independently of the existence of a saddle point, one can prove that

sup
q∈Q

inf
v∈V

F(v, q) ≤ inf
v∈V

sup
q∈Q

F(v, q). (49.31)

Indeed, infv∈V F(v, r) ≤ F(w, r) ≤ supq∈Q F(w, q) for all (w, r) ∈ V×Q.
The assertion (49.31) follows by taking the supremum over r ∈ Q on the left
and the infimum over w ∈ V on the right. Thus, the existence of a saddle
point is equivalent to supq∈Q infv∈V F(v, q) = infv∈V supq∈Q F(v, q). ⊓⊔

Proposition 49.11 (Lagrangian). Let V and Q be two real Hilbert spaces.
Let a be a bounded, symmetric, and coercive bilinear form on V×V. Let b
be a bounded bilinear form on V×Q satisfying (49.19). Let f ∈ V ′ and
g ∈ Q′. The following three statements are equivalent: (i) u minimizes
the quadratic functional E(v) := 1

2a(v, v) − f(v) on the affine subspace
Vg := {v ∈ V | b(v, q) = g(q), ∀q ∈ Q}. (ii) There is (a unique) p ∈ Q
such that the pair (u, p) ∈ V×Q is a saddle point of the Lagrangian L s.t.

L(v, q) := 1

2
a(v, v) + b(v, q)− f(v)− g(q). (49.32)

(iii) The pair (u, p) is the unique solution of (49.18).

Proof. See Exercise 49.2. ⊓⊔

49.4 Babuška–Brezzi theorem

Let V and M be two real Banach spaces. Consider two bounded linear oper-
ators A : V → V ′ and B : V →M , and the model problem





Find u ∈ V and p ∈M ′ such that

A(u) +B∗(p) = f,

B(u) = g,

(49.33)

where B∗ :M ′ → V ′ is the adjoint of B, f ∈ V ′, and g ∈M . The goal of this
section is to characterize the well-posedness of (49.33), reformulate it in terms
of inf-sup conditions and bilinear forms associated with the operators A and
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B, and relate this well-posedness result to the BNB theorem (Theorem 25.9).
The theory exposed here is due to Babuška and Brezzi [34, 90]. (In the Hilbert
setting considered in §49.2-§49.3, the spacesM andQ are related byQ =M ′.)

49.4.1 Setting with Banach operators

Let ker(B) be the null space of B and let JB be the canonical injection from
ker(B) into V and J∗

B : V ′ → ker(B)′ be its adjoint. Let Aπ : ker(B) →
ker(B)′ be such that 〈Aπ(v), w〉V ′,V := 〈A(v), w〉V ′,V for all v, w ∈ ker(B),
i.e., Aπ := J∗

BAJB .

Theorem 49.12 (Well-posedness). Problem (49.33) is well-posed if and
only if Aπ is an isomorphism and B is surjective.

Proof. (1) Assume first that (49.33) is well-posed.
(1.a) Let g ∈M and let us denote by (u, p) the solution to (49.33) with data
(0, g). Since u satisfies B(u) = g, we infer that B is surjective.
(1.b) Let us show that Aπ is surjective. Let h ∈ ker(B)′. Owing to the

Hahn–Banach theorem, there is an extension h̃ ∈ V ′ s.t. 〈h̃, v〉V ′,V =

〈h, v〉V ′,V for all v in ker(B) and ‖h̃‖V ′ = ‖h‖ker(B)′ . Let (u, p) be the

solution to (49.33) with f := h̃ and g := 0. Then u ∈ ker(B). Since
〈B∗(p), v〉V ′,V = 〈p,B(v)〉M ′,M = 0 for all v ∈ ker(B), we infer that

