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1 Introduction
Smoothing by molli�cation is an important tool for the analysis and the approximation of partial di�erential
equations. This tool has been introduced by Leray [24, p. 206], Sobole� [31, p. 487], and Friedrichs [18,
pp. 136–139]. Themollifying operation commutes with di�erential operators and converges optimally when
the function to be smoothed is de�ned over the entire spaceℝd. These propertiesmay not be easy to achieve if
the function in question is de�ned only in a non-smooth domain D, say only Lipschitz, since molli�cation by
convolution as originally introduced in the above references requires to extend the function outside D, which
is a non-trivial task in general unless the boundary and the function are reasonably smooth. The boundary
di�culty has been overcome by Blouza and Le Dret [5] and Girault and Scott [19] by rede�ning molli�cation
using a convolution-translation technique so that molli�cation does not require information outside of D.
The question is, however, more subtle when dealing with vectors �elds where normal or tangent boundary
conditions are involved, and, to our knowledge, has not yet been fully addressed in the literature.

The �rst objective of this paper is to revisit the theory of molli�cation for scalar- and vector-valued �elds
in strongly Lipschitz domains with the following goals in mind: the molli�cation operators must be compat-
ible with the De Rham complex (i.e., they must commute with the standard di�erential operators ∇, ∇×, and
∇⋅), be Lp-stable for any real number p ∈ [1,∞], and have strong convergence properties in the entire do-
main. Using a partition of unity subordinated to a covering of the boundary as done in [5, 19] is (seemingly)
incompatible with the �rst constraint. The route that we propose instead is based on a shrinking technique
of the domain using transversal vector �elds. We also devise a second sequence of molli�cation operators
based on the extension by zero; the corresponding operators have the property that the molli�ed functions
are in the kernel of the canonical trace operators in H1, H(curl), and H(div) (i.e., zero trace, zero tangential
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trace, and zero normal trace, respectively). The main results of the �rst part of the paper are Theorems 3.3
and 4.4, and their respective corollaries. As an application of independent interest, we give in Theorem 4.9
a clear characterization of the kernel of the traces associated with the divergence and the curl operators.

The second objective of this work is to use the molli�cation operators introduced in the �rst part of the
paper to construct quasi-interpolation operators onto general �nite element subspaces of H1, H(curl), and
H(div), with and without homogeneous boundary conditions. We want these operators to satisfy three key
properties: (i) Lp-stability for any p ∈ [1,∞], (ii) commutation with di�erential operators, (iii) preservation
of functions in the �nite element spaces. Operators with such properties are important tools in �nite element
exterior calculus, see the work of Arnold, Falk and Winther [2, §5.4] and [3, §5.3], where they are termed
bounded cochain projections. In particular, the above properties imply that the quasi-interpolation error is
bounded by the best approximation error.

The bases for constructing stable, commuting, and quasi-interpolation projections have been laid out by
Schöberl [28, 30] and Christiansen [10], who achieve stability and commutation by composing the canoni-
cal �nite element interpolation operators with some molli�cation technique. Then, following Schöberl [29],
the projection property over �nite element spaces is obtained by composing these operators with the in-
verse of their restriction to the said spaces. An important extension of this construction allowing the pos-
sibility of using shape-regular mesh sequences and boundary conditions has been achieved by Christiansen
and Winther [12]. Further variants of this construction have been proposed by Christiansen [11] where the
bounded cochain has the additional property of preserving polynomials locally, up to a certain degree, and
by Falk andWinther [17] where it is de�ned locally. In the present work, we revisit the results of [12] by invok-
ing our shrinking-based molli�cation operators which do not require extension outside the domain. We also
present the results in the language of numerical analysis to make them accessible to a wide audience. The
main result of this second part is Theorem 6.5. As an application, we give in Theorem 6.7 discrete Poincaré
inequalities for vector-valued functions.

The paper is organized as follows. In Section 2 we introduce a shrinking technique of D that avoids di�-
culties with the boundary.We also introduce an expansion technique. In Section 3we use the shrinking tech-
nique to devise molli�cation operators that commute with di�erential operators, are stable in any Lp space,
and have approximation properties on smooth functions. Using the expansion technique from Section 2, we
introduce in Section 4 molli�cation operators that produce compactly supported functions and share the
same properties as the shrinking-based operators. In Section 5, we introduce the �nite element setting that is
necessary to construct canonical interpolation operators on standard H1-, H(curl)-, and H(div)-conforming
�nite element spaces, with and without homogeneous boundary conditions. In Section 6 we devise quasi-
interpolant operators that are Lp-stable, commute with di�erential operators, and preserve �nite element
spaces, with and without boundary conditions.

2 Some Geometry
In the entire paper, D is an open, bounded, strongly Lipschitz, connected set inℝd, int(D) denotes the interior
of D, and D its closure. Points inℝd andℝd-valued functions andmappings are denoted using bold face; the
Euclidean norm in ℝq, q ≥ 1, is denoted ‖ ⋅ ‖ℓ2(ℝq), or ‖ ⋅ ‖ℓ2 when the context is unambiguous. We abuse the
notation by using the same symbol for the ℓ2-induced matrix norm and the norm of multilinear maps.

2.1 Shrinking of Strongly Lipschitz Domains

Let D be a strongly Lipschitz domain, i.e., there are α > 0, β > 0, a �nite number N of a�ne maps Tn,
n ∈ {1, . . . , N}, and Lipschitz maps Φn : B(0ℝd−1 , α) → ℝ such that

∂D =
N
⋃
n=1
Tn({(x, z = Φn(x)) | x ∈ B(0ℝd−1 , α)}),
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and for all n ∈ {1, . . . , N},

Tn({(x, z) | x ∈ B(0ℝd−1 , α), Φn(x) < z < Φn(x) + β}) ⊂ int(D),
Tn({(x, z) | x ∈ B(0ℝd−1 , α), Φn(x) − β < z < Φn(x)}) ⊂ ℝd \ D,

where B(0ℝd−1 , α) is the open ball of radius α inℝd−1 centered at the origin.
Since D is strongly Lipschitz and bounded, the combination of the results of Hofmann, Mitrea and Taylor

in [22, Theorem 2.7] and [22, Lemma 2.2] implies that D has continuous globally transversal vector �elds,
i.e., there exist a vector �eld J ∈ C0(∂D) and a real number ã > 0 with the property that n(x) ⋅ J(x) ≥ ã at a.e.
point x on ∂D, where n is the unit normal vector pointing outward. Proposition 2.3 in [22] in turn implies the
existence of a vector �eld j ∈ C∞(ℝd) whose restriction to ∂D is globally transversal and ‖j(x)‖ℓ2 = 1 for all
x ∈ ∂D. We then de�ne the mapping

φδ : ℝd ∋ x Ü→ x − δj(x) ∈ ℝd . (2.1)

Using [22, Proposition 4.15], together with the uniform cone property (see [22, pp. 599–600]), we infer that
there exists r > 0 such that

φδ(D) + B(0, δr) ⊂ D for all δ ∈ [0, 1]. (2.2)

Lemma 2.1 (Properties of φδ). The following properties hold:
(i) The map φδ is of class C∞ for all δ ∈ [0, 1].
(ii) For all ℓ ∈ ℕ, there is c such that maxx∈D ‖Dℓφδ(x) − Dℓx‖ℓ2 ≤ cδ for all δ ∈ [0, 1], where Dℓ denotes the

Fréchet derivative of order ℓ.
(iii) φδ(D) + B(0, δr) ⊂ D for all δ ∈ (0, 1].
(iv) Themapping x Ü→ x + t(φδ(x) + (δry) − x)maps D into D for all t ∈ [0, 1], all y ∈ B(0, 1) and all δ ∈ [0, 1].

Proof. The �rst two properties are consequences of j being of class C∞ and D being bounded, while (iii) is
just (2.2). To prove (iv), observe that t(φδ(x) − x) = φtδ(x) − x. This implies that

x + t(φδ(x) + (δry) − x) = φtδ(x) + tδry ∈ φtδ(D) + B(0, tδr) ⊂ D

for all y ∈ B(0, 1), all t ∈ [0, 1] and all δ ∈ [0, 1].

2.2 Expansion of Strongly Lipschitz Domains

Since D is bounded, there are xD ∈ ℝd and rD > 0 such that D ⊂ B(xD , rD). LetO = B(xD , rD) \ D. The domain
O is bounded, open, and strongly Lipschitz; hence, we can apply the above argument again, and deduce the
existence of a vector �eld k ∈ C∞(ℝd) that is globally transversal for O, points outward D, and ‖k(x)‖ℓ2 = 1
for all x ∈ ∂O; note that ∂D ⊂ ∂O. We then de�ne the mapping

ϑδ : ℝd ∋ x Ü→ x + δk(x) ∈ ℝd . (2.3)

As above, we infer that there exists ζ > 0 such that

ϑδ(O) + B(0, 3δζ) ⊂ O for all δ ∈ [0, 1]. (2.4)

Lemma 2.2 (Properties of ϑδ). The following properties hold:
(i) The map ϑδ is of class C∞ for all δ ∈ [0, 1].
(ii) For all ℓ ∈ ℕ, there is c such thatmaxx∈D ‖Dℓϑδ(x) − Dℓx‖ℓ2 ≤ cδ for all δ ∈ [0, 1].
(iii) ϑδ(O) + B(0, 2δζ) ⊂ O for all δ ∈ (0, 1].

Proof. The only novelty is the proof of (iii). Let x ∈ O, then there exists zδ ∈ O such that (1 + δLk)‖zδ − x‖ℓ2 <
δζ , where Lk denotes the Lipschitz constant of the �eld k in O. We observe that

ϑδ(x) + B(0, 2δζ) = ϑδ(zδ) + (ϑδ(x) − ϑδ(zδ)) + B(0, 2δζ)
⊂ ϑδ(O) + B(0, δζ) + B(0, 2δζ) = ϑδ(O) + B(0, 3δζ) ⊂ O

owing to (2.4).
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3 Molli�cation Without Extension
We introduce in this section a molli�cation technique in strongly Lipschitz domains that does not require to
invoke non-trivial extensions and that commutes with di�erential operators. The mapping φδ : D → D and
r > 0 are de�ned in (2.1) and (2.2). In what follows, Jδ(x) denotes the Jacobian matrix of φδ at x ∈ D.

