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Abstract: We devise a novel framework for the error analysis of finite element approximations to low-regu-
larity solutions in nonconforming settings where the discrete trial and test spaces are not subspaces of their
exact counterparts. The key is to use face-to-cell extension operators so as to give a weakmeaning to the nor-
mal or tangential trace on each mesh face individually for vector fields with minimal regularity and then
to prove the consistency of this new formulation by means of some recently-derived mollification opera-
tors that commute with the usual derivative operators. We illustrate the technique on Nitsche’s boundary
penaltymethod applied to a scalar diffusion equation and to the time-harmonicMaxwell’s equations. In both
cases, the error estimates are robust in the case of heterogeneousmaterial properties.We also revisit the error
analysis framework proposed by Gudi where a trimming operator is introduced tomap discrete test functions
into conforming test functions. This technique also gives error estimates forminimal regularity solutions, but
the constants depend on the material properties through contrast factors.
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1 Introduction
The error analysis of the finite element approximation of Partial Differential Equations (PDEs) is well under-
stood; see, e.g., the textbooks [7, 8, 13]. The most basic result is Céa’s Lemma [11] which is valid when the
approximation setting is conforming (the discrete trial and test spaces are subspaces of their exact counter-
parts) and exactly consistent (the discrete forms are restrictions of the exact ones to the discrete spaces).
Departures from this setting are usually handled in the literature by invoking Strang’s Lemmas [27]. Strang’s
First Lemma assumes that the approximation setting is conforming but handles the case where the discrete
forms differ from their exact counterpart. Strang’s Second Lemma deals with nonconforming approximation
settings and is frequently invoked in the literature for the error analysis of nonconforming techniques. For
instance, many authors have adopted this approach to analyze discontinuous Galerkin (dG) methods (see,
e.g., [12, 14] and the references therein).
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One important shortcoming of Strang’s Second Lemma is that one needs to insert the exact solution
in the first argument of the discrete sesquilinear (or bilinear) form. Unfortunately, this is only possible if
one assumes some additional regularity on the exact solution which often goes beyond the regularity pro-
vided by the weak formulation of the model problem at hand. For instance, when approximating a diffusion
equation of the form −∇⋅(κ∇u) = f in some Lipschitz domain D in ℝd, one is essentially led to assume
that κ∇u ∈ Hr(D) with r > 1

2 so as to make sense of the normal component n⋅(κ∇u) at the mesh interfaces.
Although this assumption is not really restrictive for the Laplace equation in a polyhedron (κ ≡ 1), since
elliptic regularity guarantees the existence of an index r > 1

2 so that u ∈ H1+r(D), it becomes unrealistic in
problems with discontinuous coefficients. Similarly, for the time-harmonic Maxwell’s equations of the form
μ̃A + ∇×(κ∇×A) = f in some Lipschitz domain D in ℝ3, one is led to assume κ∇×A ∈ Hr(D) with r > 1

2 so as
to make sense of the tangential component n×(κ∇×A) at the mesh interfaces, but this assumption becomes
unrealistic in problems with discontinuous coefficients. Let us mention in passing that we use boldface
notation forℝd-valued fields in D.

One possible way forward to overcome the limitations of Strang’s Second Lemma has been proposed by
Gudi [18]. The main idea is to introduce an operator that transforms the discrete test functions into elements
of the exact test space. We call this operator a trimming operator, and we call the resulting error estimate
a trimmed error estimate. The reason for our terminology is that one can view the elements in the kernel of
the trimming operator as discrete (test) functions that are only needed to “stabilize” the bilinear form ah, but
do not contribute to the interpolatory properties of the approximation setting. We also observe that a trim-
ming operator is one of the fundamental ingredients in the abstract setting recently devised by Veeser and
Zanotti [28] to obtain quasi-optimal energy-norm error estimates for nonconforming finite element methods
applied to symmetric elliptic PDEs. The trimmed error estimate in [18] (which is sometimes referred to as
“medius analysis”) has been applied to the Interior Penalty dG (IPDG) approximation of the Laplace equation
with a source term f ∈ L2(D) (and to a fourth-order problem also in [18], to the Stokes equations in [3], and to
the linear elasticity equations in [10]). In the present work, we show how to apply the trimmed error estimate
to the diffusion equation with heterogeneous material property κ and source term f ∈ Lq(D)with q ∈ (2∗, 2],
2∗ = 2d

2+d , and also to the time-harmonic Maxwell’s equations with heterogeneous material properties μ̃, κ
and source term f ∈ L2(D). For simplicity, we focus for both model problems on the use of H1-conforming
finite elements combined with the boundary penalty method of Nitsche [23] to enforce weakly Dirichlet
boundary conditions. The main benefit of the trimmed error analysis is that it allows one to derive error esti-
mates as soon as the exact solution is in {v ∈ H1(D) | ∇⋅(κ∇v) ∈ Lq(D)}, q ∈ (2∗, 2], for the diffusion equation,
and as soon as the exact solution is in {A ∈ H(curl;D) | ∇×(κ∇×A) ∈ L2(D)} for the time-harmonic Maxwell’s
equations.

One difficulty still remains with the trimmed error estimate in the case of strong contrasts in the material
property κ since the error estimates feature a constant that is typically proportional to the square-root of
a contrast factor associated with κ (and, in the case of Maxwell’s equations, there is also a dependency on
the square-root of a local magnetic Reynolds number). These dependencies originate from the usage of the
trimming operator to perform some averaging to achieve the desired conformity property, but this averaging,
in turn, precludes the derivation of stability and approximation properties for the trimming operator that are
local to a mesh cell. To remedy this difficulty, we devise in this work a novel approach which avoids the use
of any trimming operator and instead hinges on a decomposition of the discrete sesquilinear (or bilinear)
form as ah( ⋅ , ⋅ ) = ãh( ⋅ , ⋅ ) + sh( ⋅ , ⋅ ), where ãh( ⋅ , ⋅ ) is meant to ensure a consistency property and sh( ⋅ , ⋅ ) is
added for stabilization purposes. The crucial ingredient is then to devise a form a♯( ⋅ , ⋅ ) with the following
key properties:
∙ a♯( ⋅ , wh) coincides with ãh( ⋅ , wh) for any discrete function wh when the first argument is discrete,
∙ a♯( ⋅ , wh)makes unambiguous sensewhen the first argument is a functionwith someminimal regularity,
∙ a♯( ⋅ , wh) enjoys a consistency property with the right-hand side of the discrete problem.
The construction of a♯ is achieved by giving a meaning by duality to the normal or tangential component of
vector fields at the mesh faces using face-to-cell lifting operators which we construct herein following ideas
similar to those in [1, 5]. Since the proof of the above key consistency property hinges on some recently-
devised mollification operators, we call the resulting error estimate a mollified error estimate.
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In the present work, we present an abstract setting for the mollified error analysis and then we show
how to apply it to Nitsche’s boundary penalty method to approximate the diffusion equation and the
time-harmonic Maxwell’s equations. In both cases, the error estimates are robust with respect to the con-
trast in material properties. The mollified error analysis is applicable as soon as the exact solution is in
{v ∈ H1(D) | κ∇v ∈ Lp(D), ∇⋅(κ∇v) ∈ Lq(D)}, p > 2 and q > 2d

2+d , for the diffusion equation, and as soon as
the exact solution is in {A ∈ H(curl;D) | κ∇×A ∈ Lp(D), ∇×(κ∇×A) ∈ L2(D)}, p > 2, for the time-harmonic
Maxwell’s equations. Owing to the Sobolev Embedding Theorem, the requirements that κ∇v ∈ Lp(D) or
κ∇×A ∈ Lp(D), p > 2, hold true whenever κ∇v ∈ Hr(D) or κ∇×A ∈ Hr(D), r > 0, and these are minimal
requirements to achieve some decay rate with respect to the mesh-size in the error estimate. Notice also
that these requirements are in general compatible with the regularity pickup estimates available in the
literature for the model problems at hand (see, e.g., [6, 20] for the Maxwell’s equations).

This paper is organized as follows. In Section 2, we present the two model problems on which we will
illustrate the present developments: the diffusion equation and the time-harmonic Maxwell’s equations. In
Section 3, we introduce the finite element setting and illustrate our abstract discrete setting on Nitsche’s
boundary penalty method for our two model problems. Section 4 is concerned with abstract error estimates.
We first recall Strang’s Lemmas, then we present Gudi’s trimmed error estimate, and we finish with our novel
mollified error estimate. Section 5 contains some useful analysis tools. We first recall some recent results
from [15] on shrinking-basedmollificationoperators that commutewith theusual derivative operators (∇,∇×,
and ∇⋅). Then we present some inverse inequalities useful for the trimmed error analysis and some extension
operators that are crucial for the mollified error analysis since they allow us to give a weak meaning to the
normal or tangential component of vector fields. Finally, in Section 6 and in Section 7, we show how to apply
the trimmed error estimate and the mollified error estimate to our two model problems from Section 3. Al-
though we have focused for brevity on the application to Nitsche’s boundary penalty method, we do not
anticipate any significant difficulty in extending the present analysis to other nonconforming approximation
methods, such as Crouzeix–Raviart-type finite elements and discontinuous Galerkin (dG) methods, since in
all the cases the key issue is to give a suitable weak meaning to the normal or tangential trace of vector fields
with minimal regularity.

2 Model Problem
We introduce in this section an abstract model problem and illustrate the setting on the diffusion equation
and the time-harmonic Maxwell’s equations.

2.1 Abstract Setting

Let V and W be two Banach spaces; to stay general, we consider linear spaces over the field of complex
numbers. Let a( ⋅ , ⋅ ) be a bounded sesquilinear form on V×W, and let ℓ( ⋅ ) be a bounded antilinear form
onW, i.e., ℓ ∈ W󸀠. We consider the following abstract model problem: Find u ∈ V such that

a(u, w) = ℓ(w) for all w ∈ W, (2.1)

which we assume to be well-posed in the sense of Hadamard; that is to say, there is a unique solution and
this solution depends continuously on the data. The well-posedness of the model problem (2.1) can be char-
acterized by invoking Banach’s Closed Range and Open Mapping Theorems; see [22] and [2, p. 112].

Theorem 2.1 (Banach–Nečas–Babuška (BNB)). Assume that W is a reflexive Banach space. Problem (2.1) is
well-posed if and only if

inf
v∈V

sup
w∈W

|a(v, w)|
‖v‖V‖w‖W

=: α > 0 and ∀w ∈ W, [∀v ∈ V, a(v, w) = 0] 󳨐⇒ [w = 0].

In particular, the a priori estimate ‖u‖V ≤ 1
α ‖ℓ‖W󸀠 holds true.
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It is implicitly understood here and in what follows that the above infimum and supremum are taken over
nonzero arguments.

