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Abstract
Purpose – The purpose of this paper is to present a new formulation for taking into account the
convective term due to an imposed velocity field in the induction equation in a code based on Whitney
elements called DOLMEN. Different Whitney forms are used to approximate the dependent variables.
The authors study the kinematic dynamo action in a von Kármán configuration and obtain results in
good agreement with those provided by another well validated code called SFEMaNS. DOLMEN is
developed to investigate the dynamo action in non-axisymmetric domains like the impeller driven flow
of the von Kármán Sodium (VKS) experiment. The authors show that a 3D magnetic field dominated
by an axisymmetric vertical dipole can grow in a kinematic dynamo configuration using an analytical
velocity field.
Design/methodology/approach – Different Whitney forms are used to approximate the dependent
variables. The vector potential is discretized using first-order edge elements of the first family. The
velocity is approximated by using the first-order Raviart-Thomas elements. The time stepping is done
by using the Crank-Nicolson scheme.
Findings – The authors study the kinematic dynamo action in a von Kármán configuration and
obtain results in good agreement with those provided by another well validated code called SFEMaNS.
The authors show that a 3D magnetic field dominated by an axisymmetric vertical dipole can grow in a
kinematic dynamo configuration using an analytical velocity field.
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1. Motivation
Still a century after Larmor suggested that dynamo action can be a source of magnetic
field in planets and stars, the exact mechanism by which a fluid dynamo can be put in
action in astrophysical bodies remains largely an open question. Moreover, it is only
recently that fluid dynamos have been produced experimentally. For instance, in the Riga
(Gailitis et al., 2000) and Karlsruhe (Stieglitz and Müller, 2001) experiments, both
successful in 1999, the observed magnetic field had the expected spatial distribution,
namely, a non-axisymmetric equatorial dipolar structure, and the observed thresholds for
dynamo action agreed with the calculations performed with simplified velocity fields and
geometries. But in the successful von Kármán Sodium (VKS) dynamo experiment of
September 2006 at Cadarache (see Monchaux et al., 2007), the magnetic field that was
observed showed a strong axisymmetric component (aligned with the symmetry axis of
the set-up) that could not be predicted using simplified axisymmetric velocity fields and
geometries. Moreover, dynamo action could be observed only when at least one of the
rotating impellers driving the flow was made of soft iron. It is now recognized that
the high magnetic permeability of the impellers plays a crucial role in the selection of the
axisymmetric mode in the VKS dynamo experiment (Miralles et al., 2013). The main
motivation of this paper is to present a finite element technique to simulate the kinematic
VKS dynamo using Whitney elements. This method is based on the software DOLMEN
and uses a realistic magnetic permeability distribution and an accurate three-dimensional
representation of the disk and impellers of the experiment. This new code is validated
against a benchmark result and a well-documented code called SFEMaNS and therefore
provides an alternative based on a different formulation. Although it is less efficient than
SFEMaNS, we believe that it is more precise for modeling sharp blades fitted on a disk.

The paper is organized as follows: Section 2 presents the numerical approach used
in DOLMEN and summarizes the characteristics of the SFEMaNS code that is used to
validate the new algorithm; Section 3 presents a validation case of DOLMEN against a
published result (Witkowski et al., 2000) which can serve as a benchmark. Section 4
discusses the results obtained with two configurations of kinematic dynamo. In
Section 5 we conclude by proposing a possible mechanism for the VKS dynamo action.

2. Numerical settings
The computational domain is denoted Ω and shown in Figure 3. The eddy current
approximation of the Maxwell equations leads to the following set of equations:

@tBþr � E ¼ 0; (1)

r �H ¼ J; (2)

rUB¼ 0; (3)

where ∂t is the partial derivative with respect to time, B is the magnetic flux density (T),
E is the electric field (V/m),H is the magnetic field (A/m) and J is the conduction current
density (A/m). Two constitutive laws are necessary to close the system, and we use:

B ¼ mH; (4)

J ¼ sðEþu� BÞ; (5)
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where u is the velocity field, σ is the electric conductivity (S/m) and μ is the magnetic
permeability. The above system is supplemented with an initial condition B(t¼ 0)¼B0,
and the boundary conditions will be specified later.

