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ABSTRACT

Motivated by the observation that dynamo is a conversion mechanism between kinetic and magnetic energy, we develop a new approach to
unravel dynamo mechanism based on local (in space, scale, and time) energy budget describing dissipation and scale-by-scale energy transfers.
Our approach is based upon a new filtering approach that can be used effectively for any type of meshes, including unstructured ones. The
corresponding formalism is very general and applies to any geometry or boundary conditions. We further discuss the interpretation of these
energy transfers in the context of fast dynamo and anomalous dissipation. We apply it to the results from direct numerical simulations of the
von K�arm�an Sodium setup (referred to as VKS) using a finite element code, showing dynamo action for two types of impellers (steel or soft
iron) in the magnetic field growth and saturation phases. Although the two types of dynamo hardly differ from the mean-field theory point of
view (the velocity fields are the same in both cases), the locality of our formalism allows us to trace the origin of the differences between these
two types of dynamo: for steel impellers, the dynamo is due to the transfer of velocity energy both in the bulk and in the vicinity of the impellers,
whereas for soft iron impellers, the dynamo effect mainly comes from the rotation of the blades. We finally discuss possible signatures of precur-
sors to anomalous dissipation and fast dynamo, which could become relevant in the inviscid limit.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0174251

I. INTRODUCTION

In many natural systems, such as the Earth or the Sun, a large-
scale magnetic field can be generated by the so-called dynamo process.
Such a process is described via the magnetohydrodynamics (MHD)
equations coupling the equations modeling incompressible viscous flu-
ids (Navier–Stokes equations) with the equations modeling electro-
magnetism (Maxwell equations in the quasi-static approximation).
Given the nonlinearities of the equations and the enormous range of
scales involved in the process, it is very difficult to identify the main
mechanisms allowing the generation of a magnetic field by the motion
of an electrically conducting fluid. From a theoretical point of view,
exact analytical results are generally only obtained in very simple
geometries or by using symmetries to produce anti-dynamo condi-
tions. Simplified models of dynamo generation can be built using
mean field or stochastic approaches.1,2 These approaches highlight the
importance of helicity (via the so-called a-effect) and differential rota-
tion (via the so-called X-effect) in the dynamo process. Such mean

field approach provided several possible dynamo scenarios, depending
on which combination is chosen.2 However, confronting such simple
scenarios with numerical or experimental observation turns out to be
very difficult. From a numerical point of view, simulations of MHD
equations are only possible for a limited range of parameters, excluding
the very turbulent situations observed in the liquid core of the Earth or
in the plasma making up stars like the Sun. Moreover, the large
amount of data and information makes it difficult to identify the rele-
vant mechanisms at work in the dynamo action. From an experimental
point of view, the situation is the opposite: using liquid metal experi-
ments, it is possible to reach very turbulent regimes. However, owing
to the difficulty of measurements, it is only possible to produce sparse
data that are not detailed enough to enable the identification of
dynamo mechanisms, except in some special situations where the
geometry is very constrained and the mean flow of liquid sodium
reproduces analytical examples3,4 in the linear phase of the (kinematic)
dynamo.
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The von K�arm�an flow experiment using liquid sodium (hereafter
referred to as VKS for von K�arm�an Sodium) is a good example of such
difficulties. The facility uses 150 liters of liquid sodium that are set in
turbulent motion by two counter-rotating impellers in a cylindrical
container.5 During its 16 years of operations, the VKS facility produced
dynamo onset only with (i) impellers made of soft iron,5 and not with
cooper or steel, (ii) for fluid motions with limited fluctuations.6 This
last observation rules out the possibility that the VKS dynamo is a
mere rotating magnet. It also suggests that velocity fluctuations may
impede the dynamo process, as already proved by dedicated numerical
simulations in a simple geometry7 or asymptotics.6,8 Various attempts
have been made to explain such results within the mean-field frame-
work. For example, Petrelis, Mordant, and Fauve suggested a possible
a� X mechanism for the dynamo, based on the combination of
eddies generated near the impellers, and differential rotation,9 a sce-
nario confirmed by numerical simulations of a simplified model of the
velocity field10 or RANS simulations of the von K�arm�an flow.11 This
model however does not explain the important influence of the iron
impellers on the dynamo onset. Additional physical processes were
then invoked such as the interplay between theX effect and a new con-
version effect linked with spatially varying electrical conductivity12–14

or magnetic permeability.15–18 Finally, enhancement of the a effect via
eddy collimation by the impeller magnetic field was discussed in Refs.
19 and 20.

Detailed verification of these hypotheses is difficult in the context
of the mean-field model since it is a large-scale model where all the
small-scale action is parameterized in the coefficients a and X. Here,
we propose a new approach to unravel these mechanisms, motivated
by the observation that dynamo is a conversion mechanism between
kinetic and magnetic energy. The core of our approach is based on
local (in space, scale and time) energy budget describing dissipation
and scale-by-scale energy transfers. Identifying the locations (in scale,
space, and time) where kinetic and magnetic energies are exchanged
supplies information about the location of the dynamo effect.
Comparison with local magnetic or energy dissipation then tells us
whether the conversion is sufficient to overcome damping, and thus,
sustain dynamo action. The formalism is very general and applies to
any geometry or boundary conditions. Then, by applying it to the case
of the VKS dynamo, we show how it can be used to detect where and
when the energy conversion between kinetic and magnetic energy
takes place, thereby tracing the processes at work in the dynamo.
Specifically, we use the massively parallel multiphysics code called
SFEMaNS (for Spectral/Finite Element code for Maxwell and Navier–
Stokes equations). This code solves the magnetohydrodynamics
equations (MHD) describing the time evolution of the velocity and
magnetic fields in the von K�arm�an sodium experiment. With this code
two types of dynamo action have been explored: one using soft iron
impellers and the other using steel impellers.21 Although the two types
of dynamo hardly differ from the mean-field theory point of view (the
velocity fields are the same in both cases), the locality of our formalism
allows us to trace the origin of the differences between these two types
of dynamo.

The paper is organized as follows. The coupled equations describ-
ing the motion of a conducting fluid are presented in Sec. II. We first
recall elements of basic mean-field theory, focusing on typical a and X
dynamo mechanisms. In Sec. III, we present our new formalism, based
on the derivation of local energy budgets from the MHD equations.

We first build coarse-grained energy budgets including inertial dissipa-
tion, anomalous dissipation, and transfer terms between velocity and
magnetic fields. Taking the limit of infinite resolution, we discuss the
exact energy budgets with no filter. The generalization of the famous
Kolmogorov 4/3rd law is presented in this context. A crucial ingredient
for application of the formalism is the notion of scale filtering.
Traditional definitions of scale filtering, through convolution with a fil-
ter, are not suitable for unstructured grids. We, therefore, define a suit-
able filtering process that applies to any type of grid and boundary
conditions, including the unstructured grid used in our numerical simu-
lations in Sec. III E. This formalism is applied to the numerical simula-
tions of the dynamo in the von K�arm�an geometry that are presented in
Sec. IVB (and detailed in Subsections 1–3 of Appendix E). We discuss
the standard dynamo mechanisms based on the mean-field theory in
Sec. IVC. In Sec. V, we use the energy budgets to unravel the dynamo
mechanisms at work in the VKS experiment for impellers with different
magnetic permeabilities. The same tools are used to study the saturation
of the dynamo in Sec. VI. Using these results, we discuss in Sec. VII the
mechanisms for dynamo action in the VKS experiment and compare
them with the literature. Our conclusion follows in Sec. VIII.

II. BACKGROUND MATERIAL AND GENERAL
FORMALISM
A. Magnetohydrodynamics equations

The magnetohydrodynamics equations (MHD) for a neutral con-
ductive incompressible Newtonian fluid in the quasi-static approxima-
tion are

@tuþ @iðuiuÞ � �Duþrp
q

¼ � b� j
q

þ f ; (1)

@tb ¼ r� ðu� bÞ � r � j
r
; (2)

r � u ¼ 0; (3)

r � b ¼ 0; (4)

j ¼ r� H; (5)

b ¼ lH; (6)

where H is the magnetic field, b the magnetic flux density (i.e., mag-
netic induction that we will abusively call magnetic field in the follow-
ing), j the electric current density, u the fluid velocity (with ui one of its
components with i 2 f1; 2; 3g), p the fluid pressure, f the force per
unit mass, l the magnetic permeability, r the electric conductivity, �
the kinematic viscosity, and q the fluid density. The space and time
dependence of all fields has been removed in the notations for conve-
nience except when necessary.

B. Mean field theory: a and X effects

We briefly summarize classical mean-field concepts that are tradi-
tionally used to interpret numerical results and to understand the basic
dynamo mechanisms. For the sake of simplicity, it is assumed here that
r and l do not vary in space nor in time. Therefore, Eq. (2) reads

@tb ¼ r� ðu� bÞ þ 1
lr

r2b: (7)

We consider b and u as superimpositions of mean and fluctuating
parts such that b ¼ b þ b0 and u ¼ u þ u0 where b; u can have
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smooth variations in space and time. Injecting these decompositions
into Eq. (7) and taking its average, we get

@tb ¼ r� ðu � b þ emfÞ þ 1
lr

r2b with r � b ¼ 0; (8)

where emf ¼ hu0 � b0i is the mean electromotive force due to the fluc-
tuations of motion and magnetic field. These equations together with
proper initial and boundary conditions determine b if u and emf are
given. The determination of the mean electromotive force as a function
of u0; b; u is the crucial step in the development of mean-field theory.
For the sake of simplicity, we focus only on a low magnetic Prandtl sit-
uation �lr � 1, relevant to a fluid such as liquid metal. In such a
case, we can consider that the dynamics of the magnetic fluctuations b0

is dominated by the interaction of the velocity fluctuations u0 with the
mean magnetic field b only. This means that

@tb
0 ’ r � ðu0 � bÞ ¼ ðb � rÞu0 � ðu0 � rÞb: (9)

This fluctuating magnetic field is used to compute the electromotive
force as detailed in Ref. 2

emf i ¼ aijbj þ bijk@bj=@xk; (10)

where the tensors aij and bijk are mean quantities determined by u0.
The a-effect is the occurrence of a mean electromotive force with a
component pointing in the direction of the mean magnetic field b.
Based on results from Ref. 11, we will focus on this effect and discard
the b tensor. Approximating the fluctuations by a short in-time field
(supposing a short turbulence correlation time), one can link the a ten-
sor to the helicity tensor as

aij ¼ shij ¼ seiknukðruÞnj; (11)

where s is the correlation time of the velocity perturbations, eikn is the
Levi-Civita tensor, and ru is the velocity gradient expressed in cylin-
drical coordinates (see Subsection 4 of Appendix E).

