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Mean-field model of the von Kármán sodium dynamo experiment using soft iron impellers
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It has been observed that dynamo action occurs in the von-Kármán-Sodium (VKS) experiment only when the
rotating disks and the blades are made of soft iron. The purpose of this paper is to numerically investigate the role
of soft iron in the VKS dynamo scenario. This is done by using a mean-field model based on an axisymmetric
mean flow, a localized permeability distribution, and a localized α effect modeling the action of the small velocity
scales between the blades. The action of the rotating blades is modeled by an axisymmetric effective permeability
field. Key properties of the flow giving to the numerical magnetic field a geometric structure similar to that
observed experimentally are identified. Depending on the permeability of the disks and the effective permeability
of the blades, the dynamo that is obtained is either oscillatory or stationary. Our numerical results confirm the
leading role played by the ferromagnetic impellers. A scenario for the VKS dynamo is proposed.

DOI: 10.1103/PhysRevE.91.013008 PACS number(s): 47.65.−d, 52.65.Kj, 91.25.Cw

I. INTRODUCTION

Nearly a century after Larmor hypothesized that the solar
magnetic field is the result of a magnetohydrodynamic (MHD)
instability in the conducting plasma (dynamo action), the exact
dynamical processes leading to MHD flows in astrophysical
objects remain rather obscure. For instance, whether dynamo
action can occur in a fully turbulent homogeneous flow
without large scale structures remains an open question.
After a considerable amount of observational, theoretical,
and numerical evidence, the first successful experimental
fluid dynamos were built in the early 2000s. At the present
time, only three experiments have produced fluid dynamos.
The first two experiments (Riga [1], Karlsruhe [2]) had a
relatively low turbulence level and produced an equatorial
dipolar magnetic field in agreement with the theoretical and
numerical kinematic dynamo models assuming axisymmetric
velocity fields. In contrast, the third one (von Kármán sodium
experiment located in Cadarache [3], henceforth referred to
as VKS) was highly turbulent and produced a magnetic field
which was mainly axisymmetric and dipolar on average. It is
reported in [4] that a necessary condition for dynamo action
to occur in the VKS experiment is that at least one of the two
counter-rotating impellers be made of soft iron. Moreover,
this requirement applies to both the disks and the blades.
More precisely, threshold estimates based on decay relaxation
times and induction experiments show that adopting steel
for one of these two elements moves the critical magnetic
Reynolds number for dynamo action above 1251 (using the
definition of the magnetic Reynolds number from [4]), which
is well above the largest value that can be reached in the
experiment; see [4, Table I]. It thus appears instructive to
examine the role of soft iron compared to steel: Is it that
soft iron simply helps to lower the critical magnetic Reynolds
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190 using the definition of the magnetic Reynolds number from [3].

number that can be reached in the VKS experiment, or does
this material lead to a specific dynamo mechanism? The
measurements in the VKS experiment cannot discriminate
between the above two hypotheses. One important obstacle
that prevents experimentalists to elucidate this dilemma is
that the flow field in the liquid sodium cannot be observed,
and even if it could (by replacing liquid sodium by water
for instance) the flow between the blades is difficult to
measure. This conundrum cannot be unequivocally resolved
numerically either, yet, since simulating numerically the whole
Cadarache experiment, including the rotating impellers, is
not feasible with the numerical tools currently available.
Some teams are working in this direction, though [5], in-
cluding ours, and it is reasonable to think that numerical
simulations of the VKS experiment at moderate kinetic
and magnetic Reynolds numbers could be done in the near
future.

The objective of the present paper is to propose a possible
scenario for the VKS dynamo involving primarily the magnetic
permeability of the impellers. We propose to investigate a
kinematic dynamo model of the VKS experiment based on
two simplifying assumptions about the blades: (i) the action
of the small scales of the flow trapped between the blades is
modeled by a localized α effect; (ii) the eight soft iron blades
of the real impellers are modeled by using an axisymmetric
distribution of effective relative magnetic permeability. The
kinematic approach is certainly not capable of explaining
all the details of the VKS experiment, but we posit that the
essential characteristics of the VKS dynamo (critical magnetic
Reynolds number around 30, axisymmetric geometry of the
magnetic field, dynamo action only with soft iron impellers)
can be captured by kinematic models close to the dynamo
threshold. For instance, the kinematic approach gave satisfying
descriptions of the dynamo process in the Karlsruhe and Riga
experiments.

The paper is organized as follows. The problem under
investigation and the numerical methods used to solve it
are presented in Sec. II. Section III presents numerical
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TABLE I. Largest growth rates of the axisymmetric eigenmode
with dipolar symmetry versus α, computed with SFEMANS and
FV/BEM. OSC means that the frequency is nonzero.

α γ (SFEMANS) γ (FV/BEM) OSC

−0.03 0.0127 0.0156 Yes
−0.015 − 0.0167 − 0.0155 Yes
−0.005 − 0.0513 − 0.0477 Yes
0 − 0.0353 − 0.0343 No
0.015 − 0.0030 − 0.0030 No
0.03 − 0.0338 − 0.0328 No
0.05 − 0.0383 − 0.0358 No

axisymmetric induction experiments that help to identify an
expulsion mechanism that is detrimental to the dynamo effect.
The range of parameters where dynamo action is achieved
is examined in Sec. IV and some comparisons between the
numerical model and the VKS experiment are attempted. It
is shown in this section that it is possible to find a realistic
range of values of α that triggers dynamo action provided the
effective relative magnetic permeability in the region swept
by the blades is large enough. It is also shown that in this
range of values for α, the dynamo vanishes when the effective
relative magnetic permeability of the impellers is that of steel.
Concluding remarks are reported in Sec. V; key similarities
between the VKS dynamo and our kinematic model are listed
in Sec. V A and, finally, a tentative scenario for the VKS
dynamo is proposed in Sec. V B.