2.2 Diffusion Equation

To illustrate the abstract setting introduced above, let us consider a bounded Lipschitz polyhedron D in ℝd

with d ≥ 2. Let f ∈ Lq(D) be a source termwith q ∈ (2∗, 2], 2∗ := 2d
2+d (so that q ∈ (1, 2] if d = 2, and q ∈ (

6
5 , 2]

if d = 3). We consider the following model problem: Find u : D → ℝ such that

− ∇⋅(κ∇u) = f in D, u = 0 on ∂D, (2.2)

where κ ∈ L∞(D) takes values æin D in the interval [κ♭, κ♯] with 0 < κ♭ ≤ κ♯ < ∞.
Let us introduce the Hilbert space

H1(D) = {v ∈ L2(D) | ∇v ∈ L2(D)}

and its zero-trace subspace
H1
0(D) = {v ∈ H

1(D) | γg(v) = 0},

where γg : H1(D) → H 1
2 (∂D) is the well-known trace operator. To be dimensionally coherent, we equip the

space H1(D) with the norm ‖v‖H1(D) = (‖v‖2L2(D) + ℓ
2
D‖∇v‖

2
L2(D))

1
2 , where ℓD is some length scale characteristic

of D, e.g., the diameter of D. The model problem (2.2) fits the abstract setting of (2.1) with V = W = H1
0(D)

and
a(v, w) := ∫

D

κ∇v⋅∇w dx, ℓ(w) := ∫
D

fw dx,

and its well-posedness follows from the Lax–Milgram Lemma. In particular, we have

|a(v, w)| ≤ κ♯‖∇v‖L2(D)‖∇w‖L2(D),
a(v, v) ≥ κ♭‖∇v‖2L2(D)

for all v, w ∈ H1
0(D). Note that ‖v‖H1(D) ≤ (1 + C−2PS,D)

1
2 ℓD‖∇v‖L2(D) owing to the Poincaré–Steklov inequality

CPS,D‖v‖L2(D) ≤ ℓD‖∇v‖L2(D) for all v ∈ H1
0(D). Note also that a Sobolev embedding implies that w ∈ Lq󸀠 (D) for

all w ∈ H1(D), where q󸀠 is the conjugate number of q, i.e., 1
q +

1
q󸀠 = 1, so that the linear form ℓ( ⋅ ) is well-

defined owing to Hölder’s inequality.

Remark 2.2 (Extensions). Most of what is said in the paper generalizes when lower-order terms are added to
the PDE in (2.2), κ is tensor-valued, and non-homogeneous Dirichlet conditions are imposed.

2.3 Time-Harmonic Maxwell’s Equations

As a second example to illustrate the abstract setting introduced above, we consider the time-harmonic
Maxwell’s equations in a bounded Lipschitz polyhedron D inℝ3. Let f ∈ L2(D) be a source term.We consider
the following model problem: Find A : D → ℝ3 such that

μ̃A + ∇×(κ∇×A) = f , A|∂D×n = 0. (2.3)

We assume that μ̃ ∈ L∞(D;ℂ), κ ∈ BV(D;ℂ) ∩ L∞(D;ℂ), and we set

μ♯ = ess sup
x∈D
|μ̃(x)| and κ♯ = ess sup

x∈D
|κ(x)|.

We also assume the followingpositivity condition: There are real numbers θ, μ♭ > 0, and κ♭ > 0 so that, letting
μr := ℜ(eiθ μ̃) and κr := ℜ(eiθκ), we have

ess inf
x∈D

μr(x) ≥ μ♭ and ess inf
x∈D

κr(x) ≥ κ♭. (2.4)
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The positivity condition (2.4) fails when the two complex numbers μ̃ and κ are collinear and point in opposite
directions. If it is the case, the model problem (2.3) is an eigenvalue problem, otherwise it is a boundary-
value problem. The model problem (2.3) can be derived from the Maxwell’s equations in the time-harmonic
regime, i.e., under the assumption that the time variation is of the form eiωt, whereω is the angular frequency
and i2 = −1. One example is the Helmholtz problem where A stands for the electric field, μ̃ = −ω2ϵ + iωσ
with ϵ the electric permittivity and σ the electric conductivity, κ = μ−1 with μ the magnetic permeability, and
f = −iωjs with js an imposed current. Another example is the eddy-current problem where A stands for the
magnetic field, μ̃ = iωμ, κ = σ−1, and f = ∇×(σ−1js).

Let us introduce the Hilbert space

H(curl;D) = {b ∈ L2(D) | ∇×b ∈ L2(D)}

and its zero-trace subspace
H0(curl;D) = {b ∈ H(curl;D) | γc(b) = 0},

where γc : H(curl;D) → H−
1
2 (∂D) := (H

1
2 (∂D))󸀠 is the tangential trace operator such that

⟨γc(b), l⟩∂D := ∫
D

b⋅∇×w(l)dx − ∫
D

(∇×b)⋅w(l)dx

for all b ∈ H(curl;D) and all l ∈ H
1
2 (∂D), where w(l) ∈ H1(D) is a lifting of l such that γg(w(l)) = l (compo-

nentwise) and ⟨ ⋅ , ⋅ ⟩∂D denotes the duality pairing between H−
1
2 (∂D) and H

1
2 (∂D). Note that γc(b) = b|∂D×n

whenever the field b is smooth. To be dimensionally coherent, we equip the space H(curl;D) with the
norm ‖b‖H(curl;D) = (‖b‖2L2(D) + ℓ

2
D‖∇×b‖

2
L2(D))

1
2 . The model problem (2.3) fits the abstract setting of (2.1) with

V = W = H0(curl;D) and

a(v, b) := ∫
D

(μ̃v⋅b + κ∇×v⋅∇×b)dx, ℓ(b) := ∫
D

f ⋅b dx,

and its well-posedness follows from the Lax–Milgram Lemma. In particular, we have

|a(v, b)| ≤ max(μ♯, ℓ−2D κ♯)‖v‖H(curl;D)‖b‖H(curl;D),
ℜ(eiθa(b, b)) ≥ min(μ♭, ℓ−2D κ♭)‖b‖

2
H(curl;D)

for all v, b ∈ H0(curl;D).

Remark 2.3 (Extensions). Most of what is said in the paper generalizes when the non-homogeneous Dirichlet
condition γc(A) = g is enforced in (2.3) with g in the range of the trace map γc.

3 Discrete Problem
We now formulate a discrete version of problem (2.1) by using the Galerkin method. The central idea in the
Galerkinmethod consists of replacing the infinite-dimensional spaces V andW by finite-dimensional spaces
Vh and Wh that are members of sequences of spaces (Vh)h→0, (Wh)h→0 endowed with some approximation
properties as h → 0. The norms in Vh and Wh are denoted by ‖ ⋅ ‖Vh and ‖ ⋅ ‖Wh , respectively. The discrete
problem is formulated as follows: Find uh ∈ Vh such that

ah(uh , wh) = ℓh(wh) for all wh ∈ Wh , (3.1)

where ah( ⋅ , ⋅ ) is a bounded sesquilinear form on Vh×Wh and ℓh( ⋅ ) is a bounded antilinear form on Wh;
note that ah( ⋅ , ⋅ ) and ℓh( ⋅ ) possibly differ from a( ⋅ , ⋅ ) and ℓ( ⋅ ), respectively. We henceforth assume that
dim(Vh) = dim(Wh) and that

inf
vh∈Vh

sup
wh∈Wh

|ah(vh , wh)|
‖vh‖Vh‖wh‖Wh

=: αh > 0 for all h > 0, (3.2)

so that the discrete problem (3.1) is well-posed.
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3.1 Finite Element Setting

Let (Th)h>0 be a shape-regular sequence of meshes; we assume that each mesh covers D exactly. To avoid
technical questions regarding hanging nodes, we also suppose that each mesh is matching, i.e., for all cells
K, K󸀠 ∈ Th such that K ̸= K󸀠 and K ∩ K󸀠 ̸= 0, the set K ∩ K󸀠 is a common vertex, edge, or face of both K and K󸀠

(with obvious extensions in higher space dimensions). Given a mesh Th, the elements K ∈ Th are closed sets
inℝd by convention, and they are all assumed to be constructed from a single reference cell K̂ through affine,
bijective, geometric transformations TK : K̂ → K. For a mesh cell K ∈ Th, we define ŤK to be the collection of
the mesh cells in Th that touch K, i.e., the mesh cells that share a vertex, an edge or a face (in dimension 3)
with K, plus K itself. We define DK := int(⋃K󸀠∈ŤK K󸀠); note that the number of cells composing ŤK is uniformly
bounded owing to the shape-regularity of the mesh sequence.

The set of the mesh faces is denoted Fh. This set is partitioned into the subset of the interfaces denoted
F∘h and the subset of the boundary faces denotedF

∂
h . Each interface F is oriented by choosing one unit normal

vector nF . The boundary faces are oriented by using the outward normal vector that we denote n. Given an
interface F ∈ F∘h, we denote by Kl (left cell) and Kr (right cell) the two cells such that F = Kl ∩ Kr and nF
points from Kl to Kr. This convention allows us to define the notion of jump across F for any smooth enough
function v as follows:

[[v]]F(x) := v|Kl (x) − v|Kr (x) æx in F.

We consider a reference finite element in the sense of Ciarlet (K̂, P̂g, Σ̂g). (The superscript g is intended to
remind us that this finite element will be used to build a finite-dimensional subspace composed of functions
whose gradient in D is integrable.) We think of (K̂, P̂g, Σ̂g) as a scalar-valued finite element with some degrees
of freedom that require point evaluations, for instance (K̂, P̂g, Σ̂g) could be a Lagrange finite element. The
local shape functions are denoted (θ̂i)i∈N; recall that σi(θ̂j) = δij for all σi ∈ Σ̂g, and all i, j ∈ N. At this point,
we do not need to know the exact structure of the reference element. One typically assumes that there exists
k ∈ ℕ such that ℙk,d ⊂ P̂g, where ℙk,d is the vector space composed of the d-variate polynomials of degree
at most k.

In order to construct H1-conforming approximation spaces based on (Th)h>0 using the above refer-
ence finite element, we introduce the pullback by the geometric map TK which we denote by ψg

K, i.e.,
ψg
K(v) = v ∘ TK . Then we set

Pg(Th) := {vh ∈ L1(D) | vh|K ∈ PK for all K ∈ Th , [[vh]]F = 0 for all F ∈ F∘h}, (3.3a)
Pg0(Th) := P

g(Th) ∩ H1
0(D), (3.3b)

where PK := (ψg
K)
−1(P̂g). Let FK be the collection of the faces of K, and for all F ∈ FK, let γK,F be the corre-

sponding trace map. For the above construction of Pg(Th) to be meaningful, we assume that for any mesh
interface F ∈ F∘h such that F = Kl ∩ Kr, we have γKl ,F(PKl ) = γKr ,F(PKr ) =: PF . We call PF the finite element
trace space. For instance, if P̂ = ℙk,d and K̂ is a simplex, then PF is composed of the restriction of d-variate
polynomials of degree at most k to F.

Remark 3.1 (Reference Cell). The construction of the H1-conforming space Pg(Th) by means of a reference
cell K̂ is classical in the context of finite elements. On polyhedral meshes, one can also consider H1-con-
forming spaces defined locally in each cell of the mesh, as in the Virtual Element Method [4].

3.2 Boundary Penalty for the Diffusion Equation

We are going to illustrate our results on the so-called boundary penalty method of Nitsche [23]. Let us first
consider the diffusion equation from Section 2.2. To avoid technicalities, we assume that there is a partition
of D intoM disjoint Lipschitz polyhedra D1, . . . , DM so that κ|Di is constant for all 1 ≤ i ≤ M, and we assume
that the meshes in (Th)h>0 are fitted to this partition, so that, for all h > 0 and all K ∈ Th, κ|K is constant; we
use the notation κK := κ|K .
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Let Vh := Pg(Th) be the H1-conforming finite element space based on Th introduced in (3.3). For the
diffusion equation, the discrete forms ah( ⋅ , ⋅ ) and ℓh( ⋅ ) are defined by

ah(vh , wh) := ∫
D

κ∇vh ⋅∇wh dx − ∫
∂D

(n⋅κ∇vh)wh ds + ∫
∂D

ηhvhwh ds, (3.4a)

ℓh(wh) := ∫
D

fwh dx (3.4b)

for all vh , wh ∈ Vh. It is useful to decompose the discrete bilinear form as

ah( ⋅ , ⋅ ) = ãh( ⋅ , ⋅ ) + sh( ⋅ , ⋅ ),

where

ãh(vh , wh) := ∫
D

κ∇vh ⋅∇wh dx − ∫
∂D

(n⋅κ∇vh)wh ds, (3.5a)

sh(vh , wh) := ∫
∂D

ηhvhwh ds. (3.5b)

The discrete bilinear form ãh( ⋅ , ⋅ ) is meant to ensure a consistency property, and the discrete bilinear form
sh( ⋅ , ⋅ ) is added for stabilization purposes. The penalty parameter is defined by setting ηh := η0ρh, where
the user-dependent factor η0 > 0 has yet to be chosen large enough (see Lemma 3.2 below) and where

ρh|F :=
κKF
hF

for all F ∈ F∂h , (3.6)

where KF is the unique mesh cell having F as a face.
We equip the space Vh with the following norm:

‖vh‖Vh := (‖κ
1
2∇vh‖2L2(D) + ‖ρ

1
2
h vh‖

2
L2(∂D))

1
2 for all vh ∈ Vh . (3.7)

Since ‖vh‖Vh = 0 implies that vh is constant on D and vanishes on ∂D, and hence vanishes everywhere in D,
we infer that ‖ ⋅ ‖Vh is indeed a norm on Vh. Furthermore, owing to the assumed shape-regularity of the mesh
sequence, there is cI , uniformwith respect to h (but depending on the shape-regularity of themesh sequence
and on the reference finite element), such that

‖vh‖L2(F) ≤ cIh
− 12
F ‖vh‖L2(KF)

for all vh ∈ Vh and all F ∈ F∂h . The following stability result is classical; we simply state it without proof (see,
e.g., [12, Lem. 4.12] for a proof in the context of dG methods).

