
Part XI, Chapter 53

Stokes equations: Basic ideas

The Stokes equations constitute the basic linear model for incompressible
fluid mechanics. We first derive a weak formulation of the Stokes equations
and establish its well-posedness. The approximation is then realized by means
of mixed finite elements, that is, we consider a pair of finite elements, where
the first component of the pair is used to approximate the velocity and the
second component is used to approximate the pressure. Following the ideas of
Chapter 50, the finite element pair is said to be stable whenever the discrete
velocity and the discrete pressure spaces satisfy an inf-sup condition. In this
chapter, we list some classical unstable pairs. Examples of stable pairs are
reviewed in the following two chapters.

53.1 Incompressible fluid mechanics

Let D be a Lipschitz domain in Rd. We are interested in modeling the behav-
ior of incompressible fluid flows in D in the time-independent Stokes regime,
i.e., the inertial forces are assumed to be negligible. Given a vector-valued
field f : D → Rd (the body force acting on the fluid) and a scalar-valued
field g : D → R (the mass production rate), the Stokes problem consists of
seeking the velocity field u : D → Rd and the pressure field p : D → R such
that the following balance equations hold true:

−∇·s(u) +∇p = f in D, (53.1a)

∇·u = g in D, (53.1b)

u|∂Dd
= ad, s(u)|∂Dn

n− p|∂Dn
n = an on ∂D. (53.1c)

The equations (53.1a)-(53.1b) express, respectively, the balance of momen-
tum and mass. The second-order tensor s(u) in (53.1a) is the viscous stress
tensor. Notice that we abuse the notation in (53.1a) since we should write
∇·(s(u)) instead of ∇·s(u). As for linear elasticity (see §42.1), the principle
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of conservation of angular momentum implies that s(u) is symmetric and,
assuming the fluid to be Newtonian, Galilean invariance implies that

s(u) = 2µe(u) + λ(∇·u)I, e(u) :=
1

2
(∇u+ (∇u)T), (53.2)

where I is the d×d identity tensor. The quantity e(u) is called (linearized)
strain rate tensor, and the constants µ > 0, λ ≥ 0 are the dynamic and bulk
viscosities, respectively. In (53.1c), the subsets ∂Dd, ∂Dn form a partition
of the boundary ∂D, and we assume for simplicity that |∂Dd| > 0. The
boundary data are the prescribed velocity ad on ∂Dd (Dirichlet condition)
and the prescribed normal force an on ∂Dn (Neumann condition).

Remark 53.1 (Total stress tensor). After introducing the total stress
tensor r(u, p) := s(u) − pI, one can rewrite the momentum balance equa-
tion (53.1a) in the form −∇·r(u, p) = f , and the Neumann condition on ∂Dn

as r(u, p)|∂Dn
n = an. ⊓⊔

Remark 53.2 (Incompressibility). The field u is said to be incompress-
ible, or divergence-free, if ∇·u = g = 0. In the incompressible regime, (53.2)
simplifies to s(u) = 2µe(u). ⊓⊔

Remark 53.3 (Laplacian/Cauchy–Navier form). When g = 0 and the
dynamic viscosity is constant, the momentum equation can be simplified by
observing that ∇·((∇u)T) = ∇(∇·u) = 0. The momentum equation can then
be rewritten in the Laplacian (or Cauchy–Navier) form −µ∆u + ∇p = f ,
and the Neumann boundary condition becomes µ∂nu|∂Dn

−p|∂Dn
n = an. ⊓⊔

Remark 53.4 (Pressure constant). When ∂D = ∂Dd, the data fields g
and ad must satisfy the compatibility condition

∫
D g dx =

∫
∂D ad·n ds, and

the pressure is determined up to an additive constant. This indetermination
is usually removed by assuming that

∫
D p dx = 0. ⊓⊔

Remark 53.5 (λ = 0). Since ∇·(λ(∇·u)I) = ∇(λ∇·u), we can redefine
the pressure and the viscous stress tensor by setting p′ := p − λ∇·u and
s

′(u) := 2µe(u). Then the momentum balance equation (53.1a) becomes
−∇·s′(u) +∇p′ = f . We adopt this change of variable in what follows, i.e.,
we assume that s(u) := 2µe(u) from now on. ⊓⊔

Remark 53.6 (Homogeneous Dirichlet condition). Let us assume that
there is a function ud (smooth enough) s.t. (ud)|∂Dd

= ad. Then we can make
the change of variable u′ := u − ud so that u′ satisfies the homogeneous
boundary condition u′

|∂Dd
= 0. Upon denoting f ′ := f + ∇·(s(ud)), g

′ :=
g −∇·ud, and inserting the definition u = u′ + ud into (53.1), one observes
that the pair (u′, p) solves a Stokes problem with homogeneous Dirichlet data
and with source terms f ′ and g′. From now on, we abuse the notation and
use the symbols u, f , g instead of u′, f ′, g′. This is equivalent to assuming
that ad = 0. ⊓⊔



Part XI. PDEs in mixed form 393

53.2 Weak formulation and well-posedness

In this section, we present a weak formulation of the Stokes equations and
we establish its well-posedness using the Babuška–Brezzi theorem (Theo-
rem 49.13).

53.2.1 Weak formulation

Let w be a sufficiently smooth Rd-valued test function. Since the velocity
u vanishes on ∂Dd, we only consider test functions w that vanish on ∂Dd.
Multiplying (53.1a) by w and integrating over D gives

−
∫

D

(∇·s(u))·w dx+

∫

D

∇p·w dx =

∫

D

f ·w dx.

