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Numerical simulations of bouncing jets
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SUMMARY

Bouncing jets are fascinating phenomenon occurring under certain conditions when a jet impinges on a free
surface. This effect is observed when the fluid is Newtonian and the jet falls in a bath undergoing a solid
motion. It occurs also for non-Newtonian fluids when the jets fall in a vessel at rest containing the same fluid.
We investigate numerically the impact of the experimental setting and the rheological properties of the fluid
on the onset of the bouncing phenomenon. Our investigations show that the occurrence of a thin lubricating
layer of air separating the jet and the rest of the liquid is a key factor for the bouncing of the jet to happen.
The numerical technique that is used consists of a projection method for the Navier–Stokes system coupled
with a level set formulation for the representation of the interface. The space approximation is carried out
with adaptive finite elements. Adaptive refinement is shown to be very important to capture the thin layer of
air that is responsible for the bouncing. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ability of a jet of fluid to bounce on a free surface has been observed in different contexts.
Thrasher et al. [1] designed an experiment where a jet of Newtonian fluid falls into a rotating vessel
filled with the same fluid. The authors investigated the conditions under which the jet bounces:
nature of the fluid, jet diameter, and jet and bath velocities. We refer to [2] for experimental movies
illustrating this effect. Bouncing can also be observed in a stationary vessel provided the jet is
composed of a non-Newtonian fluid. During the pouring process, a small heap of fluid forms and
the jet occasionally leaps upward from the heap (Figure 1). This is the so-called Kaye effect as first
observed by [3] in 1963. About 13 years after this phenomenon was first mentioned in the literature,
[4] revisited the experiment and suggested that the ability for the fluid to exhibit shear-thinning
viscosity and elastic behavior are key ingredients for the bouncing to occur. Additional laboratory
experiments performed by [5] and [6] lead the authors of each team to propose a list of properties
that the fluid should have for the Kaye effect to occur. The conclusions of these two papers disagree
on the requirement that the fluid be elastic and on the nature of the thin layer that separates the heap
and the outgoing jet. It is argued in [5] that elastic properties are not necessary and that the thin layer
is a shear layer, whereas it is argued in [6] that the fluid should have elastic properties and that the
thin layer separating the heap from the bouncing jet is a layer of air. Recent experiments reported in
[7] using a high speed camera unambiguously show that the jet slides on a lubricating layer of air.
For completeness, we also refer to [8] for a thorough discussion on the ‘stable’ Kaye effect, where
the jet falls against an inclined surface.
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Figure 1. Experimental observation of the Kaye effect. (Left) The fluid starts to buckle producing a heap;
(middle) a stream of liquid suddenly leaps outside the heap; (right) fully developed Kaye effect.

The objective of the present paper is to numerically revisit the Kaye effect. Our key finding is
that a thin air layer is always present between the bouncing jet and the rest of the fluid whether the
fluid is Newtonian or not. Our numerical experiments suggest that the critical parameter for bounc-
ing to occur is that the properties of fluid and the experimental conditions be such that a stable layer
of air separating the jet and the ambient fluid can appear. This condition is met by setting the bath
in motion for Newtonian fluids; it can also be met if the bath is stationary provided that the fluid
is non-Newtonian and has shear-thinning viscosity. The numerical code that we use is based on a
modeling of the fluid motion by the incompressible Navier–Stokes equations supplemented with a
surface tension mechanism. The shear-thinning viscosity of the non-Newtonian fluids is assumed
to follow a model by [9]. Elastic behaviors are not modeled. The numerical approximation of the
resulting two-phase flow model is based on two solvers: one solving the Navier–Stokes equations
assuming that the fluid/air distribution is given, and the other keeping track of the motion of the
interface assuming that the transport velocity is given. The Navier–Stokes solver is based on a ver-
sion of the projection method of [10] and [11] using a novel adaptive in time second-order backward
differentiation formula (BDF2) for the time discretization and adaptive finite elements for the space
approximation. The transport solver is based on a level set technique in the spirit of [12] to repre-
sent the liquid/air interface. The level set is approximated in space by using adaptive finite elements
to accurately capture the aforementioned thin air layer, and the adaptive time stepping is carried out
by using a third-order explicit Runge–Kutta technique. The transport of the level set function is sta-
bilized using a novel ‘on the fly’ entropy residual method mathematically studied in [13] in a model
setting, which guarantees an accurate representation of the free boundary.

The paper is organized as follows. The mathematical model is presented in Section 2. The numer-
ical techniques to solve the Navier–Stokes equations and the transport equation for the level set
function are described in Section 3. Various validation tests of the numerical algorithms and com-
parisons with classical benchmark problems are reported in Section 4. Finally, we report numerical
evidences of Newtonian and non-Newtonian bouncing jets in Section 5.

2. THE MATHEMATICAL MODEL

This section presents the mathematical models adopted to describe non-mixing two-phase fluid
flows with capillary forces. Each fluid is assumed to be incompressible.

2.1. Two-phase flow system

Letƒ � Rd .d D 2; 3/ be an open and bounded computational domain with Lipschitz boundary @ƒ
and let Œ0; T � be the computational time interval, T > 0. The cavityƒ is filled with two non-mixing
fluids undergoing some time-dependent motion, say fluid 1 and fluid 2. We denote by �C and ��

the open subsets of the space-time domain ƒ�Œ0; T � occupied by fluid 1 and fluid 2, respectively.
We denote by �C; �C; ��; �� the density and dynamical viscosity of each fluid, respectively. The
interface between the two fluids in the space-time domain is denoted † WD @�C \ @��, and
the normal to †, oriented from �C to ��, is denoted n†. The two space-time components of the
vector field n† W † �! Rd � R are denoted n and n� , respectively. It is also useful to define
�˙.t/ WD �˙\ .ƒ�¹tº/; that is, the sets�C.t/ and��.t/ are the regions occupied by fluid 1 and
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fluid 2 at time t , respectively. We also introduce the interface †.t/ D @�C.t/ \ @��.t/; note that
n, as defined earlier, is the unit normal of †.t/ and it is oriented from �C.t/ to ��.t/. To facilitate
the modeling, we define global density and dynamical viscosity functions �; � W ƒ � Œ0; T � ! R
by setting �.x; t / D �˙ and �.x; t / D �˙ if .x; t / 2 �˙. The fluid velocity field u W ƒ � Œ0; T �!
Rd , henceforth assumed to be continuous across †, and the pressure p W ƒ � Œ0; T � ! R are
defined globally and solve the incompressible Navier–Stokes equations in the distribution sense in
the space-time domain

�

�
@

@t
uC u � ru

�
� 2div

�
�rSu

�
Crp � ı†��n D �g in ƒ � .0; T �; (1a)

div.u/ D 0 in ƒ � .0; T �; (1b)

where rSu WD 1
2
.ruCruT / is the strain rate tensor, g is the gravity field, and ı†��n is a singular

measure modeling the surface tension acting on †.t/. The distribution ı† is the Dirac measure
supported on †, the function � W † ! R is the total curvature of †.t/ (sum of the principal
curvatures) and � is the surface tension coefficient.

The system (1) is supplemented with initial and boundary conditions. The initial condition is
u.x; 0/ D u0.x/ for all x 2 ƒ, where u0 is assumed to be a smooth divergence-free velocity field.
The boundary @ƒ is decomposed into three non-overlapping components @ƒ WD �D [ �N [ �S
with �D \ �N D ;; �N \ �S D ;; �S \ �D D ;. Time-dependent decomposition could be
considered but are not described here to avoid unnecessary technicalities. Given fN W �N ! Rd

and fD W �D ! Rd , we require that

�
2�rSu � pI

�
� D fN ; on �N � .0; T �; (2a)

u D fD; on �D � .0; T �; (2b)

u � � D 0;
��
2�rSu � pI

�
�
�
� � D 0; on �S � .0; T �; (2c)

where � is the outward pointing unit normal on @ƒ and I is the d�d identity matrix. For simplicity,

we assume that the .d � 1/measures of �N [�S and �D are each strictly positive; otherwise, extra
constraints either on the velocity or on the pressure must be enforced.