We take as unknown the field A defined by A ¼ A0�
R t
0 EðtÞdt in all space

(Bossavit, 1985; Ren and Razek, 2000). Thus, E¼−∂tA and, by definition,B¼∇×A by
Faraday law (1). This implyies (3). A0 is chosen randomly to obtain an initial magnetic
field, implying ∇·B0¼ 0.

After inserting the definition of A into (2) and using Ohm’s law (5), the induction
equation is reformulated as follows:

r � 1
m
r �Aþs @tA�u�r �Að Þ ¼ 0

�
; (6)

where μ¼ μ0μr and σ¼ σ0σr are the magnetic permeability and electric conductivity,
respectively. The quantities μ0, μr, σ0 and σr are the permeability of the vacuum, the
relative permeability, the conductivity of the fluid and the relative conductivity,
respectively. Given a characteristic length L and a characteristic velocity U , the
non-dimensionalized equation is obtained by multiplying (6) by L/Uσ0:

sr@tAþ 1
Rm

r � 1
mr
r �A

� �
�sru�r �A ¼ 0

�
(7)

where Rm¼ σ0μ0LU is the magnetic Reynolds number measuring the ratio of inertia
to magnetic diffusion. This number is the control parameter for dynamo action
(i.e. generation of magnetic field by a liquid metal flow as in the Earth’s outer core) and
is used in the MagnetoHydroDynamics community to compare flows of various
conducting fluids.

The Galerkin weighted residual formulation is obtained by multiplying the equation
by test functions chosen in the appropriate functional spaces. By using the identity of
the Green weak formulation of the system (7) we can write:

find AAEe
1 Such asR

Osr@tAUA0 þ 1
Rm

R
O

1
mr
r �AUr �A0 þR

G n�Hð ÞUA0
h i

�R
Osr u� r �Að ÞUA0 ¼ 0; in O

8>><
>>:

(8)

The computational domain Ω is discretized using tetrahedra and Γ is its boundary.
The surface integral term depends on the problem under consideration (zero
for the following dynamo computations). Whitney forms are used to approximate the
dependent variables in this formulation (Bossavit, 1988a, b; Zaidi et al., 2014).
The vector potential A is discretized using first-order edge elements. The velocity is
approximated by using the first-order Raviart-Thomas elements (also called face
elements) for the sake of correctly modeling the velocity field for an incompressible
fluid. The elementary integrals contributing to the assembly of the total matrix are then
of the form ∫V (Wf×(∇×Wa))·Wb dυ for each mesh cell V, whereWa,Wb,Wf designate
the Whitney elements associated with the edges a and b and the face f of V,
respectively. The time stepping is done by using the Crank-Nicolson scheme.

We consider an induction problem as a validation case for DOLMEN and also
kinematic dynamos in this study: the velocity field is time-independent and prescribed
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by an analytical formula. The DOLMEN code is validated in Section 3 against a
benchmark result and in Section 4 by comparing its outputs with those obtained with
the code SFEMaNS (Guermond et al., 2007; Guermond et al., 2011). The algorithm
used in SFEMaNS solves the problem using the magnetic field in the conducting
region (after standard elimination of the electric field) and the scalar magnetic potential
in the insulating exterior. The fields in each region are approximated by using
H1 – conforming Lagrange elements. The coupling at the interface is done by using an
interior penalty method. The divergence of the magnetic induction is controlled in a
negative Sobolev norm to guarantee convergence under minimal regularity (see details
in Bonito and Guermond, 2011; Bonito et al., 2013).

3. Validation
In this section we consider a magnetodynamic problem of induction by a solid body
rotating at constant rotation embedded in an imposed magnetic field. Note that this
very simple configuration may be found in many practical applications such as
rotating devices or electromagnetic processing of materials. We validate DOLMEN
against a published result (Witkowski et al., 2000) which can serve as a benchmark.
We choose identical geometrical characteristics.

