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1 Introduction

Smoothing by mollification is an important tool for the analysis and the approximation of partial differential
equations. This tool has been introduced by Leray [24, p.206], Soboleff [31, p.487], and Friedrichs [18,
pp. 136-139]. The mollifying operation commutes with differential operators and converges optimally when
the function to be smoothed is defined over the entire space R?. These properties may not be easy to achieve if
the function in question is defined only in a non-smooth domain D, say only Lipschitz, since mollification by
convolution as originally introduced in the above references requires to extend the function outside D, which
is a non-trivial task in general unless the boundary and the function are reasonably smooth. The boundary
difficulty has been overcome by Blouza and Le Dret [5] and Girault and Scott [19] by redefining mollification
using a convolution-translation technique so that mollification does not require information outside of D.
The question is, however, more subtle when dealing with vectors fields where normal or tangent boundary
conditions are involved, and, to our knowledge, has not yet been fully addressed in the literature.

The first objective of this paper is to revisit the theory of mollification for scalar- and vector-valued fields
in strongly Lipschitz domains with the following goals in mind: the mollification operators must be compat-
ible with the De Rham complex (i.e., they must commute with the standard differential operators V, Vx, and
V-), be LP-stable for any real number p € [1, co], and have strong convergence properties in the entire do-
main. Using a partition of unity subordinated to a covering of the boundary as done in [5, 19] is (seemingly)
incompatible with the first constraint. The route that we propose instead is based on a shrinking technique
of the domain using transversal vector fields. We also devise a second sequence of mollification operators
based on the extension by zero; the corresponding operators have the property that the mollified functions
are in the kernel of the canonical trace operators in H', H(curl), and H(div) (i.e., zero trace, zero tangential
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trace, and zero normal trace, respectively). The main results of the first part of the paper are Theorems 3.3
and 4.4, and their respective corollaries. As an application of independent interest, we give in Theorem 4.9
a clear characterization of the kernel of the traces associated with the divergence and the curl operators.

The second objective of this work is to use the mollification operators introduced in the first part of the
paper to construct quasi-interpolation operators onto general finite element subspaces of H!, H(curl), and
H(div), with and without homogeneous boundary conditions. We want these operators to satisfy three key
properties: (i) LP-stability for any p € [1, oo], (ii) commutation with differential operators, (iii) preservation
of functions in the finite element spaces. Operators with such properties are important tools in finite element
exterior calculus, see the work of Arnold, Falk and Winther [2, §5.4] and [3, §5.3], where they are termed
bounded cochain projections. In particular, the above properties imply that the quasi-interpolation error is
bounded by the best approximation error.

The bases for constructing stable, commuting, and quasi-interpolation projections have been laid out by
Schoberl [28, 30] and Christiansen [10], who achieve stability and commutation by composing the canoni-
cal finite element interpolation operators with some mollification technique. Then, following Schéberl [29],
the projection property over finite element spaces is obtained by composing these operators with the in-
verse of their restriction to the said spaces. An important extension of this construction allowing the pos-
sibility of using shape-regular mesh sequences and boundary conditions has been achieved by Christiansen
and Winther [12]. Further variants of this construction have been proposed by Christiansen [11] where the
bounded cochain has the additional property of preserving polynomials locally, up to a certain degree, and
by Falk and Winther [17] where it is defined locally. In the present work, we revisit the results of [12] by invok-
ing our shrinking-based mollification operators which do not require extension outside the domain. We also
present the results in the language of numerical analysis to make them accessible to a wide audience. The
main result of this second part is Theorem 6.5. As an application, we give in Theorem 6.7 discrete Poincaré
inequalities for vector-valued functions.

The paper is organized as follows. In Section 2 we introduce a shrinking technique of D that avoids diffi-
culties with the boundary. We also introduce an expansion technique. In Section 3 we use the shrinking tech-
nique to devise mollification operators that commute with differential operators, are stable in any L? space,
and have approximation properties on smooth functions. Using the expansion technique from Section 2, we
introduce in Section 4 mollification operators that produce compactly supported functions and share the
same properties as the shrinking-based operators. In Section 5, we introduce the finite element setting that is
necessary to construct canonical interpolation operators on standard H'-, H(curl)-, and H(div)-conforming
finite element spaces, with and without homogeneous boundary conditions. In Section 6 we devise quasi-
interpolant operators that are LP-stable, commute with differential operators, and preserve finite element
spaces, with and without boundary conditions.

2 Some Geometry

In the entire paper, D is an open, bounded, strongly Lipschitz, connected set in R4, int(D) denotes the interior
of D, and D its closure. Points in R? and R%-valued functions and mappings are denoted using bold face; the
Euclidean norm in RY, g > 1, is denoted || - [l,2(ra), OF || - [, when the context is unambiguous. We abuse the
notation by using the same symbol for the ¢£2-induced matrix norm and the norm of multilinear maps.

2.1 Shrinking of Strongly Lipschitz Domains

Let D be a strongly Lipschitz domain, i.e., there are a > 0, > 0, a finite number N of affine maps Tj,
ne{l,..., N}, and Lipschitz maps ®@,, : B(Og«-1, a) — R such that

N
oD = | | Ta({(x, z = @p(x)) | X € B(Oga-1, a)}),

n=1
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andforallne{1,...,N},

Tn({(x, 2) | X € B(Oga-1, a), DPu(x) < z < Dy(x) + B}) C int(D),
Tn({(x,2) | X € BOga1, &), Dp(x) - B <z < Dp(x)}) c R4\ D,

where B(Oga-1, a) is the open ball of radius a in R?~! centered at the origin.

Since D is strongly Lipschitz and bounded, the combination of the results of Hofmann, Mitrea and Taylor
in [22, Theorem 2.7] and [22, Lemma 2.2] implies that D has continuous globally transversal vector fields,
i.e., there exist a vector field J € C°(dD) and a real number y > 0 with the property that n(x) - J(x) > yat a.e.
point x on 0D, where n is the unit normal vector pointing outward. Proposition 2.3 in [22] in turn implies the
existence of a vector field j € C*®(R?) whose restriction to oD is globally transversal and [j(x)[,2 = 1 for all
x € 0D. We then define the mapping

Ps: RY5x 0 x - dj(x) € RY. (2.1)

Using [22, Proposition 4.15], together with the uniform cone property (see [22, pp. 599-600]), we infer that
there exists r > 0 such that
@s(D)+B(0,6r) cD forall§ € [0, 1]. (2.2)

Lemma 2.1 (Properties of @;). The following properties hold:

(i) Themap @y is of class C* for all § € [0, 1].

(i) Forall € € N, there is c such that maxyep || D¢ Ps(x) - Dtx|,2 < ¢6 forall 6 € [0, 1], where D¢ denotes the
Fréchet derivative of order ¢.

(iii) @ 5(D) + B(0, 6r) c D forall § € (0, 1].

(iv) The mapping x — x + t(¢s(x) + (6ry) — x) maps Dinto D forall t € [0, 1],ally € B(0, 1) and all § € [0, 1].

Proof. The first two properties are consequences of j being of class C* and D being bounded, while (iii) is
just (2.2). To prove (iv), observe that t(¢5(x) — X) = ¢@,5(x) — x. This implies that

X+ t(ps(x) + (6ry) — x) = @5(x) + tOry € @5(D) + B(0, tér) c D
forally € B(0,1),allt € [0, 1] and all § € [0, 1]. O

2.2 Expansion of Strongly Lipschitz Domains

Since D is bounded, there are xp € R9 and rp > 0 such that D ¢ B(xp, rp). Let O = B(xp, rp) \ D. The domain
O is bounded, open, and strongly Lipschitz; hence, we can apply the above argument again, and deduce the
existence of a vector field k € C*(R?) that is globally transversal for O, points outward D, and [[k(x)[l; = 1
for all x € 00; note that 0D c 00. We then define the mapping

95 : R? 5 x — x + 6k(x) € RY. (2.3)
As above, we infer that there exists { > 0 such that
95(0) + B(0,36)) c O forall § € [0, 1]. (2.4)

Lemma 2.2 (Properties of 95). The following properties hold:

(i) The map 95 is of class C™ for all § € [0, 1].

(ii) Forall ¢ € N, thereis c such that maxyep |D¢95(x) — D¢X||p> < 6 forall § € [0, 1].
(iii) 95(O) + B(0, 28¢) ¢ O forall § € (0, 1].