Note that we could have formulated the conservation of momentum without invoking the singular
measure modeling the surface tension by saying that (1a) holds in�C and�� (without the singular
measure) and by additionally requiring that

Œu� D 0 and
�
2�rSu � pI

�
n D ��n on †.t/; 8t 2 .0; T �; (3)

where Œ:� denotes the jump across †.t/ defined by Œv�.x/ WD lim��3y!x v.y/ � lim�C3z!x v.z/,
that is, Œv�.x/ D v.x�/ � v.xC/, for all x 2 †.t/ and all v W ƒ! Rd or v W ƒ! Rd�d .

The interface †.t/ is assumed to be transported by the fluid particles. More precisely, let
@�.ƒ�Œ0; T �/ be the part of the boundary of the space-time domain where the characteristics
generated by the field .u; 1/ enter, that is,

@�.ƒ � Œ0; T �/ WD ƒ � ¹0º [ ¹.x; t / 2 @ƒ � Œ0; T � ju.x; t / � � < 0º: (4)

We then define ¹x.P; t / 2 ƒ; t 2 ŒtP; T �; .P; tP/ 2 @�.ƒ� Œ0; T �/º to be the family of the character-
istics generated by the velocity field u, that is, @

@t
x.P; t / D u.x.P; t /; t/ with x.P; tP/ D P; .P; tP/ 2

@�.ƒ�Œ0; T �/ where tP is the time when the characteristics enters the space-time domainƒ� Œ0; T �
at P. Let us now denote by †0 WD † \ @�.ƒ � Œ0; T �/ the location of the interface at the inflow
boundary of the space-time domain, then we are going to assume in the entire paper that the velocity
field is smooth enough so that the following property holds

8x 2 †.t/; 9Š.P; tP/ 2 †0; x D x.P; t /; t > tP: (5)
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2.2. Eulerian representation of the free boundary interface

A level set technique is used to keep track of the position of the time-dependent interface †.t/, see
for instance [12]. This method is recalled in Section 2.2.1. A typical problem arising when using a
level set method to describe interfaces is to guarantee the non-degeneracy of the representation. We
discuss a reinitialization technique overcoming this issue in Section 2.2.2.

2.2.1. Level set representation. Let us define the so-called level function 	.x; t / W ƒ � Œ0; T �! R
so that

@

@t
	 C u � r	 D 0 in ƒ � .0; T �; 	.P; tP/ D 	0.P; tP/ on @�.ƒ � Œ0; T �/; (6)

where we assume that 	0 is a smooth function satisfying the following properties:

@�˙ \ @�.ƒ � Œ0; T �/ D ¹.P; tP/ 2 @�.ƒ � Œ0; T �/ j ˙ 	0.P; tP/ > 0º ; (7)

†0 WD † \ @
�.ƒ � Œ0; T �/ D ¹.P; tP/ 2 @�.ƒ � Œ0; T �/ j	0.P; tP/ D 0º : (8)

Note that this definition implies that †0 is the zero level set of 	0. Upon introducing  .P; t / WD
	.x.P; t /; t/ for all .P; tP/ 2 @�.ƒ � Œ0; T �/; t > tP, the definition of 	 together with the definition
of the characteristics implies that @t .P; t / D 0 thereby proving that 	.x.P; t /; t/ D  .P; t / D
 .P; tP/ D 	.x.P; tP/; tP/ D 	.P; tP/ D 	0.P; tP/. This means that the value of 	.x.P; t /; t/ along
the trajectory ¹x.P; tP/; t 2 ŒtP; T �º is constant; in particular, the sign of 	.x.P; t /; t/ does not
change. This leads us to adopt the following alternative definitions for �˙ and †.t/:

�˙ WD ¹.x; t / 2 ƒ�Œ0; T � j ˙ 	.x; t / > 0º; (9a)

†.t/ WD ¹x 2 ƒ j	.x; t / D 0º: (9b)

The earlier characterizations will be used in the rest of the paper.
To simplify the presentation, we are going to assume in the rest of the paper that there is �L � @ƒ

such that @�.ƒ � .0; T // D �L � .0; T /, that is, the inflow boundary for the level set equation is
time independent. We then set 	L.P; t / D 	0.P; t / for all P 2 �L, t 2 Œ0; T �, and we abuse the
notation by setting 	0.P/ D 	0.P; 0/ for all P 2 ƒ.

2.2.2. Reinitialization and cut-off function. A typical issue when dealing with level set representa-
tion of interfaces is to guarantee that the manifold ¹x 2 ƒ j	.x; t / D 0º is .d � 1/-dimensional,
that is, we want to make sure that kr	k`2 > 0 in every small neighborhood of the zero level set,
where k � k`2 is the Euclidean norm in Rd . In order to achieve this objective, we implement an ‘on
the fly’ reinitialization algorithm proposed in [14], which consists of replacing (6) by

@

@t
	�;ˇ C u � r	�;ˇ D 
sign.	�;ˇ /

�
G.	�;ˇ / � kr	�;ˇk`2

�
; (10)

where 
; ˇ > 0 are parameters yet to be defined and G.�/; sign.�/ are defined by

G.´/ WD 1 �
�
´

ˇ

�2
; sign.´/ WD

8<
:

1; ´ > 0

�1; ´ < 0
0; j´j D 0:

(11)

The rationale for the new definition (10) is that the presence of the sign function in the right-hand
side implies that the zero level set of 	�;ˇ is the same as that of 	; that is, the characterizations of
�˙ and†.t/ are unchanged (9). Moreover, assuming that u is locally the velocity of a solid motion

and upon setting  .P; t / D 	�;ˇ .x.P; t //, we have @
@t
 D 
sign. /

��
1 �

�
 
ˇ

	2�
� jr j

�
.
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Assuming that this eikonal equation has a steady-state solution  1 and denoting by †1 the zero-
level set of this steady-state solution, the behavior of  1 in the vicinity of †1 is  1.P/ �
ˇ tanh

�
dist.†1;P/

ˇ

	
, because the solution to the following ODE W y0.´/ D 1 � .y.´/=ˇ/2 is

F.´/ WD ˇ tanh

�
´

ˇ

�
: (12)

Note that  is close to  1 if 
 is very large. In conclusion, the solution of (10) is such that
	�;ˇ .x; t / � ˇ tanh

�
dist.†.t/;x/

ˇ

	
if 
 is large enough, that is, kr	k`2 � 1 in any small neighbor-

hood of the zero level set. We are going to abuse the notation in the rest of the paper by dropping
the indices 
; ˇ and by using 	 instead of 	�;ˇ .

3. NUMERICAL METHOD

We discuss the approximations of the level set equation in Section 3.1 and that of the Navier–Stokes
system in Section 3.2. We consider a mesh sequence, ¹Thºh>0, and we assume that each mesh Th is
a subdivision of ƒ made of disjoint elements K, that is, rectangles when d D 2 or cuboids when
d D 3. We denote by E.Th/ the collection of interfaces and boundary faces (edge when d D 2 and
faces when d D 3). Each subdivision is assumed to exactly approximate the computational domain,
that is, ƒ D [K2ThK, and to be consistent with the decomposition of the boundary, that is, there
exists EI .Th/ � E.Th/ for I 2 ¹D;N; S;Lº such that �I D [F 2EI .T /F . The diameter of an
elementK 2 Th is denoted by hK I hK WD maxx;y2K jx�yj. The mesh sequence ¹Thºh>0 is assumed
to be shape regular in the sense of Ciarlet. For any integer k > 1 and any K 2 Th, we denote by
Qk.K/ the space of scalar-valued multivariate polynomials over K of partial degree at most k. The
vector-valued version of Qk.K/ is denoted QQQk.K/. The index h is dropped in the rest of the paper,
and we write T instead of Th when the context is unambiguous.