II. PHYSICAL AND NUMERICAL SETTINGS

A. Geometry

We model the VKS device as a vessel composed of two
concentric cylindrical containers closed at their extremities
by two thin lids. (The exact configuration of the VKS
experiment is described in [4,6].) The radius of the inner
cylinder is henceforth defined to be the length unit, say L. The
nondimensional radius of the external cylinder is Re = 1.4 and
the nondimensional height of the vessel is L = 2.6. Using the
cylindrical coordinates (r,θ,z), with the convention that the
z axis is aligned with the axis of the cylindrical vessel, the
computational domain, 0 � r � Re, 0 � θ � 2π , |z| � L/2,
is denoted D; see Fig. 1.

The vessel is assumed to be filled with liquid sodium, and
the sodium enclosed between the inner and outer cylinders is
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FIG. 1. Bottom half of the meridian section of the VKS numerical
model.

kept stagnant at all times. The two impellers mounted at the
extremities of the inner cylinder are each composed of a disk
equipped with eight blades. The thickness and radial extension
of the disks is 0.1 and 0.9, respectively; i.e., the region occupied
by the disk is 0 � r � 0.9, 0 � θ < 2π , 0.9 � |z| � 1; see the
shaded region labeled “Disk” in Fig. 1. The relative magnetic
permeability of the disks is denoted μd . When rotating, the
eight blades sweep a volume of height 0.2 and radius 0.9, i.e.,
the region occupied on average by the blades is 0 � r � 0.9,
0 � θ < 2π , 0.7 � |z| � 0.9; see the region with diagonal
pattern labeled “Blades” in Fig. 1. The magnetic action of the
blades is modeled by assigning an axisymmetric distribution
of effective relative magnetic permeability to this volume, μb.
The fluid enclosed between the two blade regions is free to
move about in the inner cylinder. The vertical extension of this
column of liquid sodium is denoted 2h. Two sets of simulations
will be done using either h = 0.7 or h = 0.9, as explained in
Sec. III.

B. Velocity field

Denoting by U the reference velocity, the nondimensional
velocity field in the region 0 � r � 1, 0 � θ < 2π , |z| � h is
modeled by an analytical approximation of the averaged flow
measured in a water model [7]:

ur (r,z) = −(π/2h)r(1 − r)2(1 + 2r) cos(πz/h),

uθ (r,z) = −4εr(1 − r) sin(πz/2h),

uz(r,z) = (1 − r)(1 + r − 5r2) sin(πz/h),

⎧⎪⎨
⎪⎩

0 � r � 1,

0 � θ < 2π,

|z| � h.

(2.1)

This vector field is henceforth called the MND flow in
reference to the authors (Marié-Normand-Daviaud) of [7].
The parameter ε measures the ratio between the toroidal
and poloidal components of the velocity field. We choose
ε = 0.7259 in the rest of the paper since this ratio has been
shown in [8, Figs. 9, 10] to minimize the dynamo threshold.

The maximum of the Euclidean norm of the field (2.1) is
equal to 1; hence, the reference velocity U is equal to the
maximum of the Euclidean norm of the velocity field. We
discuss the cases h = 0.7 and h = 0.9 in Sec. III; the volume
swept by the blades is not included in the MND flow in the
first case but it is included in the second case. The velocity
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in the volume 0 � r � 1, 0 � θ < 2π , h � |z| � 1, which is either the blade and disk region if h = 0.7 or only the disk region
if h = 0.9, is assumed to be purely azimuthal and equal to the azimuthal component of the flow at z = ±h; i.e., upon defining
sgn(z) = z/|z|, we set

ur (r,z) = 0,

uθ (r,z) = −4 sgn(z)εr(1 − r),

uz(r,z) = 0,

⎧⎪⎨
⎪⎩

0 � r � 1,

0 � θ < 2π,

h � |z| � 1.

(2.2)

A lid-layer flow is also assumed to be established behind each impeller (i.e., in the domain 0 � r � 1, 0 � θ < 2π , 1 � |z| � L/2,
see “Lid layer” in Fig. 1) and the corresponding velocity field is modeled by setting

ur (r,z) = 0,

uθ (r,z) = −4 sgn(z)εr(1 − r)(L − 2|z|)/(L − 2),

uz(r,z) = 0,

⎧⎪⎨
⎪⎩

0 � r � 1,

0 � θ < 2π,

1 � |z| � L/2.

(2.3)

The MND flow (2.1) is a reasonable divergence-free approx-
imation of the mean axisymmetric velocity field measured
in water experiments using the same driving mechanisms as
in the VKS experiment [7,8]. The velocity fields (2.2) and
(2.3) are simple analytical extensions of the MND flow that
describe the rotation in the blade region and the decay of the
velocity behind the impellers. It is shown in [9] that the way the
flow is extended becomes less important when the magnetic
permeability of the impeller disks is large.