Proof. The only novelty is the proof of (iii). Let x € O, then there exists z5 € O such that (1 + 8Ly)[z5 — X]l2 <
6{, where Ly denotes the Lipschitz constant of the field k in ©O. We observe that

95(x) + B(0, 26¢) = 95(25) + (9s(x) — 95(25)) + B(0, 26¢)
C 85(0) + B(0, 80) + B(0, 260 = 95(0) + B(0, 36() c O
owing to (2.4). O
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3 Mollification Without Extension

We introduce in this section a mollification technique in strongly Lipschitz domains that does not require to
invoke non-trivial extensions and that commutes with differential operators. The mapping ¢5 : D — D and
r > 0 are defined in (2.1) and (2.2). In what follows, J5(x) denotes the Jacobian matrix of @5 at x € D.

3.1 Mollification

Let us consider the kernel

1y s
o) := nexp( Iy, ), iflylle <1,
% iyl = 1,

where 7 is chosen so that

J p(y)dy = J p(y)dy =1.
R4 B(0,1)

To be generic, we introduce g € N, g > 1, and a smooth R9*9-valued field A5 : D — R9%4 (related to the Jacob-
ian J5 of g, see (3.4) below) such that for all [ € N, there is c such that

sup D (As(x) - D]z < b, (3.1)
xeD

where I is the identity matrix in R7%9. Consider the following smoothing operators acting on f € L1(D; R) and
g = (gly ceey gq)T € Ll(D; ]Rq):

OO0 = | pwIfies00 + @y dy. (3.2a)
B(0,1)
(K58) (%) := As(0)(KEg1(X), ..., Kig4(x))". (3.2b)

Property (iii) from Lemma 2.1 implies that
@5(x)+ (6r)y € @s(D) + (6r)B(0,1) c D forallx € D, y € B(0, 1).

This means that the domains of fK% and K are indeed L1 (D; R) and L1 (D; RY), i.e., there is no need to invoke
extensions outside D.

Lemma 3.1 (Smoothness). Xsg is in C®°(D; RY) for all g € LY(D; RY), and Ksg as well as all its derivatives
admit a continuous extension to D.

Proof. Owing to (3.1) and (3.2b), and using the Leibniz product rule, it suffices to show that the statement
holds for K%. Let f € LY(D). Let us prove first that K%f is continuous. Let x and z be two points in D. Up to
appropriate changes of variable we have

500 - K52 = o [ (p(2 Po00) (Y25 sy,
D

where we replaced @5(x) + (6r)B(0, 1) and @5(2) + (6r)B(0, 1) by D and used that p is zero outside the unit
ball B(0, 1). The uniform Lipschitz continuity of p and ¢ 5 implies that there is ¢ such that

lp(y— ‘Pa(X)> ~ (y— Ps5(2)

)| < Sx-z)
or or = or e

As a result, we infer that
|KEf(x) - Kf(2)| < () Al oy lIx - zllez,
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which proves that K%f is Lipschitz continuous; hence K%f is uniformly continuous. This proves that
K%f € CO(D; R) and K%f admits a continuous extension to D. Let us now evaluate the gradient of K%f.
Using the chain rule, we infer that

V(KER(x) = j PIILO(H (@) + (87)y) dy
B(0,1)

“700 | P50+ By dy
B(0,1)

- 1060 j PW)V(fs () + (1)) dy
B(0,1)

- JLeoen j VpW)F@s(x) + (5)y) dy.
B(0,1)

We can then conclude that V(ng f) is Lipschitz continuous by using the same argument as above and continue
the argument by induction. O
3.2 Examples

Letf € L1(D; R) and g € L*(D; R?). Following [28] and [30, §3], we define the following families of mollifica-
tion operators:

(KEH(X) = j P50 + (B1)Y) dy, (3.3a)
B(0,1)

(KEg)(x) = j P 0Z(@5(x) + (B1)y) dy, (3.3b)
B(0,1)

(3g)0) = j p(y) det(T5(0)T; - (0g(@4(x) + (61)y) dy, (3.30)
B(0,1)

(KBH) = j p(y) det(J5(X)f(s(x) + (67)y) dy, (3.3d)
B(0,1)

for all x € D. The superscripts in (3.3) refer to the fact that these operators are used to build projections onto
finite element spaces that are conforming in the graph space of the gradient, curl, or divergence operator, or
onto a broken finite element space (with no conformity requirement), see Theorem 6.5 below. The transfor-
mations involving Js are related to the classical Piola transformations. Furthermore, the functions ﬂcg g, JCg g,
KEf are of the form (3.2b) with A%(x) = 1 and

AS(x) = T30,  AS(x) = det(Js()J5 (%),  AB(x) = det(J5(x)). (3.4)

Property (iii) from Lemma 2.1 implies that (3.1) holds true in the above three cases. Let p € [1, co]. Assuming
d = 3, we define

Z%P(D) = {f e LP(D) | Vf € Lp(D)}, (3.5a)
Z°P(D) ={v € LP(D) | Vxv € LP(D)}, (3.5b)
Z4P(D) = {v € LP(D) | V-v € LP(D)}. (3.50)

Lemma 3.2 (Commuting with differential operators). The following holds:
(i) VX =KSVf forallf € Z8P(D),

(i) VxKg = K3Vxg forall g € ZP(D),

(iil) v-Xig = K2V-g for all g € Z*F (D).
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That is, the following diagram commutes:

\% Vx \z

Z%P(D) ZP(D) z%7(D) LP(D)
J:Kﬁ lscg \xg J:Kg (3.6)
C®(D) C*(D) c*(D) C®(D)

Proof. Upon setting T(x) = @4(x) + dry, these identities are simple consequences of the chain rule:

V(foT)(x) = J5()(V)(T(x)),
Vx(J5(x)(geT))(x) = det(J5(x) I (X)(Vxg)(T(x)),
V-(det(J5(x))J 5 (8°T))(x) = det(J5(x))(V-g)(T(x)).

This completes the proof. O

3.3 Convergence

We now show that the smoothing operators defined above have interesting approximation properties. Owing
toLemma 2.1, Js and ]];;1 converge uniformly to the identity, and det(J5) converges uniformly to 1. As a result,
there is 8o € (0, 1] such that [[Js - Ill> < 3, 5" le> < 2, and |det(J;")| < 2% forall § € [0, 6] and all x € D.

Theorem 3.3 (Convergence). The sequence (Xs)sc[o,s,] i uniformly bounded in
L(LP; LP) := L(LP(D; RY); LP(D; RY))
forallp € [1, co]. Moreover, for p € [1, 00), |[Ksf — flr(p;rey — 0 as 8 — O forall f € LP(D; R?).

Proof. Owing to (3.1) and (3.2b), it suffices to show that the statement holds for 9(%.
(1) We show first that 9(% is uniformly bounded in £(L?; LP) by using the Riesz-Thorin interpolation
theorem. The statement is evident for p = co with constant ¢ = 1. Now consider f € L*(D; R), then

||9<§ﬂ|p<msj j PIIf@5(x) + (6r)y)] dy dx
D B0,1)

< j p) j f(s(x) + (6r)y)| dxdy
B(0,1) D

< [ pm | f@Idets@) ! dzdy < o,
B(0,1) @s(D)+(61)y

since 6 < 8o. The Riesz-Thorin interpolation theorem implies that | X5fllz»p) < ¢'/P|fl1»(p), so that
153 A0y < c1lflrpy,  with ¢ = max(1, c).

(2) Assume first that f is smooth over D, say uniformly Lipschitz with Lipschitz constant Ly, i.e.,
If(x) - f(2)| < Lflx - 2]l¢>. Then,

%00 - fo0l = | | pw)(f@500 + (8r) - f0) dy
B(0,1)

< | POILAI@s00 - x 4 Sr)ler dy < LS.
B(0,1)

In conclusion, there is ¢y = c max(1, |D|) such that ||J<§f — flzepy < coLfd.
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(3) We conclude by using a density argument and the triangle inequality. Let f € LP(D). The space of
uniformly Lipschitz functions being dense in LP(D), there is a sequence of uniformly Lipschitz functions
(fn)nen such that |If, — flizr(py — 0 as n — co. Then

1KEf = Aoy < I1K5(F = f)le ) + 15C5fn = Fallo o) + Ifn = AlLr o)
< cilf = falle oy + coLy, 6 + llfn — flLr(p)-
Let € > 0 and let n(e) be large enough so that ||fue) - flLr(p) < €. Setting 8o(€) = €/Ly,.,, we have
IK3f = Aoy < €(c1+co+1) forall § < Bo(e).