〈Aπ(u), v〉V ′,V = 〈A(u), v〉V ′,V = 〈h̃, v〉V ′,V = 〈h, v〉V ′,V for all v ∈ ker(B).
As a result, Aπ(u) = h.
(1.c) Let us show that Aπ is injective. Let u ∈ ker(B) be s.t. Aπ(u) = 0.
Then 〈A(u), v〉V ′,V = 0 for all v ∈ ker(B), so that A(u) ∈ ker(B)⊥. B being
surjective, im(B) is closed and owing to Banach’s theorem (Theorem C.35),
im(B∗) = ker(B)⊥. As a result, A(u) ∈ im(B∗), i.e., there is p ∈ M ′ such
that A(u) = −B∗(p). Hence, A(u) + B∗(p) = 0 and B(u) = 0, which shows
that (u, p) solves (49.33) with f := 0 and g := 0. Uniqueness of the solution
to (49.33) implies that u = 0.
(2) Conversely, assume that Aπ is an isomorphism and B is surjective.
(2.a) For all f ∈ V ′ and all g ∈ M , let us show that there is at least
one solution to (49.33). The operator B being surjective, there is ug ∈ V
s.t. B(ug) = g. Denote by hf,g the bounded linear form on ker(B) s.t.
〈hf,g, v〉V ′,V = 〈f, v〉V ′,V − 〈A(ug), v〉V ′,V for all v ∈ ker(B). Since Aπ :
ker(B) → ker(B)′ is an isomorphism, Aπ is surjective, so that there is
φ ∈ ker(B) s.t. Aπ(φ) = hf,g. Set u := φ + ug. The linear form f − A(u)
is in ker(B)⊥. Since B is surjective, ker(B)⊥ = im(B∗), i.e., there is p ∈ M ′

such that B∗(p) = f − A(u). Moreover, B(u) = B(φ + ug) = B(ug) = g.
Hence, we have constructed a solution to (49.33).
(2.b) Let us show that the solution is unique. Let (u, p) be such that B(u) = 0
and A(u) + B∗(p) = 0, so that u ∈ ker(B) and Aπ(u) = 0. Since πA is in-
jective, u = 0. As a result, B∗(p) = 0. Since B is surjective, B∗ is injective,
which implies p = 0. ⊓⊔
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49.4.2 Setting with bilinear forms and reflexive spaces

Let us now assume that V and M are reflexive Banach spaces and let us
set Q := M ′. Notice that this implies that Q′ = M ′′ = M . Thus, we have
B ∈ L(V ;Q′) and B∗ ∈ L(Q;V ′). Consider the two bounded bilinear forms a
and b defined, respectively, on V×V and on V×Q s.t. a(v, w) := 〈A(v), w〉V ′,V

and b(v, q) := 〈B(v), q〉Q′,Q. Let us set

‖a‖ := sup
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖V

, ‖b‖ := sup
v∈V

sup
q∈Q

|b(v, q)|
‖v‖V ‖q‖Q

. (49.34)

Let f ∈ V ′ and g ∈ Q′. With the shorthand notation f(v) := 〈f, v〉V ′,V and
g(q) := 〈g, q〉Q′,Q, the abstract problem (49.33) is reformulated as follows:





Find u ∈ V and p ∈ Q such that

a(u,w) + b(w, p) = f(w), ∀w ∈ V,

b(u, q) = g(q), ∀q ∈ Q.

(49.35)

Theorem 49.13 (Babuška–Brezzi). (49.35) is well-posed if and only if





inf
v∈ker(B)

sup
w∈ker(B)

|a(v, w)|
‖v‖V ‖w‖V

=: α > 0,

∀w ∈ ker(B), [ ∀v ∈ ker(B), a(v, w) = 0 ] =⇒ [w = 0 ],

(49.36)

and the following inequality, usually called Babuška–Brezzi condition, holds:

inf
q∈Q

sup
v∈V

|b(v, q)|
‖v‖V ‖q‖Q

=: β > 0. (49.37)

Furthermore, we have the following a priori estimates:

‖u‖V ≤ c1 ‖f‖V ′ + c2 ‖g‖Q′, (49.38a)

‖p‖Q ≤ c3 ‖f‖V ′ + c4 ‖g‖Q′, (49.38b)

with c1 := 1
α , c2 := 1

β (1 +
‖a‖
α ), c3 := 1

β (1 +
‖a‖
α ), and c4 := ‖a‖

β2 (1 +
‖a‖
α ).

Proof. (1) Since ker(B) ⊂ V is reflexive, we infer form Theorem C.49 that
(49.36) is equivalent to Aπ being an isomorphism. Furthermore, (49.37) is
equivalent to B being surjective owing to (C.17) in Lemma C.40 since Q is
reflexive. We invoke Theorem 49.12 to conclude that (49.35) is well-posed iff
(49.36)-(49.37) hold true.
(2) Let us now prove the a priori estimates (49.38). From the condition (49.37)
and Lemma C.42 (since Q is reflexive), we deduce that there exists ug ∈ V
such that B(ug) = g and β‖ug‖V ≤ ‖g‖Q′. Setting φ := u − ug ∈ ker(B)
yields a(φ, v) = f(v)− a(ug, v) for all v ∈ ker(B). Since
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|a(φ, v)| ≤ (‖f‖V ′ + ‖a‖ ‖ug‖V )‖v‖V ≤
(
‖f‖V ′ +

