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Abstract: We devise a novel framework for the error analysis of finite element approximations to low-regu-
larity solutions in nonconforming settings where the discrete trial and test spaces are not subspaces of their
exact counterparts. The key is to use face-to-cell extension operators so as to give a weak meaning to the nor-
mal or tangential trace on each mesh face individually for vector fields with minimal regularity and then
to prove the consistency of this new formulation by means of some recently-derived mollification opera-
tors that commute with the usual derivative operators. We illustrate the technique on Nitsche’s boundary
penalty method applied to a scalar diffusion equation and to the time-harmonic Maxwell’s equations. In both
cases, the error estimates are robust in the case of heterogeneous material properties. We also revisit the error
analysis framework proposed by Gudi where a trimming operator is introduced to map discrete test functions
into conforming test functions. This technique also gives error estimates for minimal regularity solutions, but
the constants depend on the material properties through contrast factors.
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1 Introduction

The error analysis of the finite element approximation of Partial Differential Equations (PDEs) is well under-
stood; see, e.g., the textbooks [7, 8, 13]. The most basic result is Céa’s Lemma [11] which is valid when the
approximation setting is conforming (the discrete trial and test spaces are subspaces of their exact counter-
parts) and exactly consistent (the discrete forms are restrictions of the exact ones to the discrete spaces).
Departures from this setting are usually handled in the literature by invoking Strang’s Lemmas [27]. Strang’s
First Lemma assumes that the approximation setting is conforming but handles the case where the discrete
forms differ from their exact counterpart. Strang’s Second Lemma deals with nonconforming approximation
settings and is frequently invoked in the literature for the error analysis of nonconforming techniques. For
instance, many authors have adopted this approach to analyze discontinuous Galerkin (dG) methods (see,
e.g., [12, 14] and the references therein).
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One important shortcoming of Strang’s Second Lemma is that one needs to insert the exact solution
in the first argument of the discrete sesquilinear (or bilinear) form. Unfortunately, this is only possible if
one assumes some additional regularity on the exact solution which often goes beyond the regularity pro-
vided by the weak formulation of the model problem at hand. For instance, when approximating a diffusion
equation of the form —V-(kVu) = f in some Lipschitz domain D in RY, one is essentially led to assume
that xVu € H'(D) with r > % so as to make sense of the normal component n-(kVu) at the mesh interfaces.
Although this assumption is not really restrictive for the Laplace equation in a polyhedron (x = 1), since
elliptic regularity guarantees the existence of an index r > % so that u € H*"(D), it becomes unrealistic in
problems with discontinuous coefficients. Similarly, for the time-harmonic Maxwell’s equations of the form
TIA + Vx(kVxA) = f in some Lipschitz domain D in R3, one is led to assume xVxA € H'(D) with r > % SO as
to make sense of the tangential component nx(xVxA) at the mesh interfaces, but this assumption becomes
unrealistic in problems with discontinuous coefficients. Let us mention in passing that we use boldface
notation for R%-valued fields in D.

One possible way forward to overcome the limitations of Strang’s Second Lemma has been proposed by
Gudi [18]. The main idea is to introduce an operator that transforms the discrete test functions into elements
of the exact test space. We call this operator a trimming operator, and we call the resulting error estimate
a trimmed error estimate. The reason for our terminology is that one can view the elements in the kernel of
the trimming operator as discrete (test) functions that are only needed to “stabilize” the bilinear form ay, but
do not contribute to the interpolatory properties of the approximation setting. We also observe that a trim-
ming operator is one of the fundamental ingredients in the abstract setting recently devised by Veeser and
Zanotti [28] to obtain quasi-optimal energy-norm error estimates for nonconforming finite element methods
applied to symmetric elliptic PDEs. The trimmed error estimate in [18] (which is sometimes referred to as
“medius analysis”) has been applied to the Interior Penalty dG (IPDG) approximation of the Laplace equation
with a source term f € L2(D) (and to a fourth-order problem also in [18], to the Stokes equations in [3], and to
the linear elasticity equations in [10]). In the present work, we show how to apply the trimmed error estimate
to the diffusion equation with heterogeneous material property x and source term f € L9(D) with g € (2., 2],
2, = %, and also to the time-harmonic Maxwell’s equations with heterogeneous material properties ji, k
and source term f € L?(D). For simplicity, we focus for both model problems on the use of H!-conforming
finite elements combined with the boundary penalty method of Nitsche [23] to enforce weakly Dirichlet
boundary conditions. The main benefit of the trimmed error analysis is that it allows one to derive error esti-
mates as soon as the exact solutionisin {v € HY(D) | V-(xVv) € L4(D)}, q € (2., 2], for the diffusion equation,
and as soon as the exact solution is in {A € H(curl; D) | Vx(xVxA) € L?(D)} for the time-harmonic Maxwell’s
equations.

One difficulty still remains with the trimmed error estimate in the case of strong contrasts in the material
property x since the error estimates feature a constant that is typically proportional to the square-root of
a contrast factor associated with x (and, in the case of Maxwell’s equations, there is also a dependency on
the square-root of a local magnetic Reynolds number). These dependencies originate from the usage of the
trimming operator to perform some averaging to achieve the desired conformity property, but this averaging,
in turn, precludes the derivation of stability and approximation properties for the trimming operator that are
local to a mesh cell. To remedy this difficulty, we devise in this work a novel approach which avoids the use
of any trimming operator and instead hinges on a decomposition of the discrete sesquilinear (or bilinear)
formas ap(-,-) =ap(-,-)+su(-,-), where ay(-,-)is meant to ensure a consistency property and sp(-, -) is
added for stabilization purposes. The crucial ingredient is then to devise a form a;(-, -) with the following
key properties:

e ay(-, wy) coincides with ay(-, wy) for any discrete function wy, when the first argument is discrete,

e ay(-, wyp) makes unambiguous sense when the first argument is a function with some minimal regularity,
« ay(-, wy) enjoys a consistency property with the right-hand side of the discrete problem.

The construction of a; is achieved by giving a meaning by duality to the normal or tangential component of
vector fields at the mesh faces using face-to-cell lifting operators which we construct herein following ideas
similar to those in [1, 5]. Since the proof of the above key consistency property hinges on some recently-
devised mollification operators, we call the resulting error estimate a mollified error estimate.
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In the present work, we present an abstract setting for the mollified error analysis and then we show
how to apply it to Nitsche’s boundary penalty method to approximate the diffusion equation and the
time-harmonic Maxwell’s equations. In both cases, the error estimates are robust with respect to the con-
trast in material properties. The mollified error analysis is applicable as soon as the exact solution is in
{v e HY(D) | xVv € LP(D), V-(xVv) € LY(D)}, p > 2 and q > %, for the diffusion equation, and as soon as
the exact solution is in {A € H(curl; D) | xVxA € LP(D), Vx(kVxA) € L?(D)}, p > 2, for the time-harmonic
Maxwell’s equations. Owing to the Sobolev Embedding Theorem, the requirements that xVv € LP(D) or
kVxA € LP(D), p > 2, hold true whenever kVv € H' (D) or xVxA € H' (D), r >0, and these are minimal
requirements to achieve some decay rate with respect to the mesh-size in the error estimate. Notice also
that these requirements are in general compatible with the regularity pickup estimates available in the
literature for the model problems at hand (see, e.g., [6, 20] for the Maxwell’s equations).

This paper is organized as follows. In Section 2, we present the two model problems on which we will
illustrate the present developments: the diffusion equation and the time-harmonic Maxwell’s equations. In
Section 3, we introduce the finite element setting and illustrate our abstract discrete setting on Nitsche’s
boundary penalty method for our two model problems. Section 4 is concerned with abstract error estimates.
We first recall Strang’s Lemmas, then we present Gudi’s trimmed error estimate, and we finish with our novel
mollified error estimate. Section 5 contains some useful analysis tools. We first recall some recent results
from [15] on shrinking-based mollification operators that commute with the usual derivative operators (V, Vx,
and V-). Then we present some inverse inequalities useful for the trimmed error analysis and some extension
operators that are crucial for the mollified error analysis since they allow us to give a weak meaning to the
normal or tangential component of vector fields. Finally, in Section 6 and in Section 7, we show how to apply
the trimmed error estimate and the mollified error estimate to our two model problems from Section 3. Al-
though we have focused for brevity on the application to Nitsche’s boundary penalty method, we do not
anticipate any significant difficulty in extending the present analysis to other nonconforming approximation
methods, such as Crouzeix—Raviart-type finite elements and discontinuous Galerkin (dG) methods, since in
all the cases the key issue is to give a suitable weak meaning to the normal or tangential trace of vector fields
with minimal regularity.

2 Model Problem

We introduce in this section an abstract model problem and illustrate the setting on the diffusion equation
and the time-harmonic Maxwell’s equations.

2.1 Abstract Setting

Let V and W be two Banach spaces; to stay general, we consider linear spaces over the field of complex
numbers. Let a(-,-) be a bounded sesquilinear form on VxW, and let £(-) be a bounded antilinear form
on W,i.e., £ ¢ W.We consider the following abstract model problem: Find u € V such that

a(u,w) =€(w) forallwe W, (2.1)

which we assume to be well-posed in the sense of Hadamard; that is to say, there is a unique solution and
this solution depends continuously on the data. The well-posedness of the model problem (2.1) can be char-
acterized by invoking Banach’s Closed Range and Open Mapping Theorems; see [22] and [2, p. 112].