Lemma 3.2 (Coercivity and Well-Posedness). Suppose that ηh is defined by (3.6) with η0 > 1
4n∂c

2
I , where n∂

is the maximum number of boundary faces that a mesh cell can have (n∂ ≤ d for simplicial meshes). Then the
following coercivity property holds true:

ah(vh , vh) ≥ α‖vh‖2Vh for all vh ∈ Vh

with α := η0−
1
4 n∂c

2
I

1+η0 . Consequently, the discrete problem (3.1) is well-posed for the diffusion equation.

3.3 Boundary penalty for Maxwell’s equations

Nitsche’s boundary penalty method can also be applied to the time-harmonic Maxwell’s equations from Sec-
tion 2.3. We assume that there is a partition of D intoM disjoint Lipschitz polyhedra D1, . . . , DM so that μ̃|Di
and κ|Di are constant for all 1 ≤ i ≤ M, and we assume that the meshes in (Th)h>0 are fitted to this partition,
so that, for all h > 0 and all K ∈ Th, μ̃|K and κ|K are constant; we use the notation μ♯,K := |μ̃|K |, μr,K := μr|K,
κ♯,K := |κ|K |, and κr,K := κr|K, where we recall that μr := ℜ(eiθ μ̃) and κr := ℜ(eiθκ).
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Let Vh = Pg(Th) be the H1-conforming finite element space based on Th, where Pg(Th) is the vector-
valued version of the finite element space Pg(Th) considered above for the diffusion equation. For the time-
harmonic Maxwell’s equations, the discrete forms ah( ⋅ , ⋅ ) = ãh( ⋅ , ⋅ ) + sh( ⋅ , ⋅ ) and ℓh( ⋅ ) are defined by

ãh(vh , bh) := ∫
D

(μ̃vh ⋅bh + κ∇×vh ⋅∇×bh)dx + ∫
∂D

(n×(κ∇×vh))⋅bh ds, (3.8a)

sh(vh , bh) := ∫
∂D

ηh(vh×n)⋅(bh×n)ds, (3.8b)

ℓh(bh) := ∫
D

f ⋅bh dx (3.8c)

for all vh , bh ∈ Vh. The discrete sesquilinear form ãh( ⋅ , ⋅ ) is meant to ensure a consistency property, and
the discrete sesquilinear form sh( ⋅ , ⋅ ) is added for stabilization purposes. The penalty parameter is defined
by setting

ηh = η0e−iθρh ,

where the user-dependent factor η0 > 0 has yet to be chosen large enough (see Lemma 3.3 below), andwhere

ρh|F :=
|κKF |2

κr,KFhF
for all F ∈ F∂h , (3.9)

where KF is the unique mesh cell having F as a face.
We equip the space Vh with the following norm:

‖bh‖Vh := (‖μ
1
2
r bh‖2L2(D) + ‖κ

1
2
r ∇×bh‖2L2(D) + ‖ρ

1
2
h (bh×n)‖

2
L2(∂D))

1
2 for all bh ∈ Vh . (3.10)

The following stability result is proved using the same arguments as in the proof of Lemma 3.2.

Lemma 3.3 (Coercivity and Well-Posedness). Suppose that ηh is defined by (3.9) with η0 > 1
4n∂c

2
I . Then the

following coercivity property holds true:

ℜ(eiθah(bh , bh)) ≥ α‖bh‖2Vh
for all bh ∈ Vh ,

with α := η0−
1
4 n∂c

2
I

1+η0 . Consequently, the discrete problem (3.1) is well-posed for the Maxwell’s equations.

4 Abstract Error Estimates
There aremanyways to investigate the approximation properties of the above discrete problem (3.1). Since uh
may not be amember of V, it follows that u and uh may be objects of different nature. This poses the question
of defining a common ground for the discrete solution uh and the exact solution u to measure the error. For
this purpose, we assume that it is meaningful to define the linear space

V♭ := V + Vh .

We equip the space V♭ with a norm denoted ‖ ⋅ ‖V♭ which we assume extends the discrete norm ‖ ⋅ ‖Vh to V♭,
i.e., there exists a real number c♭ so that

‖vh‖V♭ ≤ c♭‖vh‖Vh for all vh ∈ Vh . (4.1)

The goal of this section is to bound the error u − uh using the ‖ ⋅ ‖V♭ -norm. Note that even in the conforming
case where V♭ and V coincide as linear spaces, choosing ‖ ⋅ ‖V♭ to be different from ‖ ⋅ ‖V can be useful for the
error analysis.

Authenticated | guermond@math.tamu.edu author's copy
Download Date | 12/16/17 11:13 AM



A. Ern and J.-L. Guermond, Abstract Nonconforming Error Estimates | 9

4.1 A Basic Error Identity

Our starting point is the following (relatively straightforward) error identity. Recall that the norm of any anti-
linear form ϕh ∈ W󸀠h := L(Wh;ℂ) is defined by ‖ϕh‖W󸀠

h
:= supwh∈Wh

|ϕh(wh)|
‖wh‖Wh

.

Lemma 4.1 (Error Identity). Assume that the discrete inf-sup condition (3.2) is satisfied. Then the following
identity holds true:

‖u − uh‖V♭ = inf
vh∈Vh
[‖u − vh‖V♭ + c♭αh ‖δh(vh)‖W󸀠

h
], (4.2)

where δh : Vh → W󸀠h, which we call consistency error, is defined by

⟨δh(vh), wh⟩W󸀠
h ,Wh := ℓh(wh) − ah(vh , wh). (4.3)

Proof. Let vh ∈ Vh. The triangle inequality, (4.1), stability, and the fact that ah(uh , wh) = ℓh(wh) for all
wh ∈ Wh imply that

‖u − uh‖V♭ ≤ ‖u − vh‖V♭ + ‖uh − vh‖V♭ ≤ ‖u − vh‖V♭ + c♭‖uh − vh‖Vh
≤ ‖u − vh‖V♭ + c♭αh sup

wh∈Wh

|ah(uh − vh , wh)|
‖wh‖Wh

= ‖u − vh‖V♭ + c♭αh sup
wh∈Wh

|⟨δh(vh), wh⟩W󸀠
h ,Wh |

‖wh‖Wh

.

Since vh is arbitrary in Vh and recalling the definition of the norm of the discrete antilinear form δh(vh), we
conclude that ‖u − uh‖V♭ ≤ rh, where rh denotes the right-hand side of (4.2). Finally, taking vh = uh in the
infimum and observing that δh(uh) vanishes identically onWh, we infer that ‖u − uh‖V♭ = rh.
4.2 Strang’s Lemmas

The traditional form of Strang’s First Lemma consists of assuming that the approximation setting is conform-
ing; that is to say, Vh ⊂ V andWh ⊂ W. This implies that the linear spaces V and V♭ coincide; however, these
spaces may be equipped with different norms.

Lemma 4.2 (Strang 1). Assume the following:
(i) Vh ⊂ V and Wh ⊂ W.
(ii) The sesquilinear form a( ⋅ , ⋅ ) is bounded on V♭×Wh with norm

‖a‖V♭ ,Wh := sup
v∈V♭ sup

wh∈Wh

|a(v, wh)|
‖v‖V♭‖wh‖Wh

.

Then the following error estimate holds true:

‖u − uh‖V♭ ≤ inf
vh∈Vh
[(1 + c♭

‖a‖V♭ ,Wh

αh
)‖u − vh‖V♭ + c♭αh ‖δSt1h ‖W󸀠

h
]

with δSt1h : Vh → W󸀠h defined by

⟨δSt1h (vh), wh⟩W󸀠
h ,Wh := ℓh(wh) − ℓ(wh) + a(vh , wh) − ah(vh , wh).

Proof. This is an easy consequence of the error identity (4.2) after one has observed that

ℓh(wh) − ah(vh , wh) = ℓh(wh) − ℓ(wh) + a(u, wh) + [a(vh , wh) − a(vh , wh)] − ah(vh , wh),

since a(u, wh) = ℓ(wh) for allwh ∈ Wh ⊂ W. One concludes by invoking the boundedness of a on V♭×Wh.

The main inconvenient of the above estimate is that is assumes that the discrete setting is conforming. This
shortcoming is traditionally addressed in the literature by invoking Strang’s Second Lemma where one sup-
poses that the discrete sesquilinear form ah( ⋅ , ⋅ ) can be extended as a bounded sesquilinear form a♭( ⋅ , ⋅ )
on V♭ ×Wh.
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Lemma 4.3 (Strang 2). Assume that the discrete sesquilinear form ah( ⋅ , ⋅ ) admits a bounded extension a♭( ⋅ , ⋅ )
on V♭ ×Wh with norm

‖a♭‖V♭ ,Wh := sup
v∈V♭ sup

wh∈Wh

|a♭(v, wh)|
‖v‖V♭‖wh‖Wh

.

Then the following error estimate holds true:

‖u − uh‖V♭ ≤ (1 + c♭ ‖a♭‖V♭ ,Wh

αh
) inf
vh∈Vh
‖u − vh‖V♭ + c♭αh ‖ℓh − a♭(u, ⋅ )‖W󸀠

h
.

Proof. This is also an easy consequence of the error identity (4.2) after one writes

ℓh(wh) − ah(vh , wh) = ℓh(wh) + [a♭(u, wh) − a♭(u, wh)] − a♭(vh , wh),

and uses the boundedness of a♭ on V♭ ×Wh.

The key problem with the above estimate is that, in general, it is not possible to extend ah( ⋅ , ⋅ ) to V♭ ×Wh
unless one requires some regularity assumption on the exact solution. For instance, for the boundary
penalty method, this requirement is κ∇u ∈ Hr(D) with r > 1

2 in the case of the diffusion equation, and it
is κ∇×A ∈ Hr(D) with r > 1

2 in the case of the Maxwell equations. These requirements are unrealistic if the
model coefficients are nonsmooth.

4.3 Alternative Error Estimates

In this subsection, we present two alternative error estimates that avoid extending the discrete sesquilinear
form ah( ⋅ , ⋅ ) to V♭ ×Wh. We still need a regularity assumption on the exact solution, but this assumption
is milder than that required to extend ah( ⋅ , ⋅ ). To stay general, we formalize this regularity assumption by
assuming that u ∈ VS where VS is a dense subspace of V. We set

V♯ := VS + Vh ,

and we note that V♯ is a subspace of V♭. We equip the space V♯ with a norm ‖ ⋅ ‖V♯ that we suppose to be
(slightly) stronger than the norm ‖ ⋅ ‖V♭ restricted to V♯; specifically, we assume that

‖v‖V♭ ≤ c♭‖v‖V♯ for all v ∈ V♯. (4.4)

We use the same constant c♭ in (4.4) and in (4.1) to simplify the notation; we could consider two constants
and call c♭ the largest of the two. We refer the reader to Section 6.2 and Section 7.2 where examples for the
spaces VS and V♯ and the corresponding norms are given. Our starting point is the following result where we
do not separate the notions of consistency and boundedness by triangle inequalities.