We use the cylinder radius R, the solid body rotation U and the advective time R/U
as scales for space, velocity and time. The unsteady problem reads (for DOLMEN):

sr@tAþ 1
Rm

r � r �A�sru� r �A ¼ 0
�
; in O (9)

where μr¼ 1 everywhere, σr¼ 1 in Ωc (the conducting finite cylinder) and σr¼ 0
in Ωv (the surrounding vacuum), the magnetic Reynolds number is Rm¼ μ0σ0RU and
the problem is supplemented with adequate initial data. The boundary conditions are
Neumann conditions at Γv¼ ∂Ωv.

The cylinder rotates at speed ω around the z-axis (therefore U¼Rω) and is
submitted to a fixed horizontal magnetic field B0ex. It has radius R¼ 1 and height
Lc
z¼ 1:6. The nonconducting region is a cylinder of radius Rv¼ 1.6 and height Lv

z¼ 5.
In DOLMEN, the mesh size is h¼ 1/50 and the time step isΔt¼ 510−2. The Péclet number
(Hong and Ida, 1992; Allen et al., 1998) is Rmh/R, smaller than 2 for all considered Rm.

The magnetic energy (Figure 1(a)) decreases in time with some oscillations due to
reconnections happening in the conductor and then reaches an asymptotic steady value
which depends on Rm. At large times, a steady electric current flows in the cylinder and
creates a magnetic field which exhibits a strong extremum of the z-component on the
cylinder edge (r¼ 1, z¼± 0.8) as shown in Figure 1(b). This figure shows the radial
profile of Bz(r, θ¼ 0, z¼ 0.8) obtained by DOLMEN, compared to that obtained in
Witkowski et al. (2000). The agreement is satisfying, considering that the gradient of
the solution is discontinuous at the edges of the cylinder.

4. Dynamo action
For the time being we consider only the kinematic situation where the velocity field is
prescribed and constant. Validation of the kinematic code is a prerequisite for the full
nonlinear dynamo problem where the Navier-Stokes equations including the Lorentz
force are also solved. Two examples are considered in this section. We use cylindrical
coordinates (r, θ, z), with the z-axis parallel to the symmetry axis of the set-up
(see Figure 2), and denote the azimuthal Fourier modes by m.
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In the first configuration, both the velocity field and the heterogeneous magnetic
permeability field are assumed to be axisymmetric. In this case the mode m¼ 0 cannot
grow due to the Cowling (1934) theorem and the mode m¼ 1 is the most unstable. The
results from DOLMEN are validated by comparing them with those from SFEMaNS.

In the second configuration, the velocity field is unchanged, but a realistic magnetic
permeability distribution and an accurate three-dimensional representation of the disk
and blades of the VKS experiment are used. The Fourier modes of the magnetic
induction are coupled through the dependence of the magnetic permeability with
respect to θ and disconnected families of eigenspaces can grow. Two sets of results in
this configuration are presented: one corresponding to an equatorial dipole where the
m¼ 1 mode is dominant (the 1-family) and the other corresponding to an axial dipole

(a) (b)
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Notes: (a) Time evolution of the magnetic energy at different Rm obtained with
DOLMEN; (b) radial profile of the vertical component of Bz at steady state at
z=0.8 and �=0: “IEEE” is the result from Witkowski et al. (2000) (see figure 4(f)
there in), and “DOLMEN” is our result with P1 Whitney finite elements (h=1/50
and Δt=510–2, 1 point out of 2 is represented)

Emag  vs time

Figure 1.
Rotating finite
cylinder
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Note: The z-axis denotes the symmetry axis of
the set-up

Figure 2.
Scheme of the von
Kármán Sodium
experiment
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(the 0-family). Only the results from DOLMEN are presented. Those from SFEMaNS
will be presented elsewhere.

4.1 Dynamo action using an axisymmetric heterogeneous magnetic permeability
We model half of the von Kármán experimental set-up (Boisson et al., 2012) which is
schematically represented on Figure 2.

The computational domain is a cylindrical vessel of radius Rc¼ 1 and height h¼ 0.7
(0⩽ r⩽ 1, −0.2⩽ z⩽ 0.5). The impeller driving the flow consists of a disk equipped with
blades. The disk is a cylinder of radius Rd¼ 0.54 and height ld¼ 0.06 (−0.2⩽ z⩽−0.14).
The blades are modeled by a cylindrical zone of radius Rb¼ 0.54 and height lb¼ 0.14
(−0.14⩽ z⩽ 0). This geometry is shown in Figure 3(a).