In conclusion, for all € > 0, thereis §¢(¢) such that ||5<§f —fllzrpy < €(c1 + co + 1) forall 6 < 6p(€). Sincee > 0
is arbitrary, this proves that ||(K§f —fllzrpy = 0as § — 0. O

We now can state a result that shows that the above smoothing technique is superior to mollification alone,
i.e., contrary to the result originally stated by Friedrichs (see, e.g., [8, Theorem 9.2]), strong convergence on
the derivatives now occurs over the entire domain D.

Lemma 3.4 (Convergence of derivatives). Let p € [1, co). Then,

lein}) IV(KEf = Allrpy = O forall f € Z#P(D), (3.7a)
%irr(l) IVX(X58 — g)llry =0 forallg € ZP (D), (3.7b)
%irr(l) IV-(K3g - @)ooy =0 forall g € Z*P(D). (3.7¢)

Proof. Using Lemma 3.2 we infer that VfK%f = X5Vf, and Theorem 3.3 implies that X§Vf — Vf in LP(D) as
8 — 0, which proves (3.7a). A similar argument holds for (3.7b) and (3.7¢). O

3.4 Convergence Rate

We now establish convergence rates.

Theorem 3.5 (Convergence rate). There is ¢ such that

1Ksf = flle(p;ray < €8°|flwsr(Dswra)
forallf e WSP(D;R?), all § € [0, 6gl,and all s € (0,1],p € [1,00)0rs =1, p € [1, co].

Proof. Owing to (3.1) and (3.2b), it suffices to show that the statement holds for K%. Assume first that p < co.
(1) Let f € WSP(D) with s € (0, 1). We estimate K%f —fin LP(D) as follows:

p
IS Wy = [ | | PO (p500 + 1) - o) | e
D B(0,1)

If(ps(x) + (6)y) - fFX)IP sp+d

=¢ j J sp+d lgps(x) + (5T)Y—X||ez dxdy.

B(0,1) D ls(x) + (6r)y - xl .

Let us make the change of variables B(0, 1) > ¥ — 2z = @4(x) + (61)y € @45(D) + 6rB(0, 1) c D. Observe that
the Jacobian of this transformation is bounded from above by §r and

lgps(x) + (61)y — Xl < llps5(X) — Xlle2 + Srlylle> < 6.

Hence,
_ z) — f(x)|P
193 = AL ) < €867 J J % dxdz < 6% flys -
pp lz=xlp
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(2) Let f € WHP(D). By proceeding as above we infer that
I3 -y < | [IF@s00 + 6rw) - ool dxdy.
B(0,1) D

Let us fix y € B(0, 1) and define the mapping 5 : D 3 X — @45(x) + (61)y € @5(D) + 6rB(0, 1) c D. Observe
that
lhs(x) = xllez < llPs(x) = Xllgz + 67llyllez < c8,  [DP4(x) - Il = [Dps(x) - T|| < cb,

and
X+ t(Whs(x) —X) =X + t(@s(x) + 6ry - x) € D,

i.e., P satisfies the assumptions of Lemma 3.7 below. Hence,

[Irtps 01+ (8113 - FO0P dx < 81V -

D
We conclude that [|X3f - fllrp) < c81VfllL (p)-
(3) The case s = 1, p = oo is treated similarly to (2). O

Lemma 3.6 (Convergence rate on derivatives). Lets € (0,1),p € [1,00) ors = 1, p € [1, co]. Then, there is ¢
such that

IIV(UCgf—f)IILP(D) < c&°|Vflws» (py forallf € {veLP(D)|Vve WP(D)},
IVX(X58 — ©)llLrpy < c6°IVxglwsrpy forallg e {v e LP(D) | Vxv e W5P(D)},
IV-(K3g - ®)lrpy < c8°IV-glwse(p) forallg € {v e LP(D) | V-v e WSP(D)}.
Proof. Letf € {v e LP(D) | Vv € W*P(D)}, then
IVKES = Dliroy = 1KV - Vflrpy  since VK = K5V
< c&®IVfllws» o) owing to Theorem 3.5.

Proceed similarly for the two other estimates. O

Lemma 3.7 (Approximation). Let Ao > 0, and assume that P, : D — D is a diffeomorphism of class C* such
that |, (x) — x|l < c'Aand DY, (x) = Ile2 < %for allx € Dand all A € [0, Ap]. Assume also that the mapping
Mo X X+ t(,(x) —x) maps D into D for all t € [0, 1] and all A € [0, Ag]. Then, there is c such that

If oy = flee oy < cAIVAlLz (py
forallA € [0,A¢], all f e WYP(D), and all p € [1, co].

Proof. (1) Assume first that f is smooth. Let x € D and v(¢) := f(u;, ,(x)) with t € [0, 1]. The chain rule implies
that v/(t) = Df(u 1,:0)) (¥, (x) - x), thereby showing that

1 1
W, () - fx) = j V(b dt = ij(m,t(x))(rpA(x) _x)dt.
0 0

Then, assuming that p < co, we infer that

1 1
fwr =AWy < [ 19200 = I [ 1970y NI, decx < 27 [ 19 GO, de
D 0 0D

The assumptions on y, imply that the map p, , is invertible and | Dp; }ll> < 2, [det(Dp; )| < 29, As aresult,

1

If o 91~ pcoy < 2 [ [ 1@ et Dl dz et
0D

which finally implies that there is cg so that ||f oy, — fllLr(p) < coAllVfllLr(p)- The case p = cois treated similarly.
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(2) If f is not smooth, we deduce from Corollary 3.4 that there exists a sequence of smooth functions
converging to f in WP(D), i.e., for all € > 0, there is a smooth function f. such that |f - fellL»(p) < € and
IVfellrpy < 21IVflLr (p)- Then

If o P = flry < I(F = fe) o Yallroy + Ife e Y, — felle oy + Ife — Alze oy

< ce+ 2coMVfllrpy + €.

The conclusion follows readily since € is arbitrary. O

4 Mollification with Extension by Zero

Note that the function Xsf defined in (3.2b) does not satisfy any particular boundary condition. For instance,
even if f is zero on 0D, (Xsf)jap is not necessarily zero. Since preserving boundary conditions may be useful
in some applications, we now construct a mollifier that has this property. Let Cg°(D; R?) denote the space
of R?-valued functions that are of class C* and of compact support in D. Consider the mapping 95 and the
constant ¢ defined in (2.3) and (2.4). Let Kg(x) denote the Jacobian matrix of 95 at x € D.

4.1 Mollification

For any g € L1(D; R?), g € N with g > 1, we denote by g the extension by zero of g over RY, i.e., E(x) = g(x)
if x € D and g(x) = 0 otherwise. Taking inspiration from Bonito, Guermond and Luddens [7], we introduce

(SN0 = [ pOIF(s00 + EOW dy,

B(0,1)
(K5,08)(X) 1= Bs()(K5 181 (%), . .., K5 1 84(0), (4.1)

forallx e D,all f € LY(D;R), and all g = (g1, . . ., 84)" € L1(D; RY), where B; is a smooth R?*-valued field
(related to the Jacobian K4 of 95) such that for all I € N, there is ¢ such that

sup [D'(Bs(x) - Dl,2 < c6. (4.2)

xeD

Lemma 4.1 (Smoothness and boundary condition). Xs,0(g) is in C(D;RY) for all g € LY(D;RY) and all
6 € (0,1].

Proof. The smoothness has already been proved in Lemma 3.1. Let k be the Lipschitz constant of the field k
over D. Let €5 = 6¢/(1 + 6x). Let x € D be such that dist(x, 0D) < €5. Then, there exists a point z € 0D such
that dist(x, 2) < €s, i.e.,

95(x) + B(0, 6¢) = 95(2) + B(0, 6{) + 95(x) — 95(2)
=95(2) + B(0, 6¢) + x — z + 6(k(x) — k(2))
c 95(2) + B(0, 6¢) + B(0, €5 + 6kes)
=95(2) + B(0, 6¢ + (1 + 6Kx)es) = 95(2) + B(0, 256()
c 95(0) + B(0, 260 c 0,
owing to Lemma 2.2 (iii). This implies that 95(x) + (6{)y c O forally € B(0, 1), so that (K%yo(f))(x) = 0 since

f(9s(x) + (6¢)y) = 0 for all y € B(0, 1). Hence, the support of EK% o is compact in D. The same conclusion
applies to Ks,0. O
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4.2 Examples

Let us proceed as in Section 3.2. Let B§(x) = K} (x), B3(x) = det(Ks(x))K;"(x), and BY(x) = det(Ks(x)).
Lemma 2.2 (ii) implies that (4.2) holds for these choices of Bs. Let f € L1(D; R) and g € L1(D; R%). We define
the following families of mollification operators:

05N = | pWIFO500 + 60y,
B(0,1)

(05,8000 = | pWIKI0EG500 + B0y dy,
B(0,1)

(K¢ ,8)(x) = j p(y) det(Ks(0)K;! (0F (500 + (60)y) dy,
B(0,1)

O8N0 = [ ) detRs(x)F(@506) + (60y) d,
B(0,1)

forallx € D.Letp € [1, co]. If d = 3, we define

Z8P(D) = {f € LP(D) | Vf € LP(R)},

Z°P(D) = {v € LP(D) | Vx¥ € LP(R9)},

Z%P (D) = {v € LP(D) | V-¥ € LP(RY)}.
Lemma 4.2 (Commuting extension and derivatives). The following holds:
() Vf=Vfforallf e Z8?(D),

(ii) Vxg = Vxg forallg e Z%P(D),
(iii) v-g = V-g for all g € Z9P(D).