C. The mean-field model

Since no measurement of the average flow between the
blades is available, and the action of the blades is only
accounted for in average, we must appropriately model the
induction effect of the vortices that are trapped between
the blades. We have chosen for this purpose to use the so-
called mean-field dynamo theory; see, e.g., [10,11]. Denoting
by u′ the small scale flow and by b′ the induced small
scale magnetic induction, the mean-field approach consists
of assuming that the mean electromotive force induced by the
small scales of the velocity field is a linear function of the mean
magnetic induction and its first derivative, i.e., 〈u′×b′〉i =
aijBj + βijk∂jBk , where the tensors aij and βijk are a priori
anisotropic since the flow between the blades is strongly
anisotropic. The simplest model for the β effect consists
of setting βijk∂jBkei = −β∇ × B, which just amounts to a
change of electrical conductivity; see, e.g., [11, p. 194]. The α

effect is the simplest mechanism that couples the poloidal and
toroidal components of the magnetic field, which is the main
requirement for a dynamo. In the following, in an effort to
minimize the number of modeling parameters, we neglect the
β effect and assume that a is diagonal. The components of the
tensora can be estimated by evaluating the interaction between
the mean-field B and the jets trapped between the blades, which
we assume to flow outward in the radial direction (see [5,12]).
As explained in Fig. 2, applying an azimuthal or axial mean
magnetic induction generates an electromotive force 〈u′×b′〉
that is opposite to the applied mean field, and this electromotive
force is zero on average if the mean field is radial. This heuristic
arguments suggests that the dominant coefficients of the tensor
a are azz and aθθ and these coefficients should be nonpositive.

We have performed a series of tests (data not shown)
using either azz = aθθ �= 0 or azz = 0 with aθθ �= 0. These
simulations have led us to conclude that using azz �= 0 does
not significantly change the dynamo threshold. Hence, in
an effort to reduce the number of free parameters, we set
azz = 0 in the rest of this paper and only keep aθθ . The
term aθθ (B·eθ )eθ is alone sufficient to close the dynamo loop;
i.e., it converts toroidal energy into poloidal energy; see (2.6)
. The coefficient aθθ , henceforth denoted α, is additionally
assumed to be uniform in the cylindrical volume swept by
the blades (0.7 � |z| � 0.9,r � 0.9) and to be zero outside
this domain; i.e., we restrict the action of the α effect to
the blade region only. A realistic upper bound on α is the
root-mean-square velocity of the turbulent fluctuations of the
velocity in the impeller region. Since the characteristic velocity
is of the same order as that of the impellers [see (2.1)–(2.3)],
we consider that computational estimates of α are realistic
provided they remain much smaller than the typical flow
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FIG. 2. Heuristics for the α model. The jet between the blades
(top and bottom left) expels the fluid outward (thin arrow and
outward symbol for u′) and deforms the azimuthal component of
the mean magnetic induction B (thick arrow), resulting in small
scale perturbations b′ (top and bottom center panels) which, in turn,
generate an electromotive force u′×b′ (top and bottom right). Note
that u′×b′ is opposite to B. The same argument holds for a vertical
mean magnetic induction. This argument shows also that the radial
component of B yields an electromotive force that is zero on average,
thereby implying that arr can be neglected.
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speed; i.e., reasonable values of α should be in the range of
a few percent of the typical flow speed. The above model is
coherent with the Reynolds-averaged Navier–Stokes equations
(RANS) simulations done in [13] on the VKS configuration.
Using the Computational Fluid Dynamics finite-volume solver
code FLUENT6.3 together with a k − ε RANS model, it is
observed therein “that the helicity is mainly concentrated in
the impellers” and, assuming that a is proportional to the
helicity tensor, it is also observed that “the largest component
of the tensor in the rotating impeller is aθθ” and that it is
negative. This is further substantiated by direct measurements
of α in a toroidal screw flow leading to an estimate for α

in liquid sodium of the order of 10−3, . . . ,10−2 of the mean
flow [14].

Recalling that the characteristic length L is the radius
of the inner vessel and the characteristic velocity U is the
maximum amplitude of the MND flow, we define the advection
time T = L

U and introduce the magnetic Reynolds number
Rm = σ0μ0LU . The parameters σ0 and μ0 are the electrical
conductivity of liquid sodium and the magnetic permeability
of the vacuum, respectively. Our definition of the magnetic
Reynolds number is the same as in [3], assuming that the
maximum velocity in the bulk of the flow is about 60% of the
velocity at the rim of the blades; the 60% factor is the impeller
efficiency estimated in [3]. Our magnetic Reynolds number is
about 1.4 times smaller than that used in [4]. Using the above
length, velocity, and time scales, the nondimensional mean
field equation is

∂tB = ∇ × [(u×B) + α(B·eθ )eθ ]

− 1

Rm
∇ ×

[
1

σr

∇ ×
(

B
μr

)]
, (2.4)

where σr and μr are the relative electrical conductivity and
magnetic permeability fields, respectively; these parameters
are not constant since the impellers may be composed of
copper, steel, or soft iron. Since we have shown in [9, Fig. 7]
that the magnetic permeability is the key material property
that controls the ability of the impellers to store toroidal
magnetic energy in the impellers, we assume in the rest of the
paper that the conductivity is constant everywhere (σr = 1)
in order to minimize the number of free parameters. The
relative permeability in the disks is chosen to be μd = 60,
which is a value close to that measured in [15] for the soft iron
impellers used in the VKS experiment. The permeability in
the axisymmetric domain swept by the blades (0.7 � |z| �
0.9, r � 0.9) is modeled by a uniform, effective, relative
permeability in the range 1 < μb < μd to take into account
the partial filling of the volume by the blades. Note that owing
to the identity ∇ × (u×B) = B · ∇u − u · ∇B, (2.4) can also
be rewritten

dB
dt

+ 1

Rm
∇ ×

[
1

σr

∇ ×
(

B
μr

)]

= B · ∇u + ∇ × [α(B·eθ )eθ ], (2.5)

where dB
dt

:= ∂tB + u · ∇B is the material derivative. Note
that when the field B is axisymmetric, the production
term B · ∇u + ∇×[

α(B·eθ )eθ

]
takes the form in cylindrical

coordinates

B · ∇u + ∇ × [α(B·eθ )eθ ]

=

⎧⎪⎪⎨
⎪⎪⎩

(Br∂r + Bz∂z)ur − ∂z(αBθ ),

[Br (∂r − r−1) + Bz∂z]uθ ,

(Br∂r + Bz∂z)uz + r−1∂r (rαBθ ),

(2.6)

which clearly shows that the α effect couples the poloidal
components of B to its toroidal component, and the differential
rotation couples the poloidal components to the toroidal one
(this is the so-called 
 effect).