3.1 Molli�cation

Let us consider the kernel

ρ(y) :=
{
{
{

η exp(− 1
1−‖y‖2

ℓ2
), if ‖y‖ℓ2 < 1,

0, if ‖y‖ℓ2 ≥ 1,

where η is chosen so that
∫

ℝd

ρ(y)dy = ∫
B(0,1)

ρ(y)dy = 1.

Tobe generic,we introduce q ∈ ℕ, q ≥ 1, anda smoothℝq×q-valued�eldAδ : D → ℝq×q (related to the Jacob-
ian Jδ of φδ, see (3.4) below) such that for all l ∈ ℕ, there is c such that

sup
x∈D

‖Dl(Aδ(x) − I)‖ℓ2 ≤ cδ, (3.1)

where I is the identitymatrix inℝq×q. Consider the following smoothing operators acting on f ∈ L1(D;ℝ) and
g = (g1, . . . , gq)T ∈ L1(D;ℝq):

(Kg
δ f)(x) := ∫

B(0,1)

ρ(y)f(φδ(x) + (δr)y)dy, (3.2a)

(Kδg)(x) := Aδ(x)(Kg
δg1(x), . . . ,K

g
δgq(x))

T . (3.2b)

Property (iii) from Lemma 2.1 implies that

φδ(x) + (δr)y ∈ φδ(D) + (δr)B(0, 1) ⊂ D for all x ∈ D, y ∈ B(0, 1).

This means that the domains ofKg
δ andKδ are indeed L1(D;ℝ) and L1(D;ℝq), i.e., there is no need to invoke

extensions outside D.

Lemma 3.1 (Smoothness). Kδg is in C∞(D;ℝq) for all g ∈ L1(D;ℝq), and Kδg as well as all its derivatives
admit a continuous extension to D.

Proof. Owing to (3.1) and (3.2b), and using the Leibniz product rule, it su�ces to show that the statement
holds for Kg

δ. Let f ∈ L
1(D). Let us prove �rst that Kg

δ f is continuous. Let x and z be two points in D. Up to
appropriate changes of variable we have

K
g
δ f(x) −K

g
δ f(z) =

1
(δr)d

∫
D

(ρ(
y − φδ(x)

δr ) − ρ(
y − φδ(z)

δr ))f(y)dy,

where we replaced φδ(x) + (δr)B(0, 1) and φδ(z) + (δr)B(0, 1) by D and used that ρ is zero outside the unit
ball B(0, 1). The uniform Lipschitz continuity of ρ and φδ implies that there is c such that

!!!!!!!
ρ(
y − φδ(x)

δr ) − ρ(
y − φδ(z)

δr )
!!!!!!!
≤
c
δr

‖x − z‖ℓ2 .

As a result, we infer that
!!!!K

g
δ f(x) −K

g
δ f(z)

!!!! ≤ c(δr)
−d−1‖f‖L1(D)‖x − z‖ℓ2 ,
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which proves that K
g
δ f is Lipschitz continuous; hence K

g
δ f is uniformly continuous. This proves that

K
g
δ f ∈ C

0(D;ℝ) and K
g
δ f admits a continuous extension to D. Let us now evaluate the gradient of Kg

δ f .
Using the chain rule, we infer that

∇(Kg
δ f)(x) = ∫

B(0,1)

ρ(y)JTδ(x)(∇f)(φδ(x) + (δr)y)dy

= JTδ(x) ∫
B(0,1)

ρ(y)(∇f)(φδ(x) + (δr)y)dy

= JTδ(x)(δr)
−1 ∫
B(0,1)

ρ(y)∇(f(φδ(x) + (δr)y))dy

= −JTδ(x)(δr)
−1 ∫
B(0,1)

∇ρ(y)f(φδ(x) + (δr)y)dy.

We can then conclude that∇(Kg
δ f) is Lipschitz continuous by using the same argument as above and continue

the argument by induction.

3.2 Examples

Let f ∈ L1(D;ℝ) and g ∈ L1(D;ℝd). Following [28] and [30, §3], we de�ne the following families of molli�ca-
tion operators:

(Kg
δ f)(x) = ∫

B(0,1)

ρ(y)f(φδ(x) + (δr)y)dy, (3.3a)

(Kc
δg)(x) = ∫

B(0,1)

ρ(y)JTδ(x)g(φδ(x) + (δr)y)dy, (3.3b)

(Kd
δg)(x) = ∫

B(0,1)

ρ(y)det(Jδ(x))J−1δ (x)g(φδ(x) + (δr)y)dy, (3.3c)

(Kb
δ f)(x) = ∫

B(0,1)

ρ(y)det(Jδ(x))f(φδ(x) + (δr)y)dy, (3.3d)

for all x ∈ D. The superscripts in (3.3) refer to the fact that these operators are used to build projections onto
�nite element spaces that are conforming in the graph space of the gradient, curl, or divergence operator, or
onto a broken �nite element space (with no conformity requirement), see Theorem 6.5 below. The transfor-
mations involving Jδ are related to the classical Piola transformations. Furthermore, the functionsKc

δg,K
d
δg,

Kb
δ f are of the form (3.2b) withAg

δ(x) = 1 and

Ac
δ(x) = J

T
δ(x), A

d
δ(x) = det(Jδ(x))J−1δ (x), Ab

δ(x) = det(Jδ(x)). (3.4)

Property (iii) from Lemma 2.1 implies that (3.1) holds true in the above three cases. Let p ∈ [1,∞]. Assuming
d = 3, we de�ne

Zg,p(D) = {f ∈ Lp(D) | ∇f ∈ Lp(D)}, (3.5a)
Zc,p(D) = {v ∈ Lp(D) | ∇×v ∈ Lp(D)}, (3.5b)
Zd,p(D) = {v ∈ Lp(D) | ∇⋅v ∈ Lp(D)}. (3.5c)

Lemma 3.2 (Commuting with di�erential operators). The following holds:
(i) ∇Kg

δ f = Kc
δ∇f for all f ∈ Z

g,p(D),
(ii) ∇×Kc

δg = Kd
δ∇×g for all g ∈ Zc,p(D),

(iii) ∇⋅Kd
δg = Kb

δ∇⋅g for all g ∈ Zd,p(D).
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That is, the following diagram commutes:

Zg,p(D) ∇ - Zc,p(D) ∇× - Zd,p(D) ∇⋅ - Lp(D)

C∞(D)

K
g
δ

? ∇ - C∞(D)

Kc
δ

? ∇× - C∞(D)

Kd
δ

? ∇⋅ - C∞(D)

Kb
δ

?
(3.6)

Proof. Upon setting T(x) = φδ(x) + δry, these identities are simple consequences of the chain rule:

∇(f ∘T)(x) = JTδ(x)(∇f)(T(x)),
∇×(JTδ(x)(g∘T))(x) = det(Jδ(x))J−1K (x)(∇×g)(T(x)),

∇⋅(det(Jδ(x))J−1δ (g∘T))(x) = det(Jδ(x))(∇⋅g)(T(x)).

This completes the proof.

3.3 Convergence

We now show that the smoothing operators de�ned above have interesting approximation properties. Owing
to Lemma 2.1, Jδ and J−1δ converge uniformly to the identity, and det(Jδ) converges uniformly to 1. As a result,
there is δ0 ∈ (0, 1] such that ‖Jδ − I‖ℓ2 ≤ 1

2 , ‖J
−1
δ ‖ℓ2 ≤ 2, and |det(J−1δ )| ≤ 2d for all δ ∈ [0, δ0] and all x ∈ D.

Theorem 3.3 (Convergence). The sequence (Kδ)δ∈[0,δ0] is uniformly bounded in

L(Lp; Lp) := L(Lp(D;ℝq); Lp(D;ℝq))

for all p ∈ [1,∞]. Moreover, for p ∈ [1,∞), ‖Kδ f − f‖Lp(D;ℝq) → 0 as δ → 0 for all f ∈ Lp(D;ℝq).

Proof. Owing to (3.1) and (3.2b), it su�ces to show that the statement holds forKg
δ.

(1) We show �rst that Kg
δ is uniformly bounded in L(Lp; Lp) by using the Riesz–Thorin interpolation

theorem. The statement is evident for p = ∞ with constant c = 1. Now consider f ∈ L1(D;ℝ), then

‖Kg
δ f‖L1(D) ≤ ∫

D

∫
B(0,1)

ρ(y)|f(φδ(x) + (δr)y)|dy dx

≤ ∫
B(0,1)

ρ(y) ∫
D

|f(φδ(x) + (δr)y)|dx dy

≤ ∫
B(0,1)

ρ(y) ∫
φδ(D)+(δr)y

|f(z)||det(Jδ(z))|−1 dz dy ≤ c‖f‖L1(D),

since δ ≤ δ0. The Riesz–Thorin interpolation theorem implies that ‖Kg
δ f‖Lp(D) ≤ c

1/p‖f‖Lp(D), so that

‖Kg
δ f‖Lp(D) ≤ c1‖f‖Lp(D), with c1 = max(1, c).

(2) Assume �rst that f is smooth over D, say uniformly Lipschitz with Lipschitz constant Lf , i.e.,
|f(x) − f(z)| ≤ Lf ‖x − z‖ℓ2 . Then,

!!!!K
g
δ f(x) − f(x)

!!!! =
!!!!!!!

∫
B(0,1)

ρ(y)(f(φδ(x) + (δr)y) − f(x))dy
!!!!!!!

≤ ∫
B(0,1)

ρ(y)Lf ‖φδ(x) − x + (δr)y)‖ℓ2 dy ≤ cLf δ.