Proof. Let f € Z&P(D) and let P e ch(le) be a (vector-valued) smooth function compactly supported in
int(R? \ D). Then,

Jlp'vdeZ—J‘fV'IIJdX=—J-fV-II)dX=O.

R4 R4 D

Since ¥ is arbitrary, this proves that Vf is zero in R4 \ D. Now let P € C3°(D), then

_I¢.Vde:_J¢.Vfdx: va.¢dx:JN-¢dx:—I¢-Vfdx.

D R4 R4 D D

Since  is arbitrary, this proves that (Vf);p = Vf. We have thus proved that Vf = Vf. The argument for the other
two equalities is identical. O

Lemma 4.3 (Commuting with differential operators). The following holds:
(i) VKE of = K5 Vf forall f € Z#P(D),

(i) VxX§ 8 = Kg’Ongfor allg EZC’I’(D),

(iii) V-X§ o8 = X3 ,V-g for all g € Z*P (D).

That is, the following diagram commutes:

Vx

Z8P(D) Z°P(D) Z%P(D) : LP (D)
| [0 |t |
CP(D) ——— €P(D) — v €D —— CP(D)
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Proof. The proof is almost the same as that of Lemma 4.3. For instance, using the chain rule together with
Lemma 4.2, we obtain

VK of(x) = J P Ks(X)VF(9(x) + 8¢y) dy

B(0,1)
- | PR e0TFO00 + 6¢y) dy = K5 0.
B(0,1)
Note here that it is critical that Vf = Vf. The argument for the other two equalities is identical. O

4.3 Convergence

Similarly to Section 3.3, we can now state convergence results. Owing to Lemma 2.2, K5 and ]Kg1 converge
uniformly to the identity and det(Ks) converges uniformly to 1. As a result, there is 8o € (0, 1] such that
IKs - Tlle> < 4, K5 le2 < 2, and |det(K;")| < 2% forall § € [0, §o] and allx € D. We combine the counterparts
of Theorem 3.3 and Corollary 3.4 into one statement.

Theorem 4.4 (Convergence). The sequence (X6,0)5¢(0,5,) IS uniformly bounded in L(LP;LP) forallp € [1, c0).
Moreover,

%13% 1%s,0f = flLrp;rey = 0 forall f € LP(D; RY), (4.3)
and
%13(1) IV of =Plry =0 forall f € Z#P(D), (4.4a)
%i_r% IVX(K§ o8 — 8)lrpy =0 forallg e Z%P (D), (4.4Db)
lim IV-(K§ o8 — &)llrp) =0 forall g € Z*P(D). (4.4¢)

Proof. The proof of (4.3) is the same as that of Theorem 3.3. See the proof of Corollary 3.4 for the other three
statements. O

Lets € (0,1],p € [1,00) ors = 1, p € [1, 0o]. Let us denote by WS?(D; R?) the space composed of the func-
tions in W*P(D; R?) whose extension by zero is in WsP(RY; RY). We set

s sray = Flwsrresre)-
Theorem 4.5 (Convergence rate). There is ¢ such that
1Ks,0f = flr(p;ra) < €8°flgs.o(p.gray
forall f € WSP(D; R9), all § € [0, 8], and alls € (0,1],p € [1,00) 0rs =1, p € [1, 00].

Proof. The proof is identical to that of Theorem 3.5. O

To state a convergence result using norms on D, we recall (see, e.g., [20, Theorem 1.4.2.4, Corollary 1.4.4.5])
that

WSP(D;RY) = WoP(D; RY) ifsp #1, (4.5a)
WSP(D; RY) = WSP(D; RY) ifsp € [0, 1). (4.5b)

(Recall also that the constants in the above norm equivalences depend on |sp — 1].)
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Lemma 4.6 (Convergence rate on derivatives). Let p € [1, co) and s € (0, 1). Then, there is c (depending on
|sp — 1) such that

||V(3<§,Of =Dlery < c&IIVflwsepy  forallf € {v e LP(D) | Vv e WSP(D)},
||V><(ﬂ<‘g’og - 9)llr ) < c&°IIVxgllwsrpy forallg € {v e LP(D) | Vxv € WP (D)},
||V-(5<§’Og - Q)llrp) < c6°IIV-glwsepy forallg e {v e LP(D) | V-v e WSP(D)}.

Proof. The proof relies on the commuting properties from Lemma 4.3, Theorem 4.5, and (4.5b). For instance,

||V(K§’0f - Dlr) = 155 o Vf = Vfllrp)  since v9<§’0 = X5 oV
< c6°|Vflws»(p) owing to Theorem 4.5
< ¢y p6°IVfilwsrpy  owing to (4.5b),
where c{ p depends on |sp - 1|. Proceed similarly for the two other estimates. O

Remark 4.7. The construction of X§ , is similar in spirit to what has been proposed in [7]. The curl estimates
in Theorem 4.5 and Corollary 4.6 are identical to those in [7, Theorem 3.1].

Remark 4.8 (sp > 1). Convergence rates on derivatives can also be derived for sp > 1, namely

||V(EK§’0f ~Dlry < ¢8I Vflwsrpy  forall f e LP(D) with Vf € Wy (D),
IVX(K§ o8& — 8)lLr () < ¢8°|Vxglws»(p) forall g € LP(D) with Vxg € W” (D),
||v-(9<§,0g -l < c8°IV-glwsrpy forall g € LP(D) with V-g € Wy (D),

where ¢ depends on |sp — 1|. Note that these estimates require boundary conditions on the derivatives.

4.4 Traces of Vector Fields

In this section, we illustrate the use of the mollifying operator Ks,0. Let p € (1, c0). Recall the spaces
Z%P(D) and Z%P(D) from (3.5b) and (3.5¢). Since the trace operator Yo : WLr' (D) — WPP (D) is sur-
jective (see [8, p. 315], [20, Theorems 1.5.1.2, 1.5.1.6] and, for s € (%, %),p = 2,[25, Theorem 3.38]), letting
(-, -Yop denote the duality pairing between W~/PP(3D) and W'/ PP (9D), we define the bounded linear map
Yxn 2 Z9P(D) — WPP(9D) by

en¥). Dop = [ v Vxew(l dx - [ wid)- Vv e (4.6)
D D

for all v € Z%P(D) and all 1 € W' (dD), where w(l) ¢ WP (D) is such that yo(w(l)) = I. Note that
Pxn(V) = vjop x n when v is smooth. The definition (4.6) is independent of the choice of w(l). Indeed, let
Wi, W) € Wl’p'(D) be such that yo(w1) = yo(wz) = I, ie,, w1 —w; € W(l)’p,(D). Let (1,,)nen be a sequence in
C(D) converging to w; — w, in W' (D). Then,

0= JV.VXl[)ndX—Jl[)n~V><VdX,
D D
as can be seen by replacing v by X5v and passing to the limit § — 0. Passing to the limit n — oo yields
0= Jv - Vx(Wy —wy)dx — J(wl - wy) - Vxvdx;
D D

hence, (yxn(V), yo(W1))op = (Yxn(V), Yo(W2))sp, which establishes the claim.
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We also define y., : Z4P(D) — W-1/P-P(9D) by

(yn¥), Dop = j v vg()dx + J (Vv dx
D D

forall v e Zd’p(D) and all [ € Wl/P’P'(aD), where g(I) € Wl’P'(D) is such that yo(g(1)) = [, and (, -)5p now
denotes the duality pairing between W~-1/7-P(9D) and W'/P-P' (3D). Reasoning as above, one can verify that
this definition is independent of the choice of g(I). Note also that y.,(v) = vop - n when v is smooth.

Let us now introduce

Z°P (D)

o P (D)
Z;P(D) := CP(D)

[
,  Z3P(D):= CP(D)
Theorem 4.9 (Kernels of Y« and y.n). Let p € (1, c0). Then,
ZSP(D) = Ker(yun),  Z9P(D) = Ker(y.n).