To avoid ambiguities, in the rest of the paper we call H
the magnetic field and B := μH the magnetic induction. The
mean-field equation (2.4) is supplemented with the so-called
pseudovacuum boundary condition H×n = 0 at the walls of
the vessel, which corresponds to assuming that the exterior of
the computational domain is a perfect ferromagnetic material.
Preliminary computations (not reported here) done with either
the vacuum or the pseudovacuum boundary conditions have
shown that the impact of the boundary conditions on the growth
rates is not significant when the magnetic permeability of the
impeller disks is large (see also [9,16,17]). We henceforth
restrict ourselves to the pseudovacuum condition since the
computations with this boundary condition use less resources
than with the vacuum condition.

The resulting system of partial differential equations is
solved using two independent codes, SFEMANS and FV/BEM,
presented in [9]. The continuity of the normal component of
the magnetic induction B and that of tangential component
of the magnetic field H are ensured in SFEMANS by using an
interior penalty method at the various interfaces. The jump
conditions across material interfaces are enforced in FV/BEM

by applying simple and robust averaging rules which amount
to smoothing the discontinuities.

Since it is reported in [3] that the critical magnetic Reynolds
number of the VKS dynamo with soft iron impellers is
about 32, we henceforth fix Rm = 30. In the remainder of
the paper, we numerically determine the values of the two
phenomenological parameters α and μb that are critical for
dynamo action.

III. THE EXPULSION MECHANISM AND CHOICE OF h

Before going through the kinematic dynamo program, we
show how the flow parameter h introduced in (2.1) is chosen.
Recall that 2h is the vertical extension of the column of liquid
sodium that is free to move about in the inner cylinder. Our
investigation of the influence of the parameter h has been
motivated by negative results obtained by other teams and
ourselves when assuming that the MND region extends up to
h = 0.9, i.e., includes the blade region. Some of these results,
all obtained with h = 0.9, can be summarized as follows.

(i) Axisymmetric dynamo action occurs for unrealistic
values of α (of the order of the maximum velocity of the
impellers) when assuming that the distribution of α is localized
in the domain swept by the blades and when using either steel
impellers (μd = μb = 1) or perfect ferromagnetic impellers
(μd = μb = ∞) (see [16,18,19]).
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(ii) Axisymmetric dynamo action takes place for realistic
values of α (typically a few percent of the maximum velocity)
when assuming that the distribution of the α effect is uniform
in the entire inner cylinder (0 � r � 1, |z| � 1.3) and when
using soft iron impellers (μd = μb = 40 for 0.7 � |z| � 1).
However, assuming that α is nonzero in the disks is clearly
unphysical [20].

(iii) No dynamo has been obtained using soft iron impellers
(μd = μb = 60 for 0.7 � |z| � 1) with realistic values of α

and distributions of α that all vanish in the impellers. We
have tested a uniform distribution in the bulk of the flow
and various distributions localized near the impellers without
success (results not reported).
These negative results (all obtained with h = 0.9) seem to
be paradoxical when compared to those from [18] and those
from [21] where Ohmic decay tests with various values of
Rm and α = 0 show that the dominant decaying axisymmetric
mode is purely toroidal and localized in the high-permeability
domain composing the disks.

In the spirit of [21], we conduct induction tests with α = 0
to better evaluate the effect of the high permeability of the two
counter-rotating regions and the effect of h. Starting from zero
initial data, the test consists of generating an axisymmetric
poloidal field by enforcing a current in a closed toroidal loop
located in the equatorial plane and of major radius 0.5 and
minor radius 0.05. The test is done once with h = 0.9 and once
with h = 0.7. We set α = 0, Rm = 30, μd = 60, μb = 10,
and the velocity is the MND field. Note that since α = 0 and
axisymmetry is assumed, the poloidal magnetic field is not
coupled to the toroidal one and dynamo action is not possible
[see (2.6)].

Figure 3 shows the time evolution of the magnetic energy,
1
2

∫
D B·H dv, in the computational domain D. The results

for h = 0.9 and h = 0.7 are shown in panels (a) and (b),
respectively. In both cases the poloidal energy grows first
and saturates in about one diffusion time (t ≈ 30 = Rm).
As expected, the differential rotation within the MND flow
produces toroidal magnetic energy through the so-called 


effect. After about three rotation periods (t ≈ 20) the toroidal
energy becomes larger than the poloidal one and accumulates
in the high-permeability domain, i.e., the disk and the blades.
Saturation is reached in about 15 rotation periods and the

toroidal energy is about three times larger than the poloidal
one. Other tests, not reported here, show the same behavior
when μb varies between 1 and 60.