Lemma 4.4 (Key Error Estimate). Assume that the exact solution u is in VS. Assume the following consis-
tency/boundedness property: There is a real number ω♯h so that

‖δh(vh)‖W󸀠
h
≤ ω♯h‖u − vh‖V♯ for all vh ∈ Vh , (4.5)

with δh : Vh → W󸀠h defined by (4.3). Then the following holds true:

‖u − uh‖V♭ ≤ c♭(1 + ω♯hαh ) inf
vh∈Vh
‖u − vh‖V♯ . (4.6)

Moreover, if the following bound holds true for some real number c♯ uniform with respect to h:

‖vh‖V♯ ≤ c♯‖vh‖Vh for all vh ∈ Vh , (4.7)

then we have the quasi-optimal error estimate

‖u − uh‖V♯ ≤ (1 + c♯ω♯hαh ) inf
vh∈Vh
‖u − vh‖V♯ . (4.8)
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Proof. The error estimate (4.6) is a direct consequence of Lemma 4.1 and consistency/boundedness. For the
proof of (4.8), we proceed as in the proof of Lemma 4.1, and we write

‖u − uh‖V♯ ≤ ‖u − vh‖V♯ + ‖vh − uh‖V♯
≤ ‖u − vh‖V♯ + c♯‖vh − uh‖Vh
≤ ‖u − vh‖V♯ + c♯αh sup

wh∈Wh

|ah(uh − vh , wh)|
‖wh‖Wh

= ‖u − vh‖V♯ + c♯αh ‖δh(vh)‖W󸀠
h

≤ ‖u − vh‖V♯ + c♯ω♯hαh
‖u − vh‖V♯ ,

and we conclude by taking the infimum over vh ∈ Vh.

Remark 4.5 (Quasi-Optimality). The error estimate (4.8) is said to be quasi-optimal since the same norm is
used to measure the error and the best-approximation error of the solution in Vh.

4.3.1 Trimmed Error Estimate

One possible way forward to overcome the limitations of Strang’s Second Lemma has been proposed by
Gudi [18]. The key idea is to introduce a so-called trimming operator T : Wh → W ∩Wh that transforms the
discrete test functions into (discrete) objects that are conforming inW.

Lemma 4.6 (Trimmed Error Estimate). Assume that the exact solution u is in VS. Consider any map

T : Wh → W ∩Wh

such that the following properties hold true:
(i) There exists a real number ωtri

V♯ ,Wh
so that

‖a(u, T( ⋅ )) − ah(vh , T( ⋅ ))‖W󸀠
h
≤ ωtri

V♯ ,Wh
‖u − vh‖V♯ for all vh ∈ Vh . (4.9)

(ii) There exists a real number ϖtri
V♯ ,Wh

so that

‖ℓh − ℓ ∘ T − ah(vh , (I − T)( ⋅ ))‖W󸀠
h
≤ ϖtri

V♯ ,Wh
‖u − vh‖V♯ for all vh ∈ Vh , (4.10)

where I is the identity operator in Wh.
Then the following error estimate holds true:

‖u − uh‖V♭ ≤ c♭(1 + ωtri
V♯ ,Wh
+ ϖtri

V♯ ,Wh

αh
) inf
vh∈Vh
‖u − vh‖V♯ . (4.11)

Moreover, if the discrete norm equivalence (4.7) holds true, we have the quasi-optimal error estimate

‖u − uh‖V♯ ≤ (1 + c♯ωtri
V♯ ,Wh
+ ϖtri

V♯ ,Wh

αh
) inf
vh∈Vh
‖u − vh‖V♯ .

Proof. We observe that, for all vh ∈ Vh and all wh ∈ Wh, we have

ℓh(wh) − ah(vh , wh) = ℓh(wh) − ℓ(T(wh)) + a(u, T(wh)) − [ah(vh , T(wh)) − ah(vh , T(wh))] − ah(vh , wh),

since a(u, T(wh)) = ℓ(T(wh)) for all wh ∈ Wh. Owing to properties (4.9) and (4.10), we infer that the consis-
tency/boundedness property (4.5) holds true with ω♯h = ωtri

V♯ ,Wh
+ ϖtri

V♯ ,Wh
. The assertions then follow from

the key error estimates of Lemma 4.4.

Remark 4.7 (Conforming Case). Whenever Wh ⊂ W, one can take T to be the canonical injection Wh 󳨅→ W.
In this case, the abstract error estimate (4.11) differs from that derived in Strang’s First Lemma. The reason
for this is that we have used different triangle inequalities to derive (4.11).
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4.3.2 Mollified Error Estimate

Although the trimmed error estimate presented in the previous subsection can overcome some shortcomings
encounteredwith the use of Strang’s Lemmas, as illustrated by the examples in Section 6 and in Section 7,we
will also see that some difficulties remain. In particular, it is not always easy to construct a trimming operator
in the context of Maxwell’s equations when one does not use edge elements and the faces of the domain D are
not orthogonal to one of the coordinate axes. Moreover, it is not simple to construct a trimming operator that
exhibits suitable stability properties that are robust in the case of highly-contrasted coefficients. The goal of
this subsection is to present a new approach for the error analysis that attempts to remedy these difficulties.

Lemma 4.8 (Mollified Error Estimate). Assume that the exact solution u is in VS. Recall the decomposition
ah( ⋅ , ⋅ ) = ãh( ⋅ , ⋅ ) + sh( ⋅ , ⋅ ). Assume that there is a sesquilinear form a♯( ⋅ , ⋅ ) on V♯ ×Wh that is bounded
on V♯ ×Wh, i.e.,

‖a♯(v, ⋅ )‖W󸀠
h
≤ ωmol

V♯ ,Wh
‖v‖V♯ for all v ∈ V♯, (4.12)

and such that the following two identities hold true:

a♯(vh , wh) = ãh(vh , wh) for all (vh , wh) ∈ Vh ×Wh , (4.13a)
a♯(u, wh) = ℓh(wh) for all wh ∈ Wh . (4.13b)

Assume moreover that there exists a real number σVh ,Wh so that

‖sh(vh , ⋅ )‖W󸀠
h
≤ σVh ,Wh‖v − vh‖V♯ for all vh ∈ Vh and all v ∈ V. (4.14)

Then the following error estimate holds true:

‖u − uh‖V♭ ≤ c♭(1 + ωmol
V♯ ,Wh
+ σVh ,Wh

αh
) inf
vh∈Vh
‖u − vh‖V♯ .

Moreover, if the discrete norm equivalence (4.7) holds true, we have the quasi-optimal error estimate

‖u − uh‖V♯ ≤ (1 + c♯ωmol
V♯ ,Wh
+ σVh ,Wh

αh
) inf
vh∈Vh
‖u − vh‖V♯ .

Proof. We observe that, for all vh ∈ Vh and all wh ∈ Wh, we have

⟨δh(vh), wh⟩W󸀠
h ,Wh = a♯(u − vh , wh) − sh(vh , wh),

where we used (4.13). Invoking now (4.12) and (4.14), we infer that the consistency/boundedness prop-
erty (4.5) holds true with ω♯h = ωmol

V♯ ,Wh
+ σVh ,Wh . The assertions then follow from the key error estimates of

Lemma 4.4.

Remark 4.9 (Terminology). We call the estimates from Lemma 4.8 mollified error estimates since the proof
of (4.13b) hinges on the use of suitablemollification operators; we refer the reader to the examples presented
in Section 6.2 and in Section 7.2.

5 Analysis Tools
We introduce in this section some analysis tools that are useful to realize the above program. These tools
include commuting mollification operators in Section 5.1, inverse inequalities on faces in Section 5.2, and
the localization of weak traces to faces in Section 5.3. The results of Section 5.2 are useful in the context of
the trimmed error estimates, and the results of Section 5.1 and of Section 5.3 are useful in the context of
the mollified error estimates. The results from Section 5.2 and Section 5.3 invoke the shape-regularity of the
mesh sequence. They can be extended to polyhedral mesh sequences admitting a simplicial submesh that
belongs to a shape-regular sequence in the usual sense and such that all the polyhedral cells and polygonal
faces are covered by a finite number of tetrahedra and triangles with uniformly the same size.
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5.1 Mollification Operators

Smoothing by mollification (i.e., by convolution with a smooth kernel) is an important tool for the analysis
and approximation of PDEs that has been introduced by Leray [21, p. 206], Sobolev [26, p. 487], and
Friedrichs [17, pp. 136–139]. The goal of this subsection is to define mollification operators that com-
mute with the usual differential operators, and that converge optimally when the function to be smoothed
is defined over a Lipschitz domain D in ℝd. We use the shrinking technique of D in [15] to avoid the need to
extend the function to be smoothed outside D.

The starting point is to observe that [19, Proposition 2.3] implies the existence of a vector field j ∈ C∞(ℝd)
that is globally transversal on ∂D (i.e., there is a real number γ > 0 such that n(x)⋅j(x) ≥ γ at æpoint x on ∂D,
where n is the unit normal vector pointing outward D) and ‖j(x)‖ℓ2 = 1 for all x ∈ ∂D. Then one can show the
following:
(i) The map

φδ : ℝd ∋ x 󳨃→ x − δj(x) ∈ ℝd

is in C∞(ℝd) for all δ ∈ [0, 1].
(ii) For all k ∈ ℕ, there is c such that maxx∈D ‖Dkφδ(x) − Dkx‖ℓ2 ≤ cℓ−kD δ for all δ ∈ [0, 1].
(iii) There is r > 0 so that

φδ(D) + B(0, δr) ⊂ D for all δ ∈ [0, 1]. (5.1)

Let us consider the following kernel:

ρ(y) =
{
{
{

η exp(− 1
1−‖y‖2ℓ2 ), if ‖y‖ℓ2 < 1,

0, if ‖y‖ℓ2 ≥ 1,

where η is chosen so that ∫ℝd ρ(y)dy = ∫B(0,1) ρ(y)dy = 1. Let δ ∈ [0, 1] and let f ∈ L
1(D;ℝq)with q = 1 if we

consider scalar-valued functions and q = d if we consider vector-valued functions.
We define a mollification operator as follows:

Kδ(f)(x) := ∫
B(0,1)

ρ(y)𝕂δ(x)f(φδ(x) + (δr)y)dy for all x ∈ D, (5.2)

where 𝕂δ : D → ℝq×q is a smooth field. Note that the definition (5.2) makes sense owing to (5.1). The
exampleswe have inmind for the field𝕂δ (inspired by Schöberl [24, 25]) are𝕂gδ(x) = 1 (q = 1),𝕂

c
δ(x) = 𝕁

T
δ(x)

(q = d = 3),𝕂dδ(x) = det(𝕁δ(x))𝕁
−1
δ (x) (q = d), and𝕂

b
δ(x) = det(𝕁δ(x)) (q = 1), where 𝕁δ is the Jacobian matrix

of φδ at x ∈ D. The mollification operator built using the field𝕂xδ is denotedKx
δ with x ∈ {g, c, d, b}. In what

follows, we just state the main properties of the mollification operator Kδ (where we omit the superscript if
the context is unambiguous), and we refer the reader to [15] for proofs.

Lemma 5.1 (Smoothness). For all f ∈ L1(D;ℝq) and all δ ∈ (0, 1],Kδ(f) ∈ C∞(D;ℝq), i.e.,Kδ(f) ∈ C∞(D;ℝq)
andKδ(f) as well as all its derivatives admit a continuous extension to D.