Proof. Let us do the proof for yx«n, the proof for y., is similar.
(1) We first show that Zg’p (D) c ker(yxn), whichis the easiest to establish. By definition there is a sequence
of smooth functions (vn)nen in C (D) converging to v in ZP (D). Let w be a function in (D) n C°(D), then

0= JV-(wxvn)dx= J-vn'wadx—Jw'vandx.
D D D

Both integrals on the right-hand side converge; hence,

(Yxn(V), Yo(W))ap = Jv - Vxwdx — Jw -Vxvdx =0
D D

for every function w in C*(D) n C°(D). This also implies that the equality holds for all w € WLP'(D), since
C®(D)n C°(D)isdenseinw ¢ Wl'p'(D), see Lemma 3.1 and Theorem 3.3. In conclusion, v € ker(y.n) since
Yo is surjective.

(2) Let us now establish the converse, i.e., ker(yxn) ¢ Z5” (D). Let v € ker(yyn). Since v € Z“P (D) c L'(D),
v is differentiable in the distribution sense. Let § € ch(le ), then

(Vxv, ) = J V- Vxpdx = Jv-thpdx.
Rd D
Using that v € ker(y«n), the above equality implies that
(VxV, ) = Jv-sz[)dx = j!,b-vadx = J P - Uxvdx.
D D RY

This proves that Vx¥ = Vxv € L}(IRY). Hence v € ZP (D). We can now apply (4.4b) from Theorem 4.4 since
v € Z9P(D), i.e., the sequence (K§.0V)se10,5,] COnverges to v in Z“P(D). This proves that ker(yxn) Z;P(D)
since X5 v € C3°(D) (see Lemma 4.1). O

Remark 4.10 (Zo = Z). The proof of Theorem 4.9 shows that Z* (D) = Z%P (D) and Zg’p (D) = Z%P(D); simi-
larly, Z5¥ (D) = Z8P(D).

5 Finite Element Setting

We introduce in this section the finite element setting that we are going to use in the rest of the paper. We
henceforth assume that D is a bounded polyhedron in R¥.
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5.1 Meshes

Let (Th)ns0 be a shape-regular sequence of affine meshes. To avoid technical questions regarding hanging
nodes, we also assume that the meshes cover D exactly and that they are matching, i.e., forall cells K, K’ € Tp,
such that K # K" and K n K’ # 0, the set Kn K’ is a common vertex, edge, or face of both K and K’ (with
obvious extensions in higher space dimensions). Given a mesh T, the elements in K € T, are closed sets in
R? by convention. The sets

Tk :={K' €Ty |K'nK#0}, Dg:=int{xeD|3IK € Tg, x e K'},

for all K € Ty, will be invoked in the following sections. The set Tk is the union of all the cells that touch K,
and Dy is the interior of the collection of the points composing the cells in Tk.
We assume that there is a reference element K such that for any mesh T and any cell K € T, there is
a bijective affine mapping Tx : K — K and an invertible matrix Jx € R¥4 (not to be confused with J5) such
that
Tx(X) - Tx(¥) = Jx(X-y) forallx,y € K.

The shape-regularity assumption of the mesh sequence implies that there are uniform constants c¥, ¢’ such
that

detJx)l = IKIKI™Y,  Wklle < c*hg, ITEHle < "Rt (5.1)
where hy is the diameter of K. It can be shown that ¢! = L and ¢’ = & hg for meshes composed of simplices,

~ px
where pg is the diameter of the largest ball that can be 1nscr1bed inK, h % is the diameter of K, and py is the

diameter of the largest ball that can be inscribed in K.

5.2 Definition of a(x)

In the arguments to follow, we are going to invoke smoothing operators like those defined in Section 3.
To avoid having to assume that the mesh sequence is quasi-uniform, we construct a meshsize function
h € C%1(D; R) such that there are three uniform constants c, ¢/, ¢’ > 0 so that

Ihllwreo DRy < €5 c'hg <h(x) <c"hg forallx e K,

for all K € Ty. The construction of this function is standard in the finite element literature. For instance, if the
mesh is composed of simplices, consider the piecewise linear function whose value at any vertex of the mesh
is the average of the mesh-sizes of the simplices sharing this vertex.

Following [12], we introduce € € (0, 1) and define

6(x) :=eh(x) forallx e D. (5.2)

Then we can define ¢4 and 95 like in (2.1) and (2.3), and we can also define generic mollifying operators Ks
and X o like in (3.2b) and (4.1). Lemmas 2.1 and 2.2 hold for ¢ € {0, 1} only, and the smoothness statement
in Lemmas 3.1 and 4.1 must be replaced by K5(g) € C1(D; RY) and Ks,0(8) € Ccl)(D; RY) forall g € L1 (D; RY),
respectively, since § is only Lipschitz. All the other statements in Sections 3 and 4 remain unchanged.

5.3 Reference and Local Finite Elements

We are going to consider various approximation spaces based on the mesh sequence (73)x-0 and a fixed ref-
erence finite element (K P, f). We henceforth assume that P is composed of R?-valued functions for some
integer ¢ > 1 and that P ¢ W1*°(K; RY) (recall that P is a space of polynomial functions in general). The
reference degrees of freedom and the associated reference shape functions are denoted {01, ..., On,} and
{@1, ey @nsh}, respectively. We denote N := {1, ..., ngy} to alleviate the notation. We assume that the lin-
ear forms {G;}ien can be extended to £(V(K); R), where V(K) is a Banach space such that V(K) ¢ L1(K; R%);
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see[15, p. 39]. The interpolation operator Jy : V(K) — P associated with the reference finite element (K, P, %)
is defined by
HME = Y 6:(16i(X), forallx ek, v e V(K).
ieN

By construction, Jz € L(V(K); 13), and Pis point-wise invariant by Jz.

Let K be a cell in the mesh T7,. We introduce a g x g invertible matrix Ag and define the mapping
Yk € L(LY(K; RY); L1 (K; RY)) by

Yr(v) = Ag(ve Tk). (5.3)

It can be shown (see [15, Proposition 1.61]) that upon setting

P :={p =19 (P)|p P}, (5.4a)
Zg := {0k, i}iex With ok ; = 07 o Y, (5.4b)

the triple (K, Pk, Zg) is a finite element. Moreover, the interpolation operator

jK(V)(X) = Z UK,i(V)GK,i(X) forall x € K,ve V(K),
ieN

where we have set O ; := l/);(1 (@i), is such that Jx € £L(V(K); Px) and Py is point-wise invariant by Jg. Defini-
tion (5.4a) implies that Px ¢ W (K; RY). More generally i maps W'P (K; R9) to WhP(K; R9) forall [ € N,
all p € [1, co] (with z£/P = 1 forall z > 0 if p = co0) and

W] g o oo ey < CIAKle Wkl [det(T) Y2,

Wi et @mayswio gerey < CIAL ez 1T L2 1det@)l P,

for all K € Ty (see, e.g., [13, Theorem 3.1.2] or [15, Lemma 1.101]).

5.4 Structural Assumptions

We henceforth assume that there is a uniform constant ¢ such that

1Akl IAL e < clTxlle g ez, (5.5)

so that, owing to (5.1), [[A x|l IIAI}1 [le2 is uniformly bounded with respect to K and h. We also assume that the
degrees of freedom over K are either point values or integrals over edges, faces or K itself. This is formalized
by assuming that

1V(@;)lle2(ray if point evaluation at a;,

[0:(V)] < ¢ { (5.6)

@ jgim [Vlle2(ray ds, otherwise,
where 31?’1. is either an edge, a face, or K itself. All these mesh-related geometric entities are assumed to be
closed sets.

In the case of a point evaluation at a;, we observe that since the cardinal number of % is finite, there exists
a distance Iy > 0 such that only one of the following situations occurs: (1) @; is a vertex of K; (2) @; is in the
interior of an edge of K and is at least at distance 70 from any vertex; (3) a; is in the interior of a face of K and
is at least at distance 70 from any edge; (4) a; is in the interior of K and is at least at distance 70 from any face
(with the obvious extension in higher space dimension).

