
Part XI, Chapter 55

Stokes equations: Stable pairs (II)

In this chapter, we continue the study of stable finite element pairs that
are suitable to approximate the Stokes equations. In doing so, we introduce
another technique to prove the inf-sup condition that is based on a notion of
macroelement. Recall that we assume that Dirichlet conditions are enforced
on the velocity over the whole boundary, that D is a polyhedron in Rd, and
that (Th)h∈H is a shape-regular sequence of affine meshes so that each mesh
coversD exactly. In this chapter, we focus more specifically on the case where
the discrete pressure space is a broken finite element space.

55.1 Macroelement techniques

In addition to the Fortin operator technique described in Lemma 54.1 and
the method consisting of weakly controlling the pressure gradient described in
Lemma 54.3, we now present a third method to establish the inf-sup condition
between the discrete velocity space and the discrete pressure space. This
method is based on a notion of macroelement.

We return to the abstract setting and consider two complex Banach spaces
V and Q and a bounded sesquilinear form b on V ×Q. Let Vh0 ⊂ V and
Qh ⊂ Q. Recall that ‖b‖ denotes the boundedness constant of b on V ×Q
and that the inf-sup condition (54.1) takes the form

inf
qh∈Qh

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

=: βh > 0. (55.1)

Lemma 55.1 (Partition lemma). Let V 1
h0,V

2
h0 be two subspaces of Vh0

and Q1
h, Q

2
h be two subspaces of Q such that Qh = Q1

h +Q2
h. Let

β1 := inf
qh∈Q1

h

sup
vh∈V 1

h0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

, β2 := inf
qh∈Q2

h

sup
vh∈V 2

h0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

,
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b12 := sup
qh∈Q1

h

sup
vh∈V 2

h0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

, b21 := sup
qh∈Q2

h

sup
vh∈V 1

h0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

.

Assume that 0 < β1β2 and λ1λ2 < 1 with λ1 := b12
β2

, λ2 := b21
β1

. Then the

inf-sup condition (55.1) holds true with βh ≥ 1
4 min(β1, β2) if λ1 + λ2 ≤ 1

and with βh ≥ 1
64 (1 − λ1λ2)‖b‖−2min(β1, β2)

3 otherwise.

Proof. Let qh := q1h+ q
2
h ∈ Qh\{0}. The definition of β1, β2 together with the

assumption 0 < β1β2 implies that there exists vlh ∈ V l
h so that b(vlh, q

l
h) =

‖qlh‖2Q and βl‖vlh‖V ≤ ‖qlh‖Q for all l ∈ {1, 2}. We now investigate two cases:
either λ1 + λ2 ≤ 1 or λ1 + λ2 > 1.
(1) Let us assume that λ1 + λ2 ≤ 1. Then, setting vh := v1h + v

2
h we have

b(vh, qh) = b(v1h, q
1
h) + b(v2h, q

1
h) + b(v1h, q

2
h) + b(v2h, q

2
h)

≥ ‖q1h‖2Q + ‖q2h‖2Q − b12‖v2h‖V ‖q1h‖Q − b21‖v1h‖V ‖q2h‖Q
≥ ‖q1h‖2Q + ‖q2h‖2Q − (β−1

2 b12 + β−1
1 b21)‖q1h‖Q‖q2h‖Q.

Using that β−1
2 b12 + β−1

1 b21 = λ1 + λ2 ≤ 1, we infer that

b(vh, qh) ≥
1

2
‖q1h‖2Q +

1

2
‖q2h‖2Q ≥ 1

4

(
‖q1h‖Q + ‖q2h‖Q

)2

≥ 1

4
‖qh‖Q

(
β1‖v1h‖V + β2‖v2h‖V

)
≥ 1

4
min(β1, β2)‖qh‖Q‖vh‖V ,

where we used the triangle inequality and the above bounds on ‖vlh‖V for all
l ∈ {1, 2}. The assertion then follows with βh ≥ 1

4 min(β1, β2).
(2) Let us now assume that λ1+λ2 > 1. Without loss of generality, we assume
that λ2 ≥ λ1. Let σ ∈ R, let vh := v1h + σv2h, let ǫ > 0, and let us minorize
b(vh, qh) as follows:

b(vh, qh) = b(v1h, q
1
h) + σb(v2h, q

1
h) + b(v1h, q

2
h) + σb(v2h, q

2
h)

≥ ‖q1h‖2Q + σ‖q2h‖2Q − b12‖v2h‖V ‖q1h‖Q − b21σ‖v1h‖V ‖q2h‖Q
≥ ‖q1h‖2Q + σ‖q2h‖2Q − (β−1

2 b12 + σβ−1
1 b21)‖q1h‖Q‖q2h‖Q

≥
(
1− ǫ

2
(λ1 + σλ2)

)
‖q1h‖2Q +

(
σ − 1

2ǫ
(λ1 + σλ2)

)
‖q2h‖2Q.

Let us show that we can choose σ and ǫ so that ǫ
2 (λ1+σλ2) < 1 and 1

2ǫ (λ1+
σλ2) < σ. We consider the quadratic equation Ψ(t) := (λ1 + tλ2)

2 − 4t = 0.
Since the discriminant, 16(1 − λ1λ2), is positive and λ2 6= 0, Ψ(t) has two
distinct roots, t−, t+, and Ψ is minimal at 1

2 (t− + t+) =
2−λ1λ2

λ2
2

. Therefore,

if we choose σ := 2−λ1λ2

λ2
2

, we have Ψ(σ) < 0, i.e., 1
2 (λ1 + σλ2) <

2σ
λ1+σλ2

. We

then define ǫ by setting ǫσ := 1
2 (

1
2 (λ1 + σλ2) +

2σ
λ1+σλ2

). This choice in turn

implies that ǫσ < 2σ
λ1+σλ2

, i.e., ǫ2 (λ1 + σλ2) < 1 and that 1
2 (λ1 + σλ2) < ǫσ,

i.e., 1
2ǫ (λ1 + σλ2) < σ. We have thus proved that c1 := 1− ǫ

2 (λ1 + σλ2) > 0
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and c2 := σ − 1
2ǫ (λ1 + σλ2) > 0. Then we conclude as above

b(vh, qh) ≥
1

2
min(c1, c2)‖qh‖Q(β1‖v1h‖V + β2‖v2h‖V )