Integrating by parts the term involving the viscous stress tensor, we obtain

−
∫

D

(∇·s(u))·w dx =

∫

D

s(u):∇w dx−
∫

∂Dn

(s(u)n)·w ds,

where n := (n1, . . . , nd)
T is the outward unit normal to D. The boundary

integral over ∂Dd is zero since w vanishes on ∂Dd. The symmetry of s(u)
implies that s(u):∇w = s(u):e(w). Similarly, the term

∫
D
∇p·w dx is equal

to −
∫
D
p∇·w dx +

∫
∂Dn

pn·w ds. Combining the above equations and using

the Neumann boundary condition s(u)|∂Dn
n− p|∂Dn

n = an, the weak form
of the momentum equation is

∫

D

(s(u):e(w)− p∇·w) dx =

∫

D

f ·w dx+

∫

∂Dn

an·w ds.

The three integrals are well defined if p ∈ L2(D), f ∈ L2(D), an ∈ L2(∂Dn),
and if u, w are in the space

Vd(D) := {v ∈H1(D) | γg(v)|∂Dd
= 0}, (53.3)

with the Rd-valued trace operator γg : H1(D) → H
1
2 (∂D) acting compo-

nentwise as the scalar-valued trace operator γg : H1(D) → H
1
2 (∂D). We

equip the space Vd with the norm ‖v‖Vd
:= |v|H1(D) = ‖∇v‖L2(D). Since

|∂Dd| > 0, we infer from the Poincaré–Steklov inequality (42.9) that there
is a constant C̃ps > 0 s.t. C̃ps‖v‖L2(D) ≤ ℓD‖∇v‖L2(D) for all v ∈ Vd (re-
call that ℓD is a length scale associated with D, e.g., ℓD := diam(D)). This
argument shows that ‖·‖Vd

is a norm on Vd, equivalent to the ‖·‖H1(D)-norm.
A weak formulation of the mass conservation (53.1b) is obtained as above

by testing the equation against a sufficiently smooth scalar-valued function
q. No integration by parts needs to be performed, and we simply write
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∫

D

q∇·u dx =

∫

D

gq dx.

The left-hand side is well defined provided q ∈ L2(D) and u is in Vd. Note
that if ∂D = ∂Dd, the compatibility condition

∫
D
g dx = 0 implies the equal-

ity
∫
D
∇·u dx =

∫
D
g dx, meaning that the mass conservation equation need

not be tested against constant functions. In this particular case, the test
functions q must be restricted to be of zero mean over D. This motivates the
following definition:

Q :=

{
L2(D) if ∂D 6= ∂Dd,

L2
∗(D) := {q ∈ L2(D) |

∫
D q dx = 0} if ∂D = ∂Dd.

(53.4)

We equip the space Q with the L2-norm. Let us define the bilinear forms

a(v,w) :=

∫

D

s(v):e(w) dx, b(w, q) := −
∫

D

q∇·w dx, (53.5)

on Vd×Vd and Vd×Q, respectively. We also define the linear forms F (w) :=∫
D f ·w dx +

∫
∂Dn

an·w ds, G(q) := −
∫
D gq dx on Vd and Q, respectively.

Assuming enough smoothness on f , an, and g, it is reasonable to expect that
F ∈ L(Vd;R) and G ∈ L(Q;R). We obtain the following weak formulation:





Find u ∈ Vd and p ∈ Q such that

a(u,w) + b(w, p) = F (w), ∀w ∈ Vd,

b(u, q) = G(q), ∀q ∈ Q.

(53.6)

Proposition 53.7 (Weak solution). Assume f ∈ L2(D), g ∈ Q, and an ∈
L2(∂Dn). Any weak solution (u, p) to (53.6) satisfies (53.1a)-(53.1b) a.e. in
D and satisfies the boundary condition (53.1c) a.e. on ∂D.

Proof. Let us set r(u, p) := s(u)−pI ∈ L2(D). Testing the momentum equa-
tion in (53.6) against an arbitrary function w ∈ C∞

0 (D), we infer that r(u, p)
has a weak divergence in L2(D) equal to −f . Since ∇·r(u, p) = ∇·s(u)−∇p,
we infer that (53.1a) is satisfied a.e. in D. Testing the mass equation in (53.6)
against an arbitrary function q ∈ C∞

0 (D), we infer that (53.1b) is satisfied
a.e. in D (if ∂D = ∂Dd, the compatibility condition

∫
D
g dx = 0 implies

that b(u, q) = G(q) for all q ∈ L2(D)). The Dirichlet boundary condition
u|∂Dd

= 0 is a natural consequence of the trace theorem (Theorem 3.10)
and u being in Vd. To derive the Neumann condition, we proceed as in
§31.3.3. Since ∇·r(u, p) = −f ∈ L2(D), we have r(u, p) ∈ H(div;D) (i.e.,
each row of r(u, p) is in H(div;D)). Owing to Theorem 4.15, we infer that

r(u, p)n ∈H− 1
2 (∂D). As a result, we have
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〈r(u, p)n, γg(w)〉∂D =

∫

D

(r(u, p):∇w + (∇·r(u, p))·w) dx

=

∫

D

(s(u):e(w) − p∇·w − f ·w) dx =

∫

∂Dn

an·γg(w) ds, ∀w ∈ Vd,

which implies that the Neumann condition r(u, p)n = an is satisfied in

H̃
1
2 (∂Dn)

′, with H̃
1
2 (∂Dn) := {v ∈ H 1

2 (∂Dn) | ṽ ∈ H 1
2 (∂D)} (recall that

ṽ is the zero extension of v to ∂D). Actually, the Neumann condition is sat-
isfied a.e. on ∂Dn since we assumed an ∈ L2(∂Dn). ⊓⊔

Remark 53.8 (Neumann data). The above proof shows that it is possible

to take more generally an ∈ H̃ 1
2 (∂Dn)