The velocity field, VF ¼ ður; uFy ; uzÞ, in the fluid (0⩽ r⩽ 1, 0⩽ z⩽ 0.5) is modeled
as follows:

ur ¼
π

2L

� �
cos

πz
L

� �
r 1−rð Þ2 1þ 2rð Þ; uFθ¼ 4εr 1−r5

� �
sin

π L−zð Þ
2L

� �
;

uz ¼ − 1−rð Þ 1þ r−5r2
� �

sin
πz
L

� �
; (10)

where L¼ 0.5 denotes the distance between the top lid and the top of the blades, and ε
measures the ratio between the toroidal and the poloidal components of the velocity
(here, ε¼ 0.7259 as in Marié et al., 2006). The velocity field in the impeller region
(0⩽ r⩽ 1,−0.2⩽ z⩽ 0) is assumed to be a solid body rotation:

uIy ¼ r: (11)

The component uθ is interpolated between the fluid region and the impeller zone using
uy ¼ uFy 1þ tanhðz=zdelÞ

� �
= 2ð ÞþuIy 1�tanhðz=zdelÞ

� �
= 2ð Þ, with zdel¼ 0.05. The flow (10)

is a reasonable divergence-free approximation of the mean axisymmetric velocity field
measured in water experiments using the same driving mechanisms as in the VKS
experiment (Ravelet et al., 2005; Marié et al., 2006). The velocity field (11) assumed in the
impeller region is simple: as discussed in (Ravelet et al., 2008), at small kinetic Reynolds

Vtheta

(a) (b)

Notes: (a) Mesh used in DOLMEN computations; (b) the prescribed axisymmetric
velocity field V0 in the meridian plan �=0. Colors represent the azimuthal
velocity field component (blue/red for null/positive values) and the arrows
materialize the poloidal velocity field (ur, uz). The left vertical edge is the
symmetry axis

1.2

1.6

0.8

0.4

0

Figure 3.
Axisymmetric half
von Kármán set-up
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numbers, everything goes as if the fluid was locked up between the blades leading to a
solid body rotation in the impeller region.

The vector field defined above is denoted V0 and its maximum value is Umax¼ 1.66.
A meridian section of the field V0 is shown in Figure 3(b). All the computations
presented in this paper are performed in the reference frame of the impeller, the velocity
field in (7) is defined to be u:¼V0−reθ.

Since the vector field u and the geometry are axisymmetric, the terms u×∇×A and
r � 1=mr

� �r �A
� �

in Equation (7) cannot transfer energy between the Fourier modes
of B¼∇×A, i.e., the Fourier modes are uncoupled. The boundary conditions and the
initial data are chosen to enable the mode m¼ 1 to grow. The boundary conditions are
defined as follows: m�1

r ðr �AÞ � n¼ 0 (i.e. ðB=mrÞ � n ¼ 0; corresponding to an
infinite permeability boundary) on the side of the vessel (at r¼ 1, −0.2⩽ z⩽ 0.5) and on
the bottom lid (z¼−0.2, 0⩽ r⩽ 1), and A� n ¼ 0 (i.e. B:n ¼ 0; corresponding to an
infinite conductivity boundary) on the top lid (at z¼ 0.5, 0⩽ r⩽ 1). The initial condition
used in this configuration is B0¼ ex supplemented with small amplitude noise.

The computation is carried out with the relative conductivity σr¼ 1 everywhere and
with the relative permeability in the disk, μr(disk)¼ μd, and in the blades,
μr(blades)¼ μb, equal to 5, both for DOLMEN and SFEMaNS. Two values of the
magnetic Reynolds number are considered: Rm¼ 50 and Rm¼ 70. The time evolution of
the magnetic energy Emag ¼ ð1=2ÞROBUHdu is calculated with the two codes for these
two values and is shown in Figure 4. The magnetic energy varies exponentially with
respect to time. The slope of the logarithmic curve is calculated and subsequently a
threshold Rc

m is determined at which the slope is zero. DOLMEN gives Rc
m � 58:5,

whereas SFEMaNS gives Rc
m � 58; these two results are in excellent agreement.