≥ 1

2
min(c1, c2)min(β1, σ

−1β2)‖qh‖Q‖vh‖V ,

and the assertion follows with βh ≥ 1
2 min(c1, c2)min(β1, σ

−1β2). Notice that

λ2 ∈ [ 12 ,
‖b‖
β1

] because 2λ2 ≥ λ1 + λ2 ≥ 1 and b21 ≤ ‖b‖. Moreover, since

σ = 2−λ1λ2

λ2
2

and ǫ = λ2(3−λ1λ2)
2(2−λ1λ2)

, we obtain

c1 =
1− λ1λ2

2(2− λ1λ2)
, c2 =

(1− λ1λ2)(2− λ1λ2)

λ22(3 − λ1λ2)
,

so that c1 ≥ 1
4 (1 − λ1λ2), c2 ≥ β2

1

2‖b‖2 (1 − λ1λ2), σ
−1 ≥ 1

8 . Hence, we have

βh ≥ 1
32 min(12 ,

β2
1

‖b‖2 )(1− λ1λ2)min(β1, β2) ≥ 1
64 (1− λ1λ2)

min(β1,β2)
3

‖b‖2 . ⊓⊔
Remark 55.2 (Inequality λ1λ2 < 1). This inequality, which amounts to
b12b21 < β1β2, is trivially satisfied if b12b21 = 0, which is the case in many
applications; see, e.g., Corollary 55.3 below. ⊓⊔

Let us illustrate the above result with the Stokes problem. We set V :=
H1

0 (D), Q := L2
∗(D), ‖v‖V := |v|H1(D), ‖q‖Q := ‖q‖L2(D), and b(v, q) :=

−(∇·v, q)L2(D). Let Th be a mesh in the sequence (Th)h∈H. Let Uh be a par-
tition of the set Th. We call Uh macroelement partition and the members
of Uh macroelements. For every macroelement U ∈ Uh, we abuse the nota-
tion by writing U also for the set of the points composing the cells in the
macroelement U . For all U ∈ Uh, we define the following spaces:

Vh0(U) := {vh ∈ Vh0 | vh|U ∈H1
0 (U), vh|D\U = 0} ⊂ Vh0, (55.2a)

Qh(U) := {1Uqh | qh ∈ Qh}, (55.2b)

Qh(U) := span(1U ), Q̃h(U) := {qh ∈ Qh(U) |
∫
U qh dx = 0}, (55.2c)

where 1U is the indicator function of U . We additionally define

Q̃h :=
∑

U∈Uh
Q̃h(U), Qh :=

∑

U∈Uh
Qh(U). (55.3)

Corollary 55.3 (Macroelement partition). Assume that for all h ∈ H,
there exists a partition of Th, say Uh, such that

∀U ∈ Uh, inf
qh∈Q̃h(U)

sup
vh∈Vh0(U)

|b(vh, qh)|
‖vh‖V ‖qh‖Q

=: β1h(U) > 0, (55.4a)

inf
qh∈Qh

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

=: β2h > 0. (55.4b)
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(i) The inf-sup condition (55.1) is satisfied. (ii) If infh∈H β2h > 0 and
infh∈H minU∈Uh β1h(U) > 0, the inf-sup condition (55.1) holds uniformly
w.r.t. h ∈ H.

Proof. The idea is to show that the assumptions of Lemma 55.1 are met.
(1) For all qh ∈ Qh and all U ∈ Uh, let us denote qhU := 1

|U|
∫
U qh dx. The

identities qh =
∑

U∈Uh 1Uqh and 1Uqh = 1U (qh − qhU ) + qhU1U show that

Qh = Q1
h + Q2

h, with Q
1
h := Q̃h and Q2

h := Qh. Notice that this decomposi-
tion holds true whether Qh is composed of discontinuous functions or not.
(2) Let us prove the first inf-sup condition from Lemma 55.1. Let qh ∈ Q1

h =

Q̃h. Then (55.4a) implies that for all U ∈ Uh there is vh(U) ∈ Vh0(U)
s.t. ∇·(vh(U)) = 1Uqh and β1h(U)‖vh(U)‖V ≤ ‖1Uqh‖Q = ‖qh‖L2(U). Set
vh :=

∑
U∈Uh vh(U) ∈ V 1

h0 :=
∑
U∈Uh Vh0(U). Notice that V 1

h0 ⊂ Vh0 by

construction. Using that
(∑

U∈Uh ‖vh(U)‖2V
) 1

2 = ‖vh‖V , we infer that

∫

D

qh∇·vh dx =
∑

U∈Uh

∫

U

qh∇·vh(U) dx =
∑

U∈Uh
‖qh‖2L2(U)

= ‖qh‖L2(D)

( ∑

U∈Uh
‖qh‖2L2(U)

) 1
2

≥ ‖qh‖Q
( ∑

U∈Uh
(β1h(U))2‖vh(U)‖2V

) 1
2

≥ β1h‖qh‖Q
( ∑

U∈Uh
‖vh(U)‖2V

) 1
2

= β1h‖qh‖Q‖vh‖V ,

β1h := minU∈Uh β1h(U) > 0. Hence, infqh∈Q1
h
supvh∈V 1

h0

|b(vh,qh)|
‖vh‖V ‖qh‖Q ≥ β1h.

(3) The second inf-sup condition from Lemma 55.1 holds by assumption with
V 2
h0 := Vh0, Q

2
h := Qh, and the constant β2h > 0.