In conclusion, there is c0 = cmax(1, |D|) such that ‖Kg
δ f − f‖Lp(D) ≤ c0Lf δ.
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(3) We conclude by using a density argument and the triangle inequality. Let f ∈ Lp(D). The space of
uniformly Lipschitz functions being dense in Lp(D), there is a sequence of uniformly Lipschitz functions
(fn)n∈ℕ such that ‖fn − f‖Lp(D) → 0 as n → ∞. Then

‖Kg
δ f − f‖Lp(D) ≤ ‖Kg

δ(f − fn)‖Lp(D) + ‖Kg
δ fn − fn‖Lp(D) + ‖fn − f‖Lp(D)

≤ c1‖f − fn‖Lp(D) + c0Lfnδ + ‖fn − f‖Lp(D).

Let ϵ > 0 and let n(ϵ) be large enough so that ‖fn(ϵ) − f‖Lp(D) ≤ ϵ. Setting δ0(ϵ) = ϵ/Lfn(ϵ) , we have

‖Kg
δ f − f‖Lp(D) ≤ ϵ(c1 + c0 + 1) for all δ ≤ δ0(ϵ).

In conclusion, for all ϵ > 0, there is δ0(ϵ) such that ‖Kg
δ f − f‖Lp(D) ≤ ϵ(c1 + c0 + 1) for all δ ≤ δ0(ϵ). Since ϵ > 0

is arbitrary, this proves that ‖Kg
δ f − f‖Lp(D) → 0 as δ → 0.

We now can state a result that shows that the above smoothing technique is superior to molli�cation alone,
i.e., contrary to the result originally stated by Friedrichs (see, e.g., [8, Theorem 9.2]), strong convergence on
the derivatives now occurs over the entire domain D.

Lemma 3.4 (Convergence of derivatives). Let p ∈ [1,∞). Then,

lim
δ→0

‖∇(Kg
δ f − f)‖Lp(D) = 0 for all f ∈ Zg,p(D), (3.7a)

lim
δ→0

‖∇×(Kc
δg − g)‖Lp(D) = 0 for all g ∈ Zc,p(D), (3.7b)

lim
δ→0

‖∇⋅(Kd
δg − g)‖Lp(D) = 0 for all g ∈ Zd,p(D). (3.7c)

Proof. Using Lemma 3.2 we infer that ∇Kg
δ f = Kc

δ∇f , and Theorem 3.3 implies that Kc
δ∇f → ∇f in Lp(D) as

δ → 0, which proves (3.7a). A similar argument holds for (3.7b) and (3.7c).

3.4 Convergence Rate

We now establish convergence rates.

Theorem 3.5 (Convergence rate). There is c such that

‖Kδ f − f‖Lp(D;ℝq) ≤ cδs|f|W s,p(D;ℝq)

for all f ∈ W s,p(D;ℝq), all δ ∈ [0, δ0], and all s ∈ (0, 1], p ∈ [1,∞) or s = 1, p ∈ [1,∞].

Proof. Owing to (3.1) and (3.2b), it su�ces to show that the statement holds forKg
δ. Assume �rst that p < ∞.

(1) Let f ∈ W s,p(D) with s ∈ (0, 1). We estimateKg
δ f − f in L

p(D) as follows:

‖Kg
δ f − f‖

p
Lp(D) = ∫

D

!!!!!!!
∫

B(0,1)

ρ(y)(f(φδ(x) + (δr)y) − f(x))dy
!!!!!!!

p
dx

≤ c ∫
B(0,1)

∫
D

|f(φδ(x) + (δr)y) − f(x)|p

‖φδ(x) + (δr)y − x‖sp+dℓ2

‖φδ(x) + (δr)y − x‖sp+dℓ2 dx dy.

Let us make the change of variables B(0, 1) ∋ y Ü→ z = φδ(x) + (δr)y ∈ φδ(D) + δrB(0, 1) ⊂ D. Observe that
the Jacobian of this transformation is bounded from above by δr and

‖φδ(x) + (δr)y − x‖ℓ2 ≤ ‖φδ(x) − x‖ℓ2 + δr‖y‖ℓ2 ≤ cδ.

Hence,

‖Kg
δ f − f‖

p
Lp(D) ≤ cδ

sp+dδ−d ∫
D

∫
D

|f(z) − f(x)|p

‖z − x‖sp+dℓ2

dx dz ≤ cδsp|f|pW s,p(D).
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(2) Let f ∈ W1,p(D). By proceeding as above we infer that

‖Kg
δ f − f‖

p
Lp(D) ≤ c ∫

B(0,1)

∫
D

!!!!f(φδ(x) + (δr)y) − f(x)!!!!
p dx dy.

Let us �x y ∈ B(0, 1) and de�ne the mapping ψδ : D ∋ x Ü→ φδ(x) + (δr)y ∈ φδ(D) + δrB(0, 1) ⊂ D. Observe
that

‖ψδ(x) − x‖ℓ2 ≤ ‖φδ(x) − x‖ℓ2 + δr‖y‖ℓ2 ≤ cδ, ‖Dψδ(x) − I‖ = ‖Dφδ(x) − I‖ ≤ cδ,

and
x + t(ψδ(x) − x) = x + t(φδ(x) + δry − x) ∈ D,

i.e., ψδ satis�es the assumptions of Lemma 3.7 below. Hence,

∫
D

!!!!f(φδ(x) + (δr)y) − f(x)!!!!
p dx ≤ cδp‖∇f‖pLp(D).

We conclude that ‖Kg
δ f − f‖Lp(D) ≤ cδ‖∇f‖Lp(D).

(3) The case s = 1, p = ∞ is treated similarly to (2).

Lemma 3.6 (Convergence rate on derivatives). Let s ∈ (0, 1), p ∈ [1,∞) or s = 1, p ∈ [1,∞]. Then, there is c
such that

‖∇(Kg
δ f − f)‖Lp(D) ≤ cδ

s|∇f|W s,p(D) for all f ∈ {v ∈ Lp(D) | ∇v ∈ W s,p(D)},
‖∇×(Kc

δg − g)‖Lp(D) ≤ cδs|∇×g|W s,p(D) for all g ∈ {v ∈ Lp(D) | ∇×v ∈ W s,p(D)},
‖∇⋅(Kd

δg − g)‖Lp(D) ≤ cδs|∇⋅g|W s,p(D) for all g ∈ {v ∈ Lp(D) | ∇⋅v ∈ W s,p(D)}.

Proof. Let f ∈ {v ∈ Lp(D) | ∇v ∈ W s,p(D)}, then

‖∇(Kg
δ f − f)‖Lp(D) = ‖Kc

δ∇f − ∇f‖Lp(D) since ∇Kg
δ = Kc

δ∇

≤ cδs‖∇f‖W s,p(D) owing to Theorem 3.5.

Proceed similarly for the two other estimates.

Lemma 3.7 (Approximation). Let λ0 > 0, and assume that ψλ : D → D is a di�eomorphism of class C1 such
that ‖ψλ(x) − x‖ℓ2 ≤ c�λ and ‖Dψλ(x) − I‖ℓ2 ≤ 1

2 for all x ∈ D and all λ ∈ [0, λ0]. Assume also that themapping
µλ,t : x Ü→ x + t(ψλ(x) − x)maps D into D for all t ∈ [0, 1] and all λ ∈ [0, λ0]. Then, there is c such that

‖f ∘ ψλ − f‖Lp(D) ≤ cλ‖∇f‖Lp(D)

for all λ ∈ [0, λ0], all f ∈ W1,p(D), and all p ∈ [1,∞].

Proof. (1) Assume �rst that f is smooth. Let x ∈ D and v(t) := f(µλ,t(x))with t ∈ [0, 1]. The chain rule implies
that v�(t) = Df(µλ,t(x))(ψλ(x) − x), thereby showing that

f(ψλ(x)) − f(x) =
1

∫
0

v�(t)dt =
1

∫
0

Df(µλ,t(x))(ψλ(x) − x)dt.

Then, assuming that p < ∞, we infer that

‖f ∘ψλ − f‖
p
Lp(D) ≤ ∫

D

‖ψλ(x) − x‖
p
ℓ2

1

∫
0

‖∇f(µλ,t(x))‖
p
ℓ2 dt dx ≤ c�λp

1

∫
0

∫
D

‖∇f(µλ,t(x))‖
p
ℓ2 dt dx.

The assumptions on ψλ imply that the map µλ,t is invertible and ‖Dµ−1λ,t‖ℓ2 ≤ 2, |det(Dµ−1λ,t)| ≤ 2d. As a result,

‖f ∘ ψλ − f‖
p
Lp(D) ≤ c

�λp
1

∫
0

∫
D

‖∇f(z)‖pℓ2 |det(Dµ
−1
λ,t)|dz dt,

which �nally implies that there is c0 so that ‖f ∘ψλ− f‖Lp(D) ≤ c0λ‖∇f‖Lp(D). The case p = ∞ is treated similarly.
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(2) If f is not smooth, we deduce from Corollary 3.4 that there exists a sequence of smooth functions
converging to f in W1,p(D), i.e., for all ϵ > 0, there is a smooth function fϵ such that ‖f − fϵ‖Lp(D) ≤ ϵ and
‖∇fϵ‖Lp(D) ≤ 2‖∇f‖Lp(D). Then

‖f ∘ ψλ − f‖Lp(D) ≤ ‖(f − fϵ) ∘ ψλ‖Lp(D) + ‖fϵ ∘ ψλ − fϵ‖Lp(D) + ‖fϵ − f‖Lp(D)
≤ cϵ + 2c0λ‖∇f‖Lp(D) + ϵ.

The conclusion follows readily since ϵ is arbitrary.