Let K € Ty, and denote by {a;}jcn, the collection of points associated with the degrees of freedom in K
defined by point evaluation. Note that there exists a; € K such that a; = Tg(a;) for all j € M. The shape-
regularity of the mesh sequence implies that there is a constant ¢y, (uniform with respect to j, K, and Tp,)
such that the open ball B(aj, cminhk) has the following property: for all K’ such that K’ n B(aj, cminhk) # 0
and every x e K' n B(aj, cminhk), the entire segment [x, a;] is in K'. An immediate consequence of this
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observation is that
lv(x) = v(aj)lle < Ix - ajlle|VVipo@;re forall x € K'n B(aj, cminhg) # 0, (5.7)

for all v € Pg. Note that this implies that B(a;, cminhx) € Tk.
In the rest of the paper, we define epax > O such that

max max 1a; - (@sa)(@) +16(@)y)le> < Cminhic, (5.8a)
| (@500x) + r6(x)B(0, 1)) < D, (5.8b)
xeK

forall K € T, all h > 0, and all functions 6 satisfying (5.2) for any € € (0, €max]-

5.5 Finite Element Spaces

We introduce the broken finite element space
P°(Tp) = {va € L'(D; RY) | Yx(vaii) € P, VK € Tn},
where the statement Y x(vyk) € Pis equivalent to vy € Pk. Notice also that
P°(Tn) ¢ WE®(Tp; RY) := {v € L2(D; RY) | vix € WH(K; RY), VK € Ty}
since Px ¢ WH°(K; R?). We denote by JE : LP(D) — PP(T},) the interpolation operator such that
Uz(v)m =Jk(vix) forall K € Tp.

We now introduce the notion of interfaces and jump across interfaces. We say that a subset F ¢ D with
a positive (d-1)-dimensional measure is an interface if there are distinct mesh cells K;, K, € T such that
F = 0K; n 0K,. We say that a subset F c D with positive (d-1)-dimensional measure is a boundary face if
there is a mesh cell K € Ty such that F = 0K n 0D. The unit normal vector nr on F is conventionally chosen
to point from K; to K, for an interface and to point outward for a boundary face. The interfaces are collected
in the set T the boundary faces are collected in the set ?}‘3, and we let F, = F,u ?2. Let F € I, be a mesh
interface, and let K;, K, be the two cells such that F = 0K; n 0K,; the jump of v e W51(T%; R?) across F is
defined to be

[VIr(X) = vig,(x) — vk, (x) fora.e.xeF.

Next we assume to have at hand a Banach space W ¢ L1(D; RY), with continuous embedding, where some
notion of jump across interfaces makes sense. More precisely, we assume that there is a (bounded) linear trace
operator yx : WHH(K; RY) — L1(0K; RY) for some ¢ > 1 and for all K € Ty, and we define the notion of y-jump
across interfaces as follows:

V500 = yr, (Vi) (0 = Y&, (Vi )(x)  fora.e. x € F.
We assume that I[[vﬂl);(x)l < |[v]r(x)|, for a.e. x € F, forall v e Wh1(T}), so that
ve Wh(D;RY) = ([v]} =0forall F € 7}).
We relate the notion of y-jump to the space W by assuming that
veWnWh(T;RY) = ([v]h=0forallF € J3),

and, conversely, that a function in W (J%; R?) with zero y-jumps across interfaces is in . With this setting,
we define
P(Tp) := P°(T) n W.

The above assumptions imply that

P(Th) = {vn € P’(Tp) | [va]} = 0, VF € T3}
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LetF € 3"2 be a boundary face and denote by Kr the unique cell such that F ¢ 0Kr. We consider the global
trace operator y : Wh1(D; R?) — L1(9D; RY) such that

YOIF = Y, (Vi) forall F e 9.

We assume that y can be extended to W into a bounded linear operator y : W — W? where W° is an appro-
priate Banach space, whose exact structure is not important for the time being. We define Wy = ker(y), i.e.,
Wo = {v € W] p(v) = 0}. Let us introduce Po(Tp) = P(Th) N Wo:

Po(Th) := {vn € P(Ty) | y(vn) = O}.

5.6 Examples

The present theory covers a large class of scalar- and vector-valued finite elements like Lagrange, Nédélec, and
Raviart-Thomas finite elements. To remain general, we denote the three reference elements corresponding to
the above three classes as follows: (K Ps, fg), (R, pe, 2‘3) and (K pd, fd). The corresponding domains for the
degrees of freedom are denoted V8 (X), VC(R), Vd(f). We think of (K, P8, £8) as a scalar-valued finite element
(g = 1) and some of its degrees of freedom require point evaluation, for instance (K, P8, £8) could be a La-
grange element. We assume that the finite element (T(, P, 39 is vector-valued (g = d) and some of its degrees
of freedom require to evaluate integrals over edges. Typically, (K, P¢, £°) is a Nédélec-type or edge element.
Likewise, the finite element (K, P4, £9) is assumed to be vector-valued (g = d) and some of its degrees of free-
dom are assumed to require evaluation of integrals over faces. Typically, (K, P, £%) is a Raviart-Thomas-type
element. The arguments developed herein do not require to know the exact structure of the above elements.
The above assumptions imply that it is admissible to choose

V&(K) = WSP(K) with s > g, VE(K) = WSP(K) with s > %, V4(K) = wSP(K) with s > Il?

(recall that denoting by M a smooth manifold of dimension d’ in K the restriction operator to M is continuous
from W52 (K) to LP (M) provided s > d’Td'). Note that it is also legitimate to choose
VEK) = WK, VIEK) =WwH(K), ViK)=WwITHK),

since W%1(K) ¢ C°(K), functions in W'-1(K) have a trace in L1(9K), and functions in W4-1-1(K) have inte-
grable traces on the one-dimensional edges of K.

Let %, P, ¢ be the linear maps introduced in (5.3) for each of the reference finite elements defined
above. In practice l/Ji is the pullback by Tk, and 1[1‘}< and t[)% are the contravariant and covariant Piola trans-
formations, respectively, i.e.,

A% =1, Y3 (v) = vo Tk,
A% =T P5(v) = Jg(v o Tx),
A% =det(Jx) Jg!,  Px(v) = det(J) T (v o Tk).
Note that ¢ = 1 in (5.5) for the above examples. We consider the following y-traces:
VeV (X) 1= Vi (%) forall x € F,

YeViK)(x) := vig(x) x np forallx € F,

Ya(vig)(x) := vig(x) -np  forallx € F,
and the following finite element spaces:
PE(Ty) := {vp € L'(D) | Y% (vnk) € P, VK € Ty, [va]} =0, VF € T3},
PE(Th) := {vn € LY(D) | Y& (vu) € PS, VK € T, [Va] = 0, VF € T3},
PY(Ty) := (v € LY(D) | Y& (vak) € P4, VK € Ty, [va]l =0, VF € T3},
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where we simplified the notation by using [[vh]]f, instead of [[vh]]f, etc. Note the conformity properties
P8(Ty) ¢ Z8P(D), P(Tp) ¢ ZSP(D), and P4(T3,) ¢ Z&P (D). Likewise, introducing the spaces

Z3P(D) = {v € Z8P(D) | y8(v) = 0}
etc., we define
P3(Tn) == P3(Tp) N Z3P (D),
P(Th) == P(Ty) n Z5P (D),
PA(Ty) := PY(Ty) 0 Z5F (D).

We finally denote by 75, Jg, Jfl and Jio, 320, J;O the canonical interpolation operators associated with the
finite element spaces P&(Ty), P°(T4), PY(Th), and P§(Tn), P§(Tn), P3(Th). Note that

% : WSP(D) — P8(Tp) c LP(D),
J5 : WSP(D) — P(Ty) c LP(D),
3¢ WSP(D) — PY(Ty) c LP(D)
are stable provided s > f—J, s> % (= % ford = 3)and s > % = p%’ respectively. We finally assume that the

polynomial degrees in each of these spaces are compatible so that the following commuting properties hold
with s > g:

V8(D) V(D) VX vd(D) v LP(D)
Jjﬁ JJ;; g4 a7 (5.9)
PE(Th) PE(Th) VXL Py ' P°(Th)

where
VE(D) = {f € WP (D) | Yf € WP (D)},
V(D) = {g € W5P(D) | Vxg € W 5P (D)},
V(D) = {g e WP (D) | V-g e WP (D)},
and JE is an interpolation operator only involving integrals over mesh cells. Likewise, upon introducing
V§(D) = {f € V&(D) | fiop = 0},

V(D) = {g € VS(D) | g x njyp = 0},
V3(D) = {g e VYD) | g-nyop = 0},

we assume that the following diagram commutes:

V3(D) VS(D) vi(D) LP(D)
g d b
jhO jﬁo J ho jh
Vx .
PE(Th) P5(Th) P3(Th) P°(Th)

6 Stable, Commuting, Quasi-Interpolation Projection

We introduce in this section a family of finite-element-based quasi-interpolation operators (with and without
boundary conditions) that are L?-stable, commute with the standard differential operators V, Vx, and V-, and
preserve the above finite element spaces.
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6.1 The Operator 3,K;

Owing to the properties of the smoothing operators established above, it makes sense to consider the
discrete functions J5KSf € P8(Ty), I5,K5f € P5(Tn), ThKEf € PP(Ty), T5KSg € PS(Th), J5,K58 € P§(Th),
Jﬂﬂ(? g € PY4(T3) and Jgoxg gc Pg(‘I n) for any integrable scalar-valued function f and any integrable vector-
valued function g. We now establish some stability properties of the restrictions of the operators I3 X5, 75, K5,
KB, 96K, 76, KS, 39K4, and 79,K4 to the discrete spaces P8(Th), P§(Th), P°(Th), P°(Tn), P5(Th), P4(Tn),
and P3(Ty).