Theorem 2.1 (Banach—Necas—Babuska (BNB)). Assume that W is a reflexive Banach space. Problem (2.1) is

well-posed if and only if
infsupM=:a>O and vweW, [VweV, alv, w)=0] = [w=0].
veV wew [IVIvIwllw

In particular, the a priori estimate ||u|y < §||e||W, holds true.
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It is implicitly understood here and in what follows that the above infimum and supremum are taken over
nonzero arguments.

2.2 Diffusion Equation

To illustrate the abstract setting introduced above, let us consider a bounded Lipschitz polyhedron D in R4
withd > 2. Let f € L9(D) be asource term with q € (2., 2], 2, := % (sothatq € (1, 2]ifd = 2,and q € (g, 2]
if d = 3). We consider the following model problem: Find u : D — R such that

-V-(xVu)=f inD, u=0 onoaD, (2.2)

where x € L°(D) takes values ain D in the interval [k, k3] with 0 < x, < Ky < oo.
Let us introduce the Hilbert space

HY(D) ={v e L*(D) | Vv € L*>(D)}
and its zero-trace subspace
Hy(D) = {v e H'(D) | y8(v) = 0},

where y8 : HY(D) — H 2 (oD) is the well-known trace operator. To be dimensionally coherent, we equip the
space H(D) with the norm ||v]|g:(p) = (||v||%2( o+ €§||Vv|| iz ( D))%, where ¢p is some length scale characteristic
of D, e.g., the diameter of D. The model problem (2.2) fits the abstract setting of (2.1) with V=W = Hé (D)
and
a(v,w) := J xkVv-Vwdx, £€(w):= jfw dx,
D D
and its well-posedness follows from the Lax—Milgram Lemma. In particular, we have

la(v, W) < kyIVVIIL2 o) IVWI L2 ()

av, v) = x|Vl

forall v,w € H(l)(D). Note that [[V]g(p) < (1 + Cgéy D)%BD”VV” £2(p) Owing to the Poincaré-Steklov inequality
Crs,plvlLzp) < €plVVIL2(p) forallv e Hé (D). Note also that a Sobolev embedding implies that w € LY (D) for
all w € HY(D), where ¢’ is the conjugate number of g, i.e., % + % = 1, so that the linear form £(-) is well-
defined owing to Holder’s inequality.

Remark 2.2 (Extensions). Most of what is said in the paper generalizes when lower-order terms are added to
the PDE in (2.2), k is tensor-valued, and non-homogeneous Dirichlet conditions are imposed.

2.3 Time-Harmonic Maxwell’s Equations

As a second example to illustrate the abstract setting introduced above, we consider the time-harmonic
Maxwell’s equations in a bounded Lipschitz polyhedron D in R3. Let f € L?(D) be a source term. We consider
the following model problem: Find A : D — RR® such that

HA + Vx(kVxA) =f, Appxn=0. (2.3)
We assume that i € L*°(D; C), k € BV(D; C) n L*°(D; C), and we set

My =esssup |f(x)] and x; = esssup |k(x)|.
xeD xeD

We also assume the following positivity condition: There are real numbers 6, u, > 0,and x;, > 0 so that, letting
Uy := R(e®f) and x, := R(ei%k), we have

essinf u,(x) >y, and essinf k,(x) > k. (2.4)
xeD xeD
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The positivity condition (2.4) fails when the two complex numbers i and k are collinear and point in opposite
directions. If it is the case, the model problem (2.3) is an eigenvalue problem, otherwise it is a boundary-
value problem. The model problem (2.3) can be derived from the Maxwell’s equations in the time-harmonic
regime, i.e., under the assumption that the time variation is of the form et where w is the angular frequency
and i’ = —1. One example is the Helmholtz problem where A stands for the electric field, Ji = —~w?€e + iwo
with € the electric permittivity and o the electric conductivity, ¥ = y~! with u the magnetic permeability, and
f = —-iwj, with j; an imposed current. Another example is the eddy-current problem where A stands for the
magnetic field, i = iwy, k = 071, and f = Vx(071j).
Let us introduce the Hilbert space

H(curl; D) = {b € L*(D) | Vxb € L*(D)}
and its zero-trace subspace
Hoy(curl; D) = {b € H(curl; D) | y°(b) = 0},
where y© : H(curl; D) — H: (oD) :=(H H (oD))' is the tangential trace operator such that

(S(bY, Dyap = J b-Vxw(l) dx J(be)-w(l) dx
D D
forall b € H(curl; D) and all l € H%(aD), where w(l) € H*(D) is a lifting of I such that y8(w(l)) = 1 (compo-
nentwise) and (-, - )5p denotes the duality pairing between H -3 (oD) and H 3 (oD). Note that y¢(b) = bjspxn
whenever the field b is smooth. To be dimensionally coherent, we equip the space H(curl; D) with the
norm ||b gcur;p) = (1Bl iz ot {,’f)||V><b||IZJ2 ( D))%. The model problem (2.3) fits the abstract setting of (2.1) with
V = W = Hy(curl; D) and

a(v, b) := I(ﬁv-3+ KVxv-Vxb)dx, €(b) := I f-bdx,
D D

and its well-posedness follows from the Lax—Milgram Lemma. In particular, we have

la(v, b)| < max(uy, €52 ky)IVIHcurt;0) IBllHcuri;D)»
R(e“a(b, b)) = min(uy, €5%,) 1B cur,p)

forall v, b € Hy(curl; D).

Remark 2.3 (Extensions). Most of what is said in the paper generalizes when the non-homogeneous Dirichlet
condition y¢(A) = g is enforced in (2.3) with g in the range of the trace map y°.

3 Discrete Problem

We now formulate a discrete version of problem (2.1) by using the Galerkin method. The central idea in the
Galerkin method consists of replacing the infinite-dimensional spaces V and W by finite-dimensional spaces
Vi and W}, that are members of sequences of spaces (Vi)r—0, (Wn)n—o endowed with some approximation
properties as h — 0. The norms in V, and W} are denoted by |- ||y, and || - [w,, respectively. The discrete
problem is formulated as follows: Find uj € Vj such that

ap(up, wy) = €p(wy) forall wy € Wy, (3.1)

where ap(-,-) is a bounded sesquilinear form on VpxWpy and €,(-) is a bounded antilinear form on Wp;
note that ay(-,-) and €,(-) possibly differ from a(-,-) and £(-), respectively. We henceforth assume that
dim(Vy) = dim(Wjy) and that

lan(Vi, wp)l

inf sup ——————— =:a;,>0 forallh>0, (3.2)
vi€Vh wpew, 1Vallv, IWnllw,

so that the discrete problem (3.1) is well-posed.
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3.1 Finite Element Setting

Let (Th)n>0 be a shape-regular sequence of meshes; we assume that each mesh covers D exactly. To avoid
technical questions regarding hanging nodes, we also suppose that each mesh is matching, i.e., for all cells
K,K' € Ty such that K # K' and K n K’ # 0, the set K n K’ is a common vertex, edge, or face of both K and K’
(with obvious extensions in higher space dimensions). Given a mesh T}, the elements K € T, are closed sets
in R9 by convention, and they are all assumed to be constructed from a single reference cell K through affine,
bijective, geometric transformations Tk : K — K. For a mesh cell K € T}, we define Tk to be the collection of
the mesh cells in T} that touch K, i.e., the mesh cells that share a vertex, an edge or a face (in dimension 3)
with K, plus K itself. We define Dy := int(| g ey K"); note that the number of cells composing Ty is uniformly
bounded owing to the shape-regularity of the mesh sequence.

The set of the mesh faces is denoted Fj,. This set is partitioned into the subset of the interfaces denoted
J;, and the subset of the boundary faces denoted J 2 . Eachinterface F is oriented by choosing one unit normal
vector nr. The boundary faces are oriented by using the outward normal vector that we denote n. Given an
interface F € J;, we denote by K; (left cell) and K, (right cell) the two cells such that F = K; n K, and nF
points from K; to K,. This convention allows us to define the notion of jump across F for any smooth enough
function v as follows:

[VIF(x) := v, (X) = Vg, (x) eexinF.

We consider a reference finite element in the sense of Ciarlet (K, P8, £8). (The superscript ¢ is intended to
remind us that this finite element will be used to build a finite-dimensional subspace composed of functions
whose gradient in D is integrable.) We think of (K, P8, £8) as a scalar-valued finite element with some degrees
of freedom that require point evaluations, for instance (K, P8, £8) could be a Lagrange finite element. The
local shape functions are denoted (01)ien; recall that ai(@-) = §;forall o; € ¥8 andall i, j € N. At this point,
we do not need to know the exact structure of the reference element. One typically assumes that there exists
k € N such that Py 4 ¢ P8, where PPy 4 is the vector space composed of the d-variate polynomials of degree
at most k.

In order to construct H'-conforming approximation spaces based on (T,)p-0 using the above refer-
ence finite element, we introduce the pullback by the geometric map Tx which we denote by lpi, ie.,
Y¥(v) = vo Tk. Then we set

P8(T3) = {vp € LY(D) | vhk € Px forall K € Ty, [valr = Oforall F € 3}}, (3.3a)
P5(Tn) = P3(Tp) N Hy(D), (3.3b)

where Pk := (lpi)—l(ﬁg). Let Fk be the collection of the faces of K, and for all F € Fx, let yk r be the corre-
sponding trace map. For the above construction of P8(7}) to be meaningful, we assume that for any mesh
interface F € J; such that F = K; n K;, we have yg, r(Px,) = vk, r(Pg,) =: Pr. We call Pr the finite element
trace space. For instance, if P = Py 4 and K is a simplex, then P is composed of the restriction of d-variate
polynomials of degree at most k to F.