It is remarkable that the toroidal energy in the case h = 0.7
saturates at a level that is 50% higher than when h = 0.9. The
origin of this difference becomes apparent when inspecting
the profiles of the components of the magnetic induction
along the vertical line r = 0.3, 0 � |z| � 1.3, as shown in
Fig. 4. The amplitude of the poloidal components, Br , Bz, are
comparable in the two cases, whereas the amplitude of the
toroidal component, Bθ , is significantly larger when h = 0.7
than when h = 0.9. The ratio Bθ (h = 0.7)/Bθ (h = 0.9) is 3 in
the soft iron disks (0.9 � |z| � 1) and 10 in the domain swept
by the blades (0.7 � |z| � 0.9).

Note that the two tangent components of the magnetic
induction are discontinuous across the three interfaces |z| =
0.7, |z| = 0.9, and |z| = 1, where the permeability is dis-
continuous, since the tangential components of the magnetic
field H×n are continuous across these interfaces. These
jumps are visible on the Bθ component and one should
have (B+

θ − B−
θ )/B+

θ = (μ+ − μ−)/μ+. For instance, for
h = 0.7, we have Bθ (1+) = 0.0079, Bθ (1−) = 0.485, which
gives (B+

θ − B−
θ )/B+

θ = −60.4 ≈ −59.0 = (μ+ − μ−)/μ+,
then Bθ (0.9+) = 0.486, Bθ (0.9−) = 0.079, which gives
(B+

θ − B−
θ )/B+

θ = 0.837 ≈ 0.833 = (μ+ − μ−)/μ+, and fi-
nally Bθ (z = 0.7+) = 0.061, Bθ (0.7−) = 0.0056, which gives
(B+

θ − B−
θ )/B+

θ = 0.908 ≈ 0.900 = (μ+ − μ−)/μ+. In con-
clusion, we observe that the jump conditions are satisfied,
although enforced weakly in SFEMANS.

Upon noticing that the radial speed is maximal at |z| = h,
the above numerical experiment leads us to draw an important
conclusion. When h = 0.9, the radial component of the MND
velocity field, which is large in the volume occupied by the
blades 0.7 � |z| � 0.9, sweeps away the toroidal component
of the magnetic induction, thereby making the term αBθ in
(2.4) inefficient. In other words, the expulsion effect that occurs
when h = 0.9 inhibits the action of the α effect in the region
where the toroidal magnetic field could be stored. Although
the heuristic argument leading to the α effect postulates the
existence of swirling jets flowing outward between the blades
(see discussion in Sec. II) and in the absence of experimental
data, giving us a better knowledge of the flow between the
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FIG. 3. Time evolution of the toroidal, poloidal, and total magnetic energy in induction runs with the MND velocity field with μd = 60,
μb = 10 using h = 0.9 (a) and h = 0.7 (b).
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FIG. 4. Induction runs with different MND flows. Profiles as a function of z at r = 0.3 of the steady magnetic field with different MND
flows: (a) h = 0.9; (b) h = 0.7.

blades, we choose in the rest of the paper to work with h =
0.7. According to (2.2), this choice implies that the radial
component of the velocity in the impeller domain (blades and
disks) is zero.

IV. DYNAMO ACTION

In this section we look for dynamo action by exploring
various scenarios involving μd , μb, Rm, α, and the MND
velocity field. Except in Sec. IV C, we always use the MND
velocity field as defined in (2.1)–(2.3). Except in Sec. IV E,
all the computations are done assuming axisymmetry of the
eigenmodes.

A. Growth rates for μd = 60

In the kinematic dynamo framework, the temporal be-
havior of the magnetic induction can be expressed as B =∑

n∈N Bn(r,θ,z)eδnt , where (δn,Bn(r,θ,z))n∈N are eigenpairs
of the differential operator in the right-hand side of (2.4).
We henceforth refer to γ := Re(δ) as the growth rate and
f := Im(δ) as the frequency; the index n is dropped when the
context is unambiguous.

When the angular velocities of the two impellers are
exactly opposite (i.e., exact counter-rotation), the geometric
configuration possesses the symmetry of rotation by π about
any axis contained in the equatorial plane. This symmetry,
which we denote Rπ (see, e.g., [22, Sec. II C]), is equivalent
to the combined action of reflections in θ = 0 and in z = 0;
more precisely,

Rπ (Ar,Aθ ,Az)(r,θ,z) = (Ar, − Aθ, − Az)
T(r, − θ, − z).

(4.1)

The set of axisymmetric eigenvectors can be classified into two
families depending on their invariance by the Rπ symmetry.
We call dipolar modes the axisymmetric vector fields BD

such that Rπ (BD) = −BD , and we call quadrupolar modes the
axisymmetric vector fields BQ such that Rπ (BQ) = BQ. These
two families of modes are independent and are associated with
two distinct families of eigenspaces.

In the rest of this section we use Rm = 30, μb = 10, and
for the permeability of the disks we set μd = 60, which is
a value close to that measured in [15]. The eigenpairs are

computed by using either ARPACK (for SFEMANS) or time
integration (for FV/BEM). Table I shows growth rates computed
with SFEMANS and FV/BEM for α ∈ [−0.03, + 0.05]. For each
value of α, the growth rate reported in the table is the largest
that is associated with a dipolar eigenmode. Some deviations
between the results are evident, which may be caused by slight
differences in the space discretization used in each code (e.g.,
the permeability jumps at the fluid-disk/blade interface are
smoothed in FV/BEM) or the way the eigenvalues are evaluated
(ARPACK vs time integration).