To avoid repeating proofs seven times, we denote by J; one of the interpolation operators introduced
above and by X the corresponding smoothing operator; likewise, the range of J;, is denoted P(7}). We assume
that P(T3,) is composed of R9-valued fields.

Remark 6.1 (Boundary conditions). Note that we do not invoke CK% o0» K5 o> and 9(‘; o in the above construc-
tion. The theory to be exposed in the next section holds by using K5, ch, and fK‘; in all the cases, whether
homogeneous boundary conditions are enforced or not in the discrete spaces.

6.2 LP-Stability of the Operator J,5K;

We start with a key result in the spirit of [12, Lemma 4.2], see also [29, Lemma 6]. This result is crucial to
devise a quasi-interpolation operator that preserves the finite element space P(7%).

Lemma 6.2 (Discrete LP-approximation). There is csap > O, uniform with respect to the mesh sequence, such
that

Ifa = InKsfnllLr(p;ra) < Cstab€llfnllze (p;ra)
foralle € (0, €max], all fn € P(Tp) and all p € [1, co].
Proof. (1) Let fr, € P(Ty) and let us set ey, := fr, — InXKsfn and e := f, — Ksfp; note that ey, = Jpe. Let K be a cell
in Ty, then using that 0x,; := Y (6;), we have
16k, illL7 ey < detT) P IA L e 18 o o

forall i € N, and we infer that

lenllr (krae) = ITnellraeray < ) 10k, i(@)0k,illricre) < detT)PIA e Y lok,i(e)l.
ieN ieN
The rest of the proof consists of estimating ox,i(e).
(2) Let us assume first that the degree of freedom o,; is a value at a point a; := Tg(a;) in K. Then using
the assumption (5.6) and the definition (5.3) of 1, we infer that |ok,i(e)| < cl[Axllezlle(a;)l . By proceeding
as in the proof of Theorem 3.3 (step (2)), we obtain

e(a)) = fn(aj) - KXsfn(a;) = J PW)(frn(@) = fu(@sap(@;) + 6(aj)ry)) dy.
B(0,1)

Owing to (5.7) and (5.8a) (recall that € < €max), we have
le(aplle: < ¢ mmax, Ifn(a)) = fr(@ s, (@)) + 6(aj)ry)lle
< ¢'8(aj) max |VfnllL= @ ;re) < ¢ €hg max | VfnllLe @ ;ra)-
K’GTK K’E‘IK

Finally, using a local inverse inequality, which is legitimate since the mesh sequence is shape-regular, we
infer that |0k i(e)| < celAglle2llfnllLeo(Dg:re). Note that the purpose of the above argument is to account for
the fact that f, is (a priori) only piecewise Lipschitz (i.e., can be discontinuous across interfaces) but fj, is
necessarily continuous at aj;.
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(3) If the degree of freedom 0k ; is an integral over an edge, face or over K, we use (5.6), i.e.,

1
lok.i(e)] < clAgle —— j lelle: ds.
|Sk,il

K,i

We introduce

Tsei = {K' € Tx | Sk.i < K'},
Sk.i = X € Sk,i | Poy(X) +8(X)rB(0, 1) € Ts,,}, Sla(,i = Sk \ S -

Then using (5.8b) and setting Y 5(X, ¥) = P4 (X) + 6(x)ry, we have

J||e||ez dssj j PO W5, ) — Fn(0)]» dy ds

Sk.i Sy B(0,1)

I . J’ Ifa(@s(x, ¥)) = frx)] . ds dy
Sk KleTsis y€B(0,1)
' P, (x,y)ek’

<clSkilehk ). IVnlli=@ e < ISk ilelfallioDgra)s (6.1)
K’E‘Tsk’i

IA

where we used the shape-regularity of the mesh sequence (i.e., hgr < chg) and an inverse inequality. Note
again that the above construction is meant to account for the fact that fy is (a priori) only piecewise Lip-
schitz. Moreover, if x € Sla(’i, then there is y € B(0, 1) such that z := Psx (x) + 6(x)ry is not in T, ,; then
mesh-regularity implies that ¢ dist(x, 0Sk,;) < |z - x|,z and that z - x|,z < ¢6(x) < ¢’ ehg. Combining these
bounds, we obtain that

1% ;| < cehgloSk,il < c'€lSk.il

(with the convention that the 0-dimensional measure of a point is 1). As a result, we infer that
J lellez ds < J (Ifnlle: + 1K sfulle2) ds < clifnllieo(pesra|Sg ;1 < ' €lSk.illfallLo(Deire)- (6.2)
Sk Sk
Combining the estimates (6.1) and (6.2) yields
lok,i(e)l < celAgllezllfnllLeo(Dg;ra)-

(4) We have established that |0k i(e)| < cellAkllezIfnllze(y;raey for all possible degrees of freedom. Using
the fact that [|Agll,2 ||AI‘(1 lle2 is uniformly bounded together with an inverse inequality from L (Dg; RY) to
LP(Dg; RY), we deduce that

Ifn = InKsfnllrr x;rey = lenlrr &;ra)
< cedetJ) PIAL e I Ak ez Ifnlleo(Dysre)

< celfullze (pg;ray-

We infer the desired result by summing over K € 7, and by invoking the shape-regularity of the mesh
sequence. O

The above lemma implies that [|(I - J,Ks)|p(7,) | 2 (17:17) < Cstan€ for all € € (0, €max]. From now on we choose
€ once and for all by setting € = epin With €pin := min(€max, (2¢stab) ). Lemma 6.2 then implies that
1
I = InXKehpnlewrir < 5

This proves that J,Xs|p(7,) is invertible for this particular choice of €. Let Jj, : P(Tp) — P(T3) be the inverse of
InKsip(7y)s i€,
TnInXKsipry = InKeipeanJn = 1. (6.3)

Note that the definition of J, implies that |Jxll ¢ (zr;10) < 2.
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Lemma 6.3 (L?-stability). Let € = epin. There is c(€min), uniform with respect to h, such that the following esti-
mate holds:

172 Ksll £ p;Lry < C(Emin)-

Proof. Let f € LP(D; RY) and assume p < co. Then

D
dx
gz

96 iy = Y. [| 3 oitXahbii00

KeTp K ieN

<c ¥ | ¥ lokiXaDP 1ok 0l dx.
KeTh j ieN

Using (5.6), we infer that

19h KA ey <€ Y Y IAKIGIK A oo e 1AL 152 K1,
KeTy ieN

since |0k, i(KsH) < cllAkllez2 1K sflLox;ray @and 10k,i (X) | Leo(k;ra) < C||AI_<1 2. We conclude by invoking Lemma
6.4 below. The argument for p = oo is similar. O

Lemma 6.4 (Local inverse inequality). Let € = €nin. There is a uniform constant ¢ > 0 such that
1K slzeociray < € IKIPIAlLr (Dgie)
forallK € Tp,allh > 0,and all f € LP(D; RY).

Proof. Let x € K. Since the function p is bounded, we infer that

IKsf00le: < j (@500 () + 8OVl dy.
B(0,1)

Condition (5.8b) implies that

— _ _ 1-1
1Ksf00) ez < 6™ oy j If2)lle> dz < cepd h 1Dkl 7 IflLr (gsma)

Dy
and we conclude using the shape-regularity of the mesh sequence. O
6.3 Main Result
We now define the operator
In = JTnInXs, (6.4)

and we state the main result of this section.