Regarding the time discretization, given an integer N > 2, we define a partition of the time
interval 0 DW t0 < t1 < � � � < tN WD T and denote ıtn WD tn � tn�1 and tnC

1
2 WD tn C 1

2
ıtnC1.

3.1. Numerical approximation of the level set system

The continuous finite element method used for the space approximation of level set Equation (10)
is described in Section 3.1.1. We present in Sections 3.1.2 an entropy-residual technique that has
the advantage of avoiding the spurious oscillations that would otherwise be generated by using an
unstabilized Galerkin technique. The time stepping is performed by using an explicit strong stability
preserving (SSP) Runge–Kutta 3 (RK3) scheme as explained in Section 3.1.3.

3.1.1. Approximation in space. The space approximation of ˆ.�; t / of the level set function 	.�; t /
solution to (10) is carried out by using continuous, piecewise linear polynomials subordinate to the
subdivision T . The associated finite element spaces are defined by

W .T / WD ¹W 2 C 0.ƒIR/ jW jK 2 Q1.K/; 8K 2 T º; (13)

W0.T / WD ¹W 2 C 0.ƒIR/ jW D 0 on �L; W jK 2 Q1.K/; 8K 2 T º; (14)

WL.T / WD ¹W 2 C 0.ƒIR/ jW D ˆL on �L; W jK 2 Q1.K/; 8K 2 T º; (15)

where ˆL.�; t / is a piecewise linear approximation of the inflow data 	L.�; t /. Assuming that the
velocity field u W ƒ � Œ0; T � �! Rd is known, the Galerkin approximation of (10) is formulated
as follows: Given ˆL and ˆ.�; 0/ D ˆ0, where ˆ0 2 W .T / is an approximation of the initial
condition 	0, find ˆ 2 C1.Œ0; T �IWL.T // such thatZ

ƒ

@

@t
ˆW D �

Z
ƒ

u�rˆW C
Z
ƒ


 sign.ˆ/ .G.ˆ/ � krˆk`2/W; 8W 2W0.T /: (16)
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Figure 2. Graph of the level set function in the computational domain ƒ D .�1; 1/2 using the velocity
given in (48) : (a) initial data: 	0 is the characteristic function of the disk of radius 1 centered at

�
1
2
; 0
�
;

(b) no stabilization; (c) first-order stabilization with CLin D 0:1; and (d) entropy viscosity stabilization with
CLin D 0:1 and CEnt D 0:1. Observe the spurious oscillations in panel (b) when no stabilization is applied.
Both the first-order and the entropy viscosity solutions are free of oscillations, the latter being clearly more

accurate.

It is well known that the solution to the preceding system exhibits spurious oscillations in the
regions where krˆk`2 is large. We address this issue in the next section.

3.1.2. Entropy residual stabilization. We describe in this section an entropy viscosity technique to
stabilize the Galerkin formulation (16). This method has been introduced in [15], and we refer to
[13] for a mathematical discussion on its stability properties. To motivate the discussion, we refer to
the panel (b) of Figure 2 showing the Galerkin approximation of the characteristic function of the
unit disk, initially centered at .1

2
; 0/, after one rotation about the origin.

The spurious oscillations are avoided by augmenting (16) with an artificial viscosity term where
the viscosity is localized and chosen to be proportional to an entropy residual. To describe the
method and define an appropriate local ‘viscosity’, we recall that the following holds in the
distribution sense for any E 2 C1.ƒIR/:

@

@t
E.	/C u�rE.	/ � 
sign.	/ .G.ˆ/ � kr	k`2/E 0.	/ D 0;

Consequently, it is reasonable to expect that the semi-discrete entropy residual

REnt.ˆ; u/ WD
@

@t
E.ˆ/C u.t/�rE.ˆ/ � 
sign.ˆ/ .G.ˆ/ � krˆk`2/E 0.ˆ/

is a reliable indicator of the regularity of 	. This quantity should be of the order of the consis-
tency error in the regions where 	 is smooth, and it should be large in the region where the partial
differential equation is not well solved. In our computations, we have chosen

E.	/ D j	jp: (17)

The local so-called entropy viscosity is defined for any K 2 T by

�Ent
K .ˆ; u/ WD CEnth

2
K

kREnt.ˆ; u/kL1.K/


E.ˆ/ � 1
jƒj

R
ƒE.ˆ/





L1.ƒ/

; (18)

where CEnt is an absolute constant. In the regions where 	 is discontinuous (or has a very sharp
gradient), the entropy viscosity as defined earlier may be too large and thereby introduce too much
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diffusion, which in turn may severely limit the Courant-Friedrichs-Lewy (CFL) number when using
an explicit time stepping. In this case, a linear first-order viscosity is turned on instead

�Lin
K .ˆ; u/ D CLin





hK
�

uC 
sign.ˆ/
rˆ

krˆk`2

�




L1.K/

; (19)

where CLin is an absolute constant. The justification for the definition of the local speed that is
used to define the viscosity in (19) is that (10) can be rewritten @

@t
	 C w�r	 D 
sign.	/G.	/,

where w D uC 
sign.	/ r�
kr�k

`2
. Combining the two viscosities yield the artificial viscosity �Stab W

ƒ � Œ0; T �! R defined on each K 2 T by

�Stab.ˆ; u/jK WD min.�Lin
K .ˆ; u/; �Ent

K .ˆ; u//: (20)

Going back to the space discretization, we modify (16) as follows: Look for ˆ 2
C1.Œ0; T �IWL.T // so thatZ

ƒ

@

@t
ˆW D �

Z
ƒ

u�rˆW C
Z
ƒ


sign.ˆ/ .G.ˆ/ � krˆk`2/W �
Z
ƒ

�Stab.ˆ; u/rˆ�rW (21)

for all W 2W0.T / and ˆ.�; 0/ D ˆ0.

3.1.3. Approximation in time. Before introducing the time discretization, we rewrite (21) as
follows: Z

ƒ

@

@t
ˆW D

Z
ƒ

L.ˆ; u/W �
Z
ƒ

�Stab.ˆ; u/rˆ � rW; 8W 2W0.T ; t /; (22)

where L.ˆ; u/ WD �uC 
sign.ˆ/ .G.ˆ/ � krˆk`2/. Then we approximate time in the preceding
nonlinear system of ODEs by using an explicit RK3 SSP scheme, for example, see [16, 17] for more
details on SSP methods. We denote byˆk the approximation ofˆ.�; tk/; 0 6 k 6 N . Then, the time
stepping proceeds as follows: Given ˆn, compute ˆ1; ˆ2; ˆ3 2 W.T / and ˆnC1 2WL.T / so that

.i/
Z
ƒ

ˆ.1/W D

Z
ƒ

�
ˆn C ıtnC1L.ˆn;un/

�
W; 8W 2W .T /;

.ii/
Z
ƒ

ˆ.2/W D

Z
ƒ

�
3

4
ˆn C

1

4
ˆ.1/ C

1

4
ıtnC1L.ˆ.1/;unC1/

�
W

�

Z
ƒ

�Stab;nC1rˆ.1/ � rW; 8W 2W .T /;

.iii/
Z
ƒ

ˆ.3/W D

Z
ƒ

�
1

3
ˆn C

2

3
ˆ.2/ C

2

3
ıtnC1L.ˆ.2/;unC

1
2 /

�
W

�

Z
ƒ

�Stab;nC 12rˆ.2/ � rW; 8W 2W .T /;

(23)

and

ˆnC1.x; t / D
²
ˆ.3/.x/ when x 62 �L;
upPhiL.x; tnC1/ when x 2 �L:

(24)

Using (20), the viscosities �Stab;nC1 and �Stab;nC 12 are defined to be equal to �Stab.ˆ.1/;unC1/ and
�Stab

�
ˆ.2/;unC

1
2

	
, respectively, where the residual REnt in the definition (18) of �Ent is evaluated

as follows:

R.ˆ.1/; unC1/ �
E.ˆ.1// �E.ˆn/

ıtnC1

C
�

u.tnC1/ � rˆ.1/ � 
sign.ˆ.1//
�
G.ˆ.1// � krˆ.1/k`2

		
E 0.ˆ.1//;

(25)
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R.ˆ.2/; unC
1
2 / �

E.ˆ.2// �E.ˆn/
1
2
ıtnC1

C
�

u
�
tnC

1
2

	
� rˆ.2/ � 
sign.ˆ.2//

�
G.ˆ.2// � krˆ.2/k`2

		
E 0.ˆ.2//:

(26)

Remark 1 (‘On the Fly’ stabilization)
Notice that following [13], no viscosity is added in the computation of ˆ.1/. In particular, the vis-
cosities used within the time interval Œtn; tnC1� only depend on the values of ˆ and u on the same
time interval.