′. ⊓⊔

53.2.2 Well-posedness

One readily sees that the bilinear form a(v,w) := (s(v), e(w))L2(D) defined
in (53.5) is coercive and bounded on Vd×Vd. The coercivity of a has been
established in Theorem 42.11 as a consequence of Korn’s inequalities. In
particular, there is Ck > 0 s.t. ‖e(v)‖L2(D) ≥ Ck|v|H1(D) for all v ∈ Vd, and
this implies that (see (42.15) with ρmin := 2µ in the present setting)

a(v,v) ≥ 2µC2
k |v|2H1(D), ∀v ∈ Vd. (53.7)

Moreover, the Cauchy–Schwarz inequality and the bound ‖e(v)‖L2(D) ≤
|v|H1(D) show that the boundedness constant of the bilinear form a satis-
fies ‖a‖ ≤ 2µ. Hence, the key argument for the well-posedness of the Stokes
problem is the surjectivity of the divergence operator ∇· : Vd → Q. This
result is a bit more subtle than Lemma 51.2 since Vd is a smaller space than
H(div;D).

Lemma 53.9 (∇· is surjective). Let D be a Lipschitz domain in Rd. (i)
Case ∂D = ∂Dd. ∇· : H1

0 (D) → L2
∗(D) is surjective. (ii) Case ∂D 6= ∂Dd.

Consider the partition ∂D = ∂Dd ∪ ∂Dn with |∂Dd| > 0. Assume that
|∂Dn| > 0 and that there exists a subset O of ∂Dn with |O| > 0 and n|O ∈
H

1
2 (O). Then the operator ∇· :X := {v ∈ Vd | γg(v)|∂Dn

×n = 0} → L2(D)
is surjective. (iii) In all the cases, identifying Q′ with Q we have

inf
q∈Q

sup
v∈Vd

|
∫
D q∇·v dx|

‖q‖L2(D)|v|H1(D)

:= βD > 0. (53.8)

Proof. (i) We refer the reader to Girault and Raviart [217, pp. 18-26] for a
proof of the surjectivity of ∇· : H1

0 (D) → L2
∗(D), (see also Exercise 53.1 if

D is a smooth domain). (ii) Let us now consider the second case. Let q be in
L2(D). Let ρ be a smooth nonnegative function compactly supported in O
such that

∫
O ρ ds > 0 (this is possible since |O| > 0). Let g := cρn be a vector

field in O, where the constant c is chosen s.t.
∫
O g·n ds =

∫
D
q dx. Let g̃ be
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the zero extension of g to ∂D. Since n|O ∈ H 1
2 (O), we have ρn ∈ H̃ 1

2 (O).

Hence, g̃ is in H
1
2 (∂D) so that it is possible to find a function w in H1(D)

s.t. γg(w) = g̃ on ∂D. We have γg(w)|∂Dd
= 0 and γg(w)|∂Dn

×n = 0, i.e.,
w ∈ X. Now let q0 := ∇·w − q. The above definitions and the divergence
formula imply that q0 ∈ L2(D) and

∫
D q0 dx = 0. Hence, q0 is in L2

∗(D).
Since ∇· : H1

0 (D) → L2
∗(D) is surjective, there is w0 ∈ H1

0 (D) such that
∇·w0 = −q0. Thus, for all q in L2(D) the function w + w0 is in X with
∇·(w +w0) = q, that is, ∇·X → L2(D) is surjective. This also implies that
∇· : Vd → Q is surjective. (iii) The inf-sup condition (53.8) follows from the
surjectivity of ∇· : Vd → Q and Lemma C.40. ⊓⊔

Remark 53.10 (Inf-sup condition in W 1,p-Lp
′

). Let p ∈ (1,∞) and let
p′ ∈ (1,∞) be s.t. 1

p +
1
p′ = 1. Then the operator ∇· :W 1,p

0 (D) → Lp∗(D) :=

{q ∈ Lp(D) |
∫
D q dx = 0} is surjective (see Auscher et al. [30, Lem. 10]),

that is, identifying (Lp∗(D))′ with Lp
′

∗ (D), we have

inf
q∈Lp′∗ (D)

sup
v∈W 1,p

0 (D)

|
∫
D q∇·v dx|

‖q‖Lp′(D)|v|W 1,p(D)

:= βD,p > 0. (53.9)

The assumption that D is Lipschitz can be weakened. For instance, the inf-
sup condition (53.9) holds true also if D is a bounded open set in Rd and if
D is star-shaped with respect to an open ball B ⊂ D, i.e., for all x ∈ D and
z ∈ B, the segment joining x and z is contained in D; see Bogovskĭı [66],
Galdi [210, Lem. 3.1, Chap. III], Durán and Muschietti [181], Durán et al.
[180], Solonnikov [349, Prop. 2.1], Costabel and McIntosh [146]. ⊓⊔

Let B : Vd → Q′ be s.t. 〈B(v), q〉Q′,Q := b(v, q) = −
∫
D
q(∇·v) dx. Identify-

ing Q and Q′, we have B(v) = −∇·v, and ker(B) := {v ∈ Vd | ∇·v = 0}.

Theorem 53.11 (Well-posedness). (i) The weak formulation (53.6) of the
Stokes problem is well-posed. (ii) There is c such that for all f ∈ L2(D), all
g ∈ Q, and all an ∈ L2(∂Dn),

2µ|u|H1(D) + ‖p‖L2(D) ≤ c
(
ℓD‖f‖L2(D) + µ‖g‖L2(D) + ℓ

1
2

D‖an‖L2(∂Dn)

)
.

Proof. We apply the Babuška–Brezzi theorem (Theorem 49.13). The inf-sup
condition (49.37) on the bilinear form b follows from Lemma 53.9. The two
conditions in (49.36) are satisfied owing to the coercivity of the bilinear form
a on Vd (see (53.7)). Finally, the stability estimate follows from (49.38). ⊓⊔

One can formulate a more precise stability result on the product space
Y := Vd×Q equipped with the norm ‖(v, q)‖2Y := µ|v|2H1(D) + µ−1‖p‖2L2(D),

and the bilinear form t((v, q), (w, r)) := a(v,w) + b(w, q)− b(v, r) on Y×Y.