The magnetic field near the threshold is shown on Figure 5. This mode rotates in the
same direction as that of the disk and blades in the reference frame of the laboratory. It
has the expected structure of a half equatorial dipole as found in Laguerre et al. (2006).
The first bifurcation is of Hopf type: the imaginary part of the eigenvalue 2π/T is
approximately 0.25, the angular velocity of the eigenmode in the reference frame of the
laboratory is four times slower than that of the impeller.

4.2 Dynamo action using an analytical axisymmetric velocity field and a non-
axisymmetric heterogeneous magnetic permeability
The same analytical and axisymmetric vector field V0 as above is used in this section,
but now the real geometry of the impeller is approximated correctly, i.e., the cylinder
modeling the blades in the previous section is replaced by eight curved blades.
The height of the blades is lb¼ 0.14, their thickness is eb¼ 0.02, the angle at the rim is

1.0e+04
SFEMaNS, Rm=50
SFEMaNS, Rm=70
DOLMEN, Rm=50
DOLMEN, Rm=70

1.0e+03

1.0e+02

1.0e+01

E
m

ag

1.0e+00

0 20 40 60 80 100

Time

1.0e–01

1.0e–02

1.0e–03

Figure 4.
Time evolution of
the magnetic energy
of the mode m¼ 1 in
lin-log scale obtained
with SFEMaNS and
DOLMEN codes in
the axisymmetric
configuration
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α¼ 24°, and the generator radius is Rg¼ 0.66 (see Figure 6 (a)). The blades push
the fluid with their convex side. Figure 6(b) shows the trace of the tetrahedral mesh of
the impeller that is used for this case.

Due to the dependence of the magnetic permeability with respect to the azimuth angle,
the eigenvalue problem associated with (7) has five disconnected families of eigenspaces.
More specifically, since the magnetic permeability is supported by the Fourier modes
e8ikθ, k∈ℤ, the term r � 1=mr

� �r �A
� �

couples the modes in the following vector
spaces: span{e8ikθ,k∈ℤ}, span {ei(±1+8k)θ, k∈ℤ}, span {ei(±2+ 8k)θ,k∈ℤ}, span{ei(± 3+ 8k)θ,
k∈ℤ} and span {ei(4 +8k)θ,k∈ℤ}. We henceforth refer to the above five vector spaces as
the 0-family, the 1-family, etc. Given any initial data for (7) with nonzero projection on the
five families, long time integration of the equation gives a magnetic field which is a
superposition of the leading eigenvectors in each family. The corresponding eigenvectors
are obtained by projecting the magnetic field on each of the above families.

SFEMaNS DOLMEN

(a) (b)

Notes: (Color online) Structure of the rotating magnetic field (at Rm=50 with
�b=�d=5) represented by vectors and the isosurface ||B||2 (10 percent of
maximum value) colored by the vertical component (minimum value in
blue and maximum value in red). Notice the m=1 structure

Figure 5.
Rotating magnetic
field obtained with
an axisymmetric

geometry

Disk and blade geometry Impeller mesh

π /2–α

α

Rg

Rb

+

(a) (b)

Z
YX

Figure 6.
(a) Geometric

parameters defining
the blades;

(b) impeller mesh
used in DOLMEN
for the half von
Kármán set-up
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4.2.1 The 1-family. In this first series of computations, we use the same boundary
conditions and initial data as in the previous section. With these boundary conditions, the
1-family is the leading one. The magnetic permeability in the blades and in the cylinder is
μb¼ μd¼ 5. The magnetic Reynolds numbers Rm¼ 50 and Rm¼ 70 are considered and
the time evolutions of the magnetic energy for these two cases are shown in Figure 7.

The measured growthrates are close to those obtained in the previous section; the
threshold is only slightly increased in the bladed configuration (compare Rc

m � 61
(with blades) and Rc

m � 58:5 (no blade)). These simulations seem to show that the real
geometry of the blades does not seem to have a lot of influence on the eigenmode which
is localized in the bulk. This 1-family is a bulk-dynamo mode. Due to resolution
restriction, we could not increase the value of μb and μd.