Remark 3.1 (Reference Cell). The construction of the H!-conforming space P8(7;) by means of a reference
cell K is classical in the context of finite elements. On polyhedral meshes, one can also consider H!-con-
forming spaces defined locally in each cell of the mesh, as in the Virtual Element Method [4].

3.2 Boundary Penalty for the Diffusion Equation

We are going to illustrate our results on the so-called boundary penalty method of Nitsche [23]. Let us first
consider the diffusion equation from Section 2.2. To avoid technicalities, we assume that there is a partition
of D into M disjoint Lipschitz polyhedra Dy, . .., Dy so that x|p, is constant for all 1 < i < M, and we assume
that the meshes in (Ty)n>o are fitted to this partition, so that, for all h > 0 and all K € T}, K|k is constant; we
use the notation xx := xx.
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Let Vy := P8(T) be the H'-conforming finite element space based on 7} introduced in (3.3). For the
diffusion equation, the discrete forms a(-, -) and €5(-) are defined by

ap(vy, wp) := J KVvp-Vwp dx — J (n-xVvp)wy ds + J NrvRwh ds, (3.4a)
oD oD

D
Ch(wy) = wah dx (3.4b)
D

for all vy, wy, € Vj. It is useful to decompose the discrete bilinear form as

ah(':'):ah("')"'sh("')’

where
an(vp, wy) = J kVvp-Vwy dx - I (n-xVvp)wp ds, (3.5a)
D oD
sh(Vh, wp) = J NhvaWwh ds. (3.5b)
oD

The discrete bilinear form ap( -, -) is meant to ensure a consistency property, and the discrete bilinear form
sn(+,-) is added for stabilization purposes. The penalty parameter is defined by setting 1y := nopn, where
the user-dependent factor 17o > O has yet to be chosen large enough (see Lemma 3.2 below) and where

PhF = ’;—I;F forall F € ?2, (3.6)

where Kr is the unique mesh cell having F as a face.
We equip the space Vj, with the following norm:

1 H 3
Vlly, = ("KZVVh”iz(D) - ||PﬁVh||%2(aD))z forall vy € V. (3.7

Since vy, = O implies that vj is constant on D and vanishes on 0D, and hence vanishes everywhere in D,
we infer that | - ||, is indeed a norm on Vj,. Furthermore, owing to the assumed shape-regularity of the mesh
sequence, there is ¢y, uniform with respect to h (but depending on the shape-regularity of the mesh sequence
and on the reference finite element), such that

_1
Iallrzry < crhp? Ivillie gy

forallvy € Vyandall F € 5—"2. The following stability result is classical; we simply state it without proof (see,
e.g., [12, Lem. 4.12] for a proof in the context of dG methods).

Lemma 3.2 (Coercivity and Well-Posedness). Suppose that ny, is defined by (3.6) with 1o > $n,ci, where n,
is the maximum number of boundary faces that a mesh cell can have (ny < d for simplicial meshes). Then the
following coercivity property holds true:

2
an(vh, va) 2 allvplly, forallvy € Vi

1 2
. o l’[o—znacl
with a := Timo

. Consequently, the discrete problem (3.1) is well-posed for the diffusion equation.

3.3 Boundary penalty for Maxwell’s equations

Nitsche’s boundary penalty method can also be applied to the time-harmonic Maxwell’s equations from Sec-
tion 2.3. We assume that there is a partition of D into M disjoint Lipschitz polyhedra D, . .., Dy so that Jijp,
and kp, are constant for all 1 <i < M, and we assume that the meshes in (T,)x>0 are fitted to this partition,
so that, for all h > 0 and all K € Tp, jijx and k|g are constant; we use the notation py x := |Hixl, Urk := Hrik,
Ky k = |Kjkl, and kg := Kk, where we recall that p, := R(e!°%) and , := R(e!%k).
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Let Vy, = P8(T3) be the H'-conforming finite element space based on T3, where P8(T3) is the vector-
valued version of the finite element space P8(7}) considered above for the diffusion equation. For the time-
harmonic Maxwell’s equations, the discrete forms ap(-,-) = an(-,-) + su(-,-) and €,(-) are defined by

ap(v, by) := J(ﬁvh-Eh + KVXVp-Vxby) dx + j(nx(Kvah))-Eh ds, (3.8a)
D oD
Sn(Vh, bp) = I Nn(vaxn)-(bpxn) ds, (3.8b)
oD
n(by) := szh dx (3.8¢c)
D

for all vy, by, € V. The discrete sesquilinear form ap(-, -) is meant to ensure a consistency property, and
the discrete sesquilinear form sp(-, -) is added for stabilization purposes. The penalty parameter is defined
by setting

1

Nh =Noe eph,

where the user-dependent factor o > 0 has yet to be chosen large enough (see Lemma 3.3 below), and where

. |KK1:|2 0
PhIF = p— forall F € Jy, (3.9)

where KF is the unique mesh cell having F as a face.
We equip the space Vj, with the following norm:

1 1 1 1
Ibrllv, = (I BrlZ, ) + 1 VxbylZ, ) + o (brxml2, ) forall by € V. (3.10)
The following stability result is proved using the same arguments as in the proof of Lemma 3.2.
Lemma 3.3 (Coercivity and Well-Posedness). Suppose that i is defined by (3.9) with no > %nacf. Then the
following coercivity property holds true:
®R(e'®an(bn, b)) = albly, forallby € Vi,

No—

1 2
with a := %{;’C’ Consequently, the discrete problem (3.1) is well-posed for the Maxwell’s equations.

4 Abstract Error Estimates

There are many ways to investigate the approximation properties of the above discrete problem (3.1). Since uy,
may not be a member of V, it follows that u and uy may be objects of different nature. This poses the question
of defining a common ground for the discrete solution uy and the exact solution u to measure the error. For
this purpose, we assume that it is meaningful to define the linear space

V[, =V + Vh.

We equip the space V, with a norm denoted | - ||y, which we assume extends the discrete norm |- ||y, to Vj,
i.e., there exists a real number c; so that

Ivallv, < colivally, forallvy € Vp. (4.1)

The goal of this section is to bound the error u — uy using the | - |y, -norm. Note that even in the conforming
case where V, and V coincide as linear spaces, choosing | - ||y, to be different from || - ||y can be useful for the
error analysis.
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4.1 ABasic Error Identity

Our starting point is the following (relatively straightforward) error identity. Recall that the norm of any anti-
linear form ¢y, € W; := £L(Wh; C) is defined by llpnllw: := supy,ew, [pn(wn)l

lwhllw,

Lemma 4.1 (Error Identity). Assume that the discrete inf-sup condition (3.2) is satisfied. Then the following
identity holds true:

. Cp
lu—uply, = inf |u-vuly, + —=16n(vi)llw ] (4.2)
vheV, Qap h

h
where 6, : Vi, — W;v which we call consistency error, is defined by
(On(vn), whdw: w;, = €n(Wn) = an(Vh, ). (4.3)

Proof. Let vy € Vj. The triangle inequality, (4.1), stability, and the fact that ap(up, wp) = €x(wy) for all
wp € Wy imply that

lu—unllv, < llu-vallv, + llup = villy, < lu-vrly, +collup - valv,

Cy lan(up — v, wn)l
< lu-vplly, + — sup —————=
ap wreWy ”Wh "W},
C) [8n(Vh), Wh)w,w, |
= lu = vnlly, + — sup
h wreWy ||Wh||W;,

Since vy, is arbitrary in Vj and recalling the definition of the norm of the discrete antilinear form 65 (vy), we
conclude that ||u — uplly, < rn, where ry denotes the right-hand side of (4.2). Finally, taking v, = uy in the
infimum and observing that 6, (uy) vanishes identically on Wy, we infer that [|u — unllv, = ra. O

4.2 Strang’s Lemmas

The traditional form of Strang’s First Lemma consists of assuming that the approximation setting is conform-
ing; that is to say, V), ¢ V and Wy ¢ W. This implies that the linear spaces V and V, coincide; however, these
spaces may be equipped with different norms.

Lemma 4.2 (Strang 1). Assume the following:
(i) VhcVand Wy c W.
(ii) The sesquilinear form a(-, -) is bounded on V,x Wy with norm

la(v, wp)|
lallv, w, := sup sup ——————.
VEV;, WhGWh ”V"Vb ”Wh "Wh

Then the following error estimate holds true:

"a"Vb,Wh)
Qap

u=wily, < inf [(1+c, I = valy, + 2163 g
with 8" : Vy — W, defined by
(84" (), wndw! w, = €n(Wh) = €(Wh) + A(Vh, Wh) = An(V, Wh)-
Proof. This is an easy consequence of the error identity (4.2) after one has observed that
En(wh) — an(vh, wn) = €n(wn) — €(wn) + a(u, wp) + [a(vh, wn) — a(vh, Wh)] — an(vh, wh),
since a(u, wy) = €(wy) for all wy € Wy, ¢ W. One concludes by invoking the boundedness of a on V,xWy. [

The main inconvenient of the above estimate is that is assumes that the discrete setting is conforming. This
shortcoming is traditionally addressed in the literature by invoking Strang’s Second Lemma where one sup-
poses that the discrete sesquilinear form ap(-,-) can be extended as a bounded sesquilinear form a,(-,-)
on V, x Why.
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Lemma 4.3 (Strang 2). Assume that the discrete sesquilinear form ay( -, -) admits a bounded extension a, (-, -)

on V, x Wy with norm
. lay (v, wp)
layllv,,w, :=sup sup ———————.
veV, waew,, VI, IWrllw,

Then the following error estimate holds true:

laylv,,w, )
Qap

. Cp
lu - unlly, < (1 ‘e inf u—vally, + <2 1en — ay (@, )l -
VhEVh ah h

Proof. This is also an easy consequence of the error identity (4.2) after one writes
En(wn) — an(vh, wn) = €n(wn) + [ay(u, wr) — ap (U, wp)] = ay(Va, Wh),

and uses the boundedness of a, on V,, x Wy, O

The key problem with the above estimate is that, in general, it is not possible to extend ap(-,-) to V}, x Wy,
unless one requires some regularity assumption on the exact solution. For instance, for the boundary
penalty method, this requirement is xVu € H' (D) with r > % in the case of the diffusion equation, and it
is kVxA € H' (D) with r > % in the case of the Maxwell equations. These requirements are unrealistic if the
model coefficients are nonsmooth.