Remark 2 (Time-step criterion, stability, and convergence)
We expect the scheme to be stable under the following CFL condition:

ıtnC1 6 CCFL min
K2T

hK

ku .tnC1/C 
sign.ˆn/ rˆn

krˆnk
`2
kL1.K/

; (27)

for some sufficiently small but positive constant CCFL independent of 
; T ; ıt; ˆ; and u. Refer for
instance to [13] for further details on the CFL condition. Moreover, it seems reasonable to expect
that only the entropy viscosity is active in the regions where 	 is smooth; as a result, the CFL
condition implies that the first-order approximation of the time derivative in the evaluation of the
entropy residuals, (25) and (26), does not affect the overall third-order approximation thanks to the
h2K factor present in the definition of the viscosity (18). This conjecture is confirmed numerically in
Section 4.2.
3.2. Numerical approximation of the Navier–Stokes system

The space approximation of the velocity and pressure in the Navier–Stokes equations is carried out
by using Taylor–Hood finite elements. The time discretization is carried out by using the BDF2.
An incremental rotational pressure correction scheme is adopted to uncouple the velocity and the
pressure. We refer to [18] for the convergence analysis of the method and to [19] for a review on
projection methods.

3.2.1. The space discretization. Let FD be a continuous, piecewise quadratic approximation of fD
on �D . The finite element discretization of the velocity and the pressure is carried out by using the
following linear and affine spaces:

VVV 0.T / WD
°

V 2 C 0
�
ƒIRd

	
jVj�D D 0; V � uj�S D 0; VjK 2QQQ2.K/; 8K 2 T

±
; (28)

VVVD.T / WD
°

V 2 C 0
�
ƒIRd

	
jVj�D D FD; V � uj�S D 0; VjK 2QQQ2.K/; 8K 2 T

±
; (29)

M.T / WD
®
Q 2 C 0

�
ƒ
�
! R jQjK 2 Q1.K/; 8K 2 T

¯
: (30)

Upon setting U.0/ D U0, where U0 is a continuous, piecewise quadratic approximation of the
initial velocity u0 in VVVD.T /, the semi-discrete formulation of (1) consists of looking for U 2
C1.Œ0; T �IVVVD.T // and P 2 C0.Œ0; T �IM.T / such that the following holds for every t 2 .0; T �:Z

ƒ

�

�
@

@t
UC .U � r/U

�
� VC 2

Z
ƒ

�
�
rSU W rSV

�
�

Z
ƒ

P divVC
Z
ƒ

Q divU

D

Z
ƒ

�g � VC
Z
�N

fN � VC
Z
†.t/

�� n � V; 8.V;Q/ 2 V0.T / �M.T /:
(31)

3.2.2. Time discretization. The time discretization of (31) is performed by using the BDF2 and
an incremental pressure correction scheme in rotational form introduced and studied in [20] to
decouple the velocity and the pressure. In addition to the approximation of the initial condition
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U0 mentioned earlier, the algorithm requires an approximation P0 2 M.T / of the initial pressure
p.0/. We denote by Un, P n, and ‰n the approximations of U.�; tn/ and P.�; tn/ and the pressure
correction, respectively.

The initialization step consists of setting: U0 D U0; P�1 D P 0 D P0 and ‰0 D 0. Then, given
a new time step ıtnC1, given Un 2 VVVD.T /; ‰n 2 M.T /; and P n 2 M.T / and assuming for
the time being that �.tnC1/; �.tnC1/; and †.tnC1/ are also known (Section 3.4), the new fields
UnC1 2 VVVD.T /; ‰nC1 2M.T / and P nC1 2M.T / are computed in three steps:

1 Velocity prediction: Find UnC1 2 VVVD.T / such thatZ
ƒ

�
�
tnC1

� ıBDF2

ıtnC1
UnC1 � VC 2

Z
ƒ

�
�
tnC1

� �
rS

�
UnC1

�
W rSV

�
C ST

�
UnC1;V

�
D �

Z
ƒ

�
�
tnC1

� �
.Un/? � rUn

�
� VC

Z
ƒ

�
P n C

4

3
‰n �

1

3
‰n�1

�
div.V/

C

Z
ƒ

�nC1gnC1 C
Z
�N

fnC1N � VC
Z
†.tnC1/

��nC1 nnC1 � V; 8V 2 VVV 0.T /;

(32)

where

� the BDF2 approximation of the time derivative with variable time stepping is given by

@

@t
U
�
x; tnC1

�
�
ıBDF2

ıtnC1
UnC1.x/

WD
1

ıtnC1

 
1C 2�nC1

1C �nC1
UnC1.x/ � .1C �nC1/Un.x/C

�2nC1

1C �nC1
Un�1.x/

!
;

where �lC1 WD
ıt lC1

ıt l
.

� the extrapolated velocity .Un/? is defined by .Un/? WD Un C �n.Un � Un�1/;
� as discussed in [21], the bilinear form ST W V .T / � V .T / ! R is added to control

the divergence of the velocity and to cope with variable time stepping and open boundary
conditions

ST .W;V/ WD Cstab

X
K2T

Z
K

�
�nC1 C �nC1khKWkL1.K/

�
.r �W/.r � V/; (33)

where Cstab is an absolute constant.

2 Pressure-correction step: The pressure increment ‰nC1 2M.T / is determined by solving

Z
ƒ

r‰nC1rQ D �
3minx2ƒ �

�
tnC1

�
2ıtnC1

Z
ƒ

div
�
UnC1

�
Q; 8Q 2M.T /: (34)

3 Pressure update: The pressure P nC1 2M.T / is obtained by solvingZ
ƒ

P nC1Q D

Z
ƒ

�
P n C‰nC1

�
Q � min

x2ƒ
�
�
tnC1

� Z
ƒ

div0
�
UnC1

�
Q; 8Q 2M.T /: (35)

For stability purposes, we restrict the space and time discretization parameters to satisfy a CFL
condition

ıtnC1 6 CCFL
1

2

minK2Th hK
kUnkL1.ƒ/

; (36)

where CCFL is the same constant appearing in (27) and 1
2

minK2Th hK is the minimum distance
between two Lagrange nodes using Q2 elements.
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3.3. The surface tension

This section describes the approximation of the curvature term
R
†.tnC1/

��nC1 .nnC1 �V/ appearing
in the first step of the projection method (32). We follow the method proposed in [22] (see also [23])
using the work in [24]. This approach is based on the following representation of total curvature:

�n D r† � r†Id†;

where Id† is the identity mapping on† and, given any extension Qv of v in a neighborhood of†, the
tangential gradient of v W †! Rd is defined by r†v WD r Qvj†.I � n˝ n/, see, for example, [25].
Multiplying the preceding identity by a test function V and integrating by parts over † yieldsZ

†

��n � V D �
Z
†

�r†Id† W r†VC
Z
@†

�@� Id† � V; (37)

where � is the co-normal to † and @� is the derivative in the co-normal direction. In the present
context, the integral on @† vanishes because either † is a closed manifold or @� Id† D 0. This
identity together with the first-order prediction Id†.tnC1/ � Id†.tn/ C ıtnC1UnC1 of the interface
evolution (5) gives a semi-implicit representation of the total curvatureZ

†.tnC1/

��nC1 .nnC1 � V/ D �
Z
†.tnC1/

r†.tnC1/Id†.tnC1/ W r†.tnC1/V

� �

Z
†.tnC1/

r†.tnC1/Id†.tnC1/ W r†.tnC1/V

� ıtnC1
Z
†.tnC1/

�r†.tnC1/U
nC1 W r†.tnC1/V:

One key benefit of this representation comes from the additional stabilizing term
R
†.tnC1/

�r†.tnC1/U
nC1 W r†.tnC1/V, which we keep implicit in (32). The technicalities regarding the

approximation of this integral using the level set representation are detailed in Section 3.4.2 (45).