Let p ∈ [1,∞]. Let us set Zg,p(D) = W1,p(D) = {f ∈ Lp(D) | ∇f ∈ Lp(D)}, Zc,p(D) = {g ∈ Lp(D) | ∇×g ∈ Lp(D)}
(for d = 3), and Zd,p(D) = {g ∈ Lp(D) | ∇⋅g ∈ Lp(D)}.

Lemma 5.2 (Commuting). The following holds true:
(i) ∇Kg

δ(f) = K
c
δ(∇f) for all f ∈ Z

g,p(D),
(ii) ∇×Kc

δ(g) = K
d
δ(∇×g) for all g ∈ Z

c,p(D) (for d = 3),
(iii) ∇⋅Kd

δ(g) = K
b
δ(∇⋅g) for all g ∈ Z

d,p(D),
that is to say, the following diagrams commute:

Zg,p(D)

K
g
δ

��

∇
// Zc,p(D)

Kc
δ

��

∇×
// Zd,p(D)

Kd
δ

��

∇⋅
// Lp(D)

Kb
δ

��

C∞(D) ∇ // C∞(D) ∇× // C∞(D) ∇⋅ // C∞(D).
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Theorem 5.3 (Convergence). The following statements hold true:
(i) There are c, δ0 > 0, uniform, such that ‖Kδ(f)‖Lp(D;ℝq) ≤ c‖f‖Lp(D;ℝq) for all f ∈ Lp(D;ℝq), all δ ∈ [0, δ0],

and all p ∈ [1,∞]. Moreover,

lim
δ→0
‖Kδ(f) − f‖Lp(D;ℝq) = 0 for all f ∈ Lp(D;ℝq) and all p ∈ [1,∞). (5.3)

(ii) There is c, uniform, such that for all f ∈ W s,p(D;ℝq), all δ ∈ [0, δ0], all s ∈ (0, 1], and all p ∈ [1,∞)
(p ∈ [1,∞] if s = 1),

‖Kδ(f) − f‖Lp(D;ℝq) ≤ c ℓ−sD δ
s‖f‖W s,p(D;ℝq).

Corollary 5.4 (Convergence of Derivatives). The following statements hold true:
(i) limδ→0 ‖∇(K

g
δ(f) − f)‖Lp(D) = 0 for all f ∈ Z

g,p(D), and if ∇f ∈ W s,p(D),

‖∇(Kg
δ(f) − f)‖Lp(D) ≤ cℓ

−s
D δ

s‖∇f‖W s,p(D),

(ii) limδ→0 ‖∇×(Kc
δ(g) − g)‖Lp(D) = 0 for all g ∈ Z

c,p(D), and if ∇×g ∈ W s,p(D),

‖∇×(Kc
δ(g) − g)‖Lp(D) ≤ cℓ

−s
D δ

s‖∇×g‖W s,p(D),

(iii) limδ→0 ‖∇⋅(Kd
δ(g) − g)‖Lp(D) = 0 for all g ∈ Z

d,p(D), and if ∇⋅g ∈ W s,p(D),

‖∇⋅(Kd
δ(g) − g)‖Lp(D) ≤ cℓ

−s
D δ

s‖∇⋅g‖W s,p(D).

In the above statements, convergence holds true for all p ∈ [1,∞), and convergence rates hold true with c
uniform for all δ ∈ [0, δ0], all s ∈ (0, 1], and all p ∈ [1,∞) (p ∈ [1,∞] if s = 1).

Remark 5.5 (Convergence in D). Corollary 5.4 (i) strengthens the original result by Friedrichs where strong
convergence of the gradient only occurs in compact subsets of D (see, e.g., [9, Theorem 9.2]). Note though
that Corollary 5.4 (i) is valid for Lipschitz domains, whereas the original result by Friedrichs is valid for any
open set.

Remark 5.6 (Density). Lemma 5.1, together with Lemma 5.2 and (5.3), implies that C∞(D;ℝq) is dense
in Zx,p(D) for all x ∈ {g, c, d}.

5.2 Inverse Inequalities on Faces

Let F ∈ F∘h be an interface and let PF be the finite element trace space defined in Section 3.1. In the following
statement, we use a local length scale h̃F which is uniformly equivalent to the diameter hF of F owing to the
shape-regularity of the mesh sequence; the reason for this distinction is to provide a somewhat more precise
geometric characterization of the relevant local length scale.

Lemma 5.7 (Verfürth’s Inverse Inequality). Let F ∈ F∘h and let PF be the finite element trace space. Further-
more, letΦF : L2(F) → H−1(DF) be themap such thatΦF(r)(φ) := ∫F rφ ds for all φ ∈ H

1
0(DF) and all r ∈ L2(F),

where DF is the interior of the set of the points of the two cells sharing F. Let h̃F := |DF ||F| and let p ∈ (1,∞). Then
there exists a constant c, uniform with respect to h but depending on the shape-regularity of the mesh sequence
and on the reference finite element, such that

‖g‖L2(F) ≤ ch̃
− 12+d(

1
2−

1
p )

F ‖ΦF(g)‖W1,p󸀠
0 (DF)󸀠 for all g ∈ PF ,

where the dual space W1,p󸀠
0 (DF)󸀠 is equipped with the norm

‖ΦF(g)‖W1,p󸀠
0 (DF)󸀠 = sup

φ∈W1,p󸀠
0 (DF);‖∇φ‖Lp󸀠 (DF )=1

|ΦF(g)(φ)|

and p󸀠 is the conjugate number of p (i.e., 1
p +

1
p󸀠 = 1).
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Proof. The proof hinges on the use of suitable bubble functions introduced by Verfürth and on inverse
inequalities proved by mapping to the reference cell K̂; see [29, Section 3.6] for the proof with p = 2. The
adaptation for p ̸= 2 is straightforward and is omitted for brevity.

5.3 Localization of Weak Traces to Faces

Thegoal of this subsection is to give aweakmeaning to the (normal or tangential) trace of somefield satisfying
some minimal regularity requirements on a given mesh cell K ∈ Th. The key point is that the trace is given
a meaning on each face of K independently, and not just on the whole boundary of K. Let K ∈ Th be a mesh
cell and let F ∈ FK be a face of K.

Let p and q be two real numbers such that

p > 2, q > 2d
2 + d . (5.4)

Note that q > 1 since d ≥ 2. Let p󸀠 be the conjugate number of p, i.e., 1
p +

1
p󸀠 = 1 so that p󸀠 ∈ (1, 2). Since

x → xd
x+d is an increasing function, there is p̃ ∈ (2, p] such that q ≥

p̃d
p̃+d ; notice that these two conditions are

equivalent to 2 < p̃ ≤ p and 1
q󸀠 ≥ 1

p̃󸀠 − 1
d , where q

󸀠 is the conjugate number of q and p̃󸀠 that of p̃.
Let us start by considering the normal component of fields defined in K. With the above real numbers

p, q, and p̃ in hand, we consider the functional spaces

Vd(K) := {v ∈ Lp(K) | ∇⋅v ∈ Lq(K)},

Yd(F) := W
1
p̃ ,p̃

󸀠
(F),

where the superscript refers to the fact that the normal trace is related to the divergence operator.

Lemma 5.8 (Lifting Operator). There exists a constant c, uniformwith respect to h (but depending on the shape-
regularity of themesh sequenceandon the reference finite element) anda lifting operator EKF : Yd(F) →W1,p̃󸀠 (K)
such that the following holds true for any ϕ ∈ Yd(F):

EKF (ϕ)|∂K\F = 0, EKF (ϕ)|F = ϕ

and

|EKF (ϕ)|W1,p󸀠 (K) + h−1+d( 1q − 1p )K ‖EKF (ϕ)‖Lq󸀠 (K) ≤ ch− 1p̃ +d( 1p̃ − 1p )K ‖ϕ‖Yd(F) (5.5)

with the norm ‖ϕ‖Yd(F) = ‖ϕ‖Lp̃󸀠 (F) + h 1
p̃
F |ϕ|W

1
p̃ ,p̃

󸀠
(F)
.

Proof. Following the ideas in, e.g., [1, Lemma 4.7] (see also [5, Corollary 3.3] for similar lifting operators
in a Hilbert setting), the lifting operator EKF is constructed from a reference lifting operator EK̂

F̂
where K̂ is

the reference cell, F̂ = (TK)−1(F), and TK : K̂ → K the geometric map. The reference lifting operator is con-
structed by composing the zero-extension from F̂ to ∂K̂ with a bounded right-inverse of the trace map from
W1,p̃󸀠 (K̂) to W 1

p̃ ,p̃
󸀠
(∂K̂). This construction is possible since the function equal to 1 on F̂ and 0 on ∂K̂\F̂ is in

W
1
p̃ ,p̃

󸀠
(∂K̂) because p̃󸀠̃

p =
1
p̃−1 < 1. The stability bound (5.5) follows from the transformation of Sobolev norms

by pullbacks associated with the geometric maps on shape-regular mesh sequences and the fact that on the
reference cell K̂, we have |ψ̂|W1,p󸀠 (K̂) + ‖ψ̂‖Lq󸀠 (K̂) ≤ ĉ‖ψ̂‖W1,p̃󸀠 (K̂) since p̃󸀠 ≥ p󸀠 and 1

q󸀠 ≥ 1
p̃󸀠 − 1

d .

With the lifting operator EKF in hand, we can define the normal component of any field v ∈ Vd(K) on the face F
of K to be the linear form (v⋅nK)|F ∈ Yd(F)󸀠 such that

⟨(v⋅nK)|F , ϕ⟩ := ∫
K

(v⋅∇EKF (ϕ) + (∇⋅v)E
K
F (ϕ))dx (5.6)

for all ϕ ∈ Yd(F), where ⟨ ⋅ , ⋅ ⟩ denotes the duality pairing between Yd(F)󸀠 and Yd(F). Note that the right-hand
side of (5.6) is well-defined owing to Hölder’s inequality and (5.5).
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Lemma 5.9 (Bound on Normal Component). There exists a constant c, uniform with respect to h (but depend-
ing on the shape-regularity of the mesh sequence and on the reference finite element), so that the following
estimate holds true for all v ∈ Vd(K):

‖(v⋅nK)|F‖Yd(F)󸀠 ≤ ch− 1p̃ +d( 1p̃ − 1p )K (‖v‖Lp(K) + h
1+d( 1p −

1
q )

K ‖∇⋅v‖Lq(K)). (5.7)

Moreover, we have

|⟨(v⋅nK)|F , ϕh⟩| ≤ c(h
d( 12−

1
p )

KF ‖v‖Lp(KF) + h
1+d( 12−

1
q )

KF ‖∇⋅v‖Lq(KF)) × h
− 12
F ‖ϕh‖L2(F) (5.8)

for all ϕh ∈ PF and all F ∈ F∂h , where KF is the unique mesh cell having F as a face.

Proof. The bound (5.7) is a direct consequence of (5.6), Hölder’s inequality, and Lemma 5.8. Moreover, the
bound (5.8) follows from (5.7), the following inverse inequality on PF:

‖ϕh‖Yd(F) ≤ ch
(d−1)( 12−

1
p̃ )

F ‖ϕh‖L2(F),

(note that 1
2 −

1
p̃ =

1
p̃󸀠 − 1

2 ) and the shape-regularity of the mesh sequence.

Similar arguments can be deployed to define the tangential trace of vectors fields on a face of K. More specif-
ically, let the real numbers p, q, and p̃ be as above, and consider the functional spaces

Vc(K) := {v ∈ Lp(K) | ∇×v ∈ Lq(K)}, (5.9a)

Yc(F) := {ϕ ∈ W
1
p̃ ,p̃

󸀠
(F) | ϕ⋅nF = 0}, (5.9b)

where the superscript refers to the fact that the tangential trace is related to the curl operator.