The structure of the magnetic field of the dominant 1-family is shown in Figure 8
(compare Figures 5 and 8(a)). The footprint on the blades is clearly visible. The rotation

1.0e+04

DOLMEN, Rm=50
DOLMEN, Rm=701.0e+03

1.0e+02

1.0e+01

E
m

ag

1.0e+00

0 20 40 60 80 100

Time

1.0e–01

1.0e–02

1.0e–03

Figure 7.
Time evolution of
the magnetic energy
in lin-log scale
obtained with
DOLMEN for the
non-axisymmetric
configuration
and the dominant
1-family

Bottom view

Perspective view

(a) (b)

Notes: Structure of the rotating magnetic field generated in a half von Kármán
set-up in the bladed configuration (at Rm=70 with �b=�d=5) represented by
vectors and the isosurface ||B||2 (5 percent of maximum value) colored by the
vertical component (minimum value in blue and maximum value in red) shown
(a) in a perspective view and (b) from below to emphasize the blades. Notice
the m=1 structure of the magnetic field in the bulk and the footprint on the
eight blades (DOLMEN results)

Figure 8.
Rotating magnetic
field obtained with a
realistic impeller
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of the eigenmode is retrograde in the reference frame of the impeller and its period is
2π/0.75. This corresponds to a prograde rotation in the reference frame of the
laboratory with a rotation period equal to 2π/0.25 as in the previous section.

4.2.2 The 0-family. In this second series of computations, we change the boundary
conditions: more precisely, we impose the same condition on the side and bottom lid as
in the previous section, but now we impose (B/μr)×n¼ 0 on the top lid (i.e. A⋅n¼ 0,
corresponding to an infinite permeability boundary). The 0-family and the 2-family are
the leading ones. We focus on the 0-family.

We set again μb¼ μd¼ 5, and we measure the growthrate for the magnetic Reynolds
numbers Rm¼ {90; 550; 750} (data not shown). By extrapolation, the threshold should be
Rc
m � 1300. Computations beyond the threshold have not been done due to insufficient

computational ressources at the moment. The decreasing magnetic field at Rm¼ 90 is
shown in Figure 9 (we expect the growing magnetic field to have the same structure). It is
steady. Note that the magnetic field is mainly azimuthal and axisymmetric in the disk
(which can be considered as a reservoir of toroidal field), it is concentrated in the blades
(where it is poloidal and non-axisymmetric), and it is mainly axial and axisymmetric in
the bulk. This structure is very similar to the measured growing magnetic field reported
in Boisson et al. (2012).

Based on the structure of this 0-family magnetic field, we propose a mechanism for
the dynamo action based on four steps: first, the ω-effect generates a toroidal magnetic

B in the disk B in the impeller region

B in the bulk region

(a) (b)

(c)

Note: In (c), are plotted vectors (in black) and the isosurface �B�2 (1 percent of maximum
value – colored by the vertical component with minimum value in blue and maximum
value in red)

Figure 9.
Structure of the

0-family magnetic
field generated in a
half von Kármán
set-up with the

velocity field V0 (at
Rm¼ 90 with
μb¼ μd¼ 5)

represented by
vectors (colored
by the vertical

component) shown
(a) in the disk,

(b) in the impeller
region and

(c) in the bulk
region
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field from poloidal magnetic field seeds; second, this azimuthal magnetic field is stored
in the high permeability disk (cf. Giesecke et al., 2012) as in Figure 9(a); third, this
azimuthal field is collected in the blades and transformed into a poloidal field as in
Figure 9(b) and; fourth, focussing of the poloidal components gives rise to the vertical
component on the axis as in Figure 9(c).

5. Conclusions
A new formulation taking into account the convective term of the induction equation
has been validated in the code DOLMEN. We have been able to model the azimuthal
variation of the magnetic permeability of a real impeller (disk and curved blades) and
we have shown that a mainly axisymmetric eigenmode might grow in a kinematic
dynamo configuration using an analytical velocity field.
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