3.4. The coupled system

The two solvers described in Sections 3.1 and 3.2 earlier are sequentially combined. The flowchart
of the resulting free boundary flow solver is shown in Figure 3. The remaining subsections of
Section 3.4 detail the coupling between the two solvers and other implementation technicalities.

3.4.1. Data for the level set solver (23)–(24). Following (23), givenˆn, an approximation of 	.tn/,
the approximationˆnC1 of 	.tnC1/ requires the velocities u .tn/ ;u

�
tnC

1
2

	
, and u

�
tnC1

�
. To avoid

an implicit coupling between the level set solver and the Navier-Stokes solver, these quantities are
replaced by second-order extrapolations using Un and Un�1:

u.tn/ � Un; u
�
tnC

1
2

	
� Un C

1

2

ıtnC1

ıtn

�
Un � Un�1

�
; and UnC1 � Un C

ıtnC1

ıtn

�
Un � Un�1

�
:

The sign.:/ function, which is used in the right-hand side of (10) to make sure that kr	k`2 is
close to 1 in a small neighborhood of † (i.e., on the fly reinitialization, see discussion following
(11)), is redefined and replaced by:

signh.s/ D

8<
:
C1 if s > ˇ tanh.CS /;
�1 if s < �ˇ tanh.CS /;
0 otherwise,

(38)

Figure 3. Global algorithm flowchart.
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where CS is an absolute constant. The thresholding in the preceding definition of the approximate
sign function gives signh.	.x; t // D ˙1 whenever j�.x;t/j

ˇ
> tanh.CS /, which is compatible with

the behavior �.x;t/
ˇ
� tanh

�
dist.†.t/;x/

ˇ

	
that is expected for the level set function (12).

The parameter 
 (‘reinitialization relative speed” in the language of [14]) is defined for t 2
.tn; tnC1� by


 D C�kU
nkL1.ƒ/; K 2 T ; (39)

where C� is an absolute constant. This definition is motivated by the CFL condition (27). We refer
to [14] for further details.

3.4.2. Data for the Navier–Stokes solver. The definitions of the fields UnC1 and P nC1 in (32)–(35)
invoke the values of the density field �nC1 and viscosity field �nC1. Once 	nC1 is computed, these
quantities are evaluated by using the following definitions

�nC1 D �C
1CHh.ˆ

nC1/

2
C ��

1 �Hh.ˆ
nC1/

2
; (40)

�nC1 D �C
1CHh.ˆ

nC1/

2
C ��

1 �Hh.ˆ
nC1/

2
; (41)

where �˙; �˙ are the density/viscosity in �˙, and Hh.:/ an approximation of the Heaviside
function defined as follows:

Hh.s/ D

8̂<
:̂

1 if s > ˇ tanh.CH /;
�1 if s < �ˇ tanh.CH /;
s

ˇ tanh.CH /
otherwise;

(42)

where CH is an absolute constant, as suggested in [14]. Similarly to what we have carried out to
approximate the sign function, the preceding regularization is compatible with the behavior �.x;t/

ˇ
�

tanh
�

dist.†.t/;x/
ˇ

	
that is expected for the level set function.

The approximation of the surface tension term in (32) is performed by following [23]. Let
 > 0, and consider the piecewise linear regularized Dirac measure supported on †.tnC1/, say ı� ,
defined by

ı�.x/ WD

´
1



�
1 � dist.†;x/

�

	
if jdist.†; x/j < ;

0 otherwise:
(43)

To account for the fact that we do not have access to the distance to the interface † but rather to
an approximation of ˇ tanh

�
dist.†;x/

ˇ

	
(Section 2.2.2), we rescale ı�.x/ as suggested in [26, 27] and

consider instead

ı�.x; ˆ/ D

´
1

Q

�
1 � ˆ.x/

Q�

	
krˆ.x/k`2 if jˆ.x/j < Q WD 

krˆ.x/k
`1

krˆ.x/k
`2
;

0 otherwise,
(44)

where k � k`p is the `p-norm in Rd . In practice, we chose  D ˇ tanh.CH / to be consistent
with the approximation of the Heaviside function (42). Using this approximate Dirac measure, the
approximation of the surface tension discussed in Section 3.3 becomes

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 80:53–75
DOI: 10.1002/fld



64 A. BONITO, J.-L. GUERMOND AND S. LEE

Z
†.tnC1/

��nC1 .nnC1�V/ � �
Z
†.tnC1/

r†.tnC1/Id†.tnC1/ W r†.tnC1/V

� ıtnC1
Z
†.tnC1/

�r†.tnC1/U
nC1 W r†.tnC1/V

� �

Z
ƒ

.rˆnC1Idƒ W rˆnC1V/ ı�.:; ˆnC1/

� ıtnC1
Z
ƒ

�
�rˆnC1UnC1 W rˆnC1V

�
ı�.:; ˆ

nC1/;

where Idƒ is the identity mapping on ƒ and

rˆnC1Idƒ D I �
rˆnC1 ˝rˆnC1

krˆnC1k2
`2

;

rˆnC1V WD rV

 
I �
rˆnC1 ˝rˆnC1

krˆnC1k2
`2

!
; 8V 2 VVVD.T /:

Note that the preceding definitions correspond to approximating the normal vector n on†.tnC1/ by
� rˆnC1

krˆnC1k
`2

.

3.5. Adaptive mesh refinement

The experiments reported in [1, 6, 7] suggest that a critical feature of bouncing jets is the occurrence
of a thin layer between the jet and the rest of the fluid. These observations have led us to adopt
a mesh-refinement technique to describe accurately this thin layer. We propose here a refinement
strategy solely based on the position of the interface by increasing the mesh resolution around the
zero level set of ˆ. More precisely, a cell K is refined if its generation count (the number of times a
cell from the initial subdivision has been refined to produce the current cell) is smaller than a given
number Rmax and if

jˆ.xK ; t /j 6 ˇ tanh.CR/; (45)

where xK is the barycenter ofK and CR is an absolute constant. The purpose of the parameter Rmax

is to control the total number of cells. This refinement strategy leads to subdivisions where all the
elements crossing the zero level set ofˆ have the same diameter (up to a constant only depending on
the coarse mesh). The parameter CR controls the distance to the interface below which refinement
occurs. In fact, recalling that using the filter (12) implies that 	.x; t / � ˇ tanh

�
dist.†.t/;x/

ˇ

	
if 
 is

large enough, we expect the refinement criteria (45) to be active whenever dist.†.t/; x/ 6 CRˇ.
Note that (45) is compatible with (38) and (42). The subdivisions are carried out with at most one
hanging node per face, see, for example, Bonito and Nochetto [28, Section 6.3]. A cell is coarsen if
it satisfies the following three conditions: its generation count is positive;

jˆ.xK ; t /j > ˇ tanh.CC /; (46)

where CC > CR is an absolute constant; and if once coarsened, the resulting subdivision does not
have more than one hanging node per face. We refer to the documentation of the deal.II library for
further details [29].

4. NUMERICAL VALIDATIONS

The algorithm presented in the previous sections has been implemented using the deal.II finite
element library described in [29, 30]. Parallelism is handled by using the message passing inter-
face library [31]. The subdivision and mesh distribution is carried out by using the p4est library
from [32].
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The rest of this section illustrates and evaluates the performance of the preceding algorithm.
We start in Section 4.1 by specifying all the numerical constants required by the algorithm. The
validation of the transport code for solving the level set equation is carried out in Section 4.2. The
validation of the two-phase fluid system is performed in Section 4.3.