Another conversion mechanism is due to differential rotation.
Indeed, using the cylindrical coordinate system, the induction Eq. (7)
can be written as

@

@t
þ ur

@

@r
þ uh

r
@

@h
þ uz

@

@z

� �
br

¼ br
@

@r
þ bh

r
@

@h
þ bz

@

@z

� �
ur þ

1
lr

D�br �
2
r2
@bh
@h

� �
; (12)

@

@t
þ ur

@

@r
� 1

r

� �
þ uh

r
@

@h
þ uz

@

@z

� �
bh

¼ brr
@

@r
þ bh

@

@h
þ bzr

@

@z

� �
uh
r

� �
þ 1
lr

D�bh þ
2
r2
@br
@h

� �
;

(13)

@

@t
þ ur

@

@r
þ uh

r
@

@h
þ uz

@

@z

� �
bz

¼ br
@

@r
þ bh

r
@

@h
þ bz

@

@z

� �
uz þ

1
lr

r2bz ; (14)

with D� ¼ r2 � 1
r2 ¼ @2

@r2 þ 1
r
@
@r þ 1

r2
@2

@h2
þ @2

@z2 � 1
r2. This form of the

induction equation clearly shows that, if the poloidal magnetic field,
i.e., fbr; bzg, is non-zero, its shearing by the differential rotation

ðuh=rÞ will always generate a toroidal magnetic field, i.e., bh. This
mechanism is called the X-effect. Denoting the two main terms in the
rhs of (13)

X0
r ¼

@

@r
uh
r

� �
; X0

z ¼
@

@z
uh
r

� �
;

one can see that the source terms for the toroidal field are brrX
0
r and

bzrX
0
z .
The dynamo effect is due to a combination of poloidal and toroi-

dal magnetic field generation mechanisms, in the form of closing
loops. Therefore, different dynamo mechanisms can be conceived:
there is a possibility for the poloidal magnetic field fbr ; bzg to be gen-
erated from the toroidal field bh through the a-effect. To close the loop
and generate further toroidal field from such poloidal field, there are
two possibilities (possibly concomitant): either through the a-effect or
(and) the mean differential rotation rX0

z and rX0
r . The corresponding

dynamo loops are then, respectively, called a2 dynamo or a� X
dynamo.

III. LOCAL ENERGY BUDGET

In order to evaluate the energy budgets describing relevant
transfers of energy between the magnetic and velocity fields, we use a
filtering approach and consider products of resolved and non-
resolved quantities. This strategy is inspired by the mathematical
derivation of anomalous dissipation due to the irregularities of (i)
velocity field in the context of the Navier–Stokes equations22 and (ii)
velocity and magnetic fields in the context of the magnetohydrody-
namics equations.23,24 Our work extends these studies by introduc-
ing possible variations of the material properties (l, r). This is
important in order to deal with the physical quantities resulting
from the simulations presented in Subsections 1–3 of Appendix E
and to evaluate the impact of jumps in electrical conductivity r and
magnetic permeability l.

A. Filtered equations

To characterize the energy transfers between scales of the same
vector field, we use a filtering process in order to distinguish between
the energy held by the different scales of the field. Given a vector field
u and ‘ 2 Rþ, we denote its filtered field u‘. At the present time, we
do not specify the shape of the filter that is just assumed to obey the

following properties: linearity, and such that u‘ �!‘!0
u for a smooth

field u.
Applying the filter to the MHD Eqs. (1) and (2), we get

@tu
‘ þ @iuiu

‘ � �Du‘ þrp‘

q
¼ � b� j

‘

q
þ f

‘
; (15)

@tb
‘ ¼ r� ðu� b

‘Þ � r �
�

j
r

�‘

; (16)

r � u‘ ¼ 0; (17)

r � b‘ ¼ 0: (18)

Because the density and the viscosity of the fluid are constant in our
simulations, they do not impact the filtering and can be taken out of
the convolution.
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B. Local MHD coarse-grained energy budget at finite
scale ‘

Summing the scalar product of qu=2 with Eq. (15) and the scalar
product of qu‘=2 with Eq. (1) and using analogous products for b, the

equations for the filtered kinetic energy Ec ¼ quu‘

2 and filtered magnetic

energy Em ¼ bb
‘

2l can be respectively written as

@tE
c þr � JNS þD� þDu þDb ¼ �T u!b þ P; (19)

@tE
m þr � JM þDr þDr þDb þDlr þDlT ¼ T u!b þMl;

(20)

with

JNS ¼ q
2
ððuu‘Þu� �rðuu‘ÞÞ þ 1

2
ðu‘pþ up‘Þ; (21)

JM ¼ 1
2l

�
j
r
� b

‘ þ
�

j
r

�‘

� bþ b� ðu� b
‘Þ þ b

‘ � ðu� bÞ
�
;

(22)

P ¼ q
2
ðu � f ‘ þ u‘ � f Þ; (23)

D� ¼ q�@iuj
‘@iuj; (24)

Dr ¼ j � j‘

r
; Dr ¼

�
j
r

�‘

� ðj‘Þ
r

 !
� j
2
; (25)

Du ¼ q
2
ðuui@iu

‘ � uui@iu
‘Þ; (26)

Db ¼ 1
4
ðu‘ � ðb� jÞ þ u � ðb� j

‘Þ � ðu� b
‘Þ � j� ðu� bÞ � j‘Þ;

(27)

T u!b ¼ 1
4
ðu‘ � ðb� jÞ þ u � ðb� j

‘Þ þ ðu� b
‘Þ � jþ ðu� bÞ � j‘Þ;

(28)

Ml ¼ � b � b‘

2l2
@tl; (29)

Dlr ¼ j
2r

� r � ðb‘Þ
l

� H
‘

 !
;

DlT ¼ � ðu� bÞ
2

� r � ðb‘Þ
l

� H
‘

 !
:

(30)

All terms involved in Eqs. (19) and (20) measure the transferred energy
from all scales larger than ‘ to the scale ‘. By convention, we do not use
a subscript ‘ for all terms in contrast with Refs. 23, 25, and 26. The dem-
onstration for (19) [respectively (20)] is in Appendix A (respectively in
Appendix B).

We first discuss the different terms appearing in Eq. (19). On the
left-hand side (lhs), JNS represents an energy current responsible for
the spatial movement of energy and thus does not participate in any
kind of dissipation or transfer of energy between the different scales.
Integrated throughout space with the proper boundary conditions, it
should disappear. D� is the dissipation due to the kinematic viscosity:
it corresponds to a loss of energy of the velocity field.Du is the anoma-
lous/Duchon–Robert dissipation. This term is the local energy transfer

at scale ‘ and thus characterizes where the irregularities, and possible
singularities, appear in the fields. It is called anomalous dissipation
because, in the limit ‘ ! 0; Du might not vanish.22 These two differ-
ent energy transfers (D� and Du) have already been derived and
implemented in the SFEMaNS code (see Subsection 2 of Appendix E)
in order to study their effects in a pure hydrodynamic problem mod-
eled by the Navier–Stokes equations.27 Db is a transfer term between
different scales due to the interplay between velocity u and magnetic
induction b fields. Like in the kinetic case, such a term could also pro-
duce an anomalous contribution to the magnetic energy budget in case
the velocity field or the magnetic induction field is sufficiently irregu-
lar. If the contribution is positive, the net effect would then be an
anomalous dissipation, like in the kinetic case. However, there is also
the possibility that the contribution is negative, resulting in an increase
in the magnetic energy due to irregularity. This would correspond to a
scenario by which a dynamo is produced via a sufficiently rough veloc-
ity field,28 a mechanism known as fast dynamo mechanism.29

The first right-hand side (rhs) term ð�T u!bÞ corresponds to the
power of the Lorentz force and reflects an energy transformation
between the fields u and b. It naturally appears with the opposite sign
in the rhs of the magnetic energy budget (20) and is, therefore, respon-
sible for the emergence and maintenance of the magnetic field. In
other words, T u!b is a source term for the dynamo effect. The second
term,P, displays the mechanical power injected by the forcing.

Aside the T u!b term, new interesting energy transfer terms appear
in (20). In the lhs part, as before, JM is a purely local term that describes
how magnetic energy is transported across the flow, and it should vanish
after integration over space with the appropriate boundary conditions.
Dr is the Joule dissipation; hence, a loss of energy of the magnetic field,
and can be used to trace, locally and across scales, the rate of resistive
energy dissipation. Dr has contributions only where the electrical con-
ductivity undergoes jumps, i.e., at fr ¼ 1:4; 0 � h < 2p;�1 � z � 1g
between the liquid sodium steady layer and the copper wall of the con-
tainer [see Fig. 1(a)]. Dlr and DlT are two terms associated with the
irregularity of the magnetic permeability l which occurs only at the sur-
face of the impellers. They are respectively denoted Joule induced in-
between scales magnetic transfer and Lorentz induced in-between scales
magnetic transfer. Finally, in the rhs part, another source term for the
dynamo effect appears, namely,Ml, which we will call the magnet effect.
It originates from the variation in time of the magnetic permeability and
is a direct energy transfer from the impellers to the magnetic field.