Lemma 53.12 (Inf-sup condition). The following holds true:
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inf
(v,q)∈Y

sup
(w,r)∈Y

|t((v, q), (w, r))|
‖(v, q)‖Y ‖(w, r)‖Y

=: γ > 0, (53.10)

where γ is uniform w.r.t. µ > 0.

Proof. Let (v, q) ∈ Y and let us set S := sup(w,r)∈Y
|t((v,q),(w,r))|

‖(w,r)‖Y . Owing

to (53.7), we have

2µC2
k|v|2H1(D) ≤ a(v,v) = t((v, q), (v, q)) ≤ S‖(v, q)‖Y . (53.11)

Moreover, owing to Lemma 53.9, there is wq ∈ Vd s.t. ∇·wq = −µ−1q and
|wq|H1(D) ≤ (βDµ)

−1‖q‖L2(D). We obtain

µ−1‖q‖2L2(D) = −(q,∇·wq) = −t((v, q), (wq , 0)) + a(v,wq)

≤ Sµ
1
2 |wq|H1(D) + 2µ

1
2 |v|H1(D)µ

1
2 |wq|H1(D)

≤ c′ (S+ S
1
2 ‖(v, q)‖

1
2

Y )µ
1
2 |wq|H1(D),

where we used that |a(v,w)| ≤ 2µ|v|H1(D)|w|H1(D) and then (53.11). Using
the bound on |wq|H1(D) and Young’s inequality leads to

µ−1‖q‖2L2(D) ≤ c (S2 + S‖(v, q)‖Y ).

We can now combine this bound with (53.11) to infer that

‖(v, q)‖2Y ≤ c (S2 + S‖(v, q)‖Y ).

Applying one more time Young’s inequality yields ‖(v, q)‖Y ≤ cS. ⊓⊔

Remark 53.13 (Helmholtz decomposition). LettingH1
∗ (D) := H1(D)∩

L2
∗(D) and H := {v ∈ L2(D) | ∇·v = 0, v|∂D·n = 0}, the following L2-

orthogonal Helmholtz decomposition holds true:L2(D) = H⊕∇(H1
∗ (D)) (see

Lemma 74.1). The L2-orthogonal projection PH : L2(D) → H resulting from
this decomposition is often called Leray projection. Let (u, p) solve (53.6). As-
sume for simplicity that the homogeneous Dirichlet condition u|∂D = 0 is en-
forced over the whole boundary and assume that g = 0. Since u is divergence-
free and vanishes at the boundary, we have (f ,u)L2(D) = (PH(f),u)L2(D).
Then taking w := u in (53.6) and invoking the coercivity of a shows that
2µC2

k|u|2H1(D) ≤ a(u,u) = (PH(f),u)L2(D). Owing to the Cauchy–Schwarz
inequality and the Poincaré–Steklov inequality, we get

2µ|u|H1(D) ≤ C−1
ps C

−2
k ℓD‖PH(f)‖L2(D).

This a priori estimate on the velocity is sharper than the one from The-
orem 53.11 since ‖PH(f)‖L2(D) appears on the right-hand side instead of
‖f‖L2(D). One should bear in mind that, even if p ∈ H1

∗ (D), the fields
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−∇·s(u) and PH(f) are generally different since the normal component of
∇·s(u) at ∂D is generally nonzero. ⊓⊔

53.2.3 Regularity pickup

Regularity properties for the Stokes problems can be established when µ and
λ are both constant (or smooth) and |∂Dn| = 0. For instance, if ∂D is of
class C∞, for all s > 0 there is c, depending on D and s, such that

µℓ−1
D ‖u‖H1+s(D) + ‖p‖Hs(D) ≤ c (ℓD‖f‖Hs−1(D) + µ‖g‖Hs(D)). (53.12)

There is an upper limit on s when D is not smooth. For instance, let D be
a two-dimensional convex polygon. Let ρ : D → R be the distance to the
closest vertex of D. It is shown in Kellogg and Osborn [266, Thm. 2] that
there is a constant c that depends only on D such that

µ|u|H2(D)+|p|H1(D) ≤ c
(
‖f‖L2(D)+µℓ

−1
D (|g|H1(D)+‖ρ−1g‖L2(D))

)
. (53.13)

The situation is a bit more complicated in dimension three. We refer to Dauge
[153] for an overview of the problem. Assuming that g = 0, it is shown in
[153, p. 75] that (53.12) holds true in the following situations: (i) For all s ≤ 1
if D is a convex polyhedron; (ii) For all s < 3

2 if D is any convex domain with
wedge angles ≤ 2

3π; (iii) For all s <
1
2 if D has a piecewise smooth boundary,

and its faces meet two by two or three by three with independent normal
vectors at the meeting points.

53.3 Conforming approximation

In the rest of this chapter, we assume that D is a polyhedron in Rd and
(Th)h∈H is a shape-regular sequence of matching meshes so that each mesh
covers D exactly. We also assume that ∂Dd is a union of mesh faces. Let
(Vhd ⊂ Vd)h∈H and (Qh ⊂ Q)h∈H be sequences of finite-dimensional spaces
built using (Th)h∈H. Notice that the inclusion Vhd ⊂ Vd means that the
homogeneous Dirichlet condition on the velocity is strongly enforced on ∂Dd.
The discrete counterpart of the problem (53.6) is as follows:





Find uh ∈ Vhd and ph ∈ Qh such that

a(uh,vh) + b(vh, ph) = F (vh), ∀vh ∈ Vhd,
b(uh, qh) = G(qh), ∀qh ∈ Qh.