4.3 Alternative Error Estimates

In this subsection, we present two alternative error estimates that avoid extending the discrete sesquilinear
form ap(-,-) to V, x Wy. We still need a regularity assumption on the exact solution, but this assumption
is milder than that required to extend ap(-, -). To stay general, we formalize this regularity assumption by
assuming that u € V; where V; is a dense subspace of V. We set

Vyi= Vo + Vi,

and we note that V; is a subspace of V,. We equip the space Vy with a norm |- |y, that we suppose to be
(slightly) stronger than the norm | - ||y, restricted to Vy; specifically, we assume that

Ivilv, < cylivily, forallv e V. (4.4)

We use the same constant ¢, in (4.4) and in (4.1) to simplify the notation; we could consider two constants
and call ¢, the largest of the two. We refer the reader to Section 6.2 and Section 7.2 where examples for the
spaces Vs and V; and the corresponding norms are given. Our starting point is the following result where we
do not separate the notions of consistency and boundedness by triangle inequalities.

Lemma 4.4 (Key Error Estimate). Assume that the exact solution u is in Vs. Assume the following consis-
tency/boundedness property: There is a real number wyy, so that

16r(villw: < wynllu = villy, forallvy € Vi, (4.5)

with 6 : Vi — W,’] defined by (4.3). Then the following holds true:

Wih\ .
lu — unlly, Scb(1+a—i> inf fu - vally,. (4.6)

VeV

Moreover, if the following bound holds true for some real number cy uniform with respect to h:
vallv, < cglivallv, forallvy € Vi, (4.7)

then we have the quasi-optimal error estimate

Wih'\ .
lu - unllv, §<1+c,1—tI > inf |lu-valy,. (4.8)
ah vReVy
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Proof. The error estimate (4.6) is a direct consequence of Lemma 4.1 and consistency/boundedness. For the
proof of (4.8), we proceed as in the proof of Lemma 4.1, and we write

lu = unllv, < llu-vally, +llvh — unlv,
< |lu = vhllv, + cylive — unlly,
Cy lap(up — vp, wp)l
< llu-vnly, + — sup —————~
ah whreWy ”Wh "Wh
Cn 5
= [lu - vhlly, + a—hll h(vi)llw,

CyWih
< llu=vnlv, +

lu—=valv,,
and we conclude by taking the infimum over vy € Vj. O

Remark 4.5 (Quasi-Optimality). The error estimate (4.8) is said to be quasi-optimal since the same norm is
used to measure the error and the best-approximation error of the solution in V.

4.3.1 Trimmed Error Estimate

One possible way forward to overcome the limitations of Strang’s Second Lemma has been proposed by
Gudi [18]. The key idea is to introduce a so-called trimming operator T : W;, — W n W), that transforms the
discrete test functions into (discrete) objects that are conforming in W.

Lemma 4.6 (Trimmed Error Estimate). Assume that the exact solution u is in V. Consider any map
T: Wp — Wn Wy

such that the following properties hold true:

(i) There exists a real number wt‘}‘u w, SO that

la(u, T(:-)) = an(n, TC-Dlw; < @Y, , 1u~vally, forall vy € Vi. (4.9)
h t>Wn '
(ii) There exists a real number wt‘};,wh so that
len = €0 T = an(n, I = T)(Dllw; < @y, lu=vally, forallvy €V, (4.10)

where I is the identity operator in Wy,
Then the following error estimate holds true:

tri tri
Wy, w, +wvu,wh>

inf |lu-vply,. (4.11)
QAp

lu—uply, < Cb(l +
vheVy

Moreover, if the discrete norm equivalence (4.7) holds true, we have the quasi-optimal error estimate

tri tri
Wy, wy ””Vu,wh)

lu - unll, < (1+ctI inf fu—vally,.
VhEVh

Proof. We observe that, for all v, € Vj, and all w, € Wy, we have

en(wn) — an(ve, wi) = €r(wn) — €(T(wp)) + a(u, T(wp)) = [ap(vh, T(wn)) — ap(vy, T(Wp))] = ap(vy, wy),

since a(u, T(wy)) = €(T(wp)) for all w, € Wy. Owing to properties (4.9) and (4.10), we infer that the consis-
tency/boundedness property (4.5) holds true with wy = wt‘}i,wh + wgiu’wh. The assertions then follow from

the key error estimates of Lemma 4.4. O

Remark 4.7 (Conforming Case). Whenever Wj, ¢ W, one can take T to be the canonical injection Wy — W.
In this case, the abstract error estimate (4.11) differs from that derived in Strang’s First Lemma. The reason
for this is that we have used different triangle inequalities to derive (4.11).
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4.3.2 Mollified Error Estimate

Although the trimmed error estimate presented in the previous subsection can overcome some shortcomings
encountered with the use of Strang’s Lemmas, as illustrated by the examples in Section 6 and in Section 7, we
will also see that some difficulties remain. In particular, it is not always easy to construct a trimming operator
in the context of Maxwell’s equations when one does not use edge elements and the faces of the domain D are
not orthogonal to one of the coordinate axes. Moreover, it is not simple to construct a trimming operator that
exhibits suitable stability properties that are robust in the case of highly-contrasted coefficients. The goal of
this subsection is to present a new approach for the error analysis that attempts to remedy these difficulties.

Lemma 4.8 (Mollified Error Estimate). Assume that the exact solution u is in Vs. Recall the decomposition
ap(-,-)=an(-,-)+su(-,-). Assume that there is a sesquilinear form ay(-,-) on Vy x Wy, that is bounded
on Vy x Wy, ie.,

lay, )l < wglglwh Vi, forallve Vy, (4.12)

and such that the following two identities hold true:

ay(Vh, Wi) = an(vih, wy)  for all (v, wp) € Vi x W, (4.13a)
as(u, wp) = €p(wp) for all wy, € Wy, (4.13b)

Assume moreover that there exists a real number oy, w, so that
||Sh(Vh,')||w;l < ov,w,lv=valy, forallvy € Vpandallv e V. (4.14)

Then the following error estimate holds true:

inf [lu—vply,.

mol
Wy, wy, + OV, Wy )
vheVy

lu—unllv, < Cb<1 +
an

Moreover, if the discrete norm equivalence (4.7) holds true, we have the quasi-optimal error estimate

mol
Wy, w, T UVh’Wh>

u-u <|1l+c inf |lu-vply,.
= unly, < (1+ ¢ Jnf = valy,

Proof. We observe that, for all v, € Vj and all wy, € W}, we have

(6n(vh), W) w! ,w;, = ag(U = Vh, Wr) = Sh(Vh, Wh),

where we used (4.13). Invoking now (4.12) and (4.14), we infer that the consistency/boundedness prop-
erty (4.5) holds true with wy, = w‘{,‘ﬁlwh + ov,,w,. The assertions then follow from the key error estimates of
Lemma 4.4. O

Remark 4.9 (Terminology). We call the estimates from Lemma 4.8 mollified error estimates since the proof
of (4.13b) hinges on the use of suitable mollification operators; we refer the reader to the examples presented
in Section 6.2 and in Section 7.2.

5 Analysis Tools

We introduce in this section some analysis tools that are useful to realize the above program. These tools
include commuting mollification operators in Section 5.1, inverse inequalities on faces in Section 5.2, and
the localization of weak traces to faces in Section 5.3. The results of Section 5.2 are useful in the context of
the trimmed error estimates, and the results of Section 5.1 and of Section 5.3 are useful in the context of
the mollified error estimates. The results from Section 5.2 and Section 5.3 invoke the shape-regularity of the
mesh sequence. They can be extended to polyhedral mesh sequences admitting a simplicial submesh that
belongs to a shape-regular sequence in the usual sense and such that all the polyhedral cells and polygonal
faces are covered by a finite number of tetrahedra and triangles with uniformly the same size.
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5.1 Mollification Operators

Smoothing by mollification (i.e., by convolution with a smooth kernel) is an important tool for the analysis
and approximation of PDEs that has been introduced by Leray [21, p.206], Sobolev [26, p.487], and
Friedrichs [17, pp. 136-139]. The goal of this subsection is to define mollification operators that com-
mute with the usual differential operators, and that converge optimally when the function to be smoothed
is defined over a Lipschitz domain D in R?. We use the shrinking technique of D in [15] to avoid the need to
extend the function to be smoothed outside D.