(4) Finally, let us verify the last assumption by showing that λ1λ2 := b12b21
β1hβ2h

=

0 < 1. Let vh :=
∑
U∈Uh vh(U) ∈ V 1

h0 and qh :=
∑
U∈Uh qU1U ∈ Q2

h. We
obtain

b(vh, qh) =
∑

U∈Uh
qU

∫

U

∇·vh(U) dx = 0,

since vh(U) ∈ H1
0 (U) implies that

∫
U ∇·vh(U) dx = 0 for all U ∈ Uh. Hence,

b21 = 0. This completes the proof. ⊓⊔

Remark 55.4 (Assumption (55.4a)). For all qh ∈ Qh, let qh ∈ Qh be
defined s.t. qh|U := qhU := 1

|U|
∫
U
qh dx for all U ∈ Uh. Since

∫
U
qh∇·vh dx =∫

U (qh − qhU )∇·vh dx for all vh ∈ Vh0(U) and all U ∈ Uh, the assump-

tion (55.4a) means that for all qh ∈ Qh, we have supvh∈Vh0(U)
|b(vh,qh)|
‖vh‖V

≥
β1h(U)‖qh|U − qhU‖Q. Then the argument in Step (2) of the proof of Corol-

lary 55.3 shows that supvh∈V 1
h0

|b(vh,qh)|
‖vh‖V

≥ β1h‖qh − qh‖Q for all qh ∈ Qh,

where we have set β1h := minU∈Uh β1h(U). ⊓⊔
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Notice that Q̃h ⊂ Qh and Qh ⊂ Qh when Qh is composed of discontinuous
functions, but the above theory does not require that Qh be composed of
discontinuous finite elements. It turns out that the assumption (55.4b) can
be relaxed if Qh is H1-conforming.

Proposition 55.5 (Macroelement, continuous pressures). Let (Th)h∈H
be a shape-regular mesh sequence. Assume that there exists a macroelement
partition Uh for every mesh Th. Assume that every U ∈ Uh can be mapped
by an affine mapping to a reference set Û and that the sequence {Uh}h∈H
is shape-regular. Assume that infh∈HmaxU∈Uh card{K ⊂ U} < ∞. Assume
that Qh ⊂ H1(D)∩L2

∗(D) and that the following holds true that for all h ∈ H:

∀U ∈ Uh, inf
qh∈Q̃h(U)

sup
vh∈Vh0(U)

|b(vh, qh)|
‖vh‖V ‖qh‖Q

=: β1h(U) > 0. (55.5)

(i) The inf-sup condition (55.1) is satisfied. (ii) If infh∈HminU∈Uh β1h(U) >
0, the inf-sup condition (55.1) holds uniformly w.r.t. h ∈ H.

Proof. See Brezzi and Bathe [91, Prop. 4.1] and Exercise 55.7. ⊓⊔

Remark 55.6 (Literature). Macroelement techniques have been intro-
duced in a series of works by Boland and Nicolaides [67], Girault and Raviart
[217, §II.1.4], Stenberg [352, 354, 353]. This theory is further refined in Qin
[328, Chap. 3]. In particular, Lemma 55.1 is established in [328, Thm. 3.4.1].
It is possible to generalize the macroelement technique to situations where
the macroelements are not disjoint provided one assumes that each cellK be-
longs to a finite set of macroelements with cardinality bounded from above
uniformly w.r.t. h ∈ H. This type of technique can be used in particular
to prove the stability of the generalized Taylor–Hood elements (PPPk,Pk−1),
(QQQk,Qk−1), k ≥ 2. We refer the reader to Boffi et al. [65, §8.8] for a thorough
discussion on this topic. ⊓⊔

55.2 Discontinuous pressures and bubbles

We investigate in this section finite element pairs based on simplicial meshes.
The pressure approximation is discontinuous and stability is achieved by
enriching the velocity space.

55.2.1 Discontinuous pressures

Since the functional space for the pressure is Q := L2
∗(D), the approximation

setting remains conforming for the pressure. The discrete pressure space is
typically the broken polynomial space (see §18.1.2)

P b
l,∗(Th) := {qh ∈ L2

∗(D) | ∀K ∈ Th, qh ◦ TK ∈ Pl,d}, (55.6)
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for some l ∈ N and where TK : K̂ → K is the geometric mapping. The
(PPPk,P

b
l ) pair refers to the choice of finite element space Vh0 := P

g
k,0(Th) for

the velocity and Qh := P b
l,∗(Th) for the pressure. The stable finite element

pairs investigated herein are the (PPP2,P
b
0) and the (PPP2-bubble,P

b
1) pairs.

Remark 55.7 (Local mass balance). Working with discontinuous pres-
sures is interesting since it becomes possible to test the discrete mass
conservation equation against a function supported in a single mesh cell
K ∈ Th. This leads to the local mass balance

∫
K
(ψg
K)−1(q)∇·uh dx =∫

K
(ψg
K)−1(q)g dx for all q ∈ Pk,d with ψ

g
K(q) := q ◦TK , see Exercise 55.1. ⊓⊔

55.2.2 The (PPP2,P
b
0) pair

Let (Th)h∈H be a shape-regular family of affine simplicial meshes. Recalling
that we are enforcing homogeneous Dirichlet conditions on the velocity, the
(PPP2,P

b
0) pair gives to the following approximation spaces:

Vh0 := P g
2,0(Th), Qh := P b

0,∗(Th). (55.7)

This simple finite element pair satisfies the inf-sup condition (55.1) uniformly
w.r.t. h ∈ H in dimension two, but it has little practical interest since it is
does not provide optimal convergence results. Nevertheless it is an important
building block for other more useful finite element pairs. Let V :=W 1,p

0 (D)

be equipped with the norm ‖v‖V := |v|W 1,p(D) and let Q := Lp
′

∗ (D) be
equipped with the norm ‖q‖Q := ‖q‖Lp′(D), where p, p

′ ∈ (1,∞) are s.t.
1
p + 1

p′ = 1.

Lemma 55.8 (Stability). Assume that d = 2. The (PPP2,P
b
0) pair satisfies

the inf-sup condition (55.1) uniformly w.r.t. h ∈ H.