C. Exact local MHD energy budget

The exact local energy budget can be obtained by taking the limit
‘ ! 0. A technical difficulty may arise if the field is sufficiently irregu-
lar. In that case, terms corresponding to energy transfer may not need
to vanish, producing anomalous dissipation of kinetic energy22 or
magnetic energy,30,31 or even dynamo action.28

In the case where the field is sufficiently regular, so that these
terms vanish, the time evolution for the kinetic and magnetic energies
(per unit volume) simplifies to

@t
qu2

2
þr � JNS0 þD�

0 ¼ �T u!b
0 þ P0; (31)

@t
b2

2l
þr � JM0 þDr

0 ¼ T u!b
0 þMl

0 ; (32)

with
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JNS0 ¼ q
2
ðu2u� �ru2Þ þ up; (33)

JM0 ¼ 1
l

�
j
r
� bþ b� ðu� bÞ

�
; (34)

D�
0 ¼ q�@iuj@iuj; Dr

0 ¼ j2

r
; (35)

T u!b
0 ¼ u � ðb� jÞ; Ml

0 ¼ � b2

2l2
@tl; P0 ¼ qu � f : (36)

As before, the J terms represent energy current responsible for the spa-
tial displacement of energy and do not participate in transfers. The
terms D�

0 and Dr
0 are the standard viscous and resistive dissipation

terms respectively. The right-hand side of (32) shows the two dynamo
source terms, namely, (minus) the Lorentz force power and the mag-
net effect and the rhs of (31) shows the Lorentz force power and the
mechanical power due to the forcing.

Note that in the case where the velocity and/or magnetic induc-
tion fields are irregular, other terms should be considered in the energy
budget, due to the non-vanishing of terms like Du; Db; Dlr, andDlT

in the limit ‘ ! 0 in Eqs. (19) and (20).

D. Definition of a local dynamo growth rate

We can use the energy budgets to define a global dynamo growth
rate at several scales. Indeed the rhs of Eq. (20) evidence two possible
source terms for the increase in the magnetic energy: the source term
already discussed T u!b and the Ml term that exists only in case
where permeability varies in time (This will be the case for example in
the von K�arm�an setup if the impellers are made of permeable material
such as for example, soft iron5) This last term is called in the sequel the
“rotating magnet effect.” Physically, the sum of these two terms must
exceed the sum of all dissipative terms in the lhs of Eq. (20) for the
dynamo to operate.

This can be formalized with the local growth rate kmð~x; tÞ of the
magnetic field at scale ‘ given by

km ¼ T u!b þMl �Dr �Dr �Db �Dlr �DlT

hEmi ; (37)

where h:i denotes the spatial average. Therefore, the evolution of the
filtered magnetic energy (20) can be recast into

@tE
m þr � JM ¼ kmhEmi: (38)

For ‘ ! 0, the growth rate can have two types of behavior. For the first
one, the field is sufficiently regular, in which case all transfer terms
between scales vanish, and the local growth rate is simply

km0 ¼ T u!b
0 þMl

0 �Dr
0

hEmi : (39)

This case will correspond to numerical simulations as no singularity
can develop there because of the finite resolution. For the second type
of behavior, in natural or experimental cases, there may be a contribu-
tion from the terms like Dr ; Db, etc., resulting in a possibility of
dynamo generation by singularity if these terms are negative. This is
the case discussed in Ref. 28.

E. Implementation of the scale filtering

As the construction of local energy budgets relies heavily on the
notion of filtering, we present a general definition that is appropriate
for any type of grid or boundary conditions. Classical definitions of
scale filtering involve the convolution of a quantity with a filter of
appropriate width (generally a Gaussian field). For data defined on
homogeneous grid, like experimental data considered in Refs. 25 and
32, this definition is easily implemented via wavelet transforms. For
data defined on unstructured grids, the wavelet construction is not

FIG. 1. (a) Schematic of the VKS experimental device of Ref. 5 in non-dimensional units. The impellers counter-rotate as indicated. (b) Magnetohydrodynamics simulation of
the von K�arm�an Sodium dynamo at kinetic Reynolds number Re¼ 1500, magnetic Reynolds number Rm¼ 150 and relative magnetic permeability of the impellers lr ¼ 50:
visualization of the time-averaged magnetic field lines and section of the azimuthal magnetic field component. Adapted from Ref. 21.
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appropriate. We, therefore, consider here another construction, which
can be adapted to any type of grid or boundary conditions. Given a
vector field u and ‘ 2 Rþ, we define the filtered field g ¼ u‘ as the
solution of

g � ‘2Dg ¼ u: (40)

This definition ensures that it can be constructed for any type of grid
and is easy to implement inside a numerical program. Moreover, it is
endowed with all properties of a classical filter: it is linear and, for a

continuous field u, we have the limit u‘ �!‘!0
u. In fact, this filter corre-

sponds to a convolution filter. Indeed, in Fourier space, Eq. (40) reads

~g ¼ ~u

1þ ‘2k2
; (41)

where ~g is the Fourier transform of g. Thus, u‘ is the convolution of u
with the inverse Fourier transform of the Lorentzian function 1

1þ‘2k2
.

F. Connection with previous works

Our formalism can be connected to previous works by introduc-
ing d‘u, the longitudinal velocity increment at scale ‘, defined as

d‘u ¼ ‘̂ � uðx þ ‘; tÞ � uðx; tÞð Þ; (42)

where ‘̂ is the increment unit vector.
In Ref. 23, Galtier derives the local energy conservation in incom-

pressible Hall MHD equations when the velocity and magnetic fields
are possibly non-regular. He focuses on the time evolution of the total
energy Ec þ Em for a plasma with constant electrical conductivity and
magnetic permeability, corresponding to the sum of Eqs. (19) and
(20). As a result, the source term T u!b disappears together with all
terms depending on the variation of r and l (namely,
Ml; Dr ; Dlr; DlT ). The energy dissipation by viscous and resistive
effects is then reduced to one term D� þDr. In the same way, the
energy transfer term becomes lumped into mixed terms, involving
both u and b, which does not allow separating the various source
terms. The final energy budget can then be written using the notations
of Ref. 23 [see Eq. (22) therein with the ion skin depth dI¼ 0] as

De ¼
1
4

ð
ðru‘Þ � ðdudu2 þ dudb2 � 2ðdu � dbÞdbÞd~r

¼ SNS þ ~S
Mag

¼ 1
q
Du þ 2lDb þ 1

2
r � ðJSMag þ JSNSÞ; (43)

where SNS (respectively ~S
Mag

) and JSNS (respectively JSMag ) are defined
in Appendix C (respectively Appendix D). Therefore, our analysis has
a direct link with previous works,23,31 with the advantage that tracking
Ec and Em separately allows to get insights into the dynamo effect, as
we now show.

IV. THE VON K�ARM�AN DYNAMO
A. Generality

We now apply these results to the analysis of the von K�arm�an
dynamo. This dynamo is an example of a turbulent dynamo. It was
first observed experimentally in 2006 in a von K�arm�an swirling flow of
liquid sodium (called VKS5) for a magnetic Reynolds number larger

than Rc
m ¼ 34. The dynamo at saturation takes the shape of a domi-

nantly dipolar axisymmetric magnetic field with a toroidal magnetic
field concentrated in the impellers.5 MHD simulations of the von
K�arm�an setup have been performed on various supercomputers21 (up
to about 2000 cores on the IDRIS supercomputer), allowing us to reach
kinetic Reynolds number up to 105 and magnetic Reynolds number of
the order of a few hundred, resulting in a magnetic Prandtl number
around 10�3. This is larger than the experimental value, which is of the
order 5 10�6. Despite this, several key features of the magnetic field
dynamo observed in the VKS experiment were recovered. The MHD
simulations showed the key role played by the ferromagnetic material
(with high magnetic permeability) constituting the impellers. When soft
iron impellers are modeled using a relative magnetic permeability
lr ¼ 50, the magnetic field is dominated by an axisymmetric axial
dipole and azimuthal components located near the impellers in agree-
ment with the experimental data [see Fig. 1(b) adapted from Ref. 21] A
similar dominant axisymmetric magnetic field was also observed at
Re¼ 2025 and a magnetic Prandtl number of 1/3 for lr ’ 12 in Ref. 33.

B. Description of the numerical data

Details of numerical runs are reported in Subsections 1–3 of
Appendix E. The non-dimensionalized computational domain for the
hydrodynamic study is X ¼ fðr; h; zÞ 2 ½0; 1� � ½0; 2pÞ � ½�1; 1�g.
The computational domain for the MHD study is the larger cylinder
X [ Xout with Xout ¼ fðr; h; zÞ 2 ½1; 1:6� � ½0; 2pÞ � ½�1; 1�g [see
schematic on Fig. 1(a)]. The electrical conductivity is that of the liquid
sodium for 0 � r � 1:4 and that of copper for 1:4 � r � 1:6. The
characteristics of the runs used in this paper are summarized in Table I.
We use Rm values above the respective threshold. Each regime is sam-
pled with 128 snapshots (every one-eighth of a turn to stroboscope the
impellers’motion). We denote the average on all the snapshots as f:g.

C. Analysis using the mean-field framework

The von K�arm�an dynamo has been extensively discussed using
the classical mean-field framework.9–11,19,20 For later reference, we
apply this framework to the two different dynamos considered here by
computing in each case the local helicity tensor using the velocity field
averaged on the 128 snapshots. They are shown on Figs. 2 and 3. Their
spatial distribution is complex and exhibits fine scales. Note that the
dominant patterns of each local helicity component follow the symme-
try rules detailed in Subsection 4 of Appendix E [see Eq. (E6)]. This
means that the large structures of the velocity field are mainly Rp sym-
metric at Re¼ 1500 for both lr values.

We can see that the maxima in absolute value are always localized
near the impellers like in the RANS simulation of Ref. 11 whereas the

TABLE I. Characteristics of two dynamo runs (DNS): kinetic Reynolds number
Re ¼ R2

cylx=�, magnetic Reynolds number Rm ¼ l0r0R
2
cylx, relative magnetic per-

meability of impellers lr (1 for stainless steel and 50 for soft-iron), critical magnetic
Reynolds number for pseudo-vacuum boundary conditions (i.e., the tangential com-
ponents of H are zero on the outer cylinder).