The starting point is to observe that [19, Proposition 2.3] implies the existence of a vector field j € C®°(R?)
that is globally transversal on 90D (i.e., there is a real number y > 0 such that n(x)-j(x) > y at &point x on 0D,
where n is the unit normal vector pointing outward D) and ||j(x)|l,> = 1 for all x € 9D. Then one can show the
following:

(i) The map
(p5:IRd >x - x-06j(x) eR?
isin C*°(RY) for all 6 € [0, 1].
(ii) Forall k € N, there is c such that maxyep [D¥¢p5(x) — D*x|l2 < c€;¥6 forall § € [0, 1].
(iii) There is r > 0 so that
@s(D) +B(0,6r)cD forall§ € [0, 1]. (5.1)

Let us consider the following kernel:

1 .
py) = nexp(—m), if [yle < 1,
0, ifyle > 1,

where 1 is chosen so that .[IRd p(y)dy = JB(O 1 p(y)dy = 1.Let§ € [0, 1] and let f € L1(D; RY) with g = 1 if we
consider scalar-valued functions and g = d if we consider vector-valued functions.
We define a mollification operator as follows:

Ks(HX) 1= j PWKs(Of(@s(x) + (6r)y)dy forallx € D, (5.2)
B(0,1)

where Ks : D — R?7%4 js a smooth field. Note that the definition (5.2) makes sense owing to (5.1). The
examples we have in mind for the field K4 (inspired by Schoberl [24, 25]) are ]K% (x) =1(g=1),K§x) = ]I(Ts (x)
(g=d=3), ]Kg(x) = det(llg(x))llgl(x) (g = d), and ]K'g(x) =det(Js(x)) (q = 1), where Js is the Jacobian matrix
of ¢ at x € D. The mollification operator built using the field IK’g is denoted K’g with x € {g, ¢, d, b}. In what
follows, we just state the main properties of the mollification operator Ks (where we omit the superscript if
the context is unambiguous), and we refer the reader to [15] for proofs.

Lemma 5.1 (Smoothness). Forallf € LY(D;RY) and all § € (0, 1], Ks(f) € C°(D; RY), i.e., Ks(f) € C®(D; RY)
and K (f) as well as all its derivatives admit a continuous extension to D.

Let p € [1, 0o]. Let us set Z8P(D) = WYP(D) = {f € LP(D) | Vf € LP(D)}, Z>P(D) = {g € LP(D) | Vxg € LP(D)}
(ford = 3), and Z¥?(D) = {g € LP(D) | V-g € LP(D)}.

Lemma 5.2 (Commuting). The following holds true:

(i) VK = KV forall f € Z&P(D),

(i) VxK§(g) = XK3(Vxg) for all g € Z%P(D) (for d = 3),
(iif) V-X(g) = KB(V-g) for all g € Z*P(D),

that is to say, the following diagrams commute:

Z8P(D) —— ZP(D) —=— z4P(D) —— LP(D)

(D) —Y— (D) —2— €®°(D) —Y— (D).
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Theorem 5.3 (Convergence). The following statements hold true:
(i) There are c, 8o > O, uniform, such that |Xs(f)llLrp;ray < clfllzrp;ray for all f € LP(D; RY), all § € [0, 6o,
and all p € [1, oo]. Moreover,

Pn}) 1Ks() = flerp;rey = 0 forallf € LP(D;RY) and allp € [1, 00). (5.3)

(ii) There is c, uniform, such that for all f € WSP(D;RY), all 6 € [0, 6¢], all s € (0, 1], and all p € [1, c0)
(p € [1,00]ifs = 1),
1Ks(f) — flze(psray < € €5°8° Iflwsr (Dyma) -

Corollary 5.4 (Convergence of Derivatives). The following statements hold true:
(1) limg_o IIV(HCg(f) —Pllerpy = 0 forall f € Z&P(D), and if Vf € W>P (D),

IVEEWD - Al < e 8 IVflws»p)»

(i) lims_o [Vx(KX5(8) — 8)lrr(py = O for all g € Z“P(D), and if Vxg € W*P (D),
IVx(K§5(8) — )liry < c€y’6°1Vxgllwsr(p)s
(iii) limg_o ||V-(J<‘g(g) - 8)llrpy =0forallg e Z%P(D), and if V-g € WSP(D),
IVA(X3(8) - &)y < €5 6°IV-gllwsr(p)-

In the above statements, convergence holds true for all p € [1, co), and convergence rates hold true with ¢
uniform for all § € [0, §¢], all s € (0, 1], and all p € [1, 00) (p € [1, 00] if s = 1).

Remark 5.5 (Convergence in D). Corollary 5.4 (i) strengthens the original result by Friedrichs where strong
convergence of the gradient only occurs in compact subsets of D (see, e.g., [9, Theorem 9.2]). Note though
that Corollary 5.4 (i) is valid for Lipschitz domains, whereas the original result by Friedrichs is valid for any
open set.

Remark 5.6 (Density). Lemma 5.1, together with Lemma 5.2 and (5.3), implies that C°°(D;RY) is dense
in Z%P(D) for all x € {g, c, d}.

5.2 Inverse Inequalities on Faces

Let F € 3, be an interface and let Pr be the finite element trace space defined in Section 3.1. In the following
statement, we use a local length scale hr which is uniformly equivalent to the diameter hr of F owing to the
shape-regularity of the mesh sequence; the reason for this distinction is to provide a somewhat more precise
geometric characterization of the relevant local length scale.

Lemma 5.7 (Verfiirth’s Inverse Inequality). Let F € J, and let Pr be the finite element trace space. Further-

more, let ®f : L2(F) — H (D) be the map such that ®g(r)(¢p) := IF ro dsforallp € Hy(Dp) andallr € L*(F),
where Dr is the interior of the set of the points of the two cells sharing F. Let hp := % and let p € (1, co). Then
there exists a constant c, uniform with respect to h but depending on the shape-regularity of the mesh sequence

and on the reference finite element, such that

a3

-1y
"lorl,

L2 Dy forall g € P,

lglzzr) < Cil;r
where the dual space Wé b (Dr)' is equipped with the norm

sup |Pr(g)(@)l

IPF @ e
W, 1,p!
PEW,™ DrsIVelpr ) =1

op)

and p' is the conjugate number of p (i.e., 1 + 1% =1).

1
p
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Proof. The proof hinges on the use of suitable bubble functions introduced by Verfiirth and on inverse
inequalities proved by mapping to the reference cell K; see [29, Section 3.6] for the proof with p = 2. The
adaptation for p # 2 is straightforward and is omitted for brevity. O

5.3 Localization of Weak Traces to Faces

The goal of this subsection is to give a weak meaning to the (normal or tangential) trace of some field satisfying
some minimal regularity requirements on a given mesh cell K € Tp. The key point is that the trace is given
a meaning on each face of K independently, and not just on the whole boundary of K. Let K € Tj, be a mesh
cell and let F € Fg be a face of K.

Let p and g be two real numbers such that

2d

2+d’ (5.4)

p>2, q>—
Note that g > 1 since d > 2. Let p’ be the conjugate number of p, i.e., ; + 1% =1 so that p’ € (1, 2). Since
X — "—dd is an increasing function, there ispe (2 plsuchthatgq > = dd, notice that these two conditions are
1 where ¢’ is the conjugate number of g and p’ that of p.

equivalentto 2 < p < p and % > i‘%
Let us start by considering the normal component of fields defined in K. With the above real numbers

P, q, and p in hand, we consider the functional spaces
VYK) := {v e LP(K) | V-v € LY(K)},
YA(F) = WP (F),
where the superscript refers to the fact that the normal trace is related to the divergence operator.

Lemma 5.8 (Lifting Operator). There exists a constant c, uniform with respect to h (but depending on the shape-
regularity of the mesh sequence and on the reference finite element) and a lifting operator Ef : Y4F) - WHP'(K)
such that the following holds true for any ¢ € Y4(F):

EX(@)ox\r =0, Ep(d)r = ¢

and
1

+d(A-1y Llid(i-
K pllyacr (5.5)

_1 —
|E§(¢)|WLP’(K) +the 7 ||E§(¢)||Lq'(1() <chg’

'tsl\»—

with the norm |l ya(r) = 1l F)+h1”|¢l Wb

Proof. Following the ideas in, e.g., [1, Lemma 4.7] (see also [5, Corollary 3.3] for similar lifting operators
in a Hilbert setting), the lifting operator E is constructed from a reference lifting operator EK where K is
the reference cell, F = (Tx) (F), and Tk : K — K the geometric map. The reference lifting operator is con-
structed by composing the zero-extension from F to 0K with a bounded right-inverse of the trace map from
Wll’fi' ,(R) to WP '(afo. This construction is possible since the function equal to 1 on F and 0 on 0K\F is in
W#? (0K) because % = ;5+1 < 1. The stability bound (5.5) follows from the transformation of Sobolev norms
by pullbacks associated with the geometric maps on shape-regular mesh sequences and the fact that on the

reference cell K, we have [Wlwe & + 1Pl &) < SPlys &) since p' > p' and % > 1% B %_ 0

With the lifting operator Ef in hand, we can define the normal component of any field v € V4(K) on the face F
of K to be the linear form (v-ng)r € Y4(F)' such that

(Vg §) = j(v-VEfS () + (VVEK(¢)) dx (5.6)
K

forall ¢ € YI(F), where (-, - ) denotes the duality pairing between Y4(F)’ and Y4(F). Note that the right-hand
side of (5.6) is well-defined owing to Holder’s inequality and (5.5).
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Lemma 5.9 (Bound on Normal Component). There exists a constant c, uniform with respect to h (but depend-
ing on the shape-regularity of the mesh sequence and on the reference finite element), so that the following
estimate holds true for all v € Vd(K):

-1iai-1 1+d(1-1)
I(v-ng)ellyay < chg” 77 (||V||LP(1<)+hK P ||V'V||Lq(1<))- (5.7)
Moreover, we have
dii-1 1+d(3-1) _1
Kvnr, ¢l < c(hy’ " IVl + i, " IVViLsn ) % Be Idnliae (5.8)

forall ¢, € Prand all F € F9, where K is the unique mesh cell having F as a face.