Proof. We construct a Fortin operator by using the decomposition defined in
Lemma 54.2 and by invoking Lemma 54.1 to conclude. The operator Π2h :
V → Vh0 is defined as follows. Let v ∈ Vh0. We set Π2h(v)(z) := 0 for
all z ∈ V◦

h (V◦
h is the collection of the internal vertices of the mesh), and

Π2h(v)(mF ) := 3
2|F |

∫
F
v ds for all F ∈ F◦

h (F◦
h is the collection of the

mesh interfaces), where mF is the barycenter of F . This entirely defines
Π2h(v) in Vh0 since d = 2. Notice that v|F ∈ L1(F ) for all v ∈ W 1,p

0 (D)
and all F ∈ F◦

h so that the above construction is meaningful. Then we set

Π1h := IIIav
h0, where IIIav

h0 is the Rd-valued version of the W 1,p
0 -conforming

quasi-interpolation operator introduced in §22.4.2. This means that IIIav
h0(v) :=∑

i∈{1:d} Iav
h0(vi)ei, where v :=

∑
i∈{1:d} viei and {ei}i∈{1:d} is the canonical

Cartesian basis of Rd. The rest of the proof consists of verifying that the
assumptions (i)–(iii) from Lemma 54.2 are met; see Exercise 55.2. ⊓⊔

Remark 55.9 (Literature). The reader is referred to Boffi et al. [65, §8.4.3]
for other details on the (PPP2,P

b
0) pair. In general, this pair is not stable in
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dimension 3, but it is shown in Zhang and Zhang [404] that one can construct
special families of tetrahedral meshes for which stability holds. ⊓⊔

55.2.3 The (PPP2-bubble,P
b
1) pair

Let b̂ be the bubble function defined in (54.5) and P̂ := PPP2,d ⊕ (span{b̂})d.
Let (Th)h∈H be a shape-regular family of affine simplicial meshes. Recalling
that we are enforcing homogeneous Dirichlet conditions on the velocity, the
(PPP2-bubble,P

b
1) pair gives the following approximation spaces:

Vh0 := P g
2,0(Th)⊕Bh, Qh := P b

1,∗(Th), (55.8)

with Bh :=
⊕

K∈Th(span{bK})d and bK := b̂ ◦ TK is the bubble function
associated with the mesh cell K ∈ Th. Notice that

Vh0 := {vh ∈ C0(D) | ∀K ∈ Th, vh ◦ TK ∈ P̂ , vh|∂D = 0}. (55.9)

Since the pressure is locally P1 on each simplex and globally discontinuous,
its local degrees of freedom can be taken to be its mean value and its gradient
in each mesh cell. A conventional representation is shown in Figure 55.1. We
have the following result (see Boffi et al. [65, p. 488]).

Proposition 55.10 (PPP2-bubble,P
b
1). The (PPP2-bubble,P

b
1) pair satisfies the

inf-sup condition (55.1) uniformly w.r.t. h ∈ H. Moreover, this pair leads
to the same error estimates as the Taylor–Hood element, that is, µ|u −
uh|H1(D) + ‖p − ph‖L2(D) ≤ ch2(µ|u|H3(D) + |p|H2(D)), and if the assump-
tions of Theorem 53.19 are met for some s ∈ (0, 1], then µ‖u− uh‖L2(D) ≤
ch2+sℓ1−sD (µ|u|H3(D) + |p|H2(D)).

Dimension 2 Dimension 3

velocity pressure velocity pressure

Fig. 55.1 Conventional representation of the (PPP2-bubble,Pb
1) pair in dimensions two (left)

and three (right, only visible degrees of freedom of the velocity are shown). Among various
possibilities, the degrees of freedom for the pressure here are the mean value (indicated by
a dot) and the d components of the gradient (indicated by arrows).
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Remark 55.11 (Literature). The (PPP2-bubble,P
b
1) pair is also called con-

forming Crouzeix–Raviart mixed finite element [151]. ⊓⊔

55.3 Scott–Vogelius elements and generalizations

Let k ≥ 1. The (PPPk,P
b
k−1) pair is interesting since ∇·P g

k,0(Th) ⊂ P b
k−1,∗(Th),

which implies that any vector field in P
g
k,0(Th) whose divergence is L2-

orthogonal to P b
k−1,∗(Th) is exactly divergence-free.

55.3.1 Special meshes

In general, the (PPPk,P
b
k−1) pair does not satisfy the inf-sup condition (55.1)

(e.g., we have seen in §53.4.3 that for k = 1, this pair suffers from lock-
ing). However, it is possible to construct special meshes so that this element
satisfies the inf-sup condition (55.1) uniformly w.r.t. h ∈ H for some k. Let
us now introduce some special meshes to substantiate this claim. Various
two-dimensional examples of such meshes are shown in Figure 55.2.

Irregular crisscross: A two-dimensional triangulation Th is said to be an
irregular crisscross mesh if it is obtained from a matching mesh of D ⊂ R2

composed of quadrangles, where each quadrilateral cell is divided along its
two diagonals; see the leftmost panel in Figure 55.2.

Simplicial barycentric (d + 1)-sected: We say that Th is a simplicial
barycentric (d+ 1)-sected mesh in Rd if Th is obtained after refinement of a
simplicial matching mesh by subdividing each initial simplex into (d+1) sub-
simplices by connecting the barycenter with the (d + 1) vertices. Simplicial
barycentric (d+1)-sected meshes are also called Hsieh–Clough–Tocher (HCT)
meshes in the literature; see the second panel from the left in Figure 55.2.

Twice quadrisected crisscrossed:We say that a two-dimensional trian-
gulation Th is twice quadrisected crisscrossed if it is formed as follows. First,
the polygon D is partitioned into a matching mesh of quadrangles, say Q4h.
Then, each quadrangle in Q4h is divided into four new quadrangles by con-
necting the point at the intersection of its two diagonals with the midpoint
on each of its edges. The mesh Q2h thus formed is subdivided once more by
repeating this process. Finally, Th is obtained by dividing each quadrangle in
Qh along its two diagonals, thereby giving 4 triangles per quadrangular cell
in Qh, or 64 triangles for each quadrangle in Q4h; see the third panel from
the left in Figure 55.2.

Powell–Sabin: A simplicial mesh of a polygon or polyhedron D is said to
be a Powell–Sabin mesh if it is constructed as follows. For instance, assuming
that the space dimension is two, let Th be an affine simplicial matching mesh
of D. For each triangle K ∈ Th, let cK be the center of the inscribed circle
of K and assume that cK ∈ K for all K ∈ Th. We then divide K into
three triangles by connecting cK to the three vertices of K (this is similar



Part XI. PDEs in mixed form 427

to an HCT triangulation). Each of the newly created triangles is divided
again by connecting cK to cK1 , cK2 , and cK3 , where K1, K2, and K3 are the
three neighbors of K (or cK is connected to the midpoint of the edge if the
corresponding neighbor does not exist). The same construction can be done
in Rd as shown in Zhang [403, Fig. 1]. This construction is illustrated in the
rightmost panel in Figure 55.2.