Re Rm lr Rc
m

1500 300 1 1906 10
1500 150 50 906 5
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minima are dispersed over the whole fluid domain. The maxima are
associated with the swirling vortices attached to each blade and occu-
pying part of the space between the blades. These vortices are thought
to be a key ingredient of the dynamomechanism.9,34,35

The maximum absolute non-dimensional value of around 10 for
both magnetic permeability values corresponds to the fhrrg; fhzzg
components. These terms may be associated with an a-effect that
would transform a poloidal field (br, bz) into a toroidal field bh (first
phase of the dynamo loop). To close the dynamo loop, we need the
fhhhg term that would transform the toroidal field into the poloidal
field (second phase). This would lead to an a2 dynamo mechanism,

e.g., ðbr ; bzÞ!
fhrrg;fhzzg

bh!
fhhhgðbr; bzÞ.

Another possibility to transform a poloidal field into a toroidal
field (first phase of the dynamo loop) is to resort to X terms as seen in
Eq. (13). This would lead to an X� a dynamo mechanism, e.g.,

ðbr; bzÞ!
fX0

rg;fX0
zg

bh!
fhhhg ðbr; bzÞ. These averaged X-terms are shown

in Fig. 4. Their large structures are invariant under the Rp symmetry
[as expressed in Eq. (E4)]. They are similar for the two values of lr and
their maximum absolute non-dimensional value is around 102.

These two dynamo mechanisms may be present in the VKS setup
as it is underlined in Refs. 11, 19, and 20. Our results are not in contra-
diction with these explanations. However, as we now show, the local
energy budget procedure allows for a much finer analysis of the
dynamo mechanisms.

V. DYNAMO GROWTHMECHANISMS FROM LOCAL
ENERGY BUDGETS

We now turn to the analysis of the local energy budgets and show
how they can be applied to identify important dynamo mechanisms
that are absent in the mean-field formulation adapted to statistically
stationary problems. The filtering is computed at three different scales
‘
g ¼ ð0; 1; 16Þ. The case ‘

g ¼ 0 is used to obtain the quantities involved

in the exact energy budgets (see Sec. IIIC). The other two filtering
scales are chosen so as to correspond to two important scales: (i) the
Kolmogorov scale ‘ ¼ g below which all computed fields are regular
due to numerical approximation; (ii) an “inertial scale” ‘ ¼ 16g. These
serve to identify the mechanisms at small and large scales, as well as
two interesting limiting processes: (i) the “laminar dynamo” mecha-
nism, obtained when the limit ‘ ! 0 is taken before the limit
ð�; 1=l0r0Þ ! 0 is taken. This corresponds to a dynamo that is domi-
nated by the mechanisms at the regular scale, via classical chaotic scale
separation of the magnetic field lines and diffusion; (ii) the “fast
dynamo” mechanism, when the limit ð�; 1=l0r0Þ ! 0 is taken before
the limit ‘ ! 0 is reached. This corresponds to a dynamo driven by
the roughness of the velocity field, where the magnetic field lines sepa-
rate stochastically and magnetic dissipation is provided by fast
reconnexions.30

In the following, we thus represent quantities involved in the
exact energy budgets of Sec. IIIC only at the scale ‘ ¼ 0, while the

FIG. 2. Time-averaged helicity tensor fhijg in the saturated regime for lr ¼ 50.
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possibly irregular quantities are represented at ‘
g ¼ ð1; 16Þ to highlight

the laminar and fast dynamo mechanisms.

A. Time evolution of energy terms in the dynamo
growth phase

Figure 5 shows that, in the growth regime of the dynamo, all
transfer terms in the kinetic energy budget (19) are very similar for
lr ¼ 50 and lr ¼ 1 and for each filtering scale. The reason is that the
magnetic field is too weak to affect the velocity field. The only relevant
terms are the viscous dissipation hD�i and the anomalous dissipation
hDui (for ‘ > 0). hD�i decreases with ‘ as expected since viscosity acts
on small scales. In contrast, hDui increases with ‘ as a result of energy
cascade from large to small scale, see Ref. 25.

Figure 6 shows the exponential growth in time (in absolute value)
of all terms involved in the magnetic energy budget (20) for the two
magnetic permeabilities. In order to better discriminate the respective
role of these terms, we renormalize them on Fig. 7 by the space-
averaged magnetic energy, hEmiðtÞ.

We can note that the two dynamo regimes are different. For lr ¼ 1
and ‘ ¼ 0, the growth rate is given by

FIG. 3. Time-averaged helicity tensor fhijg in the saturated regime for lr ¼ 1.

FIG. 4. Time-averaged X effect in the saturated regime. Top row: lr ¼ 50, bottom
row lr ¼ 1.
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hkm0 i ¼
hT u!b

0 i � hDr
0i

hEmi : (44)

Therefore, hT u!b
0 i must exceed hDr

0i for the magnetic field to grow.
The situation is similar for lr ¼ 1; ‘ ¼ g where the terms associated
with irregularity such as hDbi and hDri are quasi-zero due to the
fact that the fields are somehow regular at this scale. Increasing ‘
enhances the irregular transfer term hDbi (which is positive) and
diminishes hT u!bi and hDri while hDri stays negligible. This may
be an indication that in the inviscid limit, the dynamo could be sus-
tained by irregularities of the velocity field, so that a fast dynamo
could be achieved. However, in the present moderate Reynolds

number regime, the dominant term is hT u!bi, which compensates
for all dissipative terms.

For lr ¼ 50, the first instants (t< 3) show the same behavior as
that for lr ¼ 1. This means that hT u!bi is crucial in “launching” the
dynamo process. After the launch is achieved, however, the dynamo
trajectory becomes very different, as the rotating magnet effect hMli
takes over and maintains the dynamo action, while hT u!bi is negative
acting therefore like an anti-dynamo Lorentz force power. Increasing ‘
enhances the modulus of the irregular terms: hDlT i relates the jump
in l and the electromotive field ðu� bÞ and is positive; hDbi follows
the variations of hT u!bi and is negative, i.e., it is an inverse cascade
for the energy transfer between scales for both the velocity and

FIG. 5. Time evolution of kinetic energy budget (19) in the growing phase. Panels correspond to ‘
g ¼ 0 for the first row, ‘

g ¼ 1 for the second row, ‘
g ¼ 16 for the third row,

and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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magnetic fields. The terms hDlri (correlation between the jump in l
and the current) and hDri (dissipation due to the jump in r) are negli-
gible and can be ignored.

In summary, the term T u!b is essential to launch the dynamo in
both cases, highlighting the crucial role played by the velocity field
structure in the lightning of the dynamo. However, the further devel-
opment of the dynamo is very different in the two cases, as Ml

becomes the driving source term for the dynamo when using soft iron
impellers, while T u!b becomes anti-dynamo. To further characterize
these different mechanisms, we now consider the spatial localization of
the local growth rate of the magnetic field.

B. Spatial distribution of linear growth rate

We use Eqs. (37) and (39) to determine the time-averaged local
dynamo growth rate fkmg. The spatial distributions (Fig. 8) are differ-
ent depending on the value of the magnetic permeability: for lr ¼ 50,
the growth rate is localized near the impellers for each ‘ while, for
lr ¼ 1, the main localizations are near the impellers and the shear-
layer. In this region, the growth rate is positive inside the bulk and neg-
ative near the lateral wall at r¼ 1 for each ‘. Therefore, the source of
the growing magnetic field is very different depending on the impeller
material.

FIG. 6. Time evolution of magnetic energy budget (20) in the growing phase. Panels correspond to ‘
g ¼ 0 for the first row, ‘

g ¼ 1 for the second row, ‘
g ¼ 16 for the third

row, and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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C. Local energy transfers between scales in the growth
regime

The anomalous dissipation (Fig. 9) fDug is similar for both per-
meabilities at each scale ‘ in the growth stage. At ‘ ¼ 0, it reaches the
zero machine as expected and is thus not shown. For ‘ ¼ g and
‘ ¼ 16g, it is mainly positive in the bulk where large scales provide
energy to small scales and it is negative near the impellers where small
scales feed large scales through the motion of the impellers blades.
This behavior highlights the energy cascade at work in the von
K�arm�an flow, where energy is injected at the blades, and transferred
toward smaller scales in the bulk of the flow.

In contrast, the anomalous magnetic dissipation fDb=hEmig
(Fig. 10) is very different for both permeabilities. For lr ¼ 50,
for all ‘, it is localized near the impellers and it becomes more
negative when ‘ increases. Its spatial average is negative in this
case as shown in Fig. 7 (left) which makes it an inverse energy
cascade.

For lr ¼ 1, blobs of alternate signs are localized near the impel-
lers while larger areas of positive fDb=hEmig are localized around the
shear layer. The fact that fDb=hEmig is negative (pro-dynamo sign)
near the impellers and not in the shear-layer is in agreement with the
mean-field arguments based on helicity.9

FIG. 7. Time evolution of renormalized magnetic budget in the growing phase. Panels correspond to ‘
g ¼ 0 for the first row, ‘

g ¼ 1 for the second row, ‘
g ¼ 16 for the third

row, and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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D. Conversion of energy in the growth regime

We now examine the two source terms already identified. As they
do not vary much with the scale only the case ‘ ¼ 0 is discussed. At
the early stage t < 3, the (minus) power of the Lorentz force (Fig. 7)
hT u!bi=hEmi is positive for both permeabilities, but beyond, its sign
and spatial repartition are very different depending on the value of lr
as seen on Fig. 11.

For lr ¼ 1; fT u!b=hEmig shows alternated signed zones near
the impellers and positive areas in the bulk. The latter contributes to a
positive space average, which is compatible with the standard dynamo
mechanisms linked with the presence of differential rotation and vorti-
ces in the shear layer and within the disks.