‖a‖
β

‖g‖Q′

)
‖v‖V ,

taking the supremum over v in ker(B) yields α‖φ‖V ≤ ‖f‖V ′ + ‖a‖
β ‖g‖Q′

owing to (49.36). The estimate on u results from this inequality and the
triangle inequality. To prove the estimate on p, we deduce from (49.37) and
Lemma C.40 that β‖p‖Q ≤ ‖B∗(p)‖V ′ , yielding β‖p‖Q ≤ ‖a‖‖u‖V + ‖f‖V ′ .
The estimate on ‖p‖Q then results from that on ‖u‖V . ⊓⊔

Remark 49.14 (Coercivity). The conditions in (49.36) are automatically
fulfilled if the bilinear form a is coercive on ker(B) or coercive on X. ⊓⊔

Let us recall that we have adopted the convention that suprema and infima
in expressions like (49.34)-(49.36)-(49.37) are taken over nonzero arguments.
To relate the conditions (49.36) and (49.37) with the conditions (bnb1) and
(bnb2) from the BNB theorem (Theorem 25.9), let us introduce the space
X := V×Q equipped with the norm ‖(v, q)‖X := ‖v‖V + ‖q‖Q and let us
recall from (49.20) the bounded bilinear form t on X×X defined by

t((v, q), (w, r)) := a(v, w) + b(w, q) + b(v, r). (49.39)

Theorem 49.15 (Link with BNB). The bilinear form t satisfies the con-
ditions (bnb1) and (bnb2) if and only if (49.36) and (49.37) are satisfied.

Proof. (1) Let us prove that (49.36) and (49.37) imply (bnb1) and (bnb2).

(1a) Proof of (bnb1). Let (v, q) ∈ X and set S := sup(w,r)∈X
|t((v,q),(w,r))|

‖(w,r)‖X .

Lemma C.42 implies that there exists v̂ ∈ V such that B(v̂) = B(v) and
β‖v̂‖V ≤ ‖B(v)‖Q′ . We infer that

β‖v̂‖V ≤ ‖B(v)‖Q′ = sup
r∈Q

|b(v, r)|
‖r‖Q

= sup
(0,r)∈X

|t((v, q), (0, r))|
‖(0, r)‖X

≤ S.

Observing that v − v̂ ∈ ker(B) we also infer that

α‖v − v̂‖V ≤ sup
w∈ker(B)

|a(v − v̂, w)|
‖w‖V

= sup
w∈ker(B)

|a(v − v̂, w) + b(w, q) + b(v, 0)|
‖w‖V

≤ sup
(w,0)∈X

|t((v, q), (w, 0))|
‖(w, 0)‖X

+ sup
w∈ker(B)

|a(v̂, w)|
‖w‖V

≤ S+ ‖a‖ ‖v̂‖V ≤
(
1 +

‖a‖
β

)
S.

Using the triangle inequality yields ‖v‖V ≤
(

1
β + 1

α

(
1 + ‖a‖

β

))
S. Then we

proceed as follows to bound ‖q‖Q:
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β‖q‖Q ≤ sup
w∈V

|b(w, q)|
‖w‖V

≤ sup
w∈V

|a(v, w) + b(w, q) + b(v, 0)|
‖(w, 0)‖X

+ sup
w∈V

|a(v, w)|
‖w‖V

.

This estimate implies that β‖q‖Q ≤ S+ ‖a‖‖v‖V , and we conclude that

‖q‖Q ≤ 1

β

(
1 + ‖a‖

(
1

β
+

1

α

(
1 +

‖a‖
β

)))
S.

This proves (bnb1).
(1b) Let (w, r) ∈ X be s.t. t((v, q), (w, r)) = 0 for all (v, q) ∈ X, i.e.,

a(v, w) + b(v, r) = 0, ∀v ∈ V, (49.40a)

b(w, r) = 0, ∀r ∈ Q. (49.40b)

Then (49.40b) implies that w ∈ ker(B), and taking v ∈ ker(B) in (49.40a),
we infer that a(v, w) = 0, for all v ∈ ker(B). The second statement in (49.36)
implies that w = 0. Finally, (49.40a) yields b(v, r) = 0 for all v ∈ V, and
(49.37) implies that r = 0. This proves (bnb2).
(2) Let us now prove that the conditions (bnb1) and (bnb2) on the bilinear
form t imply the conditions (49.36) and (49.37) on the bilinear forms a and
b. Let γ denote the inf-sup constant of the bilinear form t on X×X.
(2a) Let us start with (49.37). For all q ∈ Q, we have