Fig. 55.2 Irregular crisscross mesh (left). Simplicial barycentric trisected mesh also called
Hsieh–Clough–Tocher (HCT) mesh (center left). One quadrangular cell that is twice
quadrisected and crisscrossed (center right). Powell–Sabin mesh (right).

55.3.2 Stable (PPPk,P
b
k−1) pairs on special meshes

The stability of the (PPPk,P
b
k−1) pair has been thoroughly investigated in di-

mension two by Scott and Vogelius [345].

Lemma 55.12 ((PPPk,P
b
k−1), k ≥ 4, d = 2). Let d = 2 and k ≥ 4. Assume that

the mesh sequence (Th)h∈H is quasi-uniform. Assume also that any pair of
edges meeting at an internal vertex does not form a straight line. (An internal
vertex violating this property is called singular vertex; see Exercise 54.3.) The
(PPPk,P

b
k−1) pair satisfies the inf-sup condition (55.1) uniformly w.r.t. h ∈ H.

Proof. See [345, Thm. 5.1]. ⊓⊔
There are extensions of the above result to the (PPP3,P

b
2) pair, the (PPP2,P

b
1)

pair, and the (PPP1,P
b
0) pair in dimension two on some of the special meshes

described above; see Qin [328].

Lemma 55.13 (Crisscross meshes, k ∈ {2, 3}, d = 2). Let (Th)h∈H be
a shape-regular sequence of irregular crisscross meshes. Then the (PPP2,P

b
1)

pair and the (PPP3,P
b
2) pair have as many spurious pressure modes as singular

vertices, but the velocity approximation is optimal, and the pressure approxi-
mation in the L2-orthogonal complement to the spurious modes is optimal.

Proof. See [328, Thm. 4.3.1 & 6.2.1]. ⊓⊔
Lemma 55.14 (HCT meshes, k ∈ {2, 3}, d = 2). Let (Th)h∈H be a shape-
regular sequence of barycentric trisected triangulations. Then the (PPP2,P

b
1) pair

and the (PPP3,P
b
2) pair satisfy the inf-sup condition (55.1) uniformly w.r.t.

h ∈ H, and therefore lead to optimal error estimates.
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Proof. These statements are proved in Qin [328, Thm. 4.6.1 & 6.4.1]. We
detail the proof for the (PPP2,P

b
1) pair since it illustrates the use of the

macroelement technique from Corollary 55.3. Here, Vh0 := PPP
g
2,0(Th) and

Qh := Pb
1,∗(Th).

(1) Let (Uh)h∈H be the sequence of triangulations that is used to create
(Th)h∈H by barycentric trisection. For every triangle U ∈ Uh, we consider the
spaces Vh0(U), Qh(U), Qh(U), and Q̃h(U) defined in (55.2). We also con-

sider the spaces Q̃h, Qh defined in (55.3). We are going to prove the inf-sup
conditions (55.4a) and (55.4b) in Corollary 55.3.
(2) Proof of (55.4b). We have Qh :=

∑
U∈Uh Qh(U) = P b

0,∗(Uh). Since, as
established in Lemma 55.8, the (P g

2,0(Uh), P b
0,∗(Uh)) pair satisfies an inf-sup

condition uniformly w.r.t. h ∈ H, and P g
2,0(Uh) ⊂ P

g
2,0(Th) =: Vh0, we infer

that the inf-sup condition (55.4b) is satisfied uniformly w.r.t. h ∈ H.

(3) Proof of (55.4a). Let Û be the reference simplex in R2. For every U ∈ Uh,
let TU : Û → U be the corresponding affine geometric mapping. Let us set

V (Û) := {ψd
U (vh) | vh ∈ Vh0(U)},

Q(Û) := {ψg
U (qh) | qh ∈ Qh(U)}, Q̃(Û) := {ψg

U (qh) | qh ∈ Q̃h(U)},

where ψg
U is the pullback by TU and ψd

U is the contravariant Piola transfor-
mation, i.e., ψg

U (q) := q ◦ TU and ψd
U (v) := det(JU )J

−1
U (v ◦ TU ) (see Defini-

tion 9.8). One can verify that both spaces V (Û) and Q̃(Û) are 8-dimensional,

whereas the space Q(Û) is 9-dimensional. Let B̂ : V (Û) → Q(Û) be de-

fined by (B̂(v̂), q̂)L2(Û) =
∫
Û
q̂(x̂)∇·v̂(x̂) dx̂ for all (v̂, q̂) ∈ V (Û)×Q(Û).

A lengthy but straightforward computation (see Exercise 55.5) shows that

im(B̂)⊥ = span(1Û ), where
⊥ means the L2-orthogonal complement in Q(Û).

Since Q̃(Û) = (span(1Û ))
⊥, this result implies that B̂ : V (Û) → Q̃(Û) is sur-

jective. (Actually, B̂ is bijective since dim(V (Û)) = dim(Q̃(Û)).) Hence, we
have

inf
q̂∈Q̃(Û)

sup
v̂∈V (Û)

|
∫
Û
q̂(x̂)∇·v̂(x̂) dx̂|

‖q̂‖Q(Û)‖v̂‖V (Û)

=: β̂1 > 0,

with ‖v‖
V (Û)

:= |v̂|
H1(Û) and ‖q̂‖Q(Û)

:= ‖q̂‖L2(Û). Using the scaling in-

equality (11.7b) and the regularity of the mesh sequence (Uh)h∈H, we infer
that there is c1 > 0 s.t. c1‖v‖V ‖q‖Q ≤ ‖v̂‖

V (Û)‖q̂‖Q(Û) for all v ∈ Vh0(U),

all q ∈ Qh(U), all U ∈ Uh, and all h ∈ H. Since
∫
Û
q̂(x̂)∇·v̂(x̂) dx̂ =∫

U
q(x)∇·v(x) dx (see Exercise 14.3(i)), we infer that

inf
q∈Q̃(U)

sup
v∈Vh0(U)

|
∫
U q(x)∇·v(x) dx|
‖q‖Qh‖v‖V

=: β1 ≥ c1β̂2 > 0, (55.10)

i.e., the inf-sup condition (55.4a) is satisfied uniformly w.r.t. h ∈ H. ⊓⊔
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The analysis of the (PPP1,P
b
0) pair is a little bit more subtle since filtering

the spurious pressure modes is not enough to approximate the velocity and
the pressure properly on general meshes, but filtering is sufficient on twice
quadrisected crisscrossed meshes or Powell–Sabin meshes.