For lr ¼ 50, we can observe two behaviors: at sufficiently small
scales, it is positive within the shear layer, showing that the kinetic
dynamo mechanism is still present. However, this mechanism is

countered by an anti-dynamo mechanism occurring near the impel-
lers, where the term alternates sign such that its spatial average is nega-
tive. Another term is required for the dynamo to be sustained: the
rotating magnet effect fMl=hEmig. As shown in Fig. 12 at ‘ ¼ 0, this
magnet term is also only localized in the blades and disks with alter-
nate signs, its averaged contribution being positive.

VI. SATURATION OF THE DYNAMO FROM LOCAL
ENERGY BUDGETS

To determine the main mechanisms for dynamo saturation
(when @thEci ¼ 0 and @thEmi ¼ 0 on average), we now consider the
local energy budget given by (19)–(20) and evaluate the spatial average
of all its components as a function of time. We want to determine
what is the dominant balance. We next describe the spatial distribution

FIG. 8. Dynamo growth rate averaged on the 128 snapshots in the dynamo growth regime. Panels correspond to ‘
g ¼ 0 for the first row, ‘

g ¼ 1 for the second row, ‘
g ¼ 16

for the third row, and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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FIG. 9. Time-averaged anomalous velocity dissipation in the growth regime. Panels correspond to ‘
g ¼ 1 for the first row, ‘g ¼ 16 for the second row, and the case Re¼ 1500,

Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.

FIG. 10. Renormalized and time-averaged anomalous magnetic dissipation in the growth regime. Panels correspond to ‘
g ¼ 1 for the first row, ‘g ¼ 16 for the second row, and

the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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of each term of the energy budget averaged on a time range belonging
to the saturated regime for the two types of dynamo action.

A. Time evolution of energy terms in the dynamo
saturated phase

Concerning the kinetic energy budget displayed in Fig. 13, for
lr ¼ 1; hD�i and hDui follow the same behavior as in the growth
regime displayed in Fig. 5: hD�i is positive and decreases with ‘; hDui
is positive and increases with ‘. The transfer from the velocity field to
the magnetic field is strong enough to be shown by the term �hT u!bi,
which is negative for all filtering scales. The irregular term hDbi is posi-
tive and acts as a direct energy cascade. Consequently, the velocity field
maintains the magnetic field via the�hT u!bi term and against all dissi-
pative terms.

In contrast, for lr ¼ 50 in the saturated regime, the term
�hT u!bi is positive and hDbi is negative. Hence,�hT u!bi is a source
term for the velocity field which extracts energy from the magnetic
field and hDbi is an inverse cascade. The other terms, hD�i; hDui, are
positive and behave like in the case lr ¼ 1.

Concerning the magnetic balance displayed in Fig. 14, the time
evolution of hT u!bi; hDri; hDbi and hDri for lr ¼ 1 is similar to the

one of the renormalized terms hT u!bi=hEmi; hDri=hEmi;
hDbi=hEmi and hDri=hEmi shown in Fig. 7 (right column) except for
the time interval ½970 : 990�. In this interval, hT u!bi � hDbi � hDri
is negative and the magnetic energy decreases locally in time. Anyway,
h@tEmi is statistically around 0.

For lr ¼ 50, the time evolution of all terms of Eq. (20) follows
that of the renormalized terms hMli=hEmi; hT u!bi=hEmi;
hDlri=hEmi; hDbi=hEmi; hDlT i=hEmi of Fig. 7 (left column) with
hDlT i larger than hDri. The terms hDri and hDlri are negligible.
The positive term hMli � hDbi compensates the negative term
hT u!bi � hDri � hDlT i for the magnetic field to be maintained.

B. Kinetic andmagnetic energy repartition

In the saturated dynamo regime, we can study the spatial distri-
bution of the statistically stationary energies. The kinetic energy is a
regular field represented at ‘ ¼ 0 in Fig. 15. For both lr cases, it is
mainly localized near the impellers as expected. However, it
presents more fine structures in the bulk for the lr ¼ 1 case than for
the lr ¼ 50 case.

In contrast, the magnetic energy (Fig. 16) shows very different
shapes depending on the relative magnetic permeability. For high lr, it
is concentrated near the impellers and is mainly axisymmetric. In con-
trast, at lr ¼ 1, the magnetic energy spreads across the entire volume
and presents non-axisymmetric features. These results are coherent
with the dominant axisymmetric Fourier mode mF¼ 0 for the mag-
netic field at lr ¼ 50 and the mixing of mF ¼ 0; 1 magnetic modes at
lr ¼ 1 as indicated in Table III of Ref. 21

C. Local energy transfers between scales

The most interesting feature of the filtering process is to highlight
the energy transfer that happens in-between different scales via the Du

and Db terms. These terms vanish in the limit ‘ ! 0 in our simula-
tion, but they may provide finite contributions for sufficiently rough
velocity fields, resulting in anomalous dissipation and fast dynamo
mechanism.22,23

Figure 17 displays fDug. This term has only a kinetic origin
linked to the Navier–Stokes equations.27 In the inviscid limit, it may
contribute to the non-vanishing dissipation observed in the von
K�arm�an flow.32,36 For ‘ ¼ g, it is mainly localized near the impellers.
For ‘ ¼ 16g, more positive and negative regions appear. The negative

FIG. 11. Renormalized and time-averaged energy transfer between fields in the growth regime at ‘ ¼ 0. Left panel: Re¼ 1500, Rm¼ 150, and lr ¼ 50. Right panel:
Re¼ 1500, Rm¼ 300, and lr ¼ 1.

FIG. 12. Renormalized and time-averaged rotating magnet effect for the case
Re ¼ 1500;Rm ¼ 150;lr ¼ 50 at ‘ ¼ 0 in the growth regime.
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ones correspond to areas where the scales smaller than 16g inject
energy into the system. They are found near the impellers but also
near the lateral wall, highlighting the non-homogeneity of the cas-
cade and the importance of the boundaries in the transfer
mechanism.

Due to the presence of the magnetic induction, a new transfer
channel is expected allowing transfers from kinetic to magnetic energy
through the term fDbg, that can provide a fast dynamo mechanism in
the inviscid limit,29 for rough enough velocity fields. As seen in Fig. 18,
this term is dominantly localized near the impellers for lr ¼ 50.

Patterns with alternate signs are stuck to the blades but their spatial
average is negative as shown in Fig. 14 (bottom left column panel).
That means that an inverse cascade involving the velocity and mag-
netic fields exists from small scales to large scales near the impellers.

Similarly, for lr ¼ 1, spots of alternate signs are close to the
impellers, but complex positive structures also form close to the shear
layer as ‘ increases. These positive regions are dominant and contrib-
ute to an overall positive spatial average, as shown in Fig. 14 (bottom
right column panel). In this case, the cascade involving the velocity
and magnetic fields is direct from large scales to small scales.

FIG. 13. Time evolution of kinetic energy budget (19) in the saturated phase. Panels correspond to ‘
g ¼ 0 for the first row, ‘

g ¼ 1 for the second row, ‘
g ¼ 16 for the third

row, and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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D. Conversion of energy

The conversion of kinetic energy to magnetic energy relies on the
T u!b andMl terms [as seen in Eq. (20)]. The former is the standard
source term: when it is on average positive, the velocity field provides
energy to the magnetic field; the opposite occurs when it is negative.

Figure 19 shows that the spatial variation of fT u!bg depends on
the value of lr. For lr ¼ 50, it is localized near the impellers with alter-
nate signs. Its spatial average is negative in the saturated regime as
shown in Fig. 14 (left column). It corresponds to a loss of magnetic
energy. For lr ¼ 1, there are more transfers in the bulk and smaller
values in the impellers. Note that it is the only source term for the

maintenance of a magnetic field when lr ¼ 1. Therefore, it has to be
positive on average for a magnetic field to saturate as it is seen in
Fig. 14 (right column).

In contrast, for lr ¼ 50; fMlg is another source of magnetic
field increase. As shown in Fig. 20 at ‘ ¼ 0 this term only exists where
the blades rotate as expected, and it clearly follows the azimuthal varia-
tion of the blades with mF¼ 8. It is on average positive and greater
than the negative average of fT u!bg (see Fig. 14 left column). This
allows qualifying this dynamo as a magnet effect in the saturated
regime. However, at the beginning of the linear regime, it is dominated
by the fT u!bg term as shown in Fig. 7 for t< 3.

FIG. 14. Time evolution of magnetic energy budget (20) in the saturated phase. Panels correspond to ‘
g ¼ 0 for the first row, ‘g ¼ 1 for the second row, ‘g ¼ 16 for the third

row, and the case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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E. Dissipation and energy transfer through variation
of magnetic permeability and electric conductivity

The variation of lr due to the impellers is responsible for the
terms fDlrg and fDlT g as shown in Figs. 21 and 22. These are local-
ized at the surface of the blades and disks. They exist only for ‘ > 0
and show alternate signs. They are specific energy transfers between
scales linked to jumps in magnetic permeability. The first one is
induced by the Joule dissipation while the second one is induced by
the Lorentz force power.

Figure 23 shows the Joule dissipation due to the irregularity of
the electrical conductivity. As expected, it is located on the lateral bor-
der fr ¼ 1:4; 0 � h < 2p;�1 � z � 1g where the conductivity has a
jump from the stagnant liquid sodium layer to the copper vessel. For
all filter scales, it remains low (maximum absolute values around
10�4) and is, therefore, not really relevant to the dynamo action.

VII. MECHANISMS FOR DYNAMO ACTION

Inspection of the linear regime has proved that the standard
mechanism for the growth of the dynamo acts for both values of the
impellers permeability at early instants: as soon as the threshold in
magnetic Reynolds number is exceeded, the (minus) Lorentz force
power overrides the dissipative terms. For steel impellers (lr ¼ 1), at
larger times, a balance between T u!b (which is in space-average posi-
tive) and the dissipative terms (whose space-average values are

positive) is reached and allows a saturated regime to be achieved. In
contrast, for soft iron impellers (lr ¼ 50), the rotating magnet effect
due to the motion of lr and the anomalous magnetic dissipation
(which is negative on space-average) take over and become the key
players for the dynamo mechanism in the saturation phase. In light of
our findings, we can now discuss the different scenarios proposed in
the literature to explain the VKS dynamo.