Proof. The bound (5.7) is a direct consequence of (5.6), Holder’s inequality, and Lemma 5.8. Moreover, the
bound (5.8) follows from (5.7), the following inverse inequality on Pg:

(d-1)(3-12)
Ipnllyae < chg ° PldnlzE),
(note that 3 - % = f% - 1) and the shape-regularity of the mesh sequence. O

Similar arguments can be deployed to define the tangential trace of vectors fields on a face of K. More specif-
ically, let the real numbers p, g, and p be as above, and consider the functional spaces

VE(K) := {v € LP(K) | Vxv € LY(K)}, (5.9a)
Y(F) := {p ¢ WP (F) | ¢np =0}, (5.9b)

where the superscript refers to the fact that the tangential trace is related to the curl operator.

Lemma 5.10 (Lifting Operator). There exist a constant c, uniform with respect to h (but depending on the shape-
regularity of the mesh sequence and on the reference finite element) and a lifting operator E§ : YS(F) » WEP'(K)
such that the following holds true for any ¢ € Y°(F):

EX(@)ox\r =0, EX(@)r = ¢,

and
~1+d(3-3) -1

+d(-1)
EE (@) ) + i IEE (@) g < chi” 7 Tl llver), (5.10)

1
. B 5
with the norm |ply<r) = |Pll 5 ) + hp |¢|w%""(F)'

With this lifting operator in hand, we can define the tangential component of any field v € V¢(K) on the face F
of K to be the antilinear form (vxng)|r € Y(F ) such that

((vxng)p, @) := J (v-VXEK(p) — (Vxv)-EX(¢h)) dx (5.11)
K

forall ¢ € Y(F), where (-, - ) denotes the duality pairing between Y(F)" and Y°(F). Note that the right-hand
side of (5.11) is well-defined owing to Holder’s inequality and (5.10).

Lemma 5.11 (Bound on Tangential Component). There exists a constant c, uniform with respect to h (but
depending on the shape-regularity of the mesh sequence and on the reference finite element), so that the follow-
ing estimate holds true for all v € V¢(K):

~Lyai-1y 1+d(-1)
IxmoElvemy < che” 7 7 (VI +he 719XV )-
Moreover, we have
d(i-1) 1+d(4-1) -1
Kvxmore, @)l < (b, " Wl + by, I9xVILa) ) % b Iyl

forall ¢y, € Py such that p-np =0andall F € ?2, where K is the unique mesh cell having F as a face.

Authenticated | guermond@math.tamu.edu author's copy
Download Date | 12/16/17 11:13 AM



DE GRUYTER A. Ern and J.-L. Guermond, Abstract Nonconforming Error Estimates = 17

6 Application to the Diffusion Equation

In this section, we show how the trimmed error estimate from Lemma 4.6 and the mollified error estimate
from Lemma 4.8 can be applied to the approximation of the diffusion equation using the boundary penalty
method described in Section 3.2. The discrete spaces are Wy, = Vj, = P$(T3), and the space V, := H(l) (D) + Vy,
is equipped with the norm || - ||y, that extends to V, the norm |- ||y, originally defined by (3.7) on V},. The
discrete forms ay(-,-) and €5(-) are defined by (3.4). The constants in the error estimates derived in this
section depend on the shape-regularity of the mesh sequence and on the reference finite element.

6.1 Trimmed Error Estimate

We define the trimming operator T : P#(Ty) — P%(T n) as follows. For all wy, € P8(Ty), T(wp)k is defined, for
all K € Ty, by zeroing out all the degrees of freedom of wy, that are attached to vertices, edges, and faces
located at the boundary oD. This type of construction has been analyzed recently in [16] in the more general
context of quasi-interpolation operators in canonical finite element spaces with prescribed boundary condi-
tions. Let ‘J'g be the collection of the mesh cells touching the boundary; note that w, — T(wy) vanishes on all
the mesh cellsin T3 \ Tﬂ but does not on the mesh cells in ‘Iﬁ. ForallK € ‘I,‘z, one can prove that the following
bounds hold true for all wy, € P8(7},) with ¢ uniform with respect to h: If 0K n oD is composed of one or more
boundary faces, then

1
hillViwn = TWi)llg2 ) + lwn = TWi)llL2k) < chillwallL2(oxnob) (6.1)

whereas if 0K n 0D is a manifold of dimension d’ < d - 1, then
1
hillV(wn = TWi)ll2 ) + Iwn = T(Wa)llL2x) < chgllwnllizr)  forall F e 79, (6.2)

where ?I‘z ={F ¢ ?Z | 0K n oD < F}is the collection of the boundary faces containing the manifold 0K n oD.
We introduce the contrast factor

& := max — K (6.3)

KeT) MAXpe g0 KKy '
where we recall that, forall F € S"I"( c F 2’ K is the unique mesh cell having F as a boundary face. Finally, let
us set

Vs:i={ve Hé(D) | V-(kVv) € LY(D)},

with g € (2.,2], 2, = %, and let us equip the space Vy := Vs + V, with the norm

o 2+2d(3-1) 2
Vi, := (II\/II?,b + Y Kthg T IIV-(KVV)Iliq(K)) : (6.4)
KeT?

For simplicity, we assume that the trace space Pr contains the traces of the normal derivatives of functions

in Pk (this is obviously the case if Pk is the polynomial space Py, 4).
Lemma 6.1 (Trimmed Error Estimate). The assumptions of Lemma 4.6 hold true with the trimming operator
T: P8(Tp) — Pg(iT n) defined above, where the constants wﬁ};’vh and wﬁ}i’vh are proportional to {,3/ % with the

contrast factor &y defined by (6.3).

Proof. (1) Let us verify that (4.9) holds true. Let (vi, wy) € Vi, x V. Since T(wy) € Hé(D), we infer that

a(u, T(wp)) — an(vp, T(wp)) = J kV(u — vp)-VT(wp) dx < [lu - vplv, ||K%VT(Wh)||L2(D)-
D
Since |lu — vplly, < lu - vallv,, we just have to prove that IIK%VT(wh)lle(D) < cllwplly,. We have T(wp) = wp on
allK € Ty \ ‘I}‘? so that we only need to bound ||K% VT(wn)llp2 () forall K € iTZ. In this case, the triangle inequal-
ity implies that

1 1 L.
||KZVT(Wh)||L2(K) < ||K2VWh||L2(K) + K12<||VWh||L2(K),
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where we have set Wy := wp — T(wy). If 0K n 0D is composed of one or more boundary faces, we use the
approximation property (6.1) together with the shape-regularity of the mesh sequence to infer that

1
L 11 1 2
KelV il < oxghi Iwnlieoroon < /(Y I will)
FeF?)
FCOKNOD
Instead, if 0K N 0D is a manifold of dimension d’ < d - 1, we use the approximation property (6.2) together
with the shape-regularity of the mesh sequence to infer that, for all F € F* ;3,

1 1 1 L 1
IV < <25 ) Ky il < /(5 ) oy wilizen.
It is at this point that the contrast factor &, comes into play. The reason is that K is not connected to 0D by
any of its faces, and (6.2) gives an estimate of |[VWwp|| L2(K) that involves a boundary face F that cannot be
a face of K. There is necessarily a mismatch between kg and the coefficient ki, involved in (3.6). We now take
a boundary face in 59, say F,, such that x, is maximal so as to make the above upper bound as small as
possible. We obtain

KK

)% 1 ) KK 31

————— ) 2 wallz2r. sc(max—) oy whllz2(r,)-

maxFeTa KKp h ) h ()
K

1
K2 IVival 2 < c’(
K w0 KeTp MaAXpe g2 KK,

Recalling the definition (6.3) of the contrast factor &y, we infer that KI%IIVW;l Iz < ¢ .{K% IIp;ll Whllz2r,) with
F, € 3"1‘3 C ?2. It is now straightforward to complete the proof of (4.9).

(2) Let us verify (4.10). Let (v, wp) € Vi, x V and let us set ey, := u — vy, and (as above) wy, := wp — T(wp,).
A direct calculation shows that

Cn(wp) — €(T(wp)) — an(vy, I - T)(wp)) = ,[fWh dx - J kVvp-Vwp dx + J(n~KVVh)Wh ds - J- NhVAWp ds
D D oD oD

= Z J—V-(KVeh)v‘vh dx - Z j[[KVvh]]-an‘vh ds - j Nnvawhp ds,
KeT? k FeF’ | oD

where fﬂ’f is the collection of the mesh interfaces that touch the boundary (note that wj, vanishes on all the
remaining interfaces in ;). The Cauchy-Schwarz inequality leads to

len = €o T —an(va, I -T)()lly; < cT1 %

with ¥; and T, defined by

1
2+2d(3-1) - 1 3
-1 2 -1 2 2
{Il = ( Z KK h]( s "V’(Kveh)”Lq(K) + Z KKFhF"[[KVVh]]'nF”LZ(F) + ||P;i €h ||L2(6D)) s
KeT? Feg;?
“2+2d(2-1) 5 _— 5 1 3
. q 27 -1y 2
D= (Y iy g+ Y. RKkeRE Tl + 105 Wl )
KeTy Fedy?

where, for all F € Sr;la, Kr is the mesh cell sharing F and having the larger value of ki (the choice of K is
irrelevant if both cells give the same value), hr is defined in Lemma 5.7, and where ¢’ is the conjugate number
of g. Moreover, in the last term defining ¥; and ¥, we have exploited the fact that u and T(wjy) have zero trace
at the boundary oD so that I, *vall12op) = oy, *enlli2opy and Iy Whlli2opy = Iy *Whllz2ap)-