Lemma 5.10 (Lifting Operator). There exist a constant c, uniformwith respect to h (but dependingon the shape-
regularity of themesh sequenceandon the reference finite element) anda lifting operator EKF : Y

c(F) →W1,p̃󸀠 (K)
such that the following holds true for any ϕ ∈ Yc(F):

EKF (ϕ)|∂K\F = 0, EKF (ϕ)|F = ϕ,

and
|EKF (ϕ)|W1,p󸀠 (K) + h−1+d( 1q − 1p )K ‖EKF (ϕ)‖Lq󸀠 (K) ≤ ch− 1p̃ +d( 1p̃ − 1p )K ‖ϕ‖Yc(F), (5.10)

with the norm ‖ϕ‖Yc(F) = ‖ϕ‖Lp̃󸀠 (F) + h 1
p̃
F |ϕ|W

1
p̃ ,p̃

󸀠
(F)
.

With this lifting operator in hand, we can define the tangential component of any field v ∈ Vc(K) on the face F
of K to be the antilinear form (v×nK)|F ∈ Yc(F)󸀠 such that

⟨(v×nK)|F ,ϕ⟩ := ∫
K

(v⋅∇×EKF (ϕ) − (∇×v)⋅E
K
F (ϕ))dx (5.11)

for allϕ ∈ Yc(F), where ⟨ ⋅ , ⋅ ⟩ denotes the duality pairing between Yc(F)󸀠 and Yc(F). Note that the right-hand
side of (5.11) is well-defined owing to Hölder’s inequality and (5.10).

Lemma 5.11 (Bound on Tangential Component). There exists a constant c, uniform with respect to h (but
depending on the shape-regularity of the mesh sequence and on the reference finite element), so that the follow-
ing estimate holds true for all v ∈ Vc(K):

‖(v×nK)|F‖Yc(F)󸀠 ≤ ch− 1p̃ +d( 1p̃ − 1p )K (‖v‖Lp(K) + h
1+d( 1p −

1
q )

K ‖∇×v‖Lq(K)).

Moreover, we have

|⟨(v×nK)|F ,ϕh⟩| ≤ c(h
d( 12−

1
p )

KF ‖v‖Lp(KF) + h
1+d( 12−

1
q )

KF ‖∇×v‖Lq(KF)) × h
− 12
F ‖ϕh‖L2(F)

for all ϕh ∈ PF such that ϕ⋅nF = 0 and all F ∈ F∂h , where KF is the unique mesh cell having F as a face.
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6 Application to the Diffusion Equation
In this section, we show how the trimmed error estimate from Lemma 4.6 and the mollified error estimate
from Lemma 4.8 can be applied to the approximation of the diffusion equation using the boundary penalty
method described in Section 3.2. The discrete spaces areWh = Vh = Pg(Th), and the space V♭ := H1

0(D) + Vh
is equipped with the norm ‖ ⋅ ‖V♭ that extends to V♭ the norm ‖ ⋅ ‖Vh originally defined by (3.7) on Vh. The
discrete forms ah( ⋅ , ⋅ ) and ℓh( ⋅ ) are defined by (3.4). The constants in the error estimates derived in this
section depend on the shape-regularity of the mesh sequence and on the reference finite element.

6.1 Trimmed Error Estimate

We define the trimming operator T : Pg(Th) → Pg0(Th) as follows. For all wh ∈ Pg(Th), T(wh)|K is defined, for
all K ∈ Th, by zeroing out all the degrees of freedom of wh that are attached to vertices, edges, and faces
located at the boundary ∂D. This type of construction has been analyzed recently in [16] in the more general
context of quasi-interpolation operators in canonical finite element spaces with prescribed boundary condi-
tions. Let T∂h be the collection of the mesh cells touching the boundary; note that wh − T(wh) vanishes on all
themesh cells in Th \ T∂h but does not on themesh cells in T∂h . For all K ∈ T

∂
h , one can prove that the following

bounds hold true for all wh ∈ Pg(Th)with c uniform with respect to h: If ∂K ∩ ∂D is composed of one or more
boundary faces, then

hK‖∇(wh − T(wh))‖L2(K) + ‖wh − T(wh)‖L2(K) ≤ ch
1
2
K ‖wh‖L2(∂K∩∂D), (6.1)

whereas if ∂K ∩ ∂D is a manifold of dimension d󸀠 < d − 1, then

hK‖∇(wh − T(wh))‖L2(K) + ‖wh − T(wh)‖L2(K) ≤ ch
1
2
K ‖wh‖L2(F) for all F ∈ F∂K , (6.2)

where F∂K := {F ∈ F∂h | ∂K ∩ ∂D ⊆ F} is the collection of the boundary faces containing the manifold ∂K ∩ ∂D.
We introduce the contrast factor

ξκ := max
K∈T∂

h

κK
maxF∈F∂

K
κKF

, (6.3)

where we recall that, for all F ∈ F∂K ⊂ F
∂
h , KF is the unique mesh cell having F as a boundary face. Finally, let

us set
VS := {v ∈ H1

0(D) | ∇⋅(κ∇v) ∈ L
q(D)},

with q ∈ (2∗, 2], 2∗ = 2d
2+d , and let us equip the space V♯ := VS + Vh with the norm

‖v‖V♯ := (‖v‖2V♭ + ∑
K∈T∂

h

κ−1K h
2+2d( 12−

1
q )

K ‖∇⋅(κ∇v)‖2Lq(K))
1
2
. (6.4)

For simplicity,weassume that the trace space PF contains the traces of thenormal derivatives of functions
in PK (this is obviously the case if PK is the polynomial space ℙk,d).

Lemma 6.1 (Trimmed Error Estimate). The assumptions of Lemma 4.6 hold true with the trimming operator
T : Pg(Th) → Pg0(Th) defined above, where the constants ωtri

V♯ ,Vh and ϖtri
V♯ ,Vh are proportional to ξ1/2κ with the

contrast factor ξκ defined by (6.3).

Proof. (1) Let us verify that (4.9) holds true. Let (vh , wh) ∈ Vh × Vh. Since T(wh) ∈ H1
0(D), we infer that

a(u, T(wh)) − ah(vh , T(wh)) = ∫
D

κ∇(u − vh)⋅∇T(wh)dx ≤ ‖u − vh‖V♭‖κ 1
2∇T(wh)‖L2(D).

Since ‖u − vh‖V♭ ≤ ‖u − vh‖V♯ , we just have to prove that ‖κ 1
2∇T(wh)‖L2(D) ≤ c‖wh‖Vh . We have T(wh) = wh on

all K ∈ Th \ T∂h so that we only need to bound ‖κ
1
2∇T(wh)‖L2(K) for all K ∈ T∂h . In this case, the triangle inequal-

ity implies that
‖κ

1
2∇T(wh)‖L2(K) ≤ ‖κ

1
2∇wh‖L2(K) + κ

1
2
K ‖∇ŵh‖L2(K),
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where we have set ŵh := wh − T(wh). If ∂K ∩ ∂D is composed of one or more boundary faces, we use the
approximation property (6.1) together with the shape-regularity of the mesh sequence to infer that

κ
1
2
K ‖∇ŵh‖L2(K) ≤ cκ

1
2
Kh
− 12
K ‖wh‖L2(∂K∩∂D) ≤ c

󸀠( ∑
F∈F∂

h
F⊆∂K∩∂D

‖ρ
1
2
h wh‖

2
L2(F))

1
2
.

Instead, if ∂K ∩ ∂D is a manifold of dimension d󸀠 < d − 1, we use the approximation property (6.2) together
with the shape-regularity of the mesh sequence to infer that, for all F ∈ F∂K,

κ
1
2
K ‖∇ŵh‖L2(K) ≤ c(

κK
κKF
)

1
2
κ

1
2
KFh
− 12
F ‖wh‖L2(F) ≤ c

󸀠(
κK
κKF
)

1
2
‖ρ

1
2
h wh‖L2(F).

It is at this point that the contrast factor ξκ comes into play. The reason is that K is not connected to ∂D by
any of its faces, and (6.2) gives an estimate of ‖∇ŵh‖L2(K) that involves a boundary face F that cannot be
a face of K. There is necessarily amismatch between κK and the coefficient κKF involved in (3.6). We now take
a boundary face in F∂K, say F∗, such that κKF is maximal so as to make the above upper bound as small as
possible. We obtain

κ
1
2
K ‖∇ŵh‖L2(K) ≤ c

󸀠(
κK

maxF∈F∂
K
κKF
)

1
2
‖ρ

1
2
h wh‖L2(F∗) ≤ c󸀠(max

K∈T∂
h

κK
maxF∈F∂

K
κKF
)

1
2
‖ρ

1
2
h wh‖L2(F∗).

Recalling the definition (6.3) of the contrast factor ξκ, we infer that κ
1
2
K ‖∇ŵh‖L2(K) ≤ c

󸀠ξ
1
2
κ ‖ρ

1
2
h wh‖L2(F∗) with

F∗ ∈ F∂K ⊂ F
∂
h . It is now straightforward to complete the proof of (4.9).

(2) Let us verify (4.10). Let (vh , wh) ∈ Vh × Vh and let us set eh := u − vh and (as above) ŵh := wh − T(wh).
A direct calculation shows that

ℓh(wh) − ℓ(T(wh)) − ah(vh , (I − T)(wh)) = ∫
D

f ŵh dx − ∫
D

κ∇vh ⋅∇ŵh dx + ∫
∂D

(n⋅κ∇vh)ŵh ds − ∫
∂D

ηhvhŵh ds

= ∑
K∈T∂

h

∫
K

−∇⋅(κ∇eh)ŵh dx − ∑
F∈F∘∂

h

∫
F

[[κ∇vh]]⋅nF ŵh ds − ∫
∂D

ηhvhŵh ds,

where F∘∂h is the collection of the mesh interfaces that touch the boundary (note that ŵh vanishes on all the
remaining interfaces in F∘h). The Cauchy–Schwarz inequality leads to

‖ℓh − ℓ ∘ T − ah(vh , (I − T)( ⋅ ))‖V󸀠
h
≤ cT1T2

with T1 and T2 defined by

T1 := ( ∑
K∈T∂

h

κ−1K h
2+2d( 12−

1
q )

K ‖∇⋅(κ∇eh)‖2Lq(K) + ∑
F∈F∘∂

h

κ−1KF h̃F‖[[κ∇vh]]⋅nF‖
2
L2(F) + ‖ρ

1
2
h eh‖

2
L2(∂D))

1
2
,

T2 := ( ∑
K∈T∂

h

κKh
−2+2d( 1q −

1
2 )

K ‖ŵh‖2Lq󸀠 (K) + ∑
F∈F∘∂

h

κKF h̃−1F ‖ŵh‖
2
L2(F) + ‖ρ

1
2
h wh‖

2
L2(∂D))

1
2
,

where, for all F ∈ F∘∂h , KF is the mesh cell sharing F and having the larger value of κK (the choice of KF is
irrelevant if both cells give the same value), h̃F is defined in Lemma5.7, andwhere q󸀠 is the conjugate number
of q. Moreover, in the last termdefiningT1 andT2, we have exploited the fact that u and T(wh)have zero trace
at the boundary ∂D so that ‖ρ1/2h vh‖L2(∂D) = ‖ρ1/2h eh‖L2(∂D) and ‖ρ1/2h ŵh‖L2(∂D) = ‖η1/2h wh‖L2(∂D).