The mechanism based upon spatial variations in electrical con-
ductivity was first proposed by Busse and Wicht.12 These authors have
considered the magnetic field generation by an electrically conducting
fluid flowing parallel to a rigid plate presenting spatial variations of
electrical conductivity in the streamwise direction. It was shown that
the magnetic Reynolds number for the dynamo process decreases with
increasing conductivity of the plate and with increasing amplitude of
its modulation. The growth mechanism is the coupling between poloi-
dal and toroidal components of the magnetic field through the high
conductivity zones. This mechanism was also recovered in Refs. 13
and 14. In Ref. 37, a Bullard-type homopolar disk dynamo is experi-
mentally realized using a copper disk positioned co-axially beneath a
flat, multi-arm spiral coil of the same size and electrically coupled to it
along the perimeter and at the center by Galinstan contacts. The spiral
grooves create an axial magnetic field by deflecting the coil’s current in
an azimuthal manner, making the dynamo essentially axisymmetric.
Therefore, the dynamo mechanism relies largely on the anisotropic
geometry of the coil, which forces the current to follow deflected paths.

FIG. 15. Kinetic energy averaged on the 128 snapshots in the dynamo saturated regime at ‘ ¼ 0. Left panel: Re¼ 1500, Rm¼ 150, and lr ¼ 50. Right panel: Re¼ 1500,
Rm¼ 300, and lr ¼ 1.

FIG. 16. Time-averaged magnetic energy in the saturated regime at ‘ ¼ 0. Left panel: Re¼ 1500, Rm¼ 150, and lr ¼ 50. Right panel: Re¼ 1500, Rm¼ 300, and lr ¼ 1.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 022306 (2024); doi: 10.1063/5.0174251 31, 022306-17

Published under an exclusive license by AIP Publishing

 27 February 2024 16:13:02

pubs.aip.org/aip/php


FIG. 17. Time-averaged anomalous velocity dissipation in the saturated regime. Panels correspond to ‘
g ¼ 1 for the first row, ‘

g ¼ 16 for the second row, and the case
Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.

FIG. 18. Time-averaged anomalous magnetic dissipation in the saturated regime. Panels correspond to ‘
g ¼ 1 for the first row, ‘

g ¼ 16 for the second row, and the
case Re¼ 1500, Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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The same mechanism is at work in the Fury experiment38 where a cop-
per rotor with grooves rotates inside a copper grooved stator, electri-
cally connected with a thin layer of Galinstan.

Spatial variations in magnetic permeability have been already put
forward as a source of dynamo action.15–18 In Ref. 15, by combining
the effects of the soft-iron impellers and a small uniform homogeneous

ahh-effect modeling the induction effects of unresolved small-scale
flow fluctuations, an axisymmetric magnetic field mode was obtained
in a kinematic dynamo setup. However, a uniform homogeneous
a-effect is not realistic as shown in Fig. 2. In Ref. 16, the growth of the
magnetic field is due to the shear of the velocity localized on the fron-
tier between fluid and the top of the blades. The jump conditions of
Sec. II B (iii) and (iv) in Ref. 16 can be interpreted as aMl effect local-
ized only on the blades’ top. In our case, the helical flow in between the
blades distorts the magnetic field and bends it along the surface of the
blades and disks making the Ml term large there (as shown in
Fig. 20). Therefore, it is not the dynamo mechanism described in Ref.
16 as it would occur only on the top of the blades. In Ref. 17, the solid
body rotation of an anisotropic conductive or an anisotropic perme-
able cylindrical rotor (the anisotropy of material properties follows a
logarithmic spiral shape) immersed in a static cylinder can generate an
axisymmetric magnetic field. The kinematic dynamo mechanism there
is due to differential rotation coupled with anisotropic diffusion.
However, the generated magnetic field has a horizontal structure fol-
lowing spirals and a Fourier vertical structure as expðikzÞ with k the
vertical wavenumber of the corresponding eigenmode, far from
the VKS dynamo mode shown in Fig. 1 (right). In Ref. 18, the effect of
the rotating disk is studied: by adding opposite ahh and X effect above
and under the disk with a higher magnetic permeability than the liq-
uid, a decrease in the magnetic threshold is observed. However, an
ahh-effect with opposite sign above and under the disk is not what is

FIG. 19. Time-averaged energy transfer between fields in the saturated regime at ‘ ¼ 0. Left panel: Re¼ 1500, Rm¼ 150, and lr ¼ 50. Right panel: Re¼ 1500, Rm¼ 300,
and lr ¼ 1.

FIG. 20. Time-averaged rotating magnet effect for the case Re ¼ 1500;Rm
¼ 150; lr ¼ 50 in the saturated regime at ‘ ¼ 0.

FIG. 21. Time-averaged Joule induced in-between scales magnetic transfers for the case Re ¼ 1500;Rm ¼ 150;lr ¼ 50 in the saturated regime. Left panel: ‘
g ¼ 1. Right

panel: ‘g ¼ 16.
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observed in Fig. 2. Moreover, any a-or-X-driven dynamo mechanism
would only participate through the term T u!b, which is globally nega-
tive in the current case lr ¼ 50.

Here, the main dynamo mechanism at large times for lr ¼ 50 is
simply a self-amplifying phenomenon due to the variation of the mag-
netic permeability in time. Re-writing ð20Þ by keeping onlyMl gives

@tE
m 	 Em@t

1
l
: (45)

This implies that the magnetic field grows (respectively decreases)
behind (respectively in front of) the blades as can be seen in Fig. 20,
which amplifies the phenomenon: stronger Ml happens where the

magnetic field is amplified. Hence, for soft-iron impellers (lr ¼ 50),
the dynamo effect is due to rotating magnets. In the saturated regime,
this is counterbalanced by both the Joule dissipation, Dr, and the
energy transfer toward the velocity field,�T u!b (see Fig. 14).

The dynamo mechanism for steel impellers (lr ¼ 1) is very dif-
ferent as it is only due to the energy transfer from the velocity field. At
the same time, it couples dynamo processes in the shear layer and the
in-between blade zones (see Fig. 11).

VIII. CONCLUSION

The main result of this article is the expression on the different
local transfer terms appearing in Eqs. (19) and (20). They express all

FIG. 22. Time-averaged Lorentz induced in-between scales magnetic transfers for the case Re ¼ 1500;Rm ¼ 150;lr ¼ 50 in the saturated regime. Left panel: ‘g ¼ 1. Right
panel: ‘g ¼ 16.

FIG. 23. Time-averaged irregular Joule dissipation in the saturated regime. Panels correspond to ‘
g ¼ 1 for the first row, ‘g ¼ 16 for the second row, and the case Re¼ 1500,

Rm¼ 150, and lr ¼ 50 on the first column and the case Re¼ 1500, Rm¼ 300, and lr ¼ 1 on the second column.
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possible exchanges between velocity and magnetic fields. Obtaining
these terms was made possible by the development of a new filtering
approach that can be used effectively for unstructured grids such as the
finite element mesh used in SFEMaNS. We believe that this filtering
method offers a general framework for the analysis of data obtained on
unstructured meshes.

The viscous D� and resistive Dr dissipations correspond to the
classical terms. The lack of smoothness of the solutions leads to the
appearance of Db that generalizes the anomalous dissipation Du

(which quantifies the kinetic energy dissipated by non-viscous
means22) to the anomalous magnetic energy dissipation. It is rather
remarkable that the combination of these anomalous dissipative terms
can be written in the form of structure functions already derived in the
literature23,25 (as shown in Appendixes C and D).

The novelty is that the separation of the kinetic and magnetic
energy equations allows highlighting the main terms responsible for
the dynamo effect, namely, T u!b and Ml. Using two illustrative
numerical dynamo simulations with different impeller materials, we
were able to show that the dynamo mechanisms are totally different
when using steel or soft iron impellers. In the case of steel impellers,
the only source term is the (minus) Lorentz force power T u!b that
needs to compensate for all dissipative terms. In the case of soft iron
impellers, the ferromagnetic nature of the impellers plays a crucial role
in maintaining the magnetic field through Ml (and Db for a filtering
scale ‘ > 0). This second mechanism cannot be described by a mean-
field approach, which does not include variations in magnetic perme-
ability nor electrical conductivity.

MHD and Navier–Stokes equations share a lot in common.
However, from a mathematical perspective, it is unknown whether the
viscous and resistive mechanisms that tend to smooth out potential
irregularities in the velocity and magnetic field are effective enough to
constrain the fields to stay smooth at all times. The analytical tools we
have developed will allow us to dynamically study the rare events asso-
ciated with extreme values of the anomalous dissipative terms in future
work.
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APPENDIX A: NAVIER–STOKES CALCULATIONS

Using the scalar product of qu=2 with Eq. (15) and the scalar
product of qu‘=2 with Eq. (1) leads to the equation for the trans-
ferred kinetic energy from all scales larger than ‘ to the scale ‘,

@t
quu‘

2
þ q

2

 
u@iuiu

‘ þ u‘@iuiu� u�Du‘

�u‘�Duþ u � r p‘

q
þ u‘ � r p

q

!

¼ 1
2
ðu‘ � ð j� bÞ þ u � ð j� b

‘Þ þ qu � f ‘ þ qu‘ � f Þ: (A1)

After some calculations, the left-hand side yields a simpler form
(using multiple times r � u ¼ 0 and r � u‘ ¼ 0),

1
2
r � ðu‘pþ up‘Þ þ q

2
r � ðuu‘Þu
� 	

� q
2
�Dðuu‘Þ

þ q�@iuj
‘@iuj þ

q
2
ðuui@iu

‘ � uiu@iu
‘Þ

¼ r � JNS þD� þDu: (A2)

The first part of the right hand side can then be written as

u‘ � ð j� bÞ þ u � ð j� b
‘Þ ¼ � u‘ � ðb� jÞ þ u � ðb� j

‘Þ

 �

¼ �2 T u!b þDb
� 

; (A3)

while q
2 ðu � f ‘ þ u‘ � f Þ ¼ P.