(2a) Bound on ¥;. We need to bound ||[kVvx]-nrli2r and to this purpose we use Lemma 5.7. This is
possible since, by assumption, x is piecewise constant on the mesh T} and, therefore, [kVvy]-nr € Pr. We
infer that

-1 ~d(i-1)

h2NKVVR]-nEl 2y < chp * ° sup [xkVvi]-nreds.
peWy? (Dp) F
190l =1
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Let @ € Wé’q, (Df) be such that [Vol| Op) = 1. By the definition of the jump and using the divergence for-
mula, we have

J[[KVvh]]-nﬂp ds = J(vah)lKl'nKl(P ds + J(KVVh)lK,'nK,fp ds
F F F

=y JV-(goKVvh)dx: D J((pV~(KVvh)+KVvh-Vgo)dx,

KeTg K KeTrg K
where K, K, are the two mesh cells sharing the interface F and where we have set 7 = {K;, K,}. Moreover,
since g’ > 2, the zero-extension of ¢ to D is in Hé(D), and this implies that

Z J((pV-(KVu) + xVu-Vep)dx = 0.
KeTr K

Combining these two relations, we infer that

j[[KVvh]]-nﬂp ds = Z J((pV-(KVeh) + xVep-Veo)dx.
F KeTr g

Invoking Holder’s inequality and the Poincaré-Steklov inequality in Wé 4 (Dr), which implies that [ @l ) <
ChK"V‘p"Lq’(DF) = chg for all K € TF, we infer that

J’ @V-(xVep)dx
K

<@l gllV-(kVen)liLak) < chkllV-(kVen)llLax).

Moreover, invoking Holder’s inequality together with Vol s, < V@l s, , =1 forall K € Tp, g < 2, and
the shape-regularity of the mesh sequence, we infer that

-1
IKVeh-V¢ dx| < ||Vgo||Lqr(K)||KVeh||Lq(K) <chg®* IkVenllg2 -

K

Putting the above bounds together and since Kr has been chosen so that xx, = maxgeg, kx, we conclude that
1 < cllenllv,.
(2b) Bound on %,. Applying a inverse inequality from LY (K) to L2(K) for all K € T2, we infer that

1_1

-1+d(3-1) )

~ - ~ 1y
hK ||Wh||Lq’(K) = hK ||Wh||Lq’(1() < ChK Whllz2(x)-

Moreover, applying an inverse trace inequality on K for all F € 53, and invoking the shape-regularity of the
mesh sequence, we infer that

1 o

hp? IWhll2r) < chihIWnllz k) -
Finally, using the approximation property (6.2) onallK € T 2 and recalling the definition of the contrast factor
&, we conclude that

1
T2 < & lwally,-

This completes the proof of (4.10). O

6.2 Mollified Error Estimate

We are going to assume in this subsection that there is a real number r > 0 so that the exact solution u is
in H*7(D). Let k > 1 be the degree of the underlying finite elements. Let us set t := min(r, k). If 2t > d, let p

be any real number larger than 2. If 2t < d, let us set p = dz_—gt; clearly p > 2 since t > 0. Let us now consider
some real number g such that g > %. We define the functional space
Vs :={v e H'(D) | 6(v) € L’(D), V-0(v) € LY(D)}, (6.5)

with the shorthand notation o(v) := -k Vv for all v € H'(D). Notice that the pair (p, q) satisfies the require-
ments in (5.4).
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Lemma 6.2 (Exact Solution). Ifu € H*"(D), r > 0, and if the source term f is in L4(D) with q > %, thenu is
in Vs as defined by (6.5).

Proof. Owing to the Sobolev Embedding Theorem (see e.g., [9, Section 9.3]), we infer that H (D) < LP(D)
(indeed, if 2¢ < d, then we have H (D) — L5(D) for all s € [2, dz_—gt] = [2, p], whereas if 2t > d, then we have
H' (D) — H%(D) — L5(D) for all s € [2, 00), and choosing s = p again yields H (D) < LP(D)). Since r > ¢,
we infer that H' (D) < H'(D), so that the above argument implies that Vu € L? (D), and since «x is piecewise
constant and o(u) = —xVu, we have o(u) € LP (D). Moreover, since V-0(u) = f and f € L9(D) with g > % by
assumption, we have V-a(u) € L1(D). In conclusion, u € V. O

We are now ready to perform the error analysis. We consider the setting of Section 4.3 and we want to apply
Lemma 4.8. We set V; := Vs + Vj that we equip with the norm

_ dii-1) 1+d(
VI3, = Ivi3, + Y wit (R 7 WVl + hy

—0
KeT,

1.1y 2
TV )

where 5’2 is the collection of all the mesh cells having a boundary face, i.e., EZ = Feg? {KF}. Compared with
the norm defined by (6.4) used for the trimmed error estimate, we observe that there is now an additional
term measuring xVv in the L? -norm, but the summation is now restricted to the smaller set fz G T}‘?. Notice
also that (4.4) holds true with ¢, = 1. We define the following bilinear form on Vy x Vj:

ay(v, i) = JKVV-VW dx— ¥ (W), wh), (6.6)
D Feffg
recalling that for all F € FO ng, = n (the unit outward normal to D), and the action of the linear form
((@(v)ik,'n)|F, - has been defined in (5.6) for all F € F¢.

Lemma 6.3 (Mollified Error Estimate). The assumptions of Lemma 4.8 hold true for the bilinear form ay defined
by (6.6) and the stabilization bilinear form sy, defined by (3.5b). Moreover, the constant w“‘}ﬁlwh involvedin (4.12)
and the constant oy, w, involved in (4.14) are independent of the contrast in .

Proof. (1) Proof of (4.12). This is a direct consequence of (5.8), the Cauchy-Schwarz inequality, the choice
(3.6) of the penalty parameter pp, and the fact that [|p, wrl12op) < lwnllv, for all wy € V.

(2) Proof of (4.13a). Let v, wp € V. Let F € 3"2 and let Kr be the mesh cell having F as a boundary face.
Since the restriction of a(vy,) to Kr is smooth and since the restriction of EIF(F (wp) is nonzero only on the face F
of Kr, we have

((@(Vh)ik,-)\F> Wh) = j (0(vh)-EX" (Wh) + (V-0(vi))EX* (wp)) dx
Kr
- j (0(vi) K, 1k, )ES (i) ds
oKr

- [ (0whmwn ds,
F
where we have used the divergence formula in Kr and where we have dropped the restriction to K in the inte-
gral over Ky to alleviate the notation. Summing over all the boundary faces and recalling the definition (3.5)
of ap, we conclude that (4.13a) holds true.
(3) Proof of (4.13b). Let wy € Vyandletv € Vi.Let X3 : L'(D) — €*(D)and X3 : L}(D) — C*®(D) be the
mollification operators introduced in Section 5.1. Recall the following key commuting property:

V-(K§(1)) = KE(V-T) (6.7)

forall T € L1(D) such that V-1 € L*(D). It is important to realize that this property can be applied to @(v) since
V.0(v) € L1(D) by the definition of V. Let us consider the mollified bilinear form

nys(v, wh) i= Y (K§(OW)) ke 1)|Fs Wh)-
Fegy
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Owing to the commuting property (6.7), we infer that

(K@) 1)\, Wh) = j (K@ (v)-ERF (Wh) + KB(V-6(v)ENF (wp)) dx
Kr

By letting 6 | 0, Theorem 5.3 implies that

lim ](xg(ow»-EﬁF(wm + IBUV-0()ER (wp)) dx = j(a(v)-E?F(Wh) +(V-o(v)ERF (wy)) dx
Kr Kr

= {(0(V) |k N)|F, Wh).

Summing over the mesh boundary faces, we infer that

nys(v, wp) — J’ kVv-Vwpdx — az(v,wy) asé | O.
D

Moreover, since the mollified function fK%(a(v)) is smooth, by repeating the calculation done in step (2),
we also have

msvown) = Y [Gcdo)mywy ds.
FG’fﬁF

Since [[ﬂ(‘g(a(v))]]-np = [wp] = Oforall F € F}, we obtain

nys(v, wp) = Z K%(o(v))m-anh ds = J(Kd(a(v)) Vwy + K2 s(V-a(v))wp) dx,
KE‘T),BK D

where we used the divergence formula in each mesh cell K and the commuting property (6.7). Letting § | O
and invoking again Theorem 5.3 shows that

nys(v, wy) — J(a(v)-th + (V- o(v))wp)dx = - J(KVV-VWh + (V-(kVv))wp) dx.
D D

The proof of (4.13b) follows by identifying the two limits of nys(v, wy) and since ID(V-(KVM))Wh dx = ex(wp).
(4) Proof of (4.14). The Cauchy—Schwarz inequality implies that

1
n(Vhs v < nollpy, vallzzop)
Isn(va, llv: <n oy valz:

for all vj, € Vj, and (4.14) follows since any function vin V = Hé(D) has a zero trace on oD. O

7 Application to the Time-Harmonic Maxwell’s Equations

In this section, we show how the trimmed error estimate from Lemma 4.6 and the mollified error estimate
from Lemma 4.8 can be applied to the approximation of the time-harmonic Maxwell’s equations using
the boundary penalty method described in Section 3.3. The discrete space is V;, = P5(T3), and the space
V, := Ho(curl; D) + V}, can be equipped with the norm || - ||y, that extends to V), the norm |- ||y, originally
defined by (3.10) on Vj; notice in particular that functions in V,, have a well-defined tangential trace on oD.
Indeed, any function b € V, can be written as b = by + b, with by € Hy(curl; D) and by, € Vj, and we have
y¢(b) = bpjppxn so that
1 1
||P2b||L2(aD) = "Pgbh"LZ(aD)-