Lemma 55.15 ((PPP1,P
b
0)). Let (Th)h∈H be a shape-regular mesh sequence of

either twice quadrisected crisscrossed meshes or Powell–Sabin meshes. Then
the (PPP1,P

b
0) pair optimally approximates the velocity of the Stokes problem

(i.e., first-order in the H1-seminorm) and the approximation of the pressure
is optimal as well after post-processing the spurious pressure modes.

Proof. See Qin [328, Thm. 7.4.2], Zhang [402]. ⊓⊔
Three-dimensional extensions of the above results are available.

Lemma 55.16 ((PPPk,P
b
k−1), d = 3). Let (Th)h∈H be a shape-regular sequence

of simplicial barycentric quadrisected meshes in R3. The (PPPk,P
b
k−1) pair is

uniformly stable for all k ≥ 3.

Proof. See Zhang [401, Thm. 5]. ⊓⊔
Lemma 55.17 ((PPP2,P

b
1), d = 3). Let (Th)h∈H be a shape-regular sequence of

Powell–Sabin simplicial meshes in R3. The (PPP2,P
b
1) pair optimally approxi-

mates the velocity and after post-processing the spurious modes, the approxi-
mation of the pressure is optimal as well.

Proof. See Zhang [403, Thm. 4.1]. ⊓⊔

55.4 Nonconforming and hybrid methods

In this section, we review some nonconforming and some hybrid discretization
methods. Let us start with a nonconforming approximation technique based
on the Crouzeix–Raviart finite element studied in Chapter 36. Let (Th)h∈H
be a shape-regular sequence of affine simplicial meshes. Let P cr

1,0(Th) be the
Crouzeix–Raviart finite element space with homogeneous Dirichlet conditions
(see (36.8)). Recall that P cr

1,0(Th) is composed of piecewise affine functions
with continuous mean value across the mesh interfaces and zero mean value
at the boundary faces. The (PPPcr

1 ,P
b
0) pair gives the following approximation

spaces:
Vh0 := P cr

1,0(Th), Qh := P b
0,∗(Th), (55.11)

where P cr
1,0(Th) is composed of vector-valued functions with each Cartesian

component in P cr
1,0(Th). Observe that Vh0 is nonconforming inW 1,p

0 (D). The

conventional representation of the (PPPcr
1 ,P

b
0) pair is shown in Figure 55.3.

To avoid technicalities related to the discrete version of Korn’s inequality
in Vh0 (see §42.4.1), we assume in this section that the momentum equa-
tion in the Stokes equations is written in the Laplacian (or Cauchy–Navier)
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Dimension 2 Dimension 3

velocity pressure velocity pressure

Fig. 55.3 Conventional representation of the (PPPcr
1 ,Pb

0) pair in dimensions two (left) and
three (right, only visible velocity degrees of freedom are shown). The pressure degree of
freedom is the average over each mesh cell.

form (see Remark 53.3), i.e., we replace the bilinear form a defined in (53.5)
by a(v,w) :=

∫
D
µ∇v:∇w dx. Since Vh0 is nonconforming, we define the

following discrete counterparts of the bilinear forms a and b:

ah(vh,wh) :=
∑

K∈Th

∫

K

µ∇vh:∇wh dx, bh(vh, qh) := −
∑

K∈Th

∫

K

qh∇·vh dx,

and consider the following discrete problem:





Find uh ∈ Vh0 and ph ∈ Qh such that

ah(uh,vh) + bh(vh, ph) = F (vh), ∀vh ∈ Vh0,
bh(uh, qh) = G(qh), ∀qh ∈ Qh,

(55.12)

where the linear forms on the right-hand side are defined as before as
F (vh) :=

∫
D f ·vh dx and G(qh) := −

∫
D gqh dx. Let p ∈ (1,∞) and let us

equip Vh0 with the mesh-dependent norm |vh|pW 1,p(Th) :=
∑
K∈Th |vh|

p
W 1,p(K)

(the same reasoning as in the proof of Lemma 36.4 shows that vh 7→
|vh|W 1,p(Th) is indeed a norm on Vh0).

Lemma 55.18 (Stability). Let p, p′ ∈ (1,∞) be s.t. 1
p + 1

p′ = 1. There is
β0 such that for all h ∈ H,

inf
qh∈Qh

sup
vh∈Vh0

|bh(vh, qh)|
|vh|W 1,p(Th)‖qh‖Lp′(D)

≥ β0 > 0. (55.13)

Proof. For all r ∈ Lp∗(D), there is vr ∈ W
1,p
0 (D) s.t. ∇·vr = r and

|vr|W 1,p(D) ≤ c‖r‖Lp(D) (see Remark 53.10). Let IIIcr

h0 : W 1,p
0 (D) → Vh0

be the vector-valued Crouzeix–Raviart interpolation operator. Owing to the
local commuting property established in Exercise 36.1, we have bh(IIIcr

h0(vr)−
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vr, qh) = 0 for all qh ∈ Qh. Since

∫

D

qhr dx = b(vr, qh) = bh(vr, qh) = bh(IIIcr

h0(vr), qh),

we infer that

‖qh‖Lp′(D) ≤ sup
r∈Lp∗(D)

|
∫
D
qhr dx|

‖r‖Lp(D)
= sup

r∈Lp∗(D)

|bh(IIIcr
h0(vr), qh)|

‖r‖Lp(D)

≤ sup
vh∈Vh0

|bh(vh, qh)|
|vh|W 1,p(Th)

× sup
r∈Lp∗(D)

|IIIcr

h0(vr)|W 1,p(Th)
‖r‖Lp(D)

.