(53.14)

Since Vhd is Vd-conforming, the discrete formulation inherits the coercivity
of a. Unfortunately, there is no reason a priori for the discrete formulation to
inherit the surjectivity of the divergence operator established in Lemma 53.9.
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Verifying this condition is the crucial step in devising stable mixed finite
elements for the Stokes problem.

Proposition 53.14 (Well-posedness). The discrete problem (53.14) is
well-posed if and only if the following inf-sup condition holds true:

inf
qh∈Qh

sup
vh∈Vhd

|
∫
D qh∇·vh dx|

‖qh‖L2(D)|vh|H1(D)
=: βh > 0. (53.15)

Proof. Apply Proposition 50.1. ⊓⊔

We henceforth say that the inf-sup condition (53.15) holds uniformly w.r.t.
h ∈ H if infh∈H βh =: β0 > 0.

Definition 53.15 (Stable/unstable pair). We say that a pair of finite
elements used to approximate the velocity and the pressure is stable if the
inf-sup condition (53.15) holds true uniformly w.r.t. h ∈ H, and we say that
it is unstable otherwise.

Remark 53.16 (Inf-sup condition in W 1,p-Lp
′

). Let p ∈ (1,∞) and let
p′ ∈ (1,∞) be s.t. 1

p +
1
p′ = 1. As in Remark 53.10, a more general variant of

the inf-sup condition (53.15) is

inf
qh∈Qh

sup
vh∈Vhd

|
∫
D qh∇·vh dx|

‖qh‖Lp′(D)|vh|W 1,p(D)
=: βh > 0. (53.16)

We will see in the next chapters that many stable finite element pairs for the
Stokes equations satisfy this more general inf-sup condition. ⊓⊔

Let us define the discrete operatorBh : Vhd → Q′
h s.t. 〈Bh(vh), qh〉Q′

h,Qh
:=

b(vh, qh) = −
∫
D
qh∇·vh dx for all (vh, qh) ∈ Vhd×Qh. We have

(53.15) ⇐⇒ Bh is surjective, (53.17a)

ker(Bh) = {vh ∈ Vhd | (qh,∇·vh)L2(D) = 0, ∀qh ∈ Qh}. (53.17b)

The operator Bh : Vhd → Q′
h is the discrete counterpart of the divergence

operator B : Vd → Q′ introduced just above Theorem 53.11. We observe
that the inf-sup condition (53.15) is equivalent to asserting the surjectivity
of Bh. Moreover, assuming for simplicity that g = 0 in the mass conservation
equation, the discrete Stokes problem (53.14) produces a velocity field uh ∈
ker(Bh). One then says that the discrete velocity field is weakly divergence-
free. However, ker(Bh) may not be a subspace of ker(B), i.e., the discrete
velocity field uh is not necessarily strongly (or pointwise) divergence-free.

Several techniques are available to prove the inf-sup condition (53.15), and
we refer the reader to the next two chapters for various examples. Recall in
particular that (53.15) is equivalent to the existence of a Fortin operator
Πh ∈ L(Vd;Vhd) s.t. b(Πh(v)−v, qh) = 0 for all qh ∈ Qh (see Lemma 26.9).



400 Chapter 53. Stokes equations: Basic ideas

Theorem 53.17 (Error estimate). Let (u, p) solve (53.6). Assume (53.15)
and let (uh, ph) solve (53.14). Then we have

|u− uh|H1(D) ≤ c1h inf
vh∈Vhd

|u− vh|H1(D) + c2h inf
qh∈Qh

‖p− qh‖L2(D),

‖p− ph‖L2(D) ≤ c3h inf
vh∈Vhd

|u− vh|H1(D) + c4h inf
qh∈Qh

‖p− qh‖L2(D),

where c1h := (1 + ‖a‖
α )(1 + ‖Πh‖L(Vd;Vhd)) for any Fortin operator Πh ∈

L(Vd;Vhd), c2h := 0 if ker(Bh) ⊂ ker(B) and c2h := ‖b‖
α otherwise, c3h :=

c1h
‖a‖
βh

, and c4h := 1+ ‖b‖
βh

+c2h
‖a‖
βh

. Here, α ≥ 2µC2
k is the coercivity constant

of the bilinear form a on Vd×Vd, ‖a‖ ≤ 2µ its norm, and ‖b‖ ≤ 1 the norm
of the bilinear form b on Vd×Q.

Proof. This is a direct application of Corollary 50.5. ⊓⊔

Remark 53.18 (βh vs. β0). The estimates from Theorem 53.17 show that
it is important that the inf-sup condition (53.15) be satisfied uniformly w.r.t.
h ∈ H. Indeed, the factor 1

βh
appears in the coefficients c3h and c4h in the

pressure error bound, and a factor 1
βh

may appear in the constant c1h affecting

both error bounds if ‖Πh‖L(Vd;Vhd) ∼ ‖b‖
βh

for every Fortin operator. ⊓⊔

We say that the pair (ξ(r), φ(r)) ∈ Vd×Q is the solution to the adjoint
problem of (53.6) with source term r ∈ L2(D) if a(v, ξ(r)) + b(v, φ(r)) =∫
D
r·v dx for all v ∈ Vd and b(ξ(r), q) = 0 for all q ∈ Q.

Theorem 53.19 (L2-velocity error estimate). Let (u, p) solve (53.6).
Assume (53.15) and let (uh, ph) solve (53.14). Assume that there exist
real numbers csmo and s ∈ (0, 1] s.t. µℓ−1

D ‖ξ(r)‖H1+s(D) + ‖φ(r)‖Hs(D) ≤
csmoℓD‖r‖L2(D) for all r ∈ L2(D), and that there is c such that for all
h ∈ H, infvh∈Vhd |v − vh|H1(D) ≤ chs|v|H1+s(D) for all v ∈ Vd ∩H1+s(D)
and infqh∈Qh ‖q− qh‖L2(D) ≤ chs|q|Hs(D) for all q ∈ Q∩Hs(D). Then there
is c s.t. for all h ∈ H,

‖u− uh‖L2(D) ≤ c hsℓ1−sD

(
inf

vh∈Vhd
|u− vh|H1(D)+

‖b‖
‖a‖ inf

qh∈Qh
‖p− qh‖L2(D)

)
.