APPENDIX B: MHD CALCULATIONS

Using the scalar product of b=2l with Eq. (16) and the sca-
lar product of b

‘
=2l with Eq. (2) leads to the equation for the

transferred magnetic energy from all scales larger than ‘ to the
scale ‘,

@t
bb

‘

2l
¼ 1

2l
b
‘ � r � ðu� bÞ � b

‘ � r � j
r

� �
þ b � r

�

�ðu� b
‘Þ � b � r �

�
j
r

�‘!
� b � b‘

2l2
@tl: (B1)

The variation of the physical properties r and l leads to extra terms
that we develop in the following.

1. Using various conductive materials

The sharp variation in the electrical conductivity at
fr ¼ 1:4Rcyl;�H=2 � z � H=2g between the liquid sodium lateral
layer (r ¼ r0) and the copper wall of the container (r ¼ 4:5r0)
needs to be taken into account,
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� r � j
r

� �
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¼ r � j
r
� b
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Using

j
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; (B3)

r� ðb‘Þ
l

¼ r� H
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l
�r� H
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: (B4)

Then
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Hence

b
‘

� 
l

� r � j
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� �
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l
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� �‘

¼ r � j
r
� b

‘
� 
l

þ j
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� �‘

� b
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 !
þ 2Dr þ 2Dlr þ 2Dr : (B6)

2. Using various permeable materials

The sharp variation in the magnetic permeability between the
liquid sodium and the moving impellers (when l 6¼ l0) needs to be
taken into account,

b
l
� r � ðu� b

‘Þ ¼ �r � b
l
� ðu� b

‘Þ
� �

þ ðu� b
‘Þ � ðr � hÞ

¼ �r � b
l
� ðu� b

‘Þ
� �

þ u� b
‘ � j; (B7)

ðb‘Þ
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� r � ðu� bÞ

¼ �r � ðb‘Þ
l

� ðu� bÞ

 !
þ ðu� bÞ � r � ðb‘Þ

l

¼ �r � ðb‘Þ
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� ðu� bÞ

 !
þ ðu� bÞ � r � H

‘
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l

�r� H
‘

 !
: (B8)

Hence

b
l
� r � ðu� b

‘Þ þ ðb‘Þ
l

� r � ðu� bÞ

¼ �r � b
l
� ðu� b

‘Þ þ ðb‘Þ
l

� ðu� bÞ

 !

þ 2 T u!b �Dbð Þ � 2DlT : (B9)

3. Rationale for separation between T ufib and Db

By summing (20) and (19), which describe physically the time
evolution of the total energy, we obtain

@tðEc þ EmÞ þ r � JNS þr � JM þD� þDu þ 2Db

þDr þDr þDlr þDlT ¼ P þMl:

On the other hand, we can subtract (20) and (19), which leads to

@tðEm � EcÞ � r � JNS þr � JM �D� �Du þDr

þDr þDlr þDlT ¼ �P þ 2T u!b þMl:

Physically, these equations show that Db is a transfer term between
scales larger than ‘ and scales smaller than ‘ for the total energy
(similar to Du for the kinetic energy equation). Moreover, Db is
zero for ‘ ¼ 0 that would not happen if we add (or subtract) Db and
T u!b. Meanwhile, T u!b is an energy transformation term between
both energies, that does not vanish at ‘ ¼ 0.

It is, therefore, essential to keep the two terms separate, as adding
(or subtracting) them would mix up different types of energy transfer.
Moreover, calculating their sum and subtraction will always give the
same number of energy transfer terms to compute and analyze.

APPENDIX C: LINKING KINETIC ENERGY TRANSFERS
AND VELOCITY INCREMENTS

Following,25 the filtering process discussed in section Sec. III E
can be interpreted as a smoothing operation at a resolution ‘
achieved through the function u‘ (smooth non-negative function
with unit integral) such that the filtered velocity field reads

ui
‘ðx; tÞ ¼

ð
u‘ðrÞuiðx þ r; tÞd~r : (C1)

Using increments of the velocity fields, the third-order structure
function can be written as [see Eq. (2.7) in Ref. 26],

DI

q
¼

 !
SNS ¼ 1

4

ð
ðru‘Þ � ðdudu2Þd~r

¼ � 1
4

ð
u‘r � ðdudu2Þd~r

¼ � 1
4

@iuiujuj
‘ � ui@iujuj

‘ � 2uj@iuiuj
‘

h
þujuj@iui

‘ þ 2uiuj@iuj
‘
	

¼ � 1
4

r � ðuu2 ‘ � uu2
‘Þ � 2ujui@iuj

‘ þ 2uiuj@iuj
‘

h i
¼ � 1

4
r � ðuu2 ‘ � uu2

‘Þ þ 1
q
Du

¼ 1
2
r � JSNS þ 1

q
Du; (C2)
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with JSNS ¼ �uu2
‘ þ uu2

‘
. The term SNS was denoted DI

‘ in Ref. 25.
Note that it differs from the anomalous dissipation term Du by an
additional flux term (in divergence). Integrated throughout space
with the proper boundary conditions, the latter should disappear
but it can be responsible for localized large values on the bound-
aries. If we are interested in the energy injected in the small scales,
the important term is Du.

APPENDIX D: LINKING MAGNETIC ENERGY
TRANSFERS AND VELOCITY INCREMENTS

In the MHD case with l 6¼ const:, we introduce

SMag ¼ � l
2

ð
u‘ðdu � dðb� jÞ þ dj � dðb� uÞÞd~r

¼ l
2

�u � ðb� jÞ‘ � j � ðb� uÞ‘ þ u � ðb� j
‘Þ

h
þ j

‘ � b� uþ j � b� u
‘ þ u‘ � ðb� jÞ

i
¼ l

2
�u � ð j� b

‘ � j
‘ � bÞ � j � ðu� b

‘ � u‘ � bÞ
h i

¼ 2lDb: (D1)

In the special case l ¼ const:, this formula simplifies like in Ref. 23

~S
Mag ¼ 1

4

ð
ðru‘Þ � ðdudb2 � 2ðdu � dbÞdbÞd~r

¼ � 1
4

ð
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Treating both parts of the integral independently
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Grouping two by two similar terms

bjui@iðbj
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bjui
‘@iðbjÞ � uj

‘bi@iðbjÞ ¼ u‘ � ðb� ðr � bÞÞ; (D8)

using that for fields of null divergence

r� ðA� BÞ ¼ ðB � rÞA� ðA � rÞB ¼ Bi@iAj � Ai@iBj; (D9)

B� ðr � BÞ ¼ 1
2
rB2 � ðB � rÞB ¼ Bi@jBi � Bi@iBj: (D10)

On the other hand
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‘ þ u‘ � ðb� jÞ: (D11)

Hence, by regrouping all terms with a divergence in a current, and
using r� b ¼ lj and r� b

‘ ¼ lj
‘
(because l ¼ const:)

2lDb ¼ ~S
Mag � 1

2
r � JSMag ; (D12)

with

JSMag ¼ b
‘ � ðb� uÞ þ b� ðb� u

‘Þ � ðu � bÞb‘

� bðu � b‘Þ � bðb � u‘Þ � bðu � b‘Þ

þ 1
2
ub2

‘ þ 1
2
u‘b2 þ 1

2
uðb‘ � bÞ: (D13)

So, in this special case

SMag ¼ ~S
Mag � 1

2
r � JSMag : (D14)

APPENDIX E: DETAILS ON THE NUMERICS AND VON
K�ARM�AN SYMMETRIES

1. Numerical setup

The numerical setup corresponds to the von K�arm�an swirling
flow. The symmetries of this setup are presented in Subsection 4 of
Appendix E. We have performed MHD simulations of this setup on
various supercomputers21 (up to about 2000 cores on the IDRIS
supercomputer), allowing us to reach kinetic Reynolds number up
to 105 and magnetic Reynolds number of the order of a few hun-
dred, resulting in a magnetic Prandtl number around 10�3.

2. SFEMaNS code

The SFEMaNS code integrates the system of coupled Eqs.
(1)–(4). It uses a hybrid spatial discretization combining finite ele-
ments and spectral decomposition. For the hydrodynamic part, the
approximation in space is done by using a Fourier decomposition in
the azimuthal direction and the continuous Hood-Taylor Lagrange
element P1–P2 in the meridian section (quadratic approximation
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for the velocity field and linear approximation for pressure). All the
discrete scalar functions f are written in the generic form

f ðr; h; z; tÞ ¼ f c;0h ðr; z; tÞ þ
XM
mF¼1

f c;mF
h ðr; z; tÞ cosðmFhÞ

þ
XM
mF¼1

f s;mF
h ðr; z; tÞ sinðmFhÞ; (E1)

with ðr; h; zÞ the cylindrical coordinates, t the time and M the num-
ber of Fourier azimuthal modes considered. The functions f c;mF

h and
f s;mF
h belong to a finite element space with h the typical mesh-size.
The approximation in time is done by using a pressure-correction
method.39 The moving counter-rotating impellers are accounted for
by using a pseudo-penalty technique described in Ref. 40 Modulo
the computations of nonlinear terms with the fast Fourier trans-
form, the linear problems at each time step for each Fourier mode
in the meridian section are uncoupled and are thereby parallelized
by using the message passing interface. The solution of each linear
problem in the meridian section is further parallelized by using
graph partitioning techniques from the METIS library41 and sub-
routines from the portable extensible toolkit for scientific computa-
tion library (PETSc),42 for the linear algebra. For the magnetic part,
the algorithm solves the problem using the magnetic induction b in
the conducting region (after standard elimination of the electric
field) and the scalar magnetic potential in the insulating exterior.
The fields in each region are approximated by using H1-conforming
Lagrange elements with a penalty technique to control the diver-
gence of b in a negative Sobolev norm that guarantees convergence
under minimal regularity (see details in Ref. 43, (Sec. III B), Ref. 44)
The coupling between conducting and insulating media is done by
using an interior penalty method. SFEMaNS has been thoroughly
validated on numerous manufactured solutions and against other
MHD codes (see, e.g., Refs. 45 and 46).