Finally, the discrete forms ap( -, -) and £j( - ) are defined by (3.8). The constants in the error estimates derived
in this section depend on the shape-regularity of the mesh sequence and on the reference finite element.
These constants can also depend on the local ratios ’;“K and K” X for all K € Ty; for simplicity, we will not

track these dependencies in what follows. Notice that these ratlos are equal to 1 when the coefficients j
and x are real.
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7.1 Trimmed Error Estimate

We define the trimming operator T : P$(T),) — PS5(Ty) N Ho(curl; D) = {by, € P$(Ty) | bpjopxn = 0} such that,
forall by € P¥(Ty), T(bn)k, forall K € Tp, is defined by zeroing out all the degrees of freedom of the tangential
component of by at the boundary. Note that the trimming operator couples the Cartesian components of by,
if the faces composing the boundary 0D are not orthogonal to the coordinate axes. We have T(by) = by on
allK € Ty \ ‘Ig, whereas forall K € 72, one can prove the following bounds for all by, € P%(T}) with ¢ uniform
with respect to h: If 0K n oD is composed of one or more boundary faces, then

1
hklIV(by - T(bh))”[,?(]() +[|bn — T(bh)”L?(K) < Chf(”bhxn"[}(a[map),

whereas if 0K N 0D is a manifold of dimension d’ < d — 1, then
1
hgllV(bp - T(bh))”L?(K) + by - T(bh)”L?(K) < Ch;(”bhxn"[,z(p) forall F e 3:?(:

where we recall that ETI‘E is the collection of the boundary faces containing the manifold 0K n 0D. We introduce
the contrast factor &, for the parameter x, which is defined similarly to (6.3) by replacing k by x,. We also
define the local magnetic Reynolds numbers {yx,r := Uy, x; h%(F /¥ forall F e 3"2. Finally, let us set

Vs := {v € Ho(curl; D) | Vx(xVxv) € L*(D)},

and let us equip the space Vy := Vs + Vj with the norm

1

IBlv, = (IBI3, + Y. K XREIVX(xBIZ. . ) (7.1)
KeT?

For simplicity, we assume that the trace space Pr contains the traces of the tangential derivatives of
functions in P (this is obviously the case if Py is the polynomial space Py 4(K; R?)).

Lemma 7.1 (Trimmed Error Estimate). The assumptions of Lemma 4.6 hold true with the trimming operator

T : P8(T3,) — PS8(T3,) n Ho(curl; D) defined above, where the constants wt‘ﬁiu’vh and wt‘ﬁiu’vh are proportional to

,i/ 2 and to max(1, (,},/(2), where &, is the contrast factor for x, and {yy := maXg, g Cux,F where . r is the local

magnetic Reynolds number associated with the boundary face F.
Proof. We only highlight the differences with respect to the proof of Lemma 6.1.
(1) Verification of (4.9). Let (vp, by) € Vi x V. Since T(by) € Ho(curl; D), we infer that

a(A, T(bn)) - an(vn, T(bp)) = J(ﬁ(A = Vn)-T(bn) + KVX(A = vp)-VxT(bp)) dx
D

1 1
<A = villv,(lu7 T(br)lig2py + k7 VXT(b)l2(py)-

Since |A - vhllv, < A - vhllv,, we just have to prove that |7 T(bn)ll 2 (py + K7 VXT(bp)l2(py < cllwnllv,. We
have T(by) = bponall K € Ty \ ‘J'g, so that we only need to bound T(by) on all K € ‘Tg. Reasoning as in the
proof of Lemma 6.1 and estimating the approximation properties of VxT(by) by those of VT(by), we infer
that, forall K € T}?, if 0K n oD is composed of one or more boundary faces, then

1 1 1
llx7 VXT(bh)"LZ(K) < Ix? Vth"LZ(K) + C||P;: (bhxn)”l,z(a]map),
whereas if the manifold 0K n 0D is of dimension d’ < d — 1, then
1 1 1o
k7 VXT(bn)lg2 k) < k7 Vxbhligz gy + c&i Iy (brxn)llp2 gy,

1
where F is a boundary face in CT“?( such that x; k, is maximal. The reasoning to bound |ju; T(bn)l L2k, for all
KeT 2 is similar and leads to the additional dependency on the factor max(1, {ux).
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(2) Verification of (4.10). Let (vi, bp) € Vi x Vyand letusset ey, := A — vy and dy, := by, — T(by). A direct
calculation shows that

n(bn) ~ E(T(bn) - an(Vi, (= T)(bw) = | - dx — | Evadi -+ 9xvyVxddy) dx ~ [ (nx(xvxvs)dyds

b b oD
~ [ nnvnxn) @ ds
oD
-2 J(ﬁeh-ﬁh + Vx(kVxen)-dp)dx + ) j nx[KVxvh]-dy ds
KeT? k Fed?
- J Nn(vpxn)-(dpxn) ds,
oD

where we recall that Sr;l" is the collection of the mesh interfaces that touch the boundary. The Cauchy-Schwarz
inequality leads to ||€y, — €0 T — ap(vy, (I - T)(- ))||v;1 < %1%, with T; and ¥, defined by

1

_ _ o 1 2
T :( y Vr,K||eh||iz(K)+Kr,}(h%("VX(KVXeh)||iz(K)+ Y Kr’}(thllIIKvah]]xnplliz(F)+||p; (thn)”iz(an))
KeT? Fedy?

and )

— 37— L 2
T=( Y Gk Kok o+ Y KB I ) + 07 (BrxlEagypy )
KeT? Feg;?

where, for all F € Sf;la, KF is the mesh cell sharing F and having the larger value of k,  (the choice of Kr is
irrelevant if both cells give the same value), and hp is defined in Lemma 5.7.

(2a) Bound on <. The bound on the terms composing the summation over K € T ,‘? is straightforward. To
bound || [kVxvy]xnpll 2 forall F e ?;’la, we use Lemma 5.7 (with p = 2). This is possible since, by assump-
tion, k is piecewise constant on the mesh T} and, therefore, [kVxvy]xnf € Pr. Finally,

1 1
"th (thn)"[,z(p) = ||Pﬁ (ehxn)”Lz(F)
forall F € 3’2, since the exact solution A has a zero tangential trace on oD.

(2b) Bound on ¥,. Reasoning as in the proof of Lemma 6.1, we infer that

1 1
1T2| < c§x, max(1, Gud)brllv,- O

7.2 Mollified Error Estimate

We are going to assume in this subsection that there is a real number r > 0 so that the exact solution A is
such that kVxA € H'(D). Let k > 1 be the degree of the underlying finite elements. We define p and ¢ as in
Section 6.2 and we set g = 2. Let us define the functional space

Vs :={b € Hy(curl; D) | kVxb € LP(D), Vx(xVxh) € L?(D)}. (7.2)
Lemma 7.2 (Exact Solution). IfA € Hy(curl; D), with kVxA € H' (D), r > O, then A is in V as defined by (7.2).
Let us equip the space V; := Vs + V, with the norm
2 2 “1 (4G 2
||b||vu :=|Iblly, + z Kr’K(hK [kVxbllLr k) + hK||V><(KV><b)||Lz(K)) .
Kefz
Compared with the norm defined by (7.1) used for the trimmed error estimate, we observe that there is now

an additional term measuring kVxb in the LP-norm, but the summation is now restricted to the smaller
—9 5 . s
set Ty ¢ 7). Letus define the following sesquilinear form on Vy x Vj:

a;(v, bp) := J(ﬁv-Eh + KVxv-Vxbp)dx + Y ((kVxV)k,xn)jp, g (bp)), (7.3)
D FeT?
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where IIr is the £2-orthogonal projection onto the hyperplane tangent to F, i.e., IIr(by) = by, — (by, n)pn.
Notice that IIr(by) is indeed a member of the space Y°(F) defined by (5.9b) since I1g(bp)-n = 0, and that
ITIe(Br)lle2 = [Brxnlle:.

Lemma 7.3 (Mollified Error Estimate). The assumptions of Lemma 4.8 hold true for the bilinear form ay defined
by (7.3) and the stabilization bilinear form sy, defined by (3.8b). Moreover, the constant w“‘}ﬁlwh involvedin (4.12)
and the constant oy, w, involved in (4.14) are independent of the contrast in .

Proof. We only highlight the differences with respect to the proof of Lemma 6.3.
(1) Verification of (4.12). This is a direct consequence of (5.8), the Cauchy—Schwarz inequality, the
choice (3.9) of the penalty parameter pp, and the fact that

1
oy wWhrlrzop)y < Iwallv,

for all wy € Vy,.

(2) Proof of (4.13a). The argument is the same as in the proof of Lemma 6.3.

(3) Proof of (4.13b). Let K§ : L*(D) — €*(D) and K¢ : L' (D) — C*(D) be the mollification operators
introduced in Section 5.1. The proof of (4.13b) now relies on the following key commuting property:

Vx(K§(1)) = KS(VxT),

which holds true for all T € L'(D) such that Vxt € L'(D). The rest of the argument follows the same lines as
in the proof of Lemma 6.3. .

(3) Verification of (4.14). The Cauchy—Schwarz inequality implies that ||sj, (bp, - )IIV;] < nollpj bnll2sp) for
all by, € Vp, and (4.14) follows since any function vin V = Hy(curl; D) has a zero tangential trace on 0D. [
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