Proof. Apply Lemma 50.11 or see Exercise 53.3. ⊓⊔

Let us give some further insight into the velocity error estimate from The-
orem 53.17. For simplicity, we assume that g = 0. Let us define the projection
operator P S

h : Vd → ker(Bh) such that

a(P S

h (v),wh) = a(v,wh), ∀(v,wh) ∈ Vd × ker(Bh). (53.18)

Lemma 53.20 (Quasi-optimality). Assume (53.15). The following holds
true for all v ∈ Vd and any Fortin operator Πh ∈ L(Vd;Vhd):
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|v − P S

h(v)|H1(D) ≤ c̃1h inf
vh∈Vhd

|v − vh|H1(D), (53.19)

with c̃1h := ‖a‖
α (1 + ‖Πh‖L(Vd;Vhd)).

Proof. Since the bilinear form a is bounded and coercive, we have

|v − P S

h(v)|H1(D) ≤
‖a‖
α

inf
vh∈ker(Bh)

|v − vh|H1(D).

The assertion then follows from Lemma 50.3 (notice that Πh(u) ∈ ker(Bh)
since ∇·u = g = 0 by assumption, see Remark 50.4). ⊓⊔

Lemma 53.21 (Discrete velocity estimate). Let (u, p) solve (53.6). As-
sume (53.15) and let (uh, ph) solve (53.14). As in Theorem 53.17, set c2h := 0

if ker(Bh) ⊂ ker(B) and c2h := ‖b‖
α otherwise. The following holds true:

|uh − P S

h (u)|H1(D) ≤ c2h inf
qh∈Qh

‖p− qh‖L2(D). (53.20)

Proof. The proof follows a similar, yet simpler, path to that of Lemma 50.2.
Since a(uh,wh)+b(wh, ph) = F (wh) = a(u,wh)+b(wh, p) = a(P S

h (u),wh)+
b(wh, p) for all wh ∈ ker(Bh) ⊂ Vhd ⊂ Vd, setting eh := uh − P S

h (u) ∈
ker(Bh), we infer that a(eh,wh) = b(wh, p− ph) for all wh ∈ ker(Bh). Since
eh ∈ ker(Bh), invoking the coercivity of a then yields

α |eh|2H1(D) ≤ b(eh, p− ph).

If ker(Bh) ⊂ ker(B), then |eh|H1(D) = 0 which proves (53.20). Otherwise, we
use that eh ∈ ker(Bh) to write α|eh|2H1(D) ≤ b(eh, p − qh) for all qh ∈ Qh,

and invoke the boundedness of b to prove (53.20). ⊓⊔

The bound (53.20) implies that uh = P S

h (u) whenever ker(Bh) ⊂ ker(B).
Moreover, in the general case, combining (53.20) with (53.19) and using the
triangle inequality we obtain again the velocity error estimate from Theo-
rem 53.17 with the slightly sharper constant c̃1h instead of c1h.

Remark 53.22 (Well-balanced scheme). In the particular case where
f = ∇φ for some φ ∈ H1(D) ∩ L2

∗(D), the solution to the Stokes prob-
lem (53.6) is (u, p) = (0, φ). This situation is encountered with hydrostatic
(or curl-free) body forces. One says that the discrete problem (53.14) is
well-balanced w.r.t. hydrostatic body forces if uh = 0 as well. (One also
sometimes says that the discretization is pressure robust.) A well-balanced
discretization of the Stokes equations can be desirable even if f is not curl-
free, but has a relatively large curl-free component. In this case, a discretiza-
tion that is not well-balanced can lead to a rather poor velocity approx-
imation, even on meshes that seem rather fine. Lemma 53.21 shows that
(53.14) is well-balanced whenever ker(Bh) ⊂ ker(B). The scheme can be
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made well-balanced when ker(Bh) 6⊂ ker(B) by slightly modifying the dis-
crete momentum equation. Considering Dirichlet conditions over the whole
boundary for simplicity, one introduces a lifting operator L : Vhd → Vd such
that L(ker(Bh)) ⊂ ker(B) and then replaces the first equation in (53.14) by
a(uh,wh)+ b(wh, ph) = (f , L(wh))L2(D) for all wh ∈ Vhd. The lifting opera-
tor L must satisfy some consistency conditions to preserve the optimal decay
rates of the error estimate. This idea has been introduced by Linke [283] and
explored more thoroughly by Lederer et al. [279] in the context of mixed finite
elements with continuous pressures; see also John et al. [261] for an overview.
Examples of curl-free body forces in fluid mechanics are the Coriolis force if
d = 2, the gravity, and the centrifugal force. Obviously, if f ≈ ∇φ and φ is
explicitly known, one can always make the change of variable p → p − φ to
alleviate the above difficulty if the scheme is not well-balanced. ⊓⊔

53.4 Classical examples of unstable pairs

We study in this section three pairs of finite elements that look appealing
at first sight, but that unfortunately do not satisfy the inf-sup condition
(53.15). For simplicity, we consider a homogeneous Dirichlet condition on the
velocity over the whole boundary, so that Vd := H1

0 (D) and we write Vh0
instead of Vhd for the discrete velocity space. Since the approximation setting
is conforming, we have Vh0 ⊂H1

0 (D) in all cases.
Recall that the inf-sup condition (53.15) is not satisfied if and only if B∗

h :
Qh → V ′

h0 is not injective (or, once global shape functions have been chosen,
the associated matrix does not have full column rank). In this case, a nonzero
pressure field in ker(B∗

h) is called spurious pressure mode. Equivalently, the
inf-sup condition is not satisfied if and only if Bh : Vh0 → Q′

h is not surjective.