(2a) Bound on T1. We need to bound ‖[[κ∇vh]]⋅nF‖L2(F) and to this purpose we use Lemma 5.7. This is
possible since, by assumption, κ is piecewise constant on the mesh Th and, therefore, [[κ∇vh]]⋅nF ∈ PF . We
infer that

h̃
1
2
F ‖[[κ∇vh]]⋅nF‖L2(F) ≤ ch̃

d( 12−
1
q )

F sup
φ∈W1,q󸀠

0 (DF)
‖∇φ‖Lq󸀠 (DF )=1

∫
F

[[κ∇vh]]⋅nFφ ds.
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Let φ ∈ W1,q󸀠
0 (DF) be such that ‖∇φ‖Lq󸀠 (DF) = 1. By the definition of the jump and using the divergence for-

mula, we have

∫
F

[[κ∇vh]]⋅nFφ ds = ∫
F

(κ∇vh)|Kl ⋅nKlφ ds + ∫
F

(κ∇vh)|Kr ⋅nKrφ ds

= ∑
K∈TF
∫
K

∇⋅(φκ∇vh)dx = ∑
K∈TF
∫
K

(φ∇⋅(κ∇vh) + κ∇vh ⋅∇φ)dx,

where Kl , Kr are the two mesh cells sharing the interface F and where we have set TF = {Kl , Kr}. Moreover,
since q󸀠 ≥ 2, the zero-extension of φ to D is in H1

0(D), and this implies that

∑
K∈TF
∫
K

(φ∇⋅(κ∇u) + κ∇u⋅∇φ)dx = 0.

Combining these two relations, we infer that

∫
F

[[κ∇vh]]⋅nFφ ds = ∑
K∈TF
∫
K

(φ∇⋅(κ∇eh) + κ∇eh ⋅∇φ)dx.

InvokingHölder’s inequality and thePoincaré–Steklov inequality inW1,q󸀠
0 (DF),which implies that ‖φ‖Lq󸀠 (K) ≤

chK‖∇φ‖Lq󸀠 (DF) = chK for all K ∈ TF, we infer that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
K

φ∇⋅(κ∇eh)dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖φ‖Lq󸀠 (K)‖∇⋅(κ∇eh)‖Lq(K) ≤ chK‖∇⋅(κ∇eh)‖Lq(K).

Moreover, invoking Hölder’s inequality together with ‖∇φ‖Lq󸀠 (K) ≤ ‖∇φ‖Lq󸀠 (DF) = 1 for all K ∈ TF, q ≤ 2, and
the shape-regularity of the mesh sequence, we infer that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
K

κ∇eh ⋅∇φ dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖∇φ‖Lq󸀠 (K)‖κ∇eh‖Lq(K) ≤ chd( 1q − 12 )K ‖κ∇eh‖L2(K).

Putting the above bounds together and since KF has been chosen so that κKF = maxK∈TF κK, we conclude that
T1 ≤ c‖eh‖V♯ .

(2b) Bound on T2. Applying a inverse inequality from Lq󸀠 (K) to L2(K) for all K ∈ T∂h , we infer that
h
−1+d( 1q −

1
2 )

K ‖ŵh‖Lq󸀠 (K) = h−1+d( 12− 1
q󸀠 )

K ‖ŵh‖Lq󸀠 (K) ≤ ch−1K ‖ŵh‖L2(K).
Moreover, applying an inverse trace inequality on KF for all F ∈ F∘∂h , and invoking the shape-regularity of the
mesh sequence, we infer that

h̃−
1
2

F ‖ŵh‖L2(F) ≤ ch
−1
KF ‖ŵh‖L2(KF).

Finally, using the approximation property (6.2) on all K ∈ T∂h and recalling the definition of the contrast factor
ξκ, we conclude that

T2 ≤ cξ
1
2
κ ‖wh‖Vh .

This completes the proof of (4.10).

6.2 Mollified Error Estimate

We are going to assume in this subsection that there is a real number r > 0 so that the exact solution u is
in H1+r(D). Let k ≥ 1 be the degree of the underlying finite elements. Let us set t := min(r, k). If 2t ≥ d, let p
be any real number larger than 2. If 2t < d, let us set p = 2d

d−2t ; clearly p > 2 since t > 0. Let us now consider
some real number q such that q > 2d

2+d . We define the functional space

VS := {v ∈ H1(D) | σ(v) ∈ Lp(D), ∇⋅σ(v) ∈ Lq(D)}, (6.5)

with the shorthand notation σ(v) := −κ∇v for all v ∈ H1(D). Notice that the pair (p, q) satisfies the require-
ments in (5.4).
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Lemma 6.2 (Exact Solution). If u ∈ H1+r(D), r > 0, and if the source term f is in Lq(D) with q > 2d
2+d , then u is

in VS as defined by (6.5).

Proof. Owing to the Sobolev Embedding Theorem (see e.g., [9, Section 9.3]), we infer that H t(D) 󳨅→ Lp(D)
(indeed, if 2t < d, then we have H t(D) 󳨅→ Ls(D) for all s ∈ [2, 2d

d−2t ] = [2, p], whereas if 2t ≥ d, then we have
H t(D) 󳨅→ H

d
2 (D) 󳨅→ Ls(D) for all s ∈ [2,∞), and choosing s = p again yields H t(D) 󳨅→ Lp(D)). Since r ≥ t,

we infer that Hr(D) 󳨅→ H t(D), so that the above argument implies that ∇u ∈ Lp(D), and since κ is piecewise
constant and σ(u) = −κ∇u, we have σ(u) ∈ Lp(D). Moreover, since ∇⋅σ(u) = f and f ∈ Lq(D) with q > 2d

2+d by
assumption, we have ∇⋅σ(u) ∈ Lq(D). In conclusion, u ∈ VS.

We are now ready to perform the error analysis. We consider the setting of Section 4.3 and we want to apply
Lemma 4.8. We set V♯ := VS + Vh that we equip with the norm

‖v‖2V♯ := ‖v‖2V♭ + ∑
K∈T

∂
h

κ−1K (h
d( 12−

1
p )

K ‖κ∇v‖Lp(K) + h
1+d( 12−

1
q )

K ‖∇⋅(κ∇v)‖Lq(K))
2
,

where T∂h is the collection of all the mesh cells having a boundary face, i.e., T∂h := ⋃F∈F∂
h
{KF}. Compared with

the norm defined by (6.4) used for the trimmed error estimate, we observe that there is now an additional
term measuring κ∇v in the Lp-norm, but the summation is now restricted to the smaller set T∂h ⊊ T∂h . Notice
also that (4.4) holds true with c♭ = 1. We define the following bilinear form on V♯ × Vh:

a♯(v, wh) := ∫
D

κ∇v⋅∇w dx − ∑
F∈F∂

h

⟨(σ(v)|KF ⋅n)|F , wh⟩, (6.6)

recalling that for all F ∈ F∂h , nKF = n (the unit outward normal to D), and the action of the linear form
⟨(σ(v)|KF ⋅n)|F , ⋅ ⟩ has been defined in (5.6) for all F ∈ F∂h .

Lemma 6.3 (Mollified Error Estimate). The assumptions of Lemma4.8 hold true for the bilinear form a♯ defined
by (6.6)and the stabilization bilinear form sh definedby (3.5b).Moreover, the constant ωmol

V♯ ,Wh
involved in (4.12)

and the constant σVh ,Wh involved in (4.14) are independent of the contrast in κ.

Proof. (1) Proof of (4.12). This is a direct consequence of (5.8), the Cauchy–Schwarz inequality, the choice
(3.6) of the penalty parameter ρh, and the fact that ‖ρ

1
2
h wh‖L2(∂D) ≤ ‖wh‖Vh for all wh ∈ Vh.

(2) Proof of (4.13a). Let vh , wh ∈ Vh. Let F ∈ F∂h and let KF be the mesh cell having F as a boundary face.
Since the restriction of σ(vh) to KF is smooth and since the restriction of EKFF (wh) is nonzero only on the face F
of KF, we have

⟨(σ(vh)|KF ⋅n)|F , wh⟩ = ∫
KF

(σ(vh)⋅EKFF (wh) + (∇⋅σ(vh))E
KF
F (wh))dx

= ∫
∂KF

(σ(vh)|KF ⋅nKF )E
KF
F (wh)ds

= ∫
F

(σ(vh)|KF ⋅n)wh ds,

wherewe have used the divergence formula in KF andwherewe have dropped the restriction to KF in the inte-
gral over KF to alleviate the notation. Summing over all the boundary faces and recalling the definition (3.5)
of ãh, we conclude that (4.13a) holds true.

(3) Proof of (4.13b). Letwh ∈ Vh and let v ∈ VS. LetKd
δ : L

1(D) → C∞(D) andKb
δ : L

1(D) → C∞(D) be the
mollification operators introduced in Section 5.1. Recall the following key commuting property:

∇⋅(Kd
δ(τ)) = K

b
δ(∇⋅τ) (6.7)

for all τ ∈ L1(D) such that∇⋅τ ∈ L1(D). It is important to realize that this property can be applied to σ(v) since
∇⋅σ(v) ∈ L1(D) by the definition of VS. Let us consider the mollified bilinear form

n♯δ(v, wh) := ∑
F∈F∂

h

⟨(Kd
δ(σ(v))|KF ⋅n)|F , wh⟩.
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Owing to the commuting property (6.7), we infer that

⟨(Kd
δ(σ(v))|KF ⋅n)|F , wh⟩ = ∫

KF

(Kd
δ(σ(v))⋅E

KF
F (wh) +K

b
δ(∇⋅σ(v))E

KF
F (wh))dx.

By letting δ ↓ 0, Theorem 5.3 implies that

lim
δ↓0
∫
KF

(Kd
δ(σ(v))⋅E

KF
F (wh) +K

b
δ((∇⋅σ(v)))E

KF
F (wh))dx = ∫

KF

(σ(v)⋅EKFF (wh) + (∇⋅σ(v))E
KF
F (wh))dx

= ⟨(σ(v)|KF ⋅n)|F , wh⟩.

Summing over the mesh boundary faces, we infer that

n♯δ(v, wh) → ∫
D

κ∇v⋅∇wh dx − a♯(v, wh) as δ ↓ 0.

Moreover, since the mollified function Kd
δ(σ(v)) is smooth, by repeating the calculation done in step (2),

we also have

n♯δ(v, wh) = ∑
F∈F∂

h

∫
F

(Kd
δ(σ(v))⋅n)wh ds.

Since [[Kd
δ(σ(v))]]⋅nF = [[wh]] = 0 for all F ∈ F

∘
h, we obtain

n♯δ(v, wh) = ∑
K∈Th
∫
∂K

Kd
δ(σ(v))|K ⋅nKwh ds = ∫

D

(Kd
δ(σ(v))⋅∇wh +K

b
δ(∇⋅σ(v))wh)dx,

where we used the divergence formula in each mesh cell K and the commuting property (6.7). Letting δ ↓ 0
and invoking again Theorem 5.3 shows that

n♯δ(v, wh) → ∫
D

(σ(v)⋅∇wh + (∇⋅σ(v))wh)dx = −∫
D

(κ∇v⋅∇wh + (∇⋅(κ∇v))wh)dx.

The proof of (4.13b) follows by identifying the two limits of n♯δ(v, wh) and since ∫D(∇⋅(κ∇u))wh dx = ℓh(wh).
(4) Proof of (4.14). The Cauchy–Schwarz inequality implies that

‖sh(vh , ⋅ )‖V󸀠
h
≤ η0‖ρ

1
2
h vh‖L2(∂D)

for all vh ∈ Vh, and (4.14) follows since any function v in V = H1
0(D) has a zero trace on ∂D.

7 Application to the Time-Harmonic Maxwell’s Equations
In this section, we show how the trimmed error estimate from Lemma 4.6 and the mollified error estimate
from Lemma 4.8 can be applied to the approximation of the time-harmonic Maxwell’s equations using
the boundary penalty method described in Section 3.3. The discrete space is Vh = Pg(Th), and the space
V♭ := H0(curl;D) + Vh can be equipped with the norm ‖ ⋅ ‖V♭ that extends to V♭ the norm ‖ ⋅ ‖Vh originally
defined by (3.10) on Vh; notice in particular that functions in V♭ have a well-defined tangential trace on ∂D.
Indeed, any function b ∈ V♭ can be written as b = b0 + bh with b0 ∈ H0(curl;D) and bh ∈ Vh, and we have
γc(b) = bh|∂D×n so that

‖ρ
1
2
h b‖L2(∂D) = ‖ρ

1
2
h bh‖L2(∂D).