4.1. Numerical parameters

Our algorithm involves several numerical parameters. In this section, we briefly recall their meaning,
where they appear, and we specify the value of each of them. Unless specified otherwise, these
values are fixed for this entire section. Except for Section 4.2, the time discretization parameter is
always chosen according to (27).

A complete list of all the parameters is shown in Table I. The parameter ˇ determining the width
of the hyperbolic tangent filter (12) is defined to be ˇ D minK2T hK . This definition is used in
the expression of the hyperbolic tangent filter (12), in the threshold of the approximate Heaviside
function (42) and the approximate sign function (38), and in the refinement strategy, (45) and (46).
In particular, the expected number of elements in the transition layer separating the two phases is
2CR D 4 (Section 3.5).

4.2. Transport of the level set

4.2.1. Convergence tests. The consistency of the algorithm for the approximation of the level set
Equations (23) and (24) is a priori third-order in time and space. To evaluate whether this is indeed
the case, we solve the linear transport equation in the unit squareƒ D .0; 1/2 using the velocity field

u.x; y; t/ WD
�
� sin2.�x/ sin.2�y/ cos.�t=0:1/

sin2.�y/ sin.2�x/ cos.�t=0:1/

�
:

This flow is time periodic of period 1, which implies that 	.x; 0:2/ D 	0.x/, for all x 2 ƒ. The
initial level set function is chosen to be the signed distance to the line of equation y D 0:5:

	0.x; y/ D y � 0:5: (47)

The errors are evaluated at t D 0:2. Three different scenarios are considered: (i) no stabilization and
no reinitialization; (ii) entropy viscosity stabilization and no reinitialization; (iii) entropy viscosity
and reinitialization, that is, the complete algorithm. Except for ˇ, the values of the numerical param-
eters are given in Table I. We consider four computations carried out on four uniform meshes

Table I. Description and values of the numerical parameters.

CCFL C� CH CS CR CC Rmax CLin CEnt p Cstab

Purpose CFL Reinitialization Adaptivity Stabilization

Appears in (27) & (36) (39) (42) (38) (45) (46) §3.5 (19) (18) (17) (33)

Value 0.25 0.01 1.25 0.5 2. 2. 2. 0.1 0.1 20 0.1

Table II. Single vortex test case: L2-norm of error and observed convergence rates for each
scenario after one period for different time discretization resolutions.

Scenario (i) Scenario (ii) Scenario (iii)

ıt L2 error Observed rate L2 error Observed rate L2 error Observed rate

1e�2 1.2e�5 — 1.5e�5 — 1.3e�3 —
5e�3 1.5e�6 3 1.8e�6 3.0 1.5e�4 3
2.5e�3 1.9e�7 3 2.0e�7 3.2 2.0e�5 3
1.25e�3 2.4e�8 3 2.5e�8 3.1 2.6e�6 3

(i) Runge–Kutta 3 (RK3) Galerkin algorithm; (ii) RK3 algorithm with entropy viscosity; (iii) RK3
with entropy viscosity and reinitialization. Third-order convergence rate is observed in all scenarios.
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Figure 4. (a) Initial level set: the dark region corresponds to 	0 > 0; (b)–(e) comparison of the graphs of the
exact (solid line) and approximate (dashed line) level set functions along the line of equation x D 0:5 after
one revolution: (b) without stabilization and reinitialization .CLin D CEnt D C� D 0/; (c) with first-order
linear stabilization, CLin D 0:1; (d) with entropy residual stabilization, CLin D 0:1 and CEnt D 0:1; and (e)
with entropy residual stabilization and reinitialization, C� D 0:01. The transport without stabilization of the
nearly discontinuous level set function yields spurious oscillations. These oscillations are removed by the
linear viscosity at the expense of large numerical diffusion. The numerical diffusion is minimized by turning
on the entropy residual term. Finally, adding the reinitialization allows to nearly recover the exact profile.

with constant time steps. The mesh size and the time step are divided by 2 each time. The meshes
are composed of 1089, 4225, 16,64, and 66,049 Q2 degree of freedoms. The space discretization is
chosen fine enough not to influence the time error. We report in Table II, the errors kˆN �	0kL2.ƒ/
for the three scenarios and the observed rates of convergence. Note that the reinitialization is turned
on in scenario (iii), which implies that the exact solution at t D 0:2 is not 	0 anymore; we must
instead compare ˆN with ˇ tanh

�
�0.x;y/
ˇ

	
. In this particular case, we keep ˇ constant to ascertain

the third-order consistency of the algorithm; we set ˇ D 0:0203125.

4.2.2. Rotation of a circular level set: Effect of different viscosities and reinitialization. In this test
case, the initial data for the level set are the hyperbolic tangent filter applied to the distance to the
circle centered at (0.5,0) and of radius 0.25

	0.x; y/ WD ˇ tanh

 
0:25 � ..x � 0:5/2 C y2/

1
2

ˇ

!
; .x; y/ 2 ƒ WD .�1; 1/2;

see Figure 4(a). The level set is transported by using the solid rotation velocity field:

u.x; y/ WD
�
�y
x

�
: (48)

The computation is carried out with the adaptive algorithm described in Section 3.5 usingRmax D
2. The initial mesh is uniform with hK D 0:015625 for all K 2 T . The resulting time-dependent
mesh is such that minT2T hK � 0:00390625, that is, we set ˇ D 0:00390625. The values of the
other numerical constants are provided in Table I. The time step ıt is chosen to be uniform and equal
to ��10�3. We compare the initial level set with its approximation after one revolution. Figure 4(b)–
(e) illustrates the benefits of using the entropy stabilization and the reinitialization technique by
comparing the graphs of the exact and approximate level set functions along the line of equation
x D 0:5 after one revolution.

4.2.3. 3D slotted disk: long-time behavior. A typical benchmark for the transport of a level set
function is the so-called Zalesak disk documented in [33]. We consider in this section the three-
dimensional version thereof. The computational domain is ƒ WD .0; 1/3. The initial level set is the
characteristic function of a slotted sphere centered at (0.5,0.75,0.5) with a radius of 0.15. The width,
height, and depth of the slot are 0.0375, 0.15, and 0.3 respectively (Figure 5(a)). The initial profile
is transported by using the following velocity field:

u.x; y; ´/ WD

0
@ 0:5 � yx � 0:5

0

1
A : (49)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 80:53–75
DOI: 10.1002/fld



NUMERICAL SIMULATIONS OF BOUNCING JETS 67

Figure 5. Rotating slotted three-dimensional sphere. From left to right, the dark regions correspond to ˆ >
0 after 0,1,2,3,4, and 5 full rotations. Oscillations and numerical diffusion are controlled by the entropy

viscosity as well as the reinitialization algorithm.

Figure 6. Iso-contour ˆ D 0 in the plane ´ D 0: (A) initial data; (B) after one rotation; (C) after three rota-
tions; and (D) after five rotations. Numerical diffusion is observed but is greatly minimized by the entropy

viscosity and reinitialization techniques.

The time step is chosen to be uniform ıt D � � 10�3. The initial subdivision is composed of
cells of diameter 0.015625. The adaptive mesh refinement technique described in Section 3.5 is used
with Rmax D 2; the minimum mesh size is minK2T hK D 0:00390625. The numerical constants
are given in Table I. The computation is performed until the slotted sphere has undergone five full
revolutions. The iso-surface ˆ D 0 is shown in Figure 5 after each of the five periods. Oscillations
and numerical diffusion are controlled by the entropy viscosity and the reinitialization algorithm. A
closer look at the slotted region is provided in Figure 6.