Figure 5 shows the largest growth rate of the axisymmetric
modes with dipolar symmetry (red curve) and with quadrupo-
lar symmetry (blue curve) for α ∈ [−0.03,0.05]. Dynamo
action occurs for α � αc ≈ −0.025 and no dynamo is obtained
for positive values of α. The bifurcation happening at αc

is of Hopf type; for instance, for α = −0.03, the growth
rate is ∼ 0.014 and the oscillation period is T = 2π/f =
2π/0.072 ≈ 87. We consider that the value of the threshold,
αc ≈ −0.025, is realistic since the maximal speed of the MND
velocity field is one in our advective units. Moreover, that αc

is negative agrees with the heuristic argumentation developed
in Sec. II.
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FIG. 5. (Color online) Largest growth rates of axisymmetric
modes for α ∈ [−0.03,0.05], Rm = 30, μb = 10, and μd = 60
(dipolar and quadrupolar eigenvectors).
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The spatial structure of the dipolar eigenmode is shown in
Fig. 7(b). The left panel shows the out-of-plane component of
the magnetic field and the arrows materializing the poloidal
component. The right panel shows the isosurface of 20% of
the maximum of the magnetic energy and the magnetic field
lines colored by Hz.

B. Comparison with VKS experiment and μd → ∞ limit

The magnetic fields generated in the VKS experiment are
mainly axisymmetric, have the dipolar symmetry, and are
stationary when close to the threshold and when the two
counter-rotating impellers have exactly opposite angular ve-
locities. If the impellers rotate at slightly different frequencies,
the magnetic fields that are generated are still axisymmetric,
but they are also time dependent and alternate between dipo-
lar and quadrupolar symmetry. The nonoscillating behavior
observed when the angular velocities of the two impellers
are exactly opposite is also predicted in the low dimensional
model of [23] in which the magnetic field is assumed to be
the superimposition of a dipolar and a quadrupolar mode.
Denoting by D and Q the amplitude of the dipolar and
quadrupolar modes, respectively, and assuming that these two
modes are coupled through a complex amplitude equation
for A = D + iQ, it is shown in [23] that the Rπ symmetry
implies that the normal form for A only admits real coefficients
and, under appropriate simplifications, the bifurcation is of
pitchfork type. We then face the question of why is it that
we find numerically an oscillatory dipolar mode, whereas the
dipolar mode in the experiment and in the simplified normal
form analysis of [23] is stationary?

One possible answer to this problem is that we are running
linear kinematic dynamo simulations and linearity makes the
normal form analysis irrelevant. In other words, the dipolar
and quadupolar modes that we observe a priori live in different
eigenspaces and cannot interact. A more satisfactory answer
consists of exploring the full range of the parameter μd and in
particular the limit μd → +∞. Actually, keeping μb = 10,
simulations not reported here show that the period of the
critical dipolar eigenmode increases as the permeability of
the disk μd increases and eventually tends to infinity when μd

goes to +∞. Even more revealing, when setting μd = +∞,
the growth rates of the dipole and quadrupole converge to the
same values as the α effect becomes stronger as shown in
Fig. 6. Actually, the two growth rates coincide when α is less
than αc ≈ −0.012. This means that the axisymmetric dipolar
and quadrupolar eigenmodes coexist in the same eigenspace
and are stationary when μd = +∞ (keeping μb = 10). It is
therefore reasonable to imagine that nonlinearities together
with slight imperfections in the experiment (angular velocities
not exactly opposite, μd �= ∞) authorize the simultaneous
presence of the dipolar and quadrupolar modes, and that
the observed magnetic field may oscillate between these two
states.

The above conclusion is reinforced when we compare the
structure of the eigenmode obtained for α = −0.03, μb = 10,
and μd = +∞ [shown in Fig. 7(a)], with the magnetic field
measured at saturation in the VKS experiment (see Fig. 6(b)
in [24]). To better evaluate the influence of μd , we also show
in panel (b) of Fig. 7 the eigenmode obtained with μd = 60,
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FIG. 6. (Color online) Largest growth rates of axisymmetric
modes for α ∈ [−0.03,0.03] Rm = 30, μb = 10, and μd = ∞ (dipo-
lar and quadrupolar eigenvectors).

all the other parameters being unchanged. In both Figs. 7(a)
and 7(b), the left panel shows the poloidal vector field (Hr,Hz)
and the contours of the out-of-plane component of H. The
out-of-plane magnetic field has extrema close to the impellers
and the poloidal field has a very strong axial component close
to the rotation axis.

The similarities between the computed and experimental
fields are even more striking when we compare the radial
profiles of the components of the magnetic field H along the
lines z = 0, z = ±0.51, as shown on Fig. 8, with those of the
magnetic induction B in the VKS dynamo at z = 0, z = ±0.52
(see Fig. 5(b) of [24]). Note that B = μ0H along the line z = 0,
z = ±0.52, which are in the fluid region, where μr = 1.

In conclusion, notwithstanding the simplifications made in
the present numerical model, the limit μd → +∞ reproduces
very well the observations from both the VKS experiment and
the normal form analysis.

C. Role of the poloidal velocity field

In this section we assess the role of the poloidal component
of the velocity field by removing its contribution from the
MND profile; that is to say, we set ur = uz = 0 in (2.1) and
keep (2.2) and (2.3) unchanged. We also take ε = 1 in (2.1)–
(2.3) so that the maximum velocity is still equal to 1 in the
bulk of the flow. Observe from (2.6) that the generation of
the poloidal field (Br,Bz) now relies only on the α effect; the
generation of the toroidal component Bθ through the radial
and axial gradients of uθ is unchanged (
 effect).