γ‖q‖Q = γ‖(0, q)‖X ≤ sup
(w,r)∈X

|t((0, q), (w, r))|
‖(w, r)‖X

= sup
(w,r)∈X

|b(w, q)|
‖(w, r)‖X

= sup
w∈V

sup
r∈Q

|b(w, q)|
‖(w, r)‖X

= sup
w∈V

|b(w, q)|
‖w‖V

,

since the supremum over r ∈ Q is reached for r = 0. This proves (49.37) with
β ≥ γ > 0.
(2b) Let us prove the first statement in (49.36). For all w ∈ V , we define
(w′

w , r
′
w) ∈ X to be the solution to the adjoint problem t((v, q), (w′

w , r
′
w)) =

a(v, w) for all (v, q) ∈ X. Owing to Lemma C.53, this problem is well-posed.
Moreover, we have w′

w ∈ ker(B) and γ‖w′
w‖V ≤ ‖a‖‖w‖V . Let v ∈ ker(B).

We have a(v, w) = t((v, q), (w′
w , r

′
w)) = a(v, w′

w) for all q ∈ Q. We infer that

γ ‖v‖V = γ ‖(v, 0)‖X ≤ sup
(w,r)∈X

|t((v, 0), (w, r))|
‖(w, r)‖X

= sup
(w,r)∈X

|a(v, w)|
‖(w, r)‖X

= sup
w∈V

|a(v, w)|
‖w‖V

= sup
w∈V

|a(v, w′
w)|

‖w‖V
≤ ‖a‖

γ
sup
w∈V

|a(v, w′
w)|

‖w′
w‖V

.

Since w′
w ∈ ker(B), this finally gives γ2

‖a‖‖v‖V ≤ supw∈ker(B)
|a(v,w)|
‖w‖V , which is

the first statement in (49.36) with α ≥ γ2

‖a‖ > 0.

(2c) Let us now prove the second statement in (49.36). We first recall that
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we have already established that (49.37) holds true. From Lemma C.40, we
then infer that im(B∗) is closed in V ′. Let w ∈ ker(B) be s.t. a(v, w) = 0
for all v ∈ ker(B). This implies that A∗(w) ∈ ker(B)⊥ = im(B∗) = im(B∗).
Then there is rw ∈ Q s.t. B∗(rw) = A∗(w). For all (v, q) ∈ X , we then have

t((v, q), (w,−rw)) = a(v, w) + b(w, q)− b(v, rw) = a(v, w) − b(v, rw)

= 〈A∗(w) −B∗(rw), v〉V ′,V = 0.

The condition (bnb2) on t implies that (w,−rw) = 0, so that w = 0. ⊓⊔

Remark 49.16 (Sharper estimate). Sharper estimates on the inf-sup sta-
bility constant of t have been derived in Corollary 49.7 and Proposition 49.8
under the assumption that the bilinear form a is symmetric and coercive. ⊓⊔

Remark 49.17 (Direct sums). Notice that the map V ∋ w 7→ w′
w ∈

ker(B) introduced in step (2b) of the proof of Theorem 49.15 implies that
any w ∈ V can be uniquely decomposed into w = w′

w + (A∗)−1B∗r′w. This
means that we have the direct decomposition V = ker(B) ⊕ im((A∗)−1B∗).
Note also that the same argument implies that V = ker(B)⊕ im(A−1B∗). ⊓⊔

Exercises

Exercise 49.1 (Algebraic setting). (i) Derive the counterpart of Theo-
rem 49.12 in the setting of §49.3.1. (Hint : assume that the matrix B has full
row rank and consider a basis of ker(B).) (ii) What happens if the matrix A
is symmetric positive definite?

Exercise 49.2 (Constrained minimization). The goal is to prove Propo-
sition 49.11. (i) Prove that if u minimizes E over Vg, there is (a unique) p ∈ Q
such that (u, p) solves (49.35). (Hint : proceed as in §49.3.1.) (ii) Prove that
(u, p) solves (49.35) if and only if (u, p) is a saddle point of L. (Hint : consider
Ep : V → R s.t. Ep(v) := L(v, p) with fixed p ∈ Q.) (iii) Prove that if (u, p) is
a saddle point of L, then u minimizes E over Vg. (iv) Application: minimize
E(v) := 2v21 + 2v22 − 6v1 + v2 over R2 under the constraint 2v1 + 3v2 = −1.