53.4.1 The (QQQ1,P0) pair: Checkerboard instability

A well-known pair of incompatible finite elements is the (QQQ1,P0) pair ob-
tained when approximating the velocity with continuous piecewise bilinear
polynomials and the pressure with piecewise constants. This pair produces
an instability often called checkerboard instability.

Let us restrict ourselves to the two-dimensional setting and assume that
D := (0, 1)2. We define a uniform Cartesian mesh on D as follows: Let N be
an integer larger than 2. Set h := 1

I , and for all i, j ∈ {0:I−1}, denote by
aij the point with Cartesian coordinates (ih, jh). Let Kij be the square cell
whose bottom left node is aij ; see Figure 53.1. The resulting mesh is denoted
by Th :=

⋃
i,j Kij . Consider the following finite element spaces:

Vh0 := {vh ∈ C0(D) | ∀Kij ∈ Th, vh ◦ TKij ∈ QQQ1,d, vh|∂D = 0}, (53.21a)

Qh := {qh ∈ L2
∗(D) | ∀Kij ∈ Th, qh ◦ TKij ∈ P0,d}. (53.21b)
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Recall that for all K ∈ Th, TK : K̂ → K denotes the geometric mapping; see
§8.1. For all ph ∈ Qh, set pi+ 1

2 ,j+
1
2
:= ph|Kij , and for all vh ∈ Vh0, denote by

(uij , vij) the values of the two Cartesian components of vh at the node aij .

X

Kij

aij
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+1

−1

+1

−1 +1

−1

+1
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+1 −1
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−1 +1
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+1

−1

−1

−1

+1

+1

−1

+1

Fig. 53.1 (QQQ1,P0) pair: mesh (left) and spurious pressure mode (right).

To prove that the inf-sup constant is zero, it is sufficient to prove the
existence of a nonzero pressure field ph ∈ ker(B∗

h), i.e.,
∫
D ph∇·vh dx = 0 for

all vh ∈ Vh0. Since ph is constant on each cell, we have

∫

Kij

ph∇·vh dx = pi+ 1
2 ,j+

1
2

∫

∂Kij

vh·n ds

= 1
2hpi+ 1

2 ,j+
1
2
(ui+1,j + ui+1,j+1 + vi+1,j+1 + vi,j+1

−ui,j − ui,j+1 − vi,j − vi+1,j) .

Summing over all the cells and rearranging the sum yields
∫
D
ph∇·vh dx =

−h2∑i,j∈{0:N−1}(ui,jG1,ij(ph) + vi,jG2,ij(ph)), where

G1,ij(ph) :=
1
2h (pi+ 1

2 ,j+
1
2
+ pi+ 1

2 ,j− 1
2
− pi− 1

2 ,j+
1
2
− pi− 1

2 ,j− 1
2
),

G2,ij(ph) :=
1
2h (pi+ 1

2 ,j+
1
2
+ pi− 1

2 ,j+
1
2
− pi+ 1

2 ,j− 1
2
− pi− 1

2 ,j− 1
2
).

We infer that
∫
D
ph∇·vh dx = 0 for all vh ∈ Vh0 if and only if

pi+ 1
2 ,j+

1
2
= pi− 1

2 ,j− 1
2

and pi− 1
2 ,j+

1
2
= pi+ 1

2 ,j− 1
2
.

The solution set of this linear system is a two-dimensional vector space. One
dimension is spanned by the constant field ph = 1, but span{1} must be
excluded from the solution set since the elements in Qh must have a zero
mean. The other dimension is spanned by the field whose value is alternatively
+1 and −1 on adjacent cells in a checkerboard pattern, as shown on the right
panel of Figure 53.1. This is a spurious pressure mode, and if N is even, this
spurious mode is in Qh (i.e., it satisfies the zero-mean condition). In this case,
the inf-sup condition is not satisfied, i.e., the (QQQ1,P0) pair is incompatible
for the Stokes problem.
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Remark 53.23 (Filtering). Since the (QQQ1,P0) pair is very simple to pro-
gram, one may be tempted to cure its deficiencies by restricting the size of
Qh. For instance, one could enforce the pressure to be orthogonal (in the L2-
sense) to the space spanned by the spurious pressure mode. Unfortunately,
this remedy is not strong enough to produce a healthy finite element pair,
since it can be shown that in this case there are positive constants c, c′ s.t.
ch ≤ βh ≤ c′h uniformly w.r.t. h ∈ H; see Boland and Nicolaides [68] or Gi-
rault and Raviart [217, p. 164]. This shows that the method may not converge
since the factor 1

βh
appears in the error bound on the velocity and the factor

1
β2
h

appears in the error bound on the pressure (see Theorem 53.17). ⊓⊔

53.4.2 The (PPP1,P1) pair: Checkerboard-like instability

Because it is very simple to program, the continuous P1 finite element for
both the velocity and the pressure is a natural choice for approximating the
Stokes problem. Unfortunately, the (PPP1,P1) pair does not satisfy the inf-sup
condition (53.15). To understand the origin of the problem, let us construct a
two-dimensional counterexample in D := (0, 1)2. Consider a uniform Carte-
sian mesh composed of squares of side h and split each square along one
diagonal as shown in the left panel of Figure 53.2. Let Th be the resulting
triangulation and let the velocity and the pressure finite element spaces be

Vh0 := P g
1,0(Th), Qh := P g

1 (Th) ∩ L2
∗(D), (53.22)

where P g
1,0(Th) is the vector-valued version of the space P g

1,0(Th) defined
in §19.4. Let {zn,K}n∈{0:2} be the three vertices of the mesh cell K ∈ Th.
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Fig. 53.2 (PPP1,P1) pair: the mesh (left) and one spurious pressure mode (right).