4.2.4. Single vortex: large deformations. The single vortex problem consists of the deformation
of a sphere by a time-periodic incompressible vortex-like flow. The computational domain is ƒ D
.0; 1/3, and the time-periodic velocity field is defined by

u.x; y; t/ WD

0
@� sin2.�x/ sin.2�y/ cos.�t=4/

sin2.�y/ sin.2�x/ cos.�t=4/
0

1
A : (50)

The initial level set is given by

	0.x/ WD ˇ tanh

�
dist.S; x/

ˇ

�
; (51)

where S is the sphere centered at (0.5,0.75,0.5) of radius of 0.15. The field 	0 is a regularized
version of the distance function using the tanh cut-off filter (12). The divergence-free velocity field
severely deforms the level set until t D 2 and returns it to its initial shape at t D 4. The time step
is chosen to be uniform ıt D 0:001 and the final time is t D 4 (one cycle). The initial subdivision
is made of uniform cells of diameter 0.015625; the minimum mesh size allowed in the adaptive
mesh refinement is 0.00390625. The numerical constants are given in Table I. Figure 7 shows the
iso-contour ˆ D 0 at different times. The undeformed sphere is recovered after one cycle.

4.3. Two-phase flows

4.3.1. Rising bubble: surface tension benchmark. We start the validation of the two-phase flow sys-
tem with the Rising bubble benchmark problem, see, for example, [23]. The computational domain
isƒ D .0; 1/� .0; 2/, the initial data 	0 are the characteristic function of a circular bubble of radius
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Figure 7. 3D Vortex using (50). From left to right: t D 0; t D 1; t D 3; and t D 4. The initial sphere is
recovered after one cycle. The vectors indicate the direction of the velocity field.

Table III. Two different sets of physical constants for
the rising bubble benchmark problems.

Test case �C �� �C �� g �

1 1000 100 10 1.0 0.98 24.5
2 1000 1 10 0.1 0.98 1.96

The first test case consists of a density/viscosity ratio
of 10 with a large surface tension coefficient. The den-
sity/viscosity ratio is equal to 100 in the second case and
the surface tension coefficient is smaller.

0.25 centered at .0:5; 0:5/. Two different sets of physical constants are considered (Table III); � is
the surface tension coefficient and g is the magnitude of the non-dimensional gravitational force.
The domains �C and �� are the domains inside and outside the bubble, respectively. The no-slip
boundary condition is imposed at the top and bottom of the computational domain. The free-slip
condition (2c) is imposed on the side walls. The initial subdivision is made of uniform cells of diam-
eter 0.03125; the minimum mesh size allowed in the adaptive mesh refinement is 0.0078125. The
time steps ıt are chosen uniform according to the CFL restriction (27), and the values of the numer-
ical constants are given in Table I. We compare in Figure 8 our results with those from three other
methods. We show in panel (a) the time history of the center of mass Xc WD

R
�2

xdx=
R
�2
1dx, in

panel (b) the rising velocity uc WD
R
�2
uydx=

R
�2
1dx, and in panel (c) the shape of the bubble at

t D 3. The results of our simulations are within the range of those given by the benchmark algo-
rithms. The shape of the bubble for test case #2 at t D 3 is reported in Figure 9 and compared with
the shapes obtained by the other algorithms described in [23].

To illustrate the CPU performance of the algorithm, we now report some characteristics times
recorded when solving test case #1 using an Intel(R) Xeon(R) CPU E5-2609 v3 @ 1.90 GHz proces-
sor. The average wall clock time for each time step is approximately 0.3542 s and the computation
requires 1536 time steps. The space discretization is adaptively modified after each time step, but
overall, there are approximately 9000 degrees of freedom for the velocity approximation and 1000
degrees of freedom for each the pressure and the level set approximations. The average wall clock
time per time step and per degree of freedom is approximately 3:5 � 10�5 s.

4.3.2. Buckling fluids. We now test the algorithm in the context of fluid buckling, see, for instance,
[14, 35, 36]. The test consists of letting a free-falling jet of very viscous fluid impinge on a horizontal
surface. The diameter of the impinging jet is 0:1, and the inflow velocity is 1ms�1 inƒ D .0; 1m/2.
The physical parameters chosen for the falling fluid are �C D 1800 kg m�3; �C D 250Pa s; and
�� D 1 kg m�3; �� D 2 � 10�5 for the ambient fluid as in [14]. The no-slip boundary condition
.u D 0/ is imposed at the bottom boundary, and an inflow boundary condition is imposed at the
top boundary where jx � 0:5j < 0:05. The open boundary condition is enforced on all the other
boundaries, that is, .2�rSu � pI/u D 0. Surface tension is neglected for this test case .� D 0/.
The numerical constants are given in Table I.

The initial subdivision is composed of cells of uniform diameter 0.015625 m, and the minimum
cell diameter reached during the mesh adaption process is 0.003906 m. The time evolution of the
fluid is shown in Figure 10. Buckling occurs after the viscous fluid impacts the rigid bottom plate.
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Figure 8. Rising bubble test cases #1 and #2. Our simulations are within the range of the benchmark. (a)
Center of mass, case #1, (b) Center of mass, case #2, (c) rise velocity, case #1, (d) rise velocity, case #2, (e)

zero level set at t D 3, case #1, and (f) zero level set at t D 3, case #2.

Figure 9. Rising bubble case #2 at t D 3. Different algorithms described in [23], and our simulation in
the right-most panel. The shapes of the bubbles are qualitatively similar. The left figures are courtesy of

S. Turek [34].

We also show in Figure 11 a three-dimensional simulation. The computational domain is ƒ D
.0; 0:008m/3, the initial diameter of the jet is 0.0004 m and the inflow velocity is 1:75ms�1. The
viscosity and density of the fluid are those of silicone oil: �C D 960 kg m�3; �C D 5Pa s. The
viscosity and density of the ambient fluid are those of air: �� D 1:2 kg m�3; �� D 2 � 10�5Pa s.
Surface tension is accounted for, � D 0:021 Nm�1. The no-slip boundary condition .u D 0/ is
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Figure 10. (From left to right) Time evolution of a jet of very viscous liquid inside a cavity filled with air.
Buckling occurs when the liquid hits the floor.

Figure 11. (a)–(e) Time evolution of a three-dimensional jet of Silicone oil falling in a cavity filled with air
at time (a) t D 0:00501, (b) t D 0:0209, (c) t D 0:031, and (d) t D 0:048998 s. For comparison, (e) shows
the shape of the Silicone oil jet obtained in laboratory with the same physical conditions. Our numerical

simulations are qualitatively in agreement with the physical experiment.

imposed at the bottom of the box. The inflow boundary is the disk
p
.x � 0:004/2 C .y � 0:004/2 <

0:0002 at the top boundary (´ D 0:008). Open boundary conditions .2�rSu � pI/� D 0 are
applied on the rest of the boundary. The results are obtained with adaptive mesh refinement with
the minimum cell diameter 6:25 � 10�5. The time steps follow the CFL restriction (27) and the
numerical constants are given in Table I.

5. NUMERICAL SIMULATIONS OF BOUNCING JETS

We now use our algorithm to predict the bouncing effect of jets of Newtonian (Section 5.1) and
non-Newtonian (Section 5.2) fluids. In both cases, the formation of a thin layer of air between the
jet and the bulk of the fluid is a critical ingredient to observe the bouncing effect. The adaptive mesh
refinement strategy adopted in our algorithm allows to capture this thin layer with a reasonable
number of degrees of freedom.