3. Description of the numerical runs

In this paper, we focus on two series of runs described in Ref.
21 (Table III). We use non-dimensional units such that the refer-
ence length Lref is set to the inner cylinder radius Rcyl. Denoting by
r0 the electrical conductivity of the liquid sodium, q its density, and
l0 the magnetic permeability of vacuum, the magnetic induction is
made non-dimensional by using the Alfv�en scaling B ¼ U

ffiffiffiffiffiffiffiffi
ql0

p
,

with U ¼ xRcyl where x is the angular velocity of the impellers.
The two governing parameters are Rm ¼ l0r0R

2
cylx, the magnetic

Reynolds number, and Re ¼ R2
cylx=�, the kinetic Reynolds number,

with � the kinematic viscosity of the fluid. We define a relative elec-
trical conductivity rr and a relative magnetic permeability lr. These
quantities are not constant since the walls and the impellers are
made of different materials like copper, steel, and soft iron.
Specifically, we define rr ¼ 1; lr ¼ 1 in the region fðr; h; zÞ
2 ½1; 1:4� � ½0; 2pÞ � ½�1; 1�g to model the lateral layer of stagnant
liquid sodium, and rr ¼ 4:5; lr ¼ 1 in fðr; h; zÞ 2 ½1:4; 1:6�
�½0; 2pÞ � ½�1; 1�g to represent the lateral copper wall.

The computations are performed with 128 Fourier modes
and a non-uniform meridian mesh, with minimal spacing
hmin ¼ 2:5� 10�3 and maximal spacing hmax ¼ 10�2 leading to an
averaged meridian mesh hmean ¼ 7:92� 10�3. We can estimate the

Kolmogorov scale g ¼ ð�3=�Þ1=4 using the kinematic viscosity
� ¼ 1=Re and the energy dissipation rate � ¼ 2RcylKp=pH (with Kp

the time-averaged torque applied by the impellers to the fluid and
H¼ 2 the total height of the container). Table II of Ref. 21 provides
Kp ¼ 5:08� 10�2 at Re¼ 1500 resulting in g ¼ 1:16� 10�2.

4. Symmetries of the von K�arm�an flow
and implications for the X and a terms

The von K�arm�an flow with exactly counter-rotating impellers
has one particular symmetry that can provide information about
the spatial distribution of instantaneous and averaged quantities
based on the velocity field. It is called the Rp symmetry47 and corre-
sponds to a symmetry of rotation of p about any horizontal axis,

Rp

ur
uh
uz

0
@

1
Aðr; h; zÞ ¼

ur
�uh
�uz

0
@

1
Aðr;�h;�zÞ; (E2)

where u ¼ ður ; uh; uzÞ is the velocity vector in cylindrical coordi-
nates with r the radial distance, h the azimuthal angle and z the
height. Another symmetry, apart from the impellers, is axisymmetry
about the z axis defined as

Sh0

ur
uh
uz

0
@

1
Aðr; h; zÞ ¼

ur
uh
uz

0
@

1
Aðr; hþ h0; zÞ: (E3)

Based on (E2), one can deduce that, for a velocity field symmetric
under the Rp symmetry, the X-terms satisfy

X0
rðr; h; zÞ ¼ �X0

rðr;�h;�zÞ

and

X0
zðr; h; zÞ ¼ þX0

zðr;�h;�zÞ: (E4)

For the a-tensor (11), one needs the expression for the velocity gra-
dient tensor in cylindrical coordinates,

ru ¼

@ur
@r

1
r
@ur
@h

� uh
r

@ur
@z

@uh
@r

1
r
@uh
@h

þ ur
r

@uh
@z

@uz
@r

1
r
@uz
@h

@uz
@z

0
BBBBBB@

1
CCCCCCA
: (E5)

Using (E5) in the helicity tensor, one can infer that, for a velocity
field symmetric under the Rp symmetry, the helicity tensor satisfies

hrr hrh hrz
hhr hhh hhz
hzr hzh hzz

0
@

1
Aðr; h; zÞ ¼

þhrr �hrh �hrz
�hhr þhhh þhhz
�hzr þhzh þhzz

0
@

1
Aðr;�h;�zÞ:

(E6)

The a-tensor will follow the same rules.

APPENDIX F: FILTERING ISSUES

We examine the issues related to the filtering process concern-
ing the boundaries and its non-commutation with derivatives. We
start with Eq. (40) in a domain D 
 R3 with boundary @D
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ð1� ‘2DÞfi
‘ ¼ fi: (F1)

The weak formulation is obtained using test functions /i,ð
D

ð1� ‘2DÞfi
‘

h i
/i ¼

ð
D
fi/i

()
ð
D
fi
‘
/i þ

ð
D
‘2ðrkfi

‘Þðrk/iÞ �
ð
@D
‘2nkðrkfi

‘Þ/i ¼
ð
D
fi/i:

This is the formulation used in SFEMANS to solve these equations.

1. Discontinuous Galerkin method

This section explains how to solve the filtering equation at the
interface between the velocity mesh and the magnetic field mesh
(that includes the velocity mesh). This is needed in order for both
meshes to communicate; otherwise, the filter would create a discon-
tinuity in the filtered field at the interface between the meshes.

Let us consider a domain D 
 R3 with boundary @D. The
domain is assumed to be partitioned in two subdomains D1 and D2

such that D ¼ D1 [ D2 , D1 \ D2 ¼ 1. The interface between both
domains is denoted by R ¼ D1 \ D2 ,ð

D1[D2

ð1� ‘2DÞfi
‘

h i
/i ¼

ð
D1[D2

fi/i

()
ð
D1[D2

fi
‘
/i þ

ð
D1[D2

‘2ðrkfi
‘Þðrk/iÞ �

ð
@D
‘2nkðrkfi

‘Þ/i

�
ð
R

‘2n1kðrkf1i
‘Þ/1i þ ‘2n2kðrkf2i

‘Þ/2i


 �
¼
ð
D1[D2

fi/i:

The vector ni is the outward normal vector to the interface R with
respect to Di.

Using ða1b1þa2b2Þ¼ 1
2 ½ða1þa2Þðb1þb2Þþða1�a2Þðb1�b2Þ�ð

R
n1kðrkf1i

‘Þ/1i þ n2kðrkf2i
‘Þ/2i


 �

¼
ð
R

1
2

ðn1krkf1i
‘ þ n2krkf2i

‘Þð/1i þ /2iÞ



þðn1krkf1i
‘ � n2krkf2i

‘Þð/1i � /2iÞ
�

¼
ð
R

1
2

n1kjjrkfi
‘jjf/ig þ n1kfrkfi

‘gjj/ijj

 �

;

using n2k ¼ �n1k and defining jjfijj ¼ ðf1i � f2iÞ and ffig
¼ ðf1i þ f2iÞ.

In cylindrical coordinates, we have

nkðrkfi
‘Þ/i ¼

ðnr@r þ nz@zÞfr
‘

ðnr@r þ nz@zÞfh
‘

ðnr@r þ nz@zÞfz
‘

�

�������
�������
/r

/h

/z

:

For regularization purpose, the following term is added:

ð
R

b
h
ðf1i

‘ � f2i
‘Þð/1i � /2iÞ ¼

ð
R

b
h
jjfi

‘jjjj/ijj;

where h represents the mesh size and b a tunable penalty parameter
that is always set to one in our numerical investigations.

The final implemented equation is

ð
D1[D2

fi
‘
/i þ

ð
D1[D2

‘2ðrkfi
‘Þðrk/iÞ �

ð
@D
‘2nkðrkfi

‘Þ/i

�
ð
R

‘2

2
n1kjjrkfi

‘jjf/ig þ n1kfrkfi
‘gjj/ijj


 �

þ
ð
R

b
h
jjfi

‘jjjj/ijj ¼
ð
D1[D2

fi/i: (F2)

Note that, when ‘ ¼ 0, we get fi
0 ¼ fi as needed. When ‘ 6¼ 0, the

impact of the boundaries (@D; R) scales like ‘2.

2. Non-commutation of filter and derivatives

In this section, we study commutation between filtering and
derivatives. As an example, we study the case where we derive
according to one direction X. The equation to filter such a derivative
would be

ð1� ‘2DÞ@Xfi
‘ ¼ @Xfi; (F3)

with its weak formulation beingð
D

ð1� ‘2DÞ@Xfi
‘

h i
/i ¼

ð
D
ð@XfiÞ/i: (F4)

Working on the rhs givesð
D
ð@XfiÞ/i

¼ �
ð
D
fið@X/iÞ þ

ð
@D
fi/i

¼ �
ð
D

ð1� ‘2DÞfi
‘

h i
@X/i þ

ð
@D
fi/i

¼
ð
D

@Xð1� ‘2DÞfi
‘

h i
/i �

ð
@D

ð1� ‘2DÞfi
‘

h i
/i þ

ð
@D
fi/i

¼
ð
D

ð1� ‘2DÞ@Xfi
‘

h i
/i þ

ð
@D
‘2ðDfi

‘Þ/i þ
ð
@D
ð fi � fi

‘Þ/i:

Henceð
D

ð1� ‘2DÞð@Xfi
‘ � @Xfi

‘Þ
h i

/i ¼
ð
@D
ðfi � fi

‘Þ/i þ
ð
@D
‘2ðDfi

‘Þ/i:

(F5)

When ‘ ¼ 0, the filter and derivatives commute if Dirichlet bound-
ary conditions are used (vanishing of the first rhs term). In contrast,
when ‘ 6¼ 0, there are errors which scale like ‘2 on the boundaries
@D as indicated by the second rhs term in ‘2. This means that, as
long as we are interested in derivatives away from the edges � ‘2,
the error introduced by commutating derivatives and filtering is
negligible.
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