Finally, the discrete forms ah( ⋅ , ⋅ ) and ℓh( ⋅ ) are defined by (3.8). The constants in the error estimates derived
in this section depend on the shape-regularity of the mesh sequence and on the reference finite element.
These constants can also depend on the local ratios μ♯,K

μr,K and κ♯,K
κr,K for all K ∈ Th; for simplicity, we will not

track these dependencies in what follows. Notice that these ratios are equal to 1 when the coefficients μ̃
and κ are real.
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7.1 Trimmed Error Estimate

We define the trimming operator T : Pg(Th) → Pg(Th) ∩ H0(curl;D) = {bh ∈ Pg(Th) | bh|∂D×n = 0} such that,
for all bh ∈ Pg(Th), T(bh)|K, for all K ∈ Th, is definedby zeroing out all the degrees of freedomof the tangential
component of bh at the boundary. Note that the trimming operator couples the Cartesian components of bh
if the faces composing the boundary ∂D are not orthogonal to the coordinate axes. We have T(bh) = bh on
all K ∈ Th \ T∂h , whereas for all K ∈ T

∂
h , one can prove the following bounds for all bh ∈ P

g(Th)with c uniform
with respect to h: If ∂K ∩ ∂D is composed of one or more boundary faces, then

hK‖∇(bh − T(bh))‖L2(K) + ‖bh − T(bh)‖L2(K) ≤ c h
1
2
K ‖bh×n‖L2(∂K∩∂D),

whereas if ∂K ∩ ∂D is a manifold of dimension d󸀠 < d − 1, then

hK‖∇(bh − T(bh))‖L2(K) + ‖bh − T(bh)‖L2(K) ≤ c h
1
2
K ‖bh×n‖L2(F) for all F ∈ F∂K ,

wherewe recall thatF∂K is the collection of the boundary faces containing themanifold ∂K ∩ ∂D.We introduce
the contrast factor ξκr for the parameter κr which is defined similarly to (6.3) by replacing κ by κr. We also
define the local magnetic Reynolds numbers ζμκ,F := μr,KFh2KF/κr,KF for all F ∈ F

∂
h . Finally, let us set

VS := {v ∈ H0(curl;D) | ∇×(κ∇×v) ∈ L2(D)},

and let us equip the space V♯ := VS + Vh with the norm

‖b‖V♯ := (‖b‖2V♭ + ∑
K∈T∂

h

κ−1r,Kh
2
K‖∇×(κ∇×b)‖

2
L2(K))

1
2
. (7.1)

For simplicity, we assume that the trace space PF contains the traces of the tangential derivatives of
functions in PK (this is obviously the case if PK is the polynomial space ℙk,d(K;ℝ3)).

Lemma 7.1 (Trimmed Error Estimate). The assumptions of Lemma 4.6 hold true with the trimming operator
T : Pg(Th) → Pg(Th) ∩ H0(curl;D) defined above, where the constants ωtri

V♯ ,Vh
and ϖtri

V♯ ,Vh
are proportional to

ξ1/2κr and tomax(1, ζ 1/2μκ ), where ξκr is the contrast factor for κr and ζμκ := maxF∈F∂
h
ζμκ,F where ζμκ,F is the local

magnetic Reynolds number associated with the boundary face F.

Proof. We only highlight the differences with respect to the proof of Lemma 6.1.
(1) Verification of (4.9). Let (vh , bh) ∈ Vh × Vh. Since T(bh) ∈ H0(curl;D), we infer that

a(A, T(bh)) − ah(vh , T(bh)) = ∫
D

(μ̃(A − vh)⋅T(bh) + κ∇×(A − vh)⋅∇×T(bh))dx

≤ ‖A − vh‖V♭ (‖μ 1
2
r T(bh)‖L2(D) + ‖κ

1
2
r ∇×T(bh)‖L2(D)).

Since ‖A − vh‖V♭ ≤ ‖A − vh‖V♯ , we just have to prove that ‖μ 1
2
r T(bh)‖L2(D) + ‖κ

1
2
r ∇×T(bh)‖L2(D) ≤ c‖wh‖Vh . We

have T(bh) = bh on all K ∈ Th \ T∂h , so that we only need to bound T(bh) on all K ∈ T∂h . Reasoning as in the
proof of Lemma 6.1 and estimating the approximation properties of ∇×T(bh) by those of ∇T(bh), we infer
that, for all K ∈ T∂h , if ∂K ∩ ∂D is composed of one or more boundary faces, then

‖κ
1
2
r ∇×T(bh)‖L2(K) ≤ ‖κ

1
2
r ∇×bh‖L2(K) + c‖ρ

1
2
h (bh×n)‖L2(∂K∩∂D),

whereas if the manifold ∂K ∩ ∂D is of dimension d󸀠 < d − 1, then

‖κ
1
2
r ∇×T(bh)‖L2(K) ≤ ‖κ

1
2
r ∇×bh‖L2(K) + cξ

1
2
κr‖ρ

1
2
h (bh×n)‖L2(F),

where F is a boundary face in F∂K such that κr,KF is maximal. The reasoning to bound ‖μ
1
2
r T(bh)‖L2(K) for all

K ∈ T∂h is similar and leads to the additional dependency on the factor max(1, ζμκ).
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(2) Verification of (4.10). Let (vh , bh) ∈ Vh × Vh and let us set eh := A − vh and dh := bh − T(bh). A direct
calculation shows that

ℓh(bh) − ℓ(T(bh)) − ah(vh , (I − T)(bh)) = ∫
D

f ⋅dh dx − ∫
D

(μ̃vh ⋅dh + κ∇×vh ⋅∇×dh)dx − ∫
∂D

(n×(κ∇×vh))⋅dh ds

− ∫
∂D

ηh(vh×n)⋅(dh×n)ds

= ∑
K∈T∂

h

∫
K

(μ̃eh ⋅dh + ∇×(κ∇×eh)⋅dh)dx + ∑
F∈F∘∂

h

∫
F

nF×[[κ∇×vh]]⋅dh ds

− ∫
∂D

ηh(vh×n)⋅(dh×n)ds,

wherewe recall thatF∘∂h is the collection of themesh interfaces that touch the boundary. TheCauchy–Schwarz
inequality leads to ‖ℓh − ℓ ∘ T − ah(vh , (I − T)( ⋅ ))‖V󸀠

h
≤ cT1T2 with T1 and T2 defined by

T1 = ( ∑
K∈T∂

h

μr,K‖eh‖2L2(K) + κ
−1
r,Kh

2
K‖∇×(κ∇×eh)‖

2
L2(K) + ∑

F∈F∘∂
h

κ−1r,KF h̃F‖[[κ∇×vh]]×nF‖
2
L2(F) + ‖ρ

1
2
h (vh×n)‖

2
L2(∂D))

1
2

and

T2 = ( ∑
K∈T∂

h

(μr,K + κr,Kh−2K )‖dh‖
2
L2(K) + ∑

F∈F∘∂
h

κr,KF h̃−1F ‖dh‖
2
L2(F) + ‖ρ

1
2
h (bh×n)‖

2
L2(∂D))

1
2
,

where, for all F ∈ F∘∂h , KF is the mesh cell sharing F and having the larger value of κr,K (the choice of KF is
irrelevant if both cells give the same value), and h̃F is defined in Lemma 5.7.

(2a) Bound on T1. The bound on the terms composing the summation over K ∈ T∂h is straightforward. To
bound ‖[[κ∇×vh]]×nF‖L2(F) for all F ∈ F∘∂h , we use Lemma 5.7 (with p = 2). This is possible since, by assump-
tion, κ is piecewise constant on the mesh Th and, therefore, [[κ∇×vh]]×nF ∈ PF . Finally,

‖ρ
1
2
h (vh×n)‖L2(F) = ‖ρ

1
2
h (eh×n)‖L2(F)

for all F ∈ F∂h , since the exact solution A has a zero tangential trace on ∂D.
(2b) Bound on T2. Reasoning as in the proof of Lemma 6.1, we infer that

|T2| ≤ cξ
1
2
κr max(1, ζ

1
2
μκ)‖bh‖Vh .

7.2 Mollified Error Estimate

We are going to assume in this subsection that there is a real number r > 0 so that the exact solution A is
such that κ∇×A ∈ Hr(D). Let k ≥ 1 be the degree of the underlying finite elements. We define p and t as in
Section 6.2 and we set q = 2. Let us define the functional space

VS := {b ∈ H0(curl;D) | κ∇×b ∈ Lp(D), ∇×(κ∇×b) ∈ L2(D)}. (7.2)

Lemma 7.2 (Exact Solution). If A ∈ H0(curl;D), with κ∇×A ∈ Hr(D), r > 0, then A is in VS as defined by (7.2).

Let us equip the space V♯ := VS + Vh with the norm

‖b‖2V♯ := ‖b‖2V♭ + ∑
K∈T

∂
h

κ−1r,K(h
d( 12−

1
p )

K ‖κ∇×b‖Lp(K) + hK‖∇×(κ∇×b)‖L2(K))
2
.

Compared with the norm defined by (7.1) used for the trimmed error estimate, we observe that there is now
an additional term measuring κ∇×b in the Lp-norm, but the summation is now restricted to the smaller
set T∂h ⊊ T∂h . Let us define the following sesquilinear form on V♯ × Vh:

a♯(v, bh) := ∫
D

(μ̃v⋅bh + κ∇×v⋅∇×bh)dx + ∑
F∈F∂

h

⟨((κ∇×v)|KF×n)|F , ΠF(bh)⟩, (7.3)
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where ΠF is the ℓ2-orthogonal projection onto the hyperplane tangent to F, i.e., ΠF(bh) = bh − (bh , n)ℓ2n.
Notice that ΠF(bh) is indeed a member of the space Yc(F) defined by (5.9b) since ΠF(bh)⋅n = 0, and that
‖ΠF(bh)‖ℓ2 = ‖bh×n‖ℓ2 .

Lemma 7.3 (Mollified Error Estimate). The assumptions of Lemma4.8 hold true for the bilinear form a♯ defined
by (7.3)and the stabilization bilinear form sh definedby (3.8b).Moreover, the constant ωmol

V♯ ,Wh
involved in (4.12)

and the constant σVh ,Wh involved in (4.14) are independent of the contrast in κ.

Proof. We only highlight the differences with respect to the proof of Lemma 6.3.
(1) Verification of (4.12). This is a direct consequence of (5.8), the Cauchy–Schwarz inequality, the

choice (3.9) of the penalty parameter ρh, and the fact that

‖ρ
1
2
hwh‖L2(∂D) ≤ ‖wh‖Vh

for all wh ∈ Vh.
(2) Proof of (4.13a). The argument is the same as in the proof of Lemma 6.3.
(3) Proof of (4.13b). Let Kc

δ : L
1(D) → C∞(D) and Kd

δ : L
1(D) → C∞(D) be the mollification operators

introduced in Section 5.1. The proof of (4.13b) now relies on the following key commuting property:

∇×(Kc
δ(τ)) = K

d
δ(∇×τ),

which holds true for all τ ∈ L1(D) such that ∇×τ ∈ L1(D). The rest of the argument follows the same lines as
in the proof of Lemma 6.3.

(3) Verification of (4.14). The Cauchy–Schwarz inequality implies that ‖sh(bh , ⋅ )‖V󸀠
h
≤ η0‖ρ

1
2
h bh‖L2(∂D) for

all bh ∈ Vh, and (4.14) follows since any function v in V = H0(curl;D) has a zero tangential trace on ∂D.
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