Theorem 6.5 (Properties of J,). The following properties hold:
(i) P(Ty) is point-wise invariant under J,.
(ii) Thereis c, uniform with respect to h, such that ||Jn| c(r;10) < ¢ and

If = 3nfllrpsrey < ¢ inf  |If = fullepsrey  for all f € LP(D; RY).
fn€P(Th)

(iii) Jn commutes with the standard differential operators, i.e., the following diagrams are commutative:

7P (D) —— s 799Dy — . 7y — VL (D)
ay h g ay
P8(Th) P(Th) PY(Th) ' P°(Th)
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Vx V-

ZEP (D) Z;? (D) ZS"’ (D) LP(D)
o o Tho th

g c Vx d : b
P3(Th) Py (Ty) Py(Th) P°(Th)

Proof. The first property is a consequence of gy p(7,) = L, since dnodn = dnp(7,)°dn = In. The second property
is proved by observing that the L?-operator-norm of J is bounded by 2 and that of J,XKs is also uniformly
bounded, as established in Lemma 6.3, since € is now a fixed real number. Moreover, using that Jf = fj, for
all fp € P(Ty), we have

If = Iufllrosrey = inf  |f = fu = In(f = f)lle(D;re)
fn€P(Th)

< inf (1 + 1dnllc@rsoo)If = frllroirey < ¢ inf  |f = falleosrey
fn€P(Th) ( ) ( ) fn€P(Th) ( )

which establishes (ii). Let us now prove (iii). We are just going to show that the leftmost square commutes in
the top diagram; the proof for the other squares is identical, and whether boundary conditions are imposed
or not is immaterial in the argument. Let us first show that J; Vp = V(J id)h) for all ¢y, € P8(Ty). We observe
that

Von = V(I§KG ps(r, JrP1) = VIRKET 5 dn) = TV IEGTibn) = VU bn),

where we have used that I = J%K%lpgm)ji (see (6.3)), then Jﬁﬂ(?lpgm)li = J5K3J; (therange of I} is in P8(Ty,)),

followed by V% = 75V (see diagram (5.9)) and VK§ = K5V (see diagram (3.6)). Since V(J5¢pn) € P*(Ty) (see
diagram (5.9)), the above argument together with (6.3) proves that

Voo = (355 pec,) VU dR) = U5 VU ).
In conclusion, J EV¢h =V({J iqﬁh). Now we finish the proof by using an arbitrary function ¢ € V&(D). We have
IV = K5V = [LIVIGP) = JRVIRKEP) = VURIKEP).

The last equality results from the fact that ]ﬁVtth =V(J id)h) for all ¢, € P%(Ty), as established above. This
proves that J5 Ve = V35 . O

Remark 6.6 (Approximation). Theorem 6.5 (ii) shows that the quasi-interpolation error is bounded by the
best approximation error. Estimates of best approximation errors in fractional-order Sobolev spaces have
been obtained in [16]. As an illustration, consider a P¢(T})-based finite element approximation of a field
A € Z%P(D) (typically, with p = 2). Suppose that the natural stability norm for this problem is that of H(curl)
and that the finite element solution Ay, € P¢(T3) satisfies the a priori error estimate

A - ApllHECun) < ¢ inf  ||A — anllHCur)-
apeP(Ty)

he

Then, taking ay, = J} A and using the commuting property leads to the bound
1A - Apllaun < c(IA - F5Al2 ) + IVXA = J3VXA) 2 (py)-

Assume that A, VxA € H'(D) for some real number r € (0, k + 1] where k is the degree of the finite elements
composing P¢(Ty). Then, using Theorem 6.5 (ii) together with [16, Corollary 5.4] leads to

A — Apll(cur) < ch'(|Algrp) + IVXAlgr(D))-

Note that no lower bound on r is assumed a priori.
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6.4 Discrete Poincaré Inequalities

We illustrate the usefulness of the operators constructed above by proving discrete Poincaré inequalities for
H(curl)-elements in dimension d = 2, 3; we expose the material for d = 3. Assume also that D is partitioned
into M connected, strongly Lipschitz subdomains D1, ..., Dy. We consider two piecewise-smooth second-
order tensor fields ¢ and p, i.e., we assume that these fields are in

M
wl’m( UD,-) = {v e L®(D) | V(oyp,) € [LXD)}Y, i=1,..., M},
i=1

where L®(E) := L% (E; R%*4), We additionally assume that e and p are symmetric and the smallest eigenvalue
of each of these two tensors is bounded away from zero from below uniformly over D. Consider the following
Maxwell eigenvalue problems: Find E and O # w € R such that

Vx(u 'VXE) = wE, V-(¢E)=0, Exnpp=0. (6.5)
Find Band 0 # w € R such that
Vx(u'VxB) = wB, V-(eB)=0, (eB)-npp=0. (6.6)
Upon setting

Hyn = {z € H(curl) | V-(ez) = 0, zx njpp = 0},
H, :={z € H(curl) | V-(ez) = 0, (e2) - njpp = 0},

the L2-theory of the well-posedness of this problem is based on the following embedding inequality: There
are ¢ > 0and s > 0 (both depending on D and ¢) such that

lellgsp) < clVxellzp, foralle e Hyn, (6.7a)
IBllgspy < clVxblp2p, forallb e Hop, (6.7h)

provided oD is connected and D is simply connected, respectively. The above inequalities, proved by Bonito,
Guermond and Luddens [6], generalize classical inequalities established by Costabel [14] and Birman and
Solomyak [4] assuming that the tensor ¢ is smooth over the entire domain.

Let us consider the finite element approximation of the above eigenvalue problem using the setting de-
scribed in the previous sections. The approximation theory of this problem is non-trivial, especially when
using finite elements that do not fit the De Rham diagram. We refer to the book of Monk [26] and the review
by Hiptmair [21] for an overview on the topic.

Let P°(Tp), P5(Th) be defined as above. A key step for approximating (6.5) or (6.6) consists of establishing
the following discrete Poincaré inequalities: There is ¢ > 0, uniform with respect to h, such that

"eh"LZ(D) < C"Vxeh"LZ(D) for all en € Hh,xn, (6.83)
Ibullg2py < clVxbnlzpy forall by € Hp,.n, (6.8b)

where

Hpon = {vh e PST) | [(evi) - vandx =0, vgy € P%(irh)},

Hiyn = {vi € PT) | [(evi) - Van dx = 0, van € PECT)|.

O, 5 —

There are many ways of proving (6.8) when ¢ is smooth, since in this case it can be proved that the Sobolev
index s in (6.7a) is larger than % The first route described in [21, §4.2] consists of invoking subtle regularity
estimates by Amrouche et al. [1, Lemma 4.7]. The second one, which avoids invoking regularity estimates, is
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based on the so-called discrete compactness argument of Kikuchi [23] and further developed by Monk and
Demkowicz [27] and Caorsi, Fernandes and Raffetto [9]. The proof is not constructive and is based on an
argument by contradiction.

We now show that using the approximation operators described in the previous sections gives a direct
answer to the above question without requiring any particular condition on the Sobolev index s in (6.7a); see
also the work of Arnold, Falk and Winther [3, Theorem 3.6].

Theorem 6.7 (Discrete Poincaré). Assume that oD is connected (resp., D is simply connected). Then there is a
uniform constant ¢ > 0 such that (6.8a) holds (resp., (6.8b) holds).

Proof. We only do the proof for (6.8a), the proof for (6.8b) is similar. Let vy € Hp xn be a nonzero discrete
field. Let ¢p(vp) € H(l)(D) be the solution to the following Poisson problem:

V-(eVp(vn)) = V-(eVn), @(Vi)op =0

Note that this problem is well-posed owing to the assumed regularity and structure of ¢. Let us define
v(vy) := v — Vp(vy). This definition implies that

V-(ev(vp)) =0, Vx(v(vp)) = Vxvy, Vv(vp)xnpp =0,

so that v(vy) € Hxn. We now bound ||va |2 (p, as follows:

IVl p, < [ (v vadx = [(evn) - (va = B5ovtvm) + Figviva) dx
D

D

j(evh) 9o (vh - v(vi)) dx + j(m) - 4E,v(vh) dx
D D

j(evh) 9 V(b (va)) dx + j(m) 5 V(vy) dx.

D D

Note here that we used that Hflovh = vy. Then using the commuting property HEOV@(Vh)) = V(Hi,ocl)(vh)) and
since g% , maps onto P§(7T3), we infer that

IVl ) < [ (Vi) - V(G o) dx+ [ (eva) - 35O dx
D D

= J(‘Evh) : HEOV(Vh) dx < C’”Vh||L2(D)||3;0V(Vh)||L2(D)-
D

The uniform boundedness of J;, on L%(D) and (6.7a) with s = 0 imply
lvi ||LZ(D) < C||3?10V(Vh)||L2(D) < C’”V(Vh)”L?(D) < C”"vah”L?(D)-
This concludes the proof. O
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