Now consider a pressure field ph such that
∑

n∈{0:2} ph(zn,K) is zero on each
triangle K. An example of such a spurious pressure mode is shown in the
right panel of Figure 53.2. Then we have for all vh ∈ Vh0,



Part XI. PDEs in mixed form 405

∫

D

ph∇·vh dx =
∑

K∈Th
(∇·vh)|K

∫

K

ph dx,

=
∑

K∈Th
(∇·vh)|K

|K|
3

∑

n∈{0:2}
ph(zn,K) = 0.

Hence, ph satisfies
∫
D
ph∇·vh dx = 0 for all vh ∈ Vh0. In other words, the

field ph is a spurious pressure mode, and the inf-sup constant is zero.

53.4.3 The (PPP1,P0) pair: Locking effect

A simple alternative to the (QQQ1,P0) pair consists of using the (PPP1,P0) pair,
i.e., assuming that Th is composed of simplices, the velocity is approximated
with continuous, piecewise linear polynomials and the pressure with piecewise
constants. We observe that ker(Bh) ⊂ ker(B) in this case since the divergence
of the velocity is piecewise constant. Unfortunately, the (PPP1,P0) pair does not
satisfy the inf-sup condition (53.15). Let us produce a two-dimensional coun-
terexample. Assume that D is a simply connected polygon. Let Nc, N

i
v, and

N∂
e denote the number of elements, internal vertices, and boundary edges in

Th, respectively. The Euler relations giveNc = 2N i
v+N

∂
e −2 (see Remark 8.13

and Exercise 8.2). Since dim(Qh) = Nc − 1 and dim(Vh0) = 2N i
v, the rank

nullity theorem implies that

dim(ker(B∗
h)) = dim(Qh)− dim(im(B∗

h)) ≥ dim(Qh)− dim(Vh0)

= Nc − 1− 2N i
v = N∂

e − 3.

Hence, there are at least N∂
e − 3 spurious pressure modes. This means that

the space Qh is far too rich for Bh to be surjective. Actually, in some cases,
it can be shown that Bh is injective, i.e., the only member of ker(Bh) is zero.
This situation is referred to as locking in the literature.

Remark 53.24 (Comparison with (PPP1,P1)). Note that the dimension
of the pressure finite element space is smaller for the (PPP1,P1) pair (where
dim(Qh) = Nv − 1) than for the (PPP1,P0) pair (where dim(Qh) = Nc − 1).
Indeed, we have Nc ∼ 2Nv on fine meshes (see Exercise 8.2). ⊓⊔

Exercises

Exercise 53.1 (∇· is surjective). Let D ⊂ R2 be a domain of class C2.
Prove that ∇· : H1

0 (D) → L2
∗(D) is continuous and surjective. (Hint : con-

struct v ∈ H1
0 (D) such that v = ∇q + ∇×ψ, where q solves a Poisson

problem, ψ solves a biharmonic problem, and ∇×ψ := (∂2ψ,−∂1ψ)T.)
Exercise 53.2 (de Rham). Let D be a bounded open set in Rd and assume
that D is star-shaped with respect to an open ball B ⊂ D. Prove that the
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continuous linear forms onW 1,p
0 (D) that are zero on ker(∇·) are gradients of

functions in Lp
′

∗ (D). (Hint : use Remark 53.10 and the closed range theorem.)

Exercise 53.3 (L2-estimate). Prove Theorem 53.19 directly, i.e., without
invoking Lemma 50.11.

Exercise 53.4 (Projection). Let (Vh0, Qh)h∈H be a sequence of pairs of
finite element spaces. Let p ∈ [1,∞] and let p′ ∈ [1,∞] be s.t. 1

p + 1
p′ = 1.

Let ΠZ
h : Qh → Zh be an operator, where Zh is a finite-dimensional sub-

space of Lp(D). Assume that there are β1, β2 > 0 such that for all h ∈ H,

supvh∈Vh0
|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥ β1‖qh − ΠZ

h (qh)‖Lp′(D) for all qh ∈ Qh and

supvh∈Vh0
|
∫
D
qh∇·vh dx|

|vh|W 1,p(D)
≥ β2‖qh‖Lp′(D) for all qh ∈ Zh. (i) Show that ΠZ

h

is bounded uniformly w.r.t. h ∈ H. (ii) Show that the (Vh0, Qh) pair satisfies
an inf-sup condition uniformly w.r.t. h ∈ H.

Exercise 53.5 (Spurious mode for the (QQQ1,Q1) pair). (i) Let K̂ :=
[0, 1]2 be the unit square. Let âij := ( i2 ,

j
2 ), for all i, j ∈ {0:2}. Show that

the quadrature
∫
K̂
f(x̂) dx̂ ≈ ∑

i,j wijf(âij), where wij := 1
36 (3i(2 − i) +

1)(3j(j − 2) + 1) (wij :=
1
36 for the four vertices of K̂, wij :=

1
9 for the four

edge midpoints, and wij :=
4
9 at the barycenter of K̂) is exact for all f ∈ Q2.

(Hint : write the Q2 Lagrange shape functions in tensor-product form and
use Simpson’s rule in each direction.) (ii) Consider D := (0, 1)2 and a mesh
composed of I×I squares, I ≥ 2. Consider the points alm := ( l2I ,

m
2I ) for

all l,m ∈ {0:2I}. Let ph be the continuous, piecewise bilinear function such
that ph(a2k,2n) := (−1)k+n for all k, n ∈ {0:I}. Show that ph is a spurious
pressure mode for the (QQQ1,Q1) pair (continuous velocity and pressure).