4 Molli�cation with Extension by Zero
Note that the functionKδ f de�ned in (3.2b) does not satisfy any particular boundary condition. For instance,
even if f is zero on ∂D, (Kδ f)|∂D is not necessarily zero. Since preserving boundary conditions may be useful
in some applications, we now construct a molli�er that has this property. Let C∞0 (D;ℝq) denote the space
of ℝq-valued functions that are of class C∞ and of compact support in D. Consider the mapping ϑδ and the
constant ζ de�ned in (2.3) and (2.4). LetKδ(x) denote the Jacobian matrix of ϑδ at x ∈ D.

4.1 Molli�cation

For any g ∈ L1(D;ℝq), q ∈ ℕ with q ≥ 1, we denote by g̃ the extension by zero of g over ℝd, i.e., g̃(x) = g(x)
if x ∈ D and g̃(x) = 0 otherwise. Taking inspiration from Bonito, Guermond and Luddens [7], we introduce

(Kg
δ,0f)(x) := ∫

B(0,1)

ρ(y)f̃ (ϑδ(x) + (δζ)y)dy,

(Kδ,0g)(x) := Bδ(x)(Kg
δ,0g1(x), . . . ,K

g
δ,0gq(x))

T , (4.1)

for all x ∈ D, all f ∈ L1(D;ℝ), and all g = (g1, . . . , gq)T ∈ L1(D;ℝq), where Bδ is a smooth ℝq×q-valued �eld
(related to the JacobianKδ of ϑδ) such that for all l ∈ ℕ, there is c such that

sup
x∈D

‖Dl(Bδ(x) − I)‖ℓ2 ≤ cδ. (4.2)

Lemma 4.1 (Smoothness and boundary condition). Kδ,0(g) is in C∞0 (D;ℝq) for all g ∈ L1(D;ℝq) and all
δ ∈ (0, 1].

Proof. The smoothness has already been proved in Lemma 3.1. Let κ be the Lipschitz constant of the �eld k
over D. Let ϵδ = δζ/(1 + δκ). Let x ∈ D be such that dist(x, ∂D) < ϵδ. Then, there exists a point z ∈ ∂D such
that dist(x, z) ≤ ϵδ, i.e.,

ϑδ(x) + B(0, δζ) = ϑδ(z) + B(0, δζ) + ϑδ(x) − ϑδ(z)
= ϑδ(z) + B(0, δζ) + x − z + δ(k(x) − k(z))
⊂ ϑδ(z) + B(0, δζ) + B(0, ϵδ + δκϵδ)
= ϑδ(z) + B(0, δζ + (1 + δκ)ϵδ) = ϑδ(z) + B(0, 2δζ)

⊂ ϑδ(O) + B(0, 2δζ) ⊂ O,

owing to Lemma 2.2 (iii). This implies that ϑδ(x) + (δζ)y ⊂ O for all y ∈ B(0, 1), so that (Kg
δ,0(f))(x) = 0 since

f(ϑδ(x) + (δζ)y) = 0 for all y ∈ B(0, 1). Hence, the support of Kg
δ,0 is compact in D. The same conclusion

applies toKδ,0.
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4.2 Examples

Let us proceed as in Section 3.2. Let Bcδ(x) = K
T
δ(x), B

d
δ(x) = det(Kδ(x))K−1δ (x), and Bbδ(x) = det(Kδ(x)).

Lemma 2.2 (ii) implies that (4.2) holds for these choices ofBδ. Let f ∈ L1(D;ℝ) and g ∈ L1(D;ℝd). We de�ne
the following families of molli�cation operators:

(Kg
δ,0f)(x) = ∫

B(0,1)

ρ(y)f̃ (ϑδ(x) + (δζ)y)dy,

(Kc
δ,0g)(x) = ∫

B(0,1)

ρ(y)KTδ(x)g̃(ϑδ(x) + (δζ)y)dy,

(Kd
δ,0g)(x) = ∫

B(0,1)

ρ(y)det(Kδ(x))K−1δ (x)g̃(ϑδ(x) + (δζ)y)dy,

(Kb
δ,0f)(x) = ∫

B(0,1)

ρ(y)det(Kδ(x))f̃ (ϑδ(x) + (δζ)y)dy,

for all x ∈ D. Let p ∈ [1,∞]. If d = 3, we de�ne

Z̃g,p(D) = {f ∈ Lp(D) | ∇f̃ ∈ Lp(ℝd)},
Z̃c,p(D) = {v ∈ Lp(D) | ∇×ṽ ∈ Lp(ℝd)},
Z̃d,p(D) = {v ∈ Lp(D) | ∇⋅ṽ ∈ Lp(ℝd)}.

Lemma 4.2 (Commuting extension and derivatives). The following holds:
(i) ∇f̃ = ∇̃f for all f ∈ Z̃g,p(D),
(ii) ∇×g̃ = ∇̃×g for all g ∈ Z̃c,p(D),
(iii) ∇⋅g̃ = ∇̃⋅g for all g ∈ Z̃d,p(D).

Proof. Let f ∈ Z̃g,p(D) and let ψ ∈ C∞0 (ℝd) be a (vector-valued) smooth function compactly supported in
int(ℝd \ D). Then,

∫

ℝd

ψ ⋅ ∇f̃ dx = − ∫

ℝd

f̃∇⋅ψ dx = −∫
D

f∇⋅ψ dx = 0.

Since ψ is arbitrary, this proves that ∇f̃ is zero inℝd \ D. Now let ψ ∈ C∞0 (D), then

−∫
D

ψ ⋅ ∇f̃ dx = − ∫

ℝd

ψ ⋅ ∇f̃ dx = ∫

ℝd

f̃∇⋅ψ dx = ∫
D

f∇⋅ψ dx = −∫
D

ψ ⋅ ∇f dx.

Sinceψ is arbitrary, this proves that (∇f̃ )|D = ∇f .We have thus proved that∇f̃ = ∇̃f . The argument for the other
two equalities is identical.

Lemma 4.3 (Commuting with di�erential operators). The following holds:
(i) ∇Kg

δ,0f = Kc
δ,0∇f for all f ∈ Z̃

g,p(D),
(ii) ∇×Kc

δ,0g = Kd
δ,0∇×g for all g ∈ Z̃c,p(D),

(iii) ∇⋅Kd
δ,0g = Kb

δ,0∇⋅g for all g ∈ Z̃d,p(D).
That is, the following diagram commutes:

Z̃g,p(D) ∇ - Z̃c,p(D) ∇× - Z̃d,p(D) ∇⋅ - Lp(D)

C∞0 (D)

K
g
δ,0

? ∇ - C∞0 (D)

Kc
δ,0

? ∇× - C∞0 (D)

Kd
δ,0

? ∇⋅ - C∞0 (D)

Kb
δ,0

?
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Proof. The proof is almost the same as that of Lemma 4.3. For instance, using the chain rule together with
Lemma 4.2, we obtain

∇Kg
δ,0f(x) = ∫

B(0,1)

ρ(y)Kδ(x)T∇f̃ (ϑ(x) + δζ y)dy

= ∫
B(0,1)

ρ(y)Kδ(x)T∇̃f (ϑ(x) + δζ y)dy = Kc
δ,0∇f(x).

Note here that it is critical that ∇f̃ = ∇̃f . The argument for the other two equalities is identical.

4.3 Convergence

Similarly to Section 3.3, we can now state convergence results. Owing to Lemma 2.2, Kδ and K−1δ converge
uniformly to the identity and det(Kδ) converges uniformly to 1. As a result, there is δ̃0 ∈ (0, 1] such that
‖Kδ − I‖ℓ2 ≤ 1

2 , ‖K
−1
δ ‖ℓ2 ≤ 2, and |det(K−1δ )| ≤ 2d for all δ ∈ [0, δ̃0] and all x ∈ D.We combine the counterparts

of Theorem 3.3 and Corollary 3.4 into one statement.

Theorem 4.4 (Convergence). The sequence (Kδ,0)δ∈[0,δ̃0] is uniformly bounded in L(Lp; Lp) for all p ∈ [1,∞).
Moreover,

lim
δ→0

‖Kδ,0f − f‖Lp(D;ℝq) = 0 for all f ∈ Lp(D;ℝq), (4.3)

and

lim
δ→0

‖∇(Kg
δ,0f − f)‖Lp(D) = 0 for all f ∈ Z̃g,p(D), (4.4a)

lim
δ→0

‖∇×(Kc
δ,0g − g)‖Lp(D) = 0 for all g ∈ Z̃c,p(D), (4.4b)

lim
δ→0

‖∇⋅(Kd
δ,0g − g)‖Lp(D) = 0 for all g ∈ Z̃d,p(D). (4.4c)

Proof. The proof of (4.3) is the same as that of Theorem 3.3. See the proof of Corollary 3.4 for the other three
statements.

Let s ∈ (0, 1], p ∈ [1,∞) or s = 1, p ∈ [1,∞]. Let us denote by W̃ s,p(D;ℝq) the space composed of the func-
tions inW s,p(D;ℝq) whose extension by zero is inW s,p(ℝd;ℝq). We set

|f|W̃ s,p(D;ℝq) := |f̃ |W s,p(ℝd;ℝq).

Theorem 4.5 (Convergence rate). There is c such that

‖Kδ,0f − f‖Lp(D;ℝq) ≤ cδs|f|W̃ s,p(D;ℝq)

for all f ∈ W̃ s,p(D;ℝq), all δ ∈ [0, δ̃0], and all s ∈ (0, 1], p ∈ [1,∞) or s = 1, p ∈ [1,∞].

Proof. The proof is identical to that of Theorem 3.5.