Using the W 1,p
0 -stability of IIIcr

h0 (see Lemma 36.1 with r := 0) together with

the above bound on vr, we conclude that supr∈Lp∗(D)

|IIIcr

h0(vr)|W 1,p(Th)

‖r‖Lp(D)
is uni-

formly bounded w.r.t. h ∈ H. This proves the expected inf-sup condition. ⊓⊔

Remark 55.19 (Convergence rate). The (PPPcr
1 ,P

b
0) pair is first-order ac-

curate. More precisely, let (u, p) solve (53.6) and assume that u ∈H2(D) ∩
H1

0 (D), p ∈ H1(D)∩L2
∗(D). Then the solution to (53.14) with (Vh0, Qh) de-

fined in (55.11) satisfies µ‖∇h(u−uh)‖L2(D)+‖p−ph‖L2(D) ≤ ch(µ|u|H2(D)+
|p|H1(D)). Moreover, if the assumptions of Theorem 53.19 are met for some

s ∈ (0, 1], we have µ‖u − uh‖L2(D) ≤ ch1+sℓ1−sD (µ|u|H2(D) + |p|H1(D)); see
Exercise 55.4. ⊓⊔

Remark 55.20 (Literature). The (PPPcr
1 ,P

b
0) pair has been introduced by

Crouzeix and Raviart [151]. A quadrilateral nonconforming mixed finite ele-
ment has been introduced by Rannacher and Turek [330, 366]. ⊓⊔

Remark 55.21 (Fortin operator). The proof of Lemma 55.18 shows that
the Crouzeix–Raviart interpolation operator acts as a nonconforming Fortin
operator. Indeed, we have ∇·(IIIcr

h0(v)) = Π0
K(∇·v) for all v ∈ W 1,p

0 (D) and
all K ∈ Th (see Exercise 36.1), and since any qh ∈ Qh is piecewise con-
stant, this implies that bh(IIIcr

h0(v)− v, qh) = 0. Moreover, there is γ0 > 0 s.t.
γ0|IIIcr

h0(v)|W 1,p(Th) ≤ |v|W 1,p(D) for all v ∈W 1,p(D) and all h ∈ H. ⊓⊔

An arbitrary-order discretization of the Stokes equations can be done by
using the hybrid high-order (HHO) method introduced in §39.1. The method
uses face-based and cell-based velocities together with discontinuous cell-
based pressures. Let k ∈ N denote the degree of the velocity and pressure
unknowns. As in Di Pietro et al. [169], one can take any k ≥ 0 if one uses the
Cauchy–Navier form of the momentum equation (see Remark 53.3). If one
uses instead the formulation based on the linearized strain tensor (i.e., (53.1a)
with (53.2)), then one can adapt the HHO method for the linear elasticity
equations from Di Pietro and Ern [166] (see §42.4.3). In this case, one takes
k ≥ 1 since the analysis invokes a Korn inequality in each mesh cell. In prac-
tice, the size of the linear system can be significantly reduced since one can
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eliminate locally all the cell-based velocities and all the (cell-based) pressures
up to a constant in each cell. The size of the linear system is thus reduced
to dim(Pk,d−1)×d×Nf +Nc, where Nf and Nc are the number of mesh faces
and cells, respectively. Other methods using similar discrete unknowns are
the hybridizable discontinuous Galerkin (HDG) methods developed by Egger
and Waluga [184], Cockburn and Shi [132], and the related weak Galerkin
methods from Wang and Ye [387]. See also Lehrenfeld and Schöberl [281]
for HDG methods with H(div)-velocities and Jeon et al. [254] for hybridized
finite elements.

Remark 55.22 (Well-balanced scheme). For the (PPPcr
1 ,P

b
0) pair, the

discrete velocity fields are divergence-free locally in each mesh cell, but since
Vh0 is nonconforming in H(div;D) (the normal component of fields in Vh0
can jump across the mesh interfaces), these fields are generally not divergence-
free in D. Recalling Remark 53.22, this means that the discretization is not
well-balanced, and this can lead to a poor velocity approximation in problems
with large curl-free body forces. This issue has been addressed in Linke [283],
where a well-balanced scheme is designed by using a lifting operator mapping
the velocity test functions to the lowest-order Raviart–Thomas space in order
to test the body forces in the discrete momentum balance equation. A similar
modification is possible for the HHO discretization by using a lifting operator
mapping the velocity test functions to the Raviart–Thomas space of the same
degree as the face-based velocities; see [169]. ⊓⊔

55.5 Stable pairs with QQQk-based velocities

It is possible to used mixed finite elements based on quadrangular and hex-
ahedral meshes. Since the literature on the topic is vast and this chapter is
just meant to be a brief overview of the field, we only mention a few results.
We assume in the entire section that (Th)h∈H is a shape-regular sequence of
affine meshes composed of cuboids. We start with a negative result.

Lemma 55.23 ((QQQk,Q
b
k−1)). The (QQQk,Q

b
k−1) pair composed of continuous

QQQk elements for the velocity and discontinuous Qk−1 elements for the pressure
does not satisfy the inf-sup condition for all k ≥ 1.

Proof. This result is established in Brezzi and Falk [92, Thm. 3.2]. A proof
is proposed in Exercise 55.3. ⊓⊔

It is possible to save the situation by removing some degrees of freedom
in the pressure space. This can be done by considering the polynomial space
Pb
l instead of Qb

l with l ∈ {0, 1}.
Lemma 55.24 ((QQQ2,P

b
0)). The (QQQ2,P

b
0) pair satisfies the inf-sup condition

(53.15) uniformly w.r.t. h ∈ H in R2.
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Proof. The proof is the same as that for the (PPP2,P
b
0) pair. For every face/edge

F ∈ Fh and every vh ∈ QQQ
g
2,0(Th), v|F ·nF is quadratic and one can use

Simpson’s quadrature rule to compute
∫
F vh·nF ds; see Exercise 55.2. ⊓⊔

Lemma 55.25 ((QQQ2,P
b
1)). The (QQQ2,P

b
1) pair satisfies the inf-sup condition

(53.15) uniformly w.r.t. h ∈ H in R2 and yields the same error estimates as
the Taylor–Hood mixed finite element.