Exercise 49.3 (Symmetric operator). Let X be a Hilbert space and let
T ∈ L(X ;X) be a bijective symmetric operator. (i) Prove that T−1 is sym-
metric. (ii) Prove that [λ ∈ σ(T ) ] ⇐⇒ [λ−1 ∈ σ(T−1) ]. (Hint : use Corol-
lary 46.18.) (iii) Prove that σ(T ) ⊂ R. (Hint : consider the sesquilinear form
tλ(x, y) := ((T − λIX)(x), y)X and use the Lax–Milgram lemma.)

Exercise 49.4 (Sharp stability). The goal is to prove Proposition 49.8.

(i) Assume that ker(B) is nontrivial. Verify that 1 ∈ σp(T̃ ). (ii) Let λ 6= 1

be in σ(T̃ ). Prove that λ(λ − 1) ∈ σ(S). (Hint : consider the sequence xn :=
(vn, qn) in X from Corollary 46.18, then observe that (S(qn), qn)Q = (1 −
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λ)2〈A(vn), vn〉V ′,V +δn, with δn := 〈B∗(qn)+(1−λ)A(vn), A−1B∗(qn)−(1−
λ)vn〉V ′,V , and prove that S(qn)−λ(λ−1)qn → 0 and lim infn→∞ ‖qn‖Q > 0.)

(iii) Prove that σ(T̃ ) ⊂ [λ−♯ , λ
−
♭ ]∪{1}∪[λ+♭ , λ+♯ ] with λ±♭ = 1

2 (1±(4 β2

‖a‖+1)
1
2 ),

and λ±♯ = 1
2 (1±(4 ‖b‖2

α +1)
1
2 ). (Hint : use Lemma 49.1.) (iv) Conclude. (Hint : T̃

is symmetric with respect to the weighted inner product (x, y)X̃ := a(v, w)+
(q, r)Q.)

Exercise 49.5 (Abstract Helmholtz decomposition). Consider the set-
ting of §49.2 and equip V with the bilinear form a as inner product. (i)
Prove that im(A−1B∗) is closed and that V = ker(B) ⊕ im(A−1B∗), the
sum being a-orthogonal. (Hint : use Lemma C.39.) (ii) Let f ∈ ker(B)⊥.
Prove that solving b(v, p) = f(v) for all v ∈ V is equivalent to solving
(S(p), q)Q = (J−1

Q BA−1(f), q)Q for all q ∈ Q.

Exercise 49.6 (Maxwell’s equations). Consider the following problem:
For f ∈ L2(D), find A and φ such that





∇×(κ∇×A) + ν∇φ = f ,

∇·(νA) = 0,

A|∂Dd
×n = 0, φ|∂Dd

= 0, (κ∇×A)|∂Dn
×n = 0, A|∂Dn

·n = 0,

where κ, ν are real and positive constants (for simplicity), and |∂Dd| > 0
(see §49.1.3; here we write A in lieu of H and we consider mixed Dirichlet–
Neumann conditions). (i) Give a mixed weak formulation of this problem.
(Hint : use the spaces Vd := {v ∈ H(curl;D) | γc(v)|∂Dd

= 0}, where the
meaning of the boundary condition is specified in §43.2.1, and Qd := {q ∈
H1(D) | γg(q)|∂Dd

= 0}.) (ii) Let B : Vd → Q′
d be s.t. 〈B(v), q〉Q′

d,Qd
:=

(νv,∇q)L2(D). Let v ∈ ker(B). Show that ∇·v = 0 and, if v ∈ H1(D),
γg(v)|∂Dn

·n = 0. (Hint : recall that ν is constant.) (iii) Accept as a fact
that D, ∂Dd, ∂Dn have topological and smoothness properties such that
there exists c > 0 s.t. ℓD‖∇×v‖L2(D) ≥ c‖v‖L2(D), for all v ∈ ker(B), with
ℓD := diam(D). Show that the above weak problem is well-posed. (Hint :
use Theorem 49.13.) (iv) Let (Th)h∈H be a shape-regular sequence of affine
meshes. Let k ≥ 0, let Vh := P c

k (Th)∩Vd, and let Qh := P g
k+1(Th)∩Qd. Show

that ∇Qh ⊂ Vh. (v) Show that the discrete mixed problem is well-posed in
Vh×Qh assuming that ∂Dd = ∂D. (Hint : invoke Theorem 44.6.)