To state a convergence result using norms on D, we recall (see, e.g., [20, Theorem 1.4.2.4, Corollary 1.4.4.5])
that

W̃ s,p(D;ℝq) = W s,p
0 (D;ℝq) if sp ̸= 1, (4.5a)

W̃ s,p(D;ℝq) = W s,p(D;ℝq) if sp ∈ [0, 1). (4.5b)

(Recall also that the constants in the above norm equivalences depend on |sp − 1|.)
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Lemma 4.6 (Convergence rate on derivatives). Let p ∈ [1,∞) and s ∈ (0, 1p ). Then, there is c (depending on
|sp − 1|) such that

‖∇(Kg
δ,0f − f)‖Lp(D) ≤ cδ

s‖∇f‖W s,p(D) for all f ∈ {v ∈ Lp(D) | ∇v ∈ W s,p(D)},

‖∇×(Kc
δ,0g − g)‖Lp(D) ≤ cδs‖∇×g‖W s,p(D) for all g ∈ {v ∈ Lp(D) | ∇×v ∈ W s,p(D)},

‖∇⋅(Kd
δ,0g − g)‖Lp(D) ≤ cδs‖∇⋅g‖W s,p(D) for all g ∈ {v ∈ Lp(D) | ∇⋅v ∈ W s,p(D)}.

Proof. The proof relies on the commuting properties from Lemma 4.3, Theorem 4.5, and (4.5b). For instance,

‖∇(Kg
δ,0f − f)‖Lp(D) = ‖Kc

δ,0∇f − ∇f‖Lp(D) since ∇Kg
δ,0 = Kc

δ,0∇

≤ cδs|∇f|W̃ s,p(D) owing to Theorem 4.5
≤ c�s,pδs‖∇f‖W s,p(D) owing to (4.5b),

where c�s,p depends on |sp − 1|. Proceed similarly for the two other estimates.

Remark 4.7. The construction ofKc
δ,0 is similar in spirit to what has been proposed in [7]. The curl estimates

in Theorem 4.5 and Corollary 4.6 are identical to those in [7, Theorem 3.1].

Remark 4.8 (sp > 1). Convergence rates on derivatives can also be derived for sp > 1, namely

‖∇(Kg
δ,0f − f)‖Lp(D) ≤ cδ

s|∇f|W s,p(D) for all f ∈ Lp(D) with ∇f ∈ W s,p
0 (D),

‖∇×(Kc
δ,0g − g)‖Lp(D) ≤ cδs|∇×g|W s,p(D) for all g ∈ Lp(D) with ∇×g ∈ W s,p

0 (D),

‖∇⋅(Kd
δ,0g − g)‖Lp(D) ≤ cδs|∇⋅g|W s,p(D) for all g ∈ Lp(D) with ∇⋅g ∈ W s,p

0 (D),

where c depends on |sp − 1|. Note that these estimates require boundary conditions on the derivatives.

4.4 Traces of Vector Fields

In this section, we illustrate the use of the mollifying operator Kδ,0. Let p ∈ (1,∞). Recall the spaces
Zc,p(D) and Zd,p(D) from (3.5b) and (3.5c). Since the trace operator ã0 : W1,p� (D) → W1/p,p� (∂D) is sur-
jective (see [8, p. 315], [20, Theorems 1.5.1.2, 1.5.1.6] and, for s ∈ (12 ,

3
2 ), p = 2, [25, Theorem 3.38]), letting

⟨⋅, ⋅⟩∂D denote the duality pairing betweenW−1/p,p(∂D) andW1/p,p� (∂D), we de�ne the bounded linear map
ã×n : Zc,p(D) → W−1/p,p(∂D) by

⟨ã×n(v), l⟩∂D := ∫
D

v ⋅ ∇×w(l)dx − ∫
D

w(l) ⋅ ∇×v dx (4.6)

for all v ∈ Zc,p(D) and all l ∈ W1/p,p� (∂D), where w(l) ∈ W1,p� (D) is such that ã0(w(l)) = l. Note that
ã×n(v) = v|∂D × n when v is smooth. The de�nition (4.6) is independent of the choice of w(l). Indeed, let
w1,w2 ∈ W1,p� (D) be such that ã0(w1) = ã0(w2) = l, i.e., w1 − w2 ∈ W1,p�

0 (D). Let (ψn)n∈ℕ be a sequence in
C∞0 (D) converging to w1 − w2 inW1,p�

0 (D). Then,

0 = ∫
D

v ⋅ ∇×ψn dx − ∫
D

ψn ⋅ ∇×v dx,

as can be seen by replacing v byKc
δv and passing to the limit δ → 0. Passing to the limit n → ∞ yields

0 = ∫
D

v ⋅ ∇×(w1 − w2)dx − ∫
D

(w1 − w2) ⋅ ∇×v dx;

hence, ⟨ã×n(v), ã0(w1)⟩∂D = ⟨ã×n(v), ã0(w2)⟩∂D, which establishes the claim.
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We also de�ne ã⋅n : Zd,p(D) → W−1/p,p(∂D) by

⟨ã⋅n(v), l⟩∂D := ∫
D

v ⋅ ∇q(l)dx + ∫
D

q(l)∇⋅v dx

for all v ∈ Zd,p(D) and all l ∈ W1/p,p� (∂D), where q(l) ∈ W1,p� (D) is such that ã0(q(l)) = l, and ⟨⋅, ⋅⟩∂D now
denotes the duality pairing between W−1/p,p(∂D) and W1/p,p� (∂D). Reasoning as above, one can verify that
this de�nition is independent of the choice of q(l). Note also that ã⋅n(v) = v|∂D ⋅ n when v is smooth.

Let us now introduce

Zc,p
0 (D) := C∞0 (D)

Zc,p(D)
, Zd,p

0 (D) := C∞0 (D)
Zd,p(D)

.

Theorem 4.9 (Kernels of ã×n and ã⋅n). Let p ∈ (1,∞). Then,

Zc,p
0 (D) = ker(ã×n), Zd,p

0 (D) = ker(ã⋅n).

Proof. Let us do the proof for ã×n, the proof for ã⋅n is similar.
(1)We�rst show that Zc,p

0 (D) ⊂ ker(ã×n),which is the easiest to establish. Byde�nition there is a sequence
of smooth functions (vn)n∈ℕ in C∞0 (D) converging to v in Zc,p(D). Letw be a function in C∞(D) ∩ C0(D), then

0 = ∫
D

∇⋅(w × vn)dx = ∫
D

vn ⋅ ∇×w dx − ∫
D

w ⋅ ∇×vn dx.

Both integrals on the right-hand side converge; hence,

⟨ã×n(v), ã0(w)⟩∂D = ∫
D

v ⋅ ∇×w dx − ∫
D

w ⋅ ∇×v dx = 0

for every function w in C∞(D) ∩ C0(D). This also implies that the equality holds for all w ∈ W1,p� (D), since
C∞(D) ∩ C0(D) is dense in w ∈ W1,p� (D), see Lemma 3.1 and Theorem 3.3. In conclusion, v ∈ ker(ã×n) since
ã0 is surjective.

(2) Let us now establish the converse, i.e., ker(ã×n) ⊂ Zc,p
0 (D). Let v ∈ ker(ã×n). Since v ∈ Zc,p(D) ⊂ L1(D),

ṽ is di�erentiable in the distribution sense. Let ψ ∈ C∞0 (ℝd), then

⟨∇×ṽ,ψ⟩ = ∫

ℝd

ṽ ⋅ ∇×ψ dx = ∫
D

v ⋅ ∇×ψ dx.

Using that v ∈ ker(ã×n), the above equality implies that

⟨∇×ṽ,ψ⟩ = ∫
D

v ⋅ ∇×ψ dx = ∫
D

ψ ⋅ ∇×v dx = ∫

ℝd

ψ ⋅ ∇̃×v dx.

This proves that ∇×ṽ = ∇̃×v ∈ L1(ℝd). Hence v ∈ Z̃c,p(D). We can now apply (4.4b) from Theorem 4.4 since
v ∈ Z̃c,p(D), i.e., the sequence (Kc

δ,0v)δ∈[0,δ̃0] converges to v in Zc,p(D). This proves that ker(ã×n) ⊂ Zc,p
0 (D)

sinceKc
δ,0v ∈ C

∞
0 (D) (see Lemma 4.1).

Remark 4.10 (Z0 = Z̃). The proof of Theorem 4.9 shows that Zc,p
0 (D) = Z̃c,p(D) and Zd,p

0 (D) = Z̃d,p(D); simi-
larly, Zg,p

0 (D) = Z̃g,p(D).

5 Finite Element Setting
We introduce in this section the �nite element setting that we are going to use in the rest of the paper. We
henceforth assume that D is a bounded polyhedron inℝd.
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5.1 Meshes

Let (Th)h>0 be a shape-regular sequence of a�ne meshes. To avoid technical questions regarding hanging
nodes, we also assume that themeshes cover D exactly and that they arematching, i.e., for all cells K, K� ∈ Th
such that K ̸= K� and K ∩ K� ̸= 0, the set K ∩ K� is a common vertex, edge, or face of both K and K� (with
obvious extensions in higher space dimensions). Given a mesh Th, the elements in K ∈ Th are closed sets in
ℝd by convention. The sets

TK := {K� ∈ Th | K� ∩ K ̸= 0}, DK := int{x ∈ D | ∃ K� ∈ TK , x ∈ K�},

for all K ∈ Th, will be invoked in the following sections. The set TK is the union of all the cells that touch K,
and DK is the interior of the collection of the points composing the cells in TK .

We assume that there is a reference element K̂ such that for any mesh Th and any cell K ∈ Th, there is
a bijective a�ne mapping TK : K̂ → K and an invertible matrix JK ∈ ℝd×d (not to be confused with Jδ) such
that

TK(x̂) − TK(ŷ) = JK(x̂ − ŷ) for all x̂, ŷ ∈ K̂.

The shape-regularity assumption of the mesh sequence implies that there are uniform constants c♯, c♭ such
that

|det(JK)| = |K||K̂|−1, ‖JK‖ℓ2 ≤ c♯hK , ‖J−1K ‖ℓ2 ≤ c♭h−1K , (5.1)

where hK is the diameter of K. It can be shown that c♯ = 1
ρK̂

and c♭ = hK
ρK hK̂ for meshes composed of simplices,

where ρK is the diameter of the largest ball that can be inscribed in K, hK̂ is the diameter of K̂, and ρK̂ is the
diameter of the largest ball that can be inscribed in K̂.