5.1. Two-dimensional Newtonian bouncing jets

We start with a Newtonian fluid falling into a translating bath as in the experiment proposed in
[1]. The fluid is a silicone oil with viscosity �C D 0:25 Pa s and density �C D 960 kg m�3.
The ambient fluid is air: �� D 1:2 kg m�3 and �� D 2 � 10�5 Pa s. The computational domain
is ƒ WD .0; 0:04 cm/ � .0; 0:06 cm/. The radius of the incoming jet is 0.25 cm; its velocity is
u D .0;�5 cm s�1/ on ¹.x; y/ 2 @ƒ W y D 4; jx�0:01j < 0:0025º. The region ¹.x; y/ 2 ƒ W 0 <
y < 0:02º is filled by the same fluid, called the ‘bath’, and it moves to the right with a horizontal
velocity VB to be specified later. Slip-boundary condition (2c) is imposed at the bottom of the cavity,
and the open boundary condition .2�rSu � pI/u D 0 is applied to the rest of the boundary

¹.x; y/ 2 @ƒ W y D 4; jx � 0:01j > 0:0025º
[¹.x; y/ 2 @ƒ W x D 0; y > 0:02º [ ¹.x; y/ 2 @ƒ W x D 0:04º:

The values of the numerical constants are those given in Table I. The minimum cell diameter result-
ing from the adaptive mesh refinement strategy is 7:8125 � 10�5 cm. The time steps are chosen to
satisfy the CFL restriction (27).

As already noted in [1], there is a range of velocities for which bouncing occurs, and the jet slides
along the surface of the bath when the horizontal velocity of the bath is too high. This is illustrated
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Figure 12. Newtonian bouncing jet (from left to right). The white arrow indicates the translation direction of
the bath. (a) Bath velocity VB D 8 cm s�1 and surface tension coefficient � D 21mN m�1; the incoming
jet bounces away from the bath, and we observe the apparition of an air layer between the jet and the bath.
(b) Bath velocity VB D 25 cm s�1 and surface tension coefficient � D 21mN m�1; in this case, the bath
velocity is too large and the jet slides along the bath surface; (c) bath velocity VB D 8 cm s�1 but without

surface tension � D 0mN m�1; compare with (a).

in Figure 12(a) and (b): the jet bounces when VB D 8 cm s�1 (Figure 12(a)), but it slides when
VB D 25 cm s�1 (Figure 12(b)). Note that it is necessary to include the surface tension to keep
the jet stable after impinging on the free surface as illustrated in Figure 12(c) where a simulation
without surface tension is presented. Observe finally that all our numerical simulations show that a
thin layer of air is formed between the jet and the bath each time the jet bounces.

5.2. Kaye effect

The Kaye effect is the name given to the bouncing jet phenomenon when the bath is stationary. This
effect has been observed to occur only with non-Newtonian fluids. It is now recognized that shear-
thinning viscosity is a critical component of the Kaye effects, see, for example, [4–6]. Following
[5], we adopt the model of [9] in the rest of the paper

�.�/ D �1 C
�0 � �1

1C

�
�

�c

�n ; (52)

where �0 is the viscosity at zero-shear stress, �1 is the limiting viscosity for large stresses, � is the
Frobenius norm of the rate-of-strain tensor
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and �c ; n are two additional parameters. As a benchmark, we consider a commercial shampoo for
which the shear-thinning constants corresponding to the aforementioned model (52) have been iden-
tified experimentally in [7]. Recall that viscosities cannot be measured directly but are deduced
from velocity and displacement measurements so as to match in some least-squares sense a behav-
ior conjectured a priori. The parameters �0; �1; �c ; n corresponding to the model (52) obtained in
[7] are

�0 D 5:7Pa s; �1 D 10
�3 Pa s; �c D 15 s�1; and n D 1: (53)

We show in Figure 13 snapshots of experiments performed with the shampoo poured at different
flow rates. It was observed unambiguously in [7] that the jet slides on a lubricating air layer.

In order to reproduce qualitatively the preceding experiments, we consider the two-dimensional
computational domain ƒ D .0:496m; 0:594m/ � .0; 0:016m/. The no-slip boundary condition
.u D 0/ is imposed at the bottom of the computational domain, and an inflow boundary condition is
imposed on the disk ¹.x; y/ j jx�0:5j < 0:00021875º on the top of the box. This correspond to a jet
of radius 0.4375 mm. The inflow velocity is taken to be 1.75 m s�1. The open boundary condition
.2�rSu � pI/u D 0 is applied on all the other boundaries. The numerical constants used in the
simulations are listed in Table I. The minimum mesh size attainable by adaptive mesh refinement is
3:125 � 10�5 m, and time steps are chosen to comply with the CFL restriction (27). The physical
parameters chosen for the fluid are �C D 1020 kg m�3, the shear-thinning viscosity constants are

Figure 13. Shampoo poured at different flow rates (a) 5 (b) 6; (c) 7; and (d) 8mL min�1; No bouncing is
observed at low flow rates (a) and (b). However, the Kaye effect is observed at higher flow rates (c) and (d).

Figure 14. (Left) Falling jet of liquid described by the parameters given in (53). The shear-thinning effect is
too strong, and the fluid becomes instantly water-like when hitting the bottom of the cavity. (Right) Viscosity
versus shear for the parameters (53) (dotted line) and (54) (solid line). (a) Shape of the jet with parameters
(53). The liquid behaves like the lower viscosity fluid and flows instead of buckling. Shape of the jet with
parameters (53). The liquid behaves like the lower viscosity fluid and flows instead of buckling, (b) redefined

viscosity.
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Figure 15. (Left to Right, Top to Bottom) Numerical simulation of the Kaye effect with adaptive meshes
(from left to right and top to bottom). The viscosity parameters are given in (54). The first and last frames
illustrate the adaptive subdivision generated by the adaptive strategy. An air layer appears in the last frame
in the first row and is fully developed in the first frame of the second row. The apparition of the air layer

coincides with the beginning of the bouncing phenomenon.

provided in (54). We take �� D 1:2 kg m�3 and �� D 2 � 10�5 Pa s�5 for the air. Surface tension
is applied at the fluid/air interface with the surface tension coefficient � D 0:03N m�1.

After many numerical experiments, it turned out that the aforementioned physical parameters did
not give any Kaye effect. Our interpretation is that the shear-thinning effect given by the set of
parameters (53) is too strong; with these coefficients, the fluid instantly becomes water like when
hitting the bottom of the cavity (Figure 14(a)). Several explanations for this mismatch are plausible:
(i) as mentioned earlier, the parameters (53) are measured under the assumption that the shear-
thinning law follows the Cross model; (ii) the shear is over-predicted by our algorithm; (iii) the
air layer width for this range of parameters is too thin to be captured by the algorithm; and (iv) a
fundamental component is missing in our mathematical model. These observations have lead us to
consider a different set of shear-thinning parameters requiring a larger shear for a notable reduction
of the viscosity and a smoother transition from the maximum to the minimum values of the viscosity
(Figure 14(b)). The parameters that we now consider are the following:

�0 D 5:7Pa s�3; �1 D 10
�3 Pa s; �c D 970 s�1 and n D 3: (54)

This set of parameter produces the Kaye effect as shown in Figure 15. Here again, we notice that
there is a very thin layer of air between the bouncing jet and the rest of the fluid, thereby adding to
the large body of evidence pointing at the importance of air layers in bouncing jets. Let us finally
mention that these computations show also that mesh adaptivity is critical to reproduce numerically
the Kaye effect.

6. CONCLUSION

Newtonian and non-Newtonian (Kaye effect) bouncing jets have been successfully reproduced
numerically. A level set representation has been employed to track the interface between two immis-
cible incompressible fluids modeled by the incompressible Navier–Stokes equations with variable
density and viscosity.

In agreement with experimental results, we have found that the creation of a thin lubricat-
ing layer of air between the jet and the rest of the fluid is a critical aspect of this phenomenon.
Capturing numerically such a thin layer was possible upon designing algorithms capable of effi-
ciently reproducing the evolution of a level set function with a sharp transition layer. Among the
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numerical tools that helped us achieve this goal are (i) a reinitialization algorithm based on a hyper-
bolic tangent filter; (ii) an (on the fly) entropy viscosity stabilization technique coupled with an
explicit SSP Runge–Kutta 3 discretizations in time; and (iii) an adaptive finite element method
tailored to interface problems described by level set functions. Several two-dimensional and three-
dimensional numerical benchmark problems have been provided to validate our method and thereby
gave credibility to our findings.
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