The numerical simulations are done with μd = 60, μb =
10, and Rm = 30. The growth rate of the dipolar mode is shown
in panel (a) of Fig. 9; see solid line labeled Dip-noPol. It is
remarkable that the capacity of this severely truncated velocity
field to produce dynamo action is similar to that of the full
MND profile; see line labeled Dip. The spatial distribution of
the magnetic field, H, obtained with α = −0.03 is shown in
panel (b) of Fig. 9. Although the growth rate of this mode
is very close to that obtained with the full MND profile, the
two fields show major differences. The poloidal field and the
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(a) (b)

FIG. 7. (Color online) Dipolar eigenmode for μd = ∞ (a) and μd = 60 (b), with μb = 10, Rm = 30, and α = −0.03 in both cases. Shown
in panels (a) and (b) are (left) a meridional section, where colors represent the out-of-plane magnetic field component and the arrows materialize
the poloidal magnetic field; and (right) an isosurface of 20% of the maximum of the magnetic energy and magnetic field lines colored by Hz

[from blue (near axis) Hz = −0.01 to red (outside axis) Hz = 0].

contours of the out-of-plane magnetic field reveal that the
magnetic field is localized close to the impellers.

The radial profiles of the magnetic fields obtained with
the truncated and with the full MND velocity field also differ
notably, as can be seen in Fig. 10. These simulations show the
impact of the poloidal component of the velocity field on the
transport of the magnetic field.

D. Influence of μb

We now explore the influence of the effective permeability
in the region swept by the blades by setting μb = 60 and

by computing the growth rate of the dipolar mode for α ∈
[−0.02, + 0.02], keeping μd = 60 and Rm = 30 and using
the full MND field. The results are reported in Fig. 11 and
are compared with those already obtained with μb = 10.
The results shown in the figure have been obtained with
SFEMANS, but those given by FV/BEM are similar; for instance,
SFEMANS gives γ = 0.158 and FV/BEM gives γ = 0.167 for
α = −0.02. A striking feature of the case μb = 60 is that
dynamo action is obtained with both positive and negative
values of α, as already found in [20], where it is assumed that
α is uniformly distributed in the entire computational domain.
The bifurcations at α−

c ≈ −0.0047 and α+
c ≈ +0.0052 are
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FIG. 8. Dipolar eigenmode for μd = ∞ (top row) and μd = 60 (bottom row), with μb = 10, Rm = 30, and α = −0.03. Radial profiles of
Hr (a),(d), Hθ (b),(e), and Hz (c),(f) at z = 0, ± 0.51, as indicated.
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FIG. 9. (Color online) Dynamo runs with the toroidal MND flow using μb = 10, μd = 60, Rm = 30. (a) Comparison of dipolar growth
rate versus α for the toroidal MND field (labeled Dip-noPol) and the full MND velocity field (labeled Dip as in Fig. 5). (b) Dipolar eigenmode
for α = −0.03 using toroidal MND field; (c) Dipolar eigenmode for α = −0.03 using full MND field [as in Fig. 7(b)]. Colors represent the
out-of-plane component of the magnetic field and the arrows materialize the poloidal component.

both oscillatory. Note that the critical values of α for μb = 10
and μb = 60 are in proportion of the magnetic permeabilities,
i.e., 0.025/0.0047 ≈ 5.3 ≈ 60/10, suggesting that the α effect
in the blade region is controlled by the product αμb.

E. Dynamo with steel material?

Following the VKS experimental results described in [4],
we now perform computations with α = −0.03 using materi-
als of low magnetic permeability for the blades and the disks.
More precisely, we compute the growth rates by making Rm

vary in the range [30,430] and by using iron disks and steel
blades in one case, and by using disks and blades made of steel
in the other case. The first case (μd = 60, μb = 1) is referred
to as run Q in [4], and the second case (μd = 1, μb = 1) is
referred to as run P. The computations are done with SFEMANS

using ARPACK, and in each case we look for the leading
eigenvalue of the first two azimuthal Fourier modes, which we
denote m = 0 (axisymmetric mode) and m = 1, respectively.
The results are reported in panel (a) of Fig. 12 for run Q and
in panel (b) for run P.

An axisymmetric dynamo is obtained for Rm � Rc
m ≈ 120

for the composite impellers, i.e., run Q. The first unstable
mode is quadrupolar. The Fourier mode m = 1 has a negative
growth rate in the range 0 � Rm � 130 and has the structure

of a stationary equatorial dipole. The threshold Rc
m ≈ 120 for

axisymmetric dynamo action is compatible with the threshold
∼ 190 estimated in [4] for run Q by extrapolating measured
decay rates at various magnetic Reynolds numbers. No
dynamo action is obtained for Rm � 430 when the impellers
are made of steel, i.e., run P. This conclusion is again in
agreement with that from [4]. These numerical experiments
show that it is necessary to have blades made of a material
with a relative magnetic permeability larger than 1 to obtain
dynamo action in the VKS experiment at a magnetic Reynolds
number less than 70, which is the upper bound that can be
reached with the current power supply.

V. CONCLUDING REMARKS

The kinematic dynamo simulations presented in this paper
are based on a mean-field model relying on three phenomeno-
logical parameters: the magnetic permeability of the disks, μd ;
the effective permeability of the domain swept by the blades,
μb; the component aθθ of the α tensor. For the α-effect model
to be effective with realistic values of α, i.e., a few percent
of the reference velocity scale, it is necessary to have a large
value of μd . For the critical magnetic Reynolds number to be
within the limits of the power supply available in the VKS
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FIG. 11. (Color online) Largest growth rate of the axisymmetric
dipolar mode with μd = 60 for α ∈ [−0.03,0.05], using either μb =
10 (as in Fig. 5, solid line labeled 10-60) or μb = 60 (dashed line
labeled 60-60).

experiment, it is also necessary that the blades be made of a
material of moderately large permeability.