5.2 De�nition of δ(x)

In the arguments to follow, we are going to invoke smoothing operators like those de�ned in Section 3.
To avoid having to assume that the mesh sequence is quasi-uniform, we construct a meshsize function
h ∈ C0,1(D;ℝ) such that there are three uniform constants c, c�, c�� > 0 so that

‖h‖W1,∞(D;ℝ) ≤ c, c�hK ≤ h(x) ≤ c��hK for all x ∈ K,

for all K ∈ Th. The construction of this function is standard in the �nite element literature. For instance, if the
mesh is composed of simplices, consider the piecewise linear function whose value at any vertex of the mesh
is the average of the mesh-sizes of the simplices sharing this vertex.

Following [12], we introduce ϵ ∈ (0, 1) and de�ne

δ(x) := ϵh(x) for all x ∈ D. (5.2)

Then we can de�neφδ and ϑδ like in (2.1) and (2.3), and we can also de�ne generic mollifying operatorsKδ
andKδ,0 like in (3.2b) and (4.1). Lemmas 2.1 and 2.2 hold for ℓ ∈ {0, 1} only, and the smoothness statement
in Lemmas 3.1 and 4.1 must be replaced byKδ(g) ∈ C1(D;ℝq) andKδ,0(g) ∈ C10(D;ℝq) for all g ∈ L1(D;ℝq),
respectively, since δ is only Lipschitz. All the other statements in Sections 3 and 4 remain unchanged.

5.3 Reference and Local Finite Elements

We are going to consider various approximation spaces based on the mesh sequence (Th)h>0 and a �xed ref-
erence �nite element (K̂, P̂, Σ̂). We henceforth assume that P̂ is composed of ℝq-valued functions for some
integer q ≥ 1 and that P̂ ⊂ W1,∞(K̂;ℝq) (recall that P̂ is a space of polynomial functions in general). The
reference degrees of freedom and the associated reference shape functions are denoted {σ̂1, . . . , σ̂nsh } and
{θ̂1, . . . , θ̂nsh }, respectively. We denote N := {1, . . . , nsh} to alleviate the notation. We assume that the lin-
ear forms {σ̂i}i∈N can be extended to L(V(K̂);ℝ), where V(K̂) is a Banach space such that V(K̂) ⊂ L1(K̂;ℝq);
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see [15, p. 39]. The interpolation operator IK̂ : V(K̂) → P̂ associatedwith the reference �nite element (K̂, P̂, Σ̂)
is de�ned by

IK̂(v̂)(x̂) = ∑
i∈N

σ̂i(v)θ̂i(x̂), for all x̂ ∈ K̂, v̂ ∈ V(K̂).

By construction, IK̂ ∈ L(V(K̂); P̂), and P̂ is point-wise invariant by IK̂ .
Let K be a cell in the mesh Th. We introduce a q × q invertible matrix AK and de�ne the mapping

ψK ∈ L(L1(K;ℝq); L1(K̂;ℝq)) by
ψK(v) = AK(v ∘ TK). (5.3)

It can be shown (see [15, Proposition 1.61]) that upon setting

PK := {p = ψ−1
K (p̂) | p̂ ∈ P̂}, (5.4a)

ΣK := {σK,i}i∈N with σK,i = σ̂i ∘ ψK , (5.4b)

the triple (K, PK , ΣK) is a �nite element. Moreover, the interpolation operator

IK(v)(x) = ∑
i∈N

σK,i(v)θK,i(x) for all x ∈ K, v ∈ V(K),

where we have set θK,i := ψ−1
K (θ̂i), is such that IK ∈ L(V(K); PK) and PK is point-wise invariant by IK . De�ni-

tion (5.4a) implies that PK ⊂ W1,∞(K;ℝq). More generally ψK mapsW l,p(K;ℝq) toW l,p(K̂;ℝq) for all l ∈ ℕ,
all p ∈ [1,∞] (with z±1/p = 1 for all z > 0 if p = ∞) and

|ψK |L(W l,p(K;ℝq);W l,p(K̂;ℝq)) ≤ c‖AK‖ℓ2 ‖JK‖
l
ℓ2 |det(JK)|

−1/p ,

|ψ−1
K |L(W l,p(K̂;ℝq);W l,p(K;ℝq)) ≤ c‖A

−1
K ‖ℓ2 ‖J−1K ‖lℓ2 |det(JK)|

1/p ,

for all K ∈ Th (see, e.g., [13, Theorem 3.1.2] or [15, Lemma 1.101]).

5.4 Structural Assumptions

We henceforth assume that there is a uniform constant c such that

‖AK‖ℓ2‖A−1K ‖ℓ2 ≤ c‖JK‖ℓ2‖J−1K ‖ℓ2 , (5.5)

so that, owing to (5.1), ‖AK‖ℓ2‖A−1K ‖ℓ2 is uniformly boundedwith respect to K and h. We also assume that the
degrees of freedom over K̂ are either point values or integrals over edges, faces or K̂ itself. This is formalized
by assuming that

|σ̂i(v̂)| ≤ c
{
{
{

‖v̂(âi)‖ℓ2(ℝq) if point evaluation at âi ,
1

|ŜK̂,i |
∫̂SK̂,i

‖v̂‖ℓ2(ℝq) ds, otherwise,
(5.6)

where ŜK̂,i is either an edge, a face, or K̂ itself. All these mesh-related geometric entities are assumed to be
closed sets.

In the case of a point evaluation at âi, we observe that since the cardinal number of Σ̂ is �nite, there exists
a distance l̂0 > 0 such that only one of the following situations occurs: (1) âi is a vertex of K̂; (2) âi is in the
interior of an edge of K̂ and is at least at distance l̂0 from any vertex; (3) âi is in the interior of a face of K̂ and
is at least at distance l̂0 from any edge; (4) âi is in the interior of K̂ and is at least at distance l̂0 from any face
(with the obvious extension in higher space dimension).

Let K ∈ Th and denote by {aj}j∈MK the collection of points associated with the degrees of freedom in K
de�ned by point evaluation. Note that there exists âi ∈ K̂ such that aj = TK(âi) for all j ∈ MK . The shape-
regularity of the mesh sequence implies that there is a constant cmin (uniform with respect to j, K, and Th)
such that the open ball B(aj , cminhK) has the following property: for all K� such that K� ∩ B(aj , cminhK) ̸= 0
and every x ∈ K� ∩ B(aj , cminhK), the entire segment [x, aj] is in K�. An immediate consequence of this

Authenticated | ern@cermics.enpc.fr author's copy
Download Date | 1/24/16 6:27 PM



66 | A. Ern and J.-L. Guermond, Molli�cation in Strongly Lipschitz Domains

observation is that

‖v(x) − v(aj)‖ℓ2 ≤ ‖x − aj‖ℓ2‖∇v‖L∞(K�;ℝq) for all x ∈ K� ∩ B(aj , cminhK) ̸= 0, (5.7)

for all v ∈ PK . Note that this implies that B(aj , cminhK) ⊂ TK .
In the rest of the paper, we de�ne ϵmax > 0 such that

max
j∈MK

max
y∈B(0,1)

‖aj − (φδ(aj)(aj) + rδ(aj)y)‖ℓ2 ≤ cminhK , (5.8a)

⋃
x∈K

(φδ(x)(x) + rδ(x)B(0, 1)) ⊂ DK , (5.8b)

for all K ∈ Th, all h > 0, and all functions δ satisfying (5.2) for any ϵ ∈ (0, ϵmax].

5.5 Finite Element Spaces

We introduce the broken �nite element space

Pb(Th) = {vh ∈ L1(D;ℝq) | ψK(vh|K) ∈ P̂, ∀K ∈ Th},

where the statement ψK(vh|K) ∈ P̂ is equivalent to vh|K ∈ PK . Notice also that

Pb(Th) ⊂ W1,∞(Th;ℝq) := {v ∈ L∞(D;ℝq) | v|K ∈ W1,∞(K;ℝq), ∀K ∈ Th}

since PK ⊂ W1,∞(K;ℝq). We denote by Ibh : L
p(D) → Pb(Th) the interpolation operator such that

Ibh(v)|K = IK(v|K) for all K ∈ Th .

We now introduce the notion of interfaces and jump across interfaces. We say that a subset F ⊂ D with
a positive (d−1)-dimensional measure is an interface if there are distinct mesh cells Kl , Kr ∈ Th such that
F = ∂Kl ∩ ∂Kr. We say that a subset F ⊂ D with positive (d−1)-dimensional measure is a boundary face if
there is a mesh cell K ∈ Th such that F = ∂K ∩ ∂D. The unit normal vector nF on F is conventionally chosen
to point from Kl to Kr for an interface and to point outward for a boundary face. The interfaces are collected
in the set F∘

h, the boundary faces are collected in the set F∂h , and we let Fh = F∘
h ∪ F∂h . Let F ∈ F∘

h be a mesh
interface, and let Kl , Kr be the two cells such that F = ∂Kl ∩ ∂Kr; the jump of v ∈ W1,1(Th;ℝq) across F is
de�ned to be

JvKF(x) = v|Kl (x) − v|Kr (x) for a.e. x ∈ F.

Nextweassume tohave at handaBanach spaceW ⊂ L1(D;ℝq),with continuous embedding,where some
notion of jumpacross interfacesmakes sense.More precisely,we assume that there is a (bounded) linear trace
operator ãK : W1,1(K;ℝq) → L1(∂K;ℝt) for some t ≥ 1 and for all K ∈ Th, and we de�ne the notion of ã-jump
across interfaces as follows:

JvKãF(x) = ãKl (v|Kl )(x) − ãKr (v|Kr )(x) for a.e. x ∈ F.

We assume that |JvKãF(x)| ≤ |JvKF(x)|, for a.e. x ∈ F, for all v ∈ W1,1(Th), so that

v ∈ W1,1(D;ℝq) â⇒ (JvKãF = 0 for all F ∈ F∘
h).