Proof. The proof is similar to that of the (PPP2,P
b
1) pair. The reader is referred

to Boffi et al. [65, §8.6.3.1] for other details and a literature review. ⊓⊔

Remark 55.26 (Q1 geometric transformation). Let us assume that for
all K ∈ Th, the geometric finite element that is used to construct the cells in
Th is the Lagrange Q1 element; see §8.1. Then the (QQQ2,P

b
1) pair satisfies the

inf-sup condition (53.15) uniformly w.r.t. h ∈ H in R2 (the proof is the same
as that of Lemma 55.25), but, as shown in Arnold et al. [22], the approxima-
tion properties are suboptimal since in this case the polynomial space P1 is
not rich enough to ensure optimal approximability of the pressure. ⊓⊔

Exercises

Exercise 55.1 (Local mass balance). Let uh ∈ Vh0 and g ∈ L2
∗(D) satisfy∫

D
qh∇·uh dx =

∫
D
qhg dx for all qh ∈ P b

k,∗(Th). Show that
∫
K
(ψg
K)−1(q)∇·uh dx =∫

K(ψg
K)−1(q)g dx for all q ∈ Pk,d and all K ∈ Th with ψg

K(q) := q◦TK . (Hint :
use that

∫
D
∇·uh dx =

∫
D
g dx = 0.)

Exercise 55.2 ((PPP2,P
b
0)). Complete the proof of Lemma 55.8. (Hint : to

show that the assumption (ii) from Lemma 54.2 is met, prove that
∫
F
(v −

Π2h(v)) ds = 0 for all F ∈ F◦
h using Simpson’s quadrature rule; to

show that the assumption (iii) is met, show first that |Π2h(v)|W 1,p(K) ≤
ch

1
p−1

K

∑
F∈F◦

K
‖v‖Lp(F ) and then invoke the multiplicative trace inequal-

ity (12.16).)

Exercise 55.3 ((QQQk,Q
b
k−1)). (i) Justify Lemma 55.23 for k := 2 by con-

structing a counterexample. (Hint : given an interior vertex of a uniform
Cartesian mesh, consider the patch composed of the four square cells sharing
this vertex, and find an oscillating pressure field using (ii) from Exercise 54.3.)
(ii) Generalize the argument for all k ≥ 2.

Exercise 55.4 ((PPPcr
1 ,P

b
0)). Justify the claim in Remark 55.19. (Hint : see the

proof of Theorem 36.11.)

Exercise 55.5 ((PPP2,P
b
1), HCT mesh). Using the notation from the proof

of Lemma 55.14, the goal is to prove that im(B̂)⊥ = span(1Û ). Let ẑ1 :=
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(0, 0), ẑ2 := (1, 0), ẑ3 := (0, 1), ẑ4 := (13 ,
1
3 ). Consider the triangles K̂1 :=

conv(ẑ1, ẑ2, ẑ4), K̂2 := conv(ẑ2, ẑ3, ẑ4), and K̂3 := conv(ẑ3, ẑ1, ẑ4). Let p ∈
P b
1 (Û) with the reference macroelement Û := {K̂1, K̂2, K̂3}, and set

p1 := p|K̂1
(ẑ1), p2 := p|K̂1

(ẑ2), p3 := p|K̂1
(ẑ4),

q1 := p|K̂2
(ẑ2), q2 := p|K̂2

(ẑ3), q3 := p|K̂2
(ẑ4),

s1 := p|K̂3
(ẑ3), s2 := p|K̂3

(ẑ1), s3 := p|K̂3
(ẑ4).

Let m̂14 := 1
2 (ẑ1+ẑ4), m̂24 := 1

2 (ẑ2+ẑ4), m̂34 := 1
2 (ẑ3+ẑ4). Let u ∈ P g

2,0(Û)

and set (u7, v7)
T := u(m̂14), (u8, v8)

T := u(m̂24), (u9, v9)
T := u(m̂34),

(u10, v10)
T := u(ẑ4). (i) Show (or accept as a fact) that

∫

K̂1

p∇·u dx̂ = (−u7 + u8 + 4v7 + 2v8)p1

+ (−u7 + u8 + v7 + 5v8)p2 + (−2u7 + 2u8 − v7 + v8 + 3v10)p3.

(Hint : compute the P2 shape functions on K̂1 associated with the nodes m̂14,

m̂24, and ẑ4.) (ii) Let TK̂2
: K̂1 → K̂2, TK̂3

: K̂1 → K̂3 be the geometric
mappings s.t.

TK̂2
(x̂) := ẑ2 +

(
−1 −1
1 0

)
(x̂− ẑ1), TK̂3

(x̂) := ẑ3 +

(
0 1

−1 −1

)
(x̂− ẑ1).

Verify that TK̂i maps the vertices of K̂1 to the vertices of K̂i for i ∈ {2, 3}.
(iii) Compute the contravariant Piola tranformations ψd

K̂2
(v) and ψd

K̂3
(v).

(iv) Compute
∫
K̂i
p∇·u dx̂ for i ∈ {2, 3}. (Hint : use Steps (i) and (iii), and∫

K̂i
q∇·v dx̂ =

∫
K̂1
ψg
Ki

(q)∇·(ψd
Ki

(v)) dx̂ (see Exercise 14.3(i)).) (v) Write the

linear system corresponding to the statement (B̂(u), p)L2(Û)
:=
∫
Û
p∇·u dx̂ =

0 for all u ∈ P g
2,0(Û), and compute im(B̂)⊥.

Exercise 55.6 (Macroelement partition). Reprove Corollary 55.3 with-
out invoking the partition lemma (Lemma 55.1). (Hint : see Brezzi and Bathe
[91, Prop.4.2].)

Exercise 55.7 (Macroelement, continuous pressure). Let the assump-
tions of Proposition 55.5 hold true. (i) Show that there are c1, c2 > 0 s.t.

supvh∈Vh0
|b(vh,qh)|
‖vh‖V

≥ c1βD‖qh‖Q−c2
(∑

U∈Uh h
2
U |qh|2H1(U)

) 1
2 , for all qh ∈ Qh

and all h ∈ H. (Hint: use the quasi-interpolation operator IIIav
h0 and proceed

as in the proof of Lemma 54.3.) (ii) Setting qhU := 1
|U|
∫
U
qh dx, show that

there is c s.t. |qh|U |H1(U) ≤ c‖qh − qhU‖L2(Û) for all U ∈ Uh and all h ∈ H.

(Hint : use Lemma 11.7 and the affine geometric mapping TU : Û → U .) (iii)
Prove Corollary 55.5. (Hint : use Remark 55.4. See also Brezzi and Bathe [91,
Prop 4.1].)