A. Similarities with the VKS dynamo

The model exhibits features that are all observed in the VKS
experiment.

(i) Dynamo action occurs at Rm = 30 using a realistic
value of α (say, α = −0.03) when the disks are composed
of soft iron and the effective permeability in the region swept
by the blades is large enough (μb = 10).

(ii) The two most unstable modes at Rm = 30 are ax-
isymmetric and have dipolar and quadrupolar symmetry,
respectively. These modes are slowly oscillatory and occur
at different thresholds on α when μd = 60, but they become
steady and the corresponding two eigenspaces merge to form
a two-dimensional vector space when μd → +∞. These two
modes are observed to exist in the VKS experiment when the
rotation frequencies of the two impellers are different.

(iii) The most unstable mode at Rm = 30 is an axisymmet-
ric dipole when the angular velocities of the two impellers are
exactly opposite. This mode is dominated by the Bz component
close to the axis and by the Bθ component in the vicinity of the
impellers (see Fig. 7). The spatial distribution of this mode is
very close to that observed at saturation in the VKS experiment
(see Fig. 6(b) of [24]). The radial profiles of the components
of the magnetic field along the lines z = 0, z = ±0.51 are
also close to those observed experimentally (compare Figs. 8
and 5(b) of [24]).

(iv) Dynamo action is possible with soft iron disks and
steel blades using a realistic value of α (say α = −0.03), but
the corresponding critical magnetic Reynolds number is close
to 120, making it unobservable with the power supply that is
currently available in the VKS experiment. The most unstable
mode is an axisymmetric quadrupole. Induction experiments
reported in [4] suggest that the critical Rm could be ∼ 190,
which is roughly in agreement with our estimate considering
that our definition of Rm is different from that in [4] [see
discussion before (2.4)].

(v) No dynamo action occurs with steel impellers (both the
disks and the blades made of steel) with a realistic value of
α (say α = −0.03) in the range Rm ∈ [30,430]. We have also
verified (results not shown here) that there is no dynamo action
at Rm = 30 in the range α ∈ [−5, + 5]. Moreover, induction
experiments reported in [4] suggest that turbulence dissipation
increases with Rm, which suggests that dynamo action may not
be possible in any reasonable range for the magnetic Reynolds
number with steel impellers.

B. Tentative scenario for the VKS dynamo

Our model agrees with the induction experiments reported
in [4] and confirms that the presence of ferromagnetic material
is important to understand the VKS experiment. The numerical
simulations reported in the present paper and those reported
in [9,21] then lead us to think that the interaction between the
ferromagnetic material and the recirculating flow between the
blades may be a potential candidate for the source of the VKS
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FIG. 12. (Color online) Growth rates of Fourier modes m = 0 (solid line labeled m = 0) and m = 1 (dashed line labeled m = 1) with
α = −0.03 for Rm ∈ [30,430]: (a) with μb = 1, μd = 60; (b) with μb = 1, μd = 1.
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dynamo. More precisely, we propose the following three step
scenario:

(1) accumulation of toroidal energy in the disks when μd

is large;
(2) creation of poloidal energy in the blade region by

interaction between the toroidal mean field that accumulates
in the disks and the velocity field recirculating between the
blades;

(3) transport by the bulk flow throughout the entire vessel
and generation of toroidal energy by 
 effect.

The accumulation of toroidal energy in the disks is
supported by previous studies reported in [9,21]. It is shown
therein that the disks have a strong tendency to store toroidal
energy as μd grows (see Figs. 5 and 6 in [21] and Figs. 5
and 7 in [9]). Moreover, the linear stability analysis (without
α modeling) shows that the axisymmetric mode (though
decaying) is dominant when μd � 18 (see Fig. 5 in [21]).
The recirculating velocity field between the blades interacts
with the axisymmetric toroidal mean field that dominates in the
neighborhood of the disks. The small scale radial perturbations
of the magnetic field are focalized and amplified by the blades
when μb is large, as shown in [25]; this is the localized α effect
(see Fig. 2).

This tentative scenario is reminiscent of the flux transport
dynamo mechanism frequently invoked for the solar dynamo.
Recall that this model of the solar cycle is based on the
accumulation of toroidal energy in the tachocline region
(transition region between the solar convective and radiative
zones), the production of poloidal energy due to the α effect

induced by the helicity generated by simultaneous action of
buoyancy and Coriolis acceleration, and finally a meridional
transport by the bulk flow between the equator and the poles.
Contrary to the conventional picture of a dynamo loop where
poloidal and toroidal energies are locally coupled, in flux
transport models the coupling occurs sequentially in separate
regions.

The above model is still speculative and its validation
would require a better knowledge of the fluid flow between
the blades, which is a difficult task, either experimentally or
numerically, even in the purely hydrodynamical case: Flow
measurements between the blades are just starting [26] and the
lack of resolution is a permanent challenge for direct numerical
simulations. Finally, let us recall that further nonlinear MHD
computations aiming at realistically reproducing the VKS
dynamo will have to overcome the challenge of having to
deal with very small magnetic Prandl numbers (Rm/Re � 1),
and to account for blades made of soft iron they will have to
properly implement jump conditions on moving boundaries.
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Pétrélis, M. Bourgoin, Ph. Odier, J.-F. Pinton, N. Plihon, and R.
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Pinton, Induction in a von Kármán flow driven by ferromagnetic
impellers, New J. Phys. 12, 033006 (2010).

[16] R. Laguerre, C. Nore, A. Ribeiro, J. Léorat, J.-L. Guermond, and
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