We relate the notion of ã-jump to the spaceW by assuming that

v ∈ W ∩W1,1(Th;ℝq) â⇒ (JvKãF = 0 for all F ∈ F∘
h),

and, conversely, that a function inW1,∞(Th;ℝq)with zero ã-jumps across interfaces is inW.With this setting,
we de�ne

P(Th) := Pb(Th) ∩W.

The above assumptions imply that

P(Th) = {vh ∈ Pb(Th) | JvhK
ã
F = 0, ∀F ∈ F∘

h}.
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Let F ∈ F∂h be a boundary face and denote by KF the unique cell such that F ⊂ ∂KF .We consider the global
trace operator ã : W1,1(D;ℝq) → L1(∂D;ℝt) such that

ã(v)|F = ãKF (v|KF ) for all F ∈ F∂h .

We assume that ã can be extended to W into a bounded linear operator ã : W → W∂ where W∂ is an appro-
priate Banach space, whose exact structure is not important for the time being. We de�ne W0 = ker(ã), i.e.,
W0 = {v ∈ W | ã(v) = 0}. Let us introduce P0(Th) = P(Th) ∩W0:

P0(Th) := {vh ∈ P(Th) | ã(vh) = 0}.

5.6 Examples

Thepresent theory covers a large class of scalar- andvector-valued�nite elements like Lagrange,Nédélec, and
Raviart–Thomas �nite elements. To remain general, we denote the three reference elements corresponding to
the above three classes as follows: (K̂, P̂g, Σ̂g), (K̂, P̂c, Σ̂c) and (K̂, P̂d, Σ̂d). The corresponding domains for the
degrees of freedom are denoted Vg(K̂), Vc(K̂), Vd(K̂). We think of (K̂, P̂g, Σ̂g) as a scalar-valued �nite element
(q = 1) and some of its degrees of freedom require point evaluation, for instance (K̂, P̂g, Σ̂g) could be a La-
grange element.We assume that the �nite element (K̂, P̂c, Σ̂c) is vector-valued (q = d) and some of its degrees
of freedom require to evaluate integrals over edges. Typically, (K̂, P̂c, Σ̂c) is a Nédélec-type or edge element.
Likewise, the �nite element (K̂, P̂d, Σ̂d) is assumed to be vector-valued (q = d) and some of its degrees of free-
dom are assumed to require evaluation of integrals over faces. Typically, (K̂, P̂d, Σ̂d) is a Raviart–Thomas-type
element. The arguments developed herein do not require to know the exact structure of the above elements.

The above assumptions imply that it is admissible to choose

Vg(K̂) = W s,p(K̂) with s > d
p , Vc(K̂) = W s,p(K̂) with s > d−1

p , Vd(K̂) = W s,p(K̂) with s > 1
p

(recall that denoting byM a smoothmanifold of dimension d� in K̂, the restriction operator toM is continuous
fromW s,p(K̂) to Lp(M) provided s > d−d�

p ). Note that it is also legitimate to choose

Vg(K̂) = Wd,1(K̂), Vd(K̂) = W1,1(K̂), Vc(K̂) = Wd−1,1(K̂),

since Wd,1(K̂) ⊂ C0(K̂), functions in W1,1(K̂) have a trace in L1(∂K̂), and functions in Wd−1,1(K̂) have inte-
grable traces on the one-dimensional edges of K̂.

Let ψg
K, ψ

c
K, ψ

d
K be the linear maps introduced in (5.3) for each of the reference �nite elements de�ned

above. In practice ψg
K is the pullback by TK, and ψc

K and ψd
K are the contravariant and covariant Piola trans-

formations, respectively, i.e.,

Ag
K = 1, ψg

K(v) = v ∘ TK ,
Ac
K = JTK , ψc

K(v) = JTK(v ∘ TK),

Ad
K = det(JK) J−1K , ψd

K(v) = det(JK) J−1K (v ∘ TK).

Note that c = 1 in (5.5) for the above examples. We consider the following ã-traces:

ãgK(v|K)(x) := v|K(x) for all x ∈ F,
ãcK(v|K)(x) := v|K(x) × nF for all x ∈ F,
ãdK(v|K)(x) := v|K(x) ⋅ nF for all x ∈ F,

and the following �nite element spaces:

Pg(Th) := {vh ∈ L1(D) | ψg
K(vh|K) ∈ P̂

g, ∀K ∈ Th , JvhKgF = 0, ∀F ∈ F∘
h},

Pc(Th) := {vh ∈ L1(D) | ψc
K(vh|K) ∈ P̂c, ∀K ∈ Th , JvhKcF = 0, ∀F ∈ F∘

h},

Pd(Th) := {vh ∈ L1(D) | ψd
K(vh|K) ∈ P̂d, ∀K ∈ Th , JvhKdF = 0, ∀F ∈ F∘

h},
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where we simpli�ed the notation by using JvhKgF instead of JvhK
ãg
F , etc. Note the conformity properties

Pg(Th) ⊂ Zg,p(D), Pc(Th) ⊂ Zc,p(D), and Pd(Th) ⊂ Zd,p(D). Likewise, introducing the spaces

Zg,p
0 (D) := {v ∈ Zg,p(D) | ãg(v) = 0}

etc., we de�ne

Pg
0(Th) := P

g(Th) ∩ Z
g,p
0 (D),

Pc
0(Th) := P

c(Th) ∩ Zc,p
0 (D),

Pd
0(Th) := P

d(Th) ∩ Zd,p
0 (D).

We �nally denote by Igh, I
d
h, I

c
h and I

g
h0, I

d
h0, I

c
h0 the canonical interpolation operators associated with the

�nite element spaces Pg(Th), Pc(Th), Pd(Th), and Pg
0(Th), P

c
0(Th), P

d
0(Th). Note that

I
g
h : W

s,p(D) → Pg(Th) ⊂ Lp(D),
Ich : W

s,p(D) → Pc(Th) ⊂ Lp(D),
Idh : W

s,p(D) → Pd(Th) ⊂ Lp(D)

are stable provided s > d
p , s >

d−1
p (= 2

p for d = 3) and s > d−(d−1)
p = 1

p , respectively.We �nally assume that the
polynomial degrees in each of these spaces are compatible so that the following commuting properties hold
with s > d

p :

Vg(D) ∇ - Vc(D) ∇× - Vd(D) ∇⋅ - Lp(D)

Pg(Th)

I
g
h

? ∇ - Pc(Th)

Ich
? ∇× - Pd(Th)

Idh
?

∇⋅ - Pb(Th)

Ibh
?

(5.9)

where

Vg(D) = {f ∈ W s,p(D) | ∇f ∈ W s− 1
p ,p(D)},

Vc(D) = {g ∈ W s− 1
p ,p(D) | ∇×g ∈ W s− 2

p ,p(D)},

Vd(D) = {g ∈ W s− 2
p ,p(D) | ∇⋅g ∈ W s− 3

p ,p(D)},

and Ibh is an interpolation operator only involving integrals over mesh cells. Likewise, upon introducing

Vg
0(D) = {f ∈ Vg(D) | f|∂D = 0},
Vc
0(D) = {g ∈ Vc(D) | g × n|∂D = 0},
Vd
0(D) = {g ∈ Vd(D) | g ⋅ n|∂D = 0},

we assume that the following diagram commutes:

Vg
0(D)

∇ - Vc
0(D)

∇× - Vd
0(D)

∇⋅ - Lp(D)

Pg
0(Th)

I
g
h0

?
∇ - Pc

0(Th)

Ich0
? ∇× - Pd

0(Th)

Idh0
?

∇⋅ - Pb(Th)

Ibh
?

6 Stable, Commuting, Quasi-Interpolation Projection
We introduce in this section a family of �nite-element-based quasi-interpolation operators (with andwithout
boundary conditions) that are Lp-stable, commutewith the standard di�erential operators∇,∇×, and∇⋅, and
preserve the above �nite element spaces.
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6.1 The Operator IhKδ

Owing to the properties of the smoothing operators established above, it makes sense to consider the
discrete functions I

g
hK

g
δ f ∈ P

g(Th), I
g
h0K

g
δ f ∈ P

g
0(Th), IbhK

b
δ f ∈ P

b(Th), IchK
c
δg ∈ Pc(Th), Ich0K

c
δg ∈ Pc

0(Th),
IdhK

d
δg ∈ Pd(Th) and Idh0K

d
δg ∈ Pd

0(Th) for any integrable scalar-valued function f and any integrable vector-
valued function g.We now establish some stability properties of the restrictions of the operators IghK

g
δ, I

g
h0K

g
δ,

IbhK
b
δ, I

c
hK

c
δ, I

c
h0K

c
δ, I

d
hK

d
δ , and Idh0K

d
δ to the discrete spaces Pg(Th), Pg

0(Th), Pb(Th), Pc(Th), Pc
0(Th), P

d(Th),
and Pd

0(Th).
To avoid repeating proofs seven times, we denote by Ih one of the interpolation operators introduced

aboveandbyKδ the corresponding smoothingoperator; likewise, the rangeof Ih is denoted P(Th).Weassume
that P(Th) is composed ofℝq-valued �elds.

Remark 6.1 (Boundary conditions). Note that we do not invoke K
g
δ,0, K

c
δ,0, and Kd

δ,0 in the above construc-
tion. The theory to be exposed in the next section holds by using K

g
δ, K

c
δ, and Kd

δ in all the cases, whether
homogeneous boundary conditions are enforced or not in the discrete spaces.

6.2 Lp-Stability of the Operator IhKδ

We start with a key result in the spirit of [12, Lemma 4.2], see also [29, Lemma 6]. This result is crucial to
devise a quasi-interpolation operator that preserves the �nite element space P(Th).

Lemma 6.2 (Discrete Lp-approximation). There is cstab > 0, uniform with respect to the mesh sequence, such
that

‖fh − IhKδ fh‖Lp(D;ℝq) ≤ cstabϵ‖fh‖Lp(D;ℝq)

for all ϵ ∈ (0, ϵmax], all fh ∈ P(Th) and all p ∈ [1,∞].

Proof. (1) Let fh ∈ P(Th) and let us set eh := fh − IhKδ fh and e := fh −Kδ fh; note that eh = Ihe. Let K be a cell
in Th, then using that θK,i := ψ−1

K (θ̂i), we have

‖θK,i‖Lp(K;ℝq) ≤ det(JK)1/p‖A−1K ‖ℓ2‖θ̂i‖Lp(K̂;ℝq)

for all i ∈ N, and we infer that

‖eh‖Lp(K;ℝq) = ‖Ihe‖Lp(K;ℝq) ≤ ∑
i∈N

|σK,i(e)|‖θK,i‖Lp(K;ℝq) ≤ det(JK)1/p‖A−1K ‖ℓ2 ∑
i∈N

|σK,i(e)|.

The rest of the proof consists of estimating σK,i(e).
(2) Let us assume �rst that the degree of freedom σK,i is a value at a point aj := TK(âi) in K. Then using

the assumption (5.6) and the de�nition (5.3) of ψK, we infer that |σK,i(e)| ≤ c‖AK‖ℓ2‖e(aj)‖ℓ2 . By proceeding
as in the proof of Theorem 3.3 (step (2)), we obtain

e(aj) = fh(aj) −Kδ fh(aj) = ∫
B(0,1)

ρ(y)(fh(aj) − fh(φδ(aj)(aj) + δ(aj)ry))dy.

Owing to (5.7) and (5.8a) (recall that ϵ ≤ ϵmax), we have

‖e(aj)‖ℓ2 ≤ c max
y∈B(0,1)

‖fh(aj) − fh(φδ(aj)(aj) + δ(aj)ry)‖ℓ2

≤ c�δ(aj) max
K�∈TK

‖∇fh‖L∞(K�;ℝq) ≤ c��ϵhK max
K�∈TK

‖∇fh‖L∞(K�;ℝq).

Finally, using a local inverse inequality, which is legitimate since the mesh sequence is shape-regular, we
infer that |σK,i(e)| ≤ cϵ‖AK‖ℓ2‖fh‖L∞(DK ;ℝq). Note that the purpose of the above argument is to account for
the fact that fh is (a priori) only piecewise Lipschitz (i.e., can be discontinuous across interfaces) but fh is
necessarily continuous at aj.
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(3) If the degree of freedom σK,i is an integral over an edge, face or over K, we use (5.6), i.e.,

|σK,i(e)| ≤ c‖AK‖ℓ2
1

|SK,i|
∫
SK,i

‖e‖ℓ2 ds.

We introduce

TSK,i = {K� ∈ TK | SK,i ⊂ K�},
S∘K,i = {x ∈ SK,i | φδ(x)(x) + δ(x)rB(0, 1) ⊂ TSK,i }, S∂K,i = SK,i \ S

∘
K,i .

Then using (5.8b) and setting ψδ(x, y) = φδ(x)(x) + δ(x)ry, we have

∫

S∘K,i

‖e‖ℓ2 ds ≤ ∫

S∘K,i

∫
B(0,1)

ρ(y)""""fh(ψδ(x, y)) − fh(x)
""""ℓ2 dy ds

≤ ∫

S∘K,i

∑
K�∈TSK,i

∫
y∈B(0,1)
ψδ(x,y)∈K�

""""fh(ψδ(x, y)) − fh(x)
""""ℓ2 ds dy

≤ c|SK,i|ϵhK ∑
K�∈TSK,i

‖∇fh‖L∞(K�;ℝq) ≤ c|SK,i|ϵ‖fh‖L∞(DK ;ℝq), (6.1)

where we used the shape-regularity of the mesh sequence (i.e., hK� ≤ chK) and an inverse inequality. Note
again that the above construction is meant to account for the fact that fh is (a priori) only piecewise Lip-
schitz. Moreover, if x ∈ S∂K,i, then there is y ∈ B(0, 1) such that z := φδ(x)(x) + δ(x)ry is not in TSK,i ; then
mesh-regularity implies that c dist(x, ∂SK,i) ≤ ‖z − x‖ℓ2 and that z − x‖ℓ2 ≤ cδ(x) ≤ c�ϵhK . Combining these
bounds, we obtain that

|S∂K,i| ≤ cϵhK |∂SK,i| ≤ c
�ϵ|SK,i|

(with the convention that the 0-dimensional measure of a point is 1). As a result, we infer that

∫

S∂K,i

‖e‖ℓ2 ds ≤ ∫

S∂K,i

(‖fh‖ℓ2 + ‖Kδ fh‖ℓ2 )ds ≤ c‖fh‖L∞(DK ;ℝq)|S∂K,i| ≤ c
�ϵ|SK,i|‖fh‖L∞(DK ;ℝq). (6.2)

Combining the estimates (6.1) and (6.2) yields

|σK,i(e)| ≤ cϵ‖AK‖ℓ2‖fh‖L∞(DK ;ℝq).

(4) We have established that |σK,i(e)| ≤ cϵ‖AK‖ℓ2‖fh‖L∞(DK ;ℝq) for all possible degrees of freedom. Using
the fact that ‖AK‖ℓ2‖A−1K ‖ℓ2 is uniformly bounded together with an inverse inequality from L∞(DK;ℝq) to
Lp(DK;ℝq), we deduce that

‖fh − IhKδ fh‖Lp(K;ℝq) = ‖eh‖Lp(K;ℝq)
≤ cϵ det(JK)1/p‖A−1K ‖ℓ2‖AK‖ℓ2‖fh‖L∞(DK ;ℝq)

≤ cϵ‖fh‖Lp(DK ;ℝq).

We infer the desired result by summing over K ∈ Th and by invoking the shape-regularity of the mesh
sequence.

The above lemma implies that ‖(I − IhKδ)|P(Th)‖L(Lp;Lp) ≤ cstabϵ for all ϵ ∈ (0, ϵmax]. From now on we choose
ϵ once and for all by setting ϵ = ϵmin with ϵmin := min(ϵmax, (2cstab)−1). Lemma 6.2 then implies that

‖(I − IhKδ)|P(Th)‖L(Lp;Lp) ≤
1
2 .

This proves that IhKδ|P(Th) is invertible for this particular choice of ϵ. Let Jh : P(Th) → P(Th) be the inverse of
IhKδ|P(Th), i.e.,

JhIhKδ|P(Th) = IhKδ|P(Th)Jh = I. (6.3)

Note that the de�nition of Jh implies that ‖Jh‖L(Lp;Lp) ≤ 2.
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Lemma 6.3 (Lp-stability). Let ϵ = ϵmin. There is c(ϵmin), uniform with respect to h, such that the following esti-
mate holds:

‖IhKδ‖L(Lp;Lp) ≤ c(ϵmin).

Proof. Let f ∈ Lp(D;ℝq) and assume p < ∞. Then

‖IhKδ f‖
p
Lp(D;ℝq) = ∑

K∈Th
∫
K

""""""∑
i∈N

σK,i(Kδ f)θK,i(x)
""""""
p

ℓ2
dx

≤ c ∑
K∈Th

∫
K

∑
i∈N

|σK,i(Kδ f)|p‖θK,i(x)‖pℓ2 dx.

Using (5.6), we infer that

‖IhKδ f‖
p
Lp(D;ℝq) ≤ c ∑

K∈Th
∑
i∈N

‖AK‖
p
ℓ2‖Kδ f‖

p
L∞(K;ℝq)‖A

−1
K ‖pℓ2 |K|,

since |σK,i(Kδ f)| ≤ c‖AK‖ℓ2‖Kδ f‖L∞(K;ℝq) and ‖θK,i(x)‖L∞(K;ℝq) ≤ c‖A−1K ‖ℓ2 . We conclude by invoking Lemma
6.4 below. The argument for p = ∞ is similar.

Lemma 6.4 (Local inverse inequality). Let ϵ = ϵmin. There is a uniform constant c > 0 such that

‖Kδ f‖L∞(K;ℝq) ≤ cϵ−dmin|K|
−1/p‖f‖Lp(DK ;ℝq)

for all K ∈ Th, all h > 0, and all f ∈ Lp(D;ℝq).

Proof. Let x ∈ K. Since the function ρ is bounded, we infer that

‖Kδ f(x)‖ℓ2 ≤ c ∫
B(0,1)

‖f(φδ(x)(x) + δ(x)ry)‖ℓ2 dy.

Condition (5.8b) implies that

‖Kδ f(x)‖ℓ2 ≤ c‖δ−1‖dL∞(DK) ∫
DK

‖f(z)‖ℓ2 dz ≤ cϵ−dminh
−d
K |DK |1−

1
p ‖f‖Lp(DK ;ℝq),

and we conclude using the shape-regularity of the mesh sequence.

6.3 Main Result

We now de�ne the operator
Jh = JhIhKδ , (6.4)

and we state the main result of this section.

Theorem 6.5 (Properties of Jh). The following properties hold:
(i) P(Th) is point-wise invariant under Jh.
(ii) There is c, uniform with respect to h, such that ‖Jh‖L(Lp;Lp) ≤ c and

‖f − Jh f‖Lp(D;ℝq) ≤ c inf
fh∈P(Th)

‖f − fh‖Lp(D;ℝq) for all f ∈ Lp(D;ℝq).

(iii) Jh commutes with the standard di�erential operators, i.e., the following diagrams are commutative:

Zg,p(D) ∇ - Zc,p(D) ∇× - Zd,p(D) ∇⋅ - Lp(D)

Pg(Th)

J
g
h

? ∇ - Pc(Th)

Jch

? ∇× - Pd(Th)

Jdh
?

∇⋅ - Pb(Th)

Jbh
?
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Zg,p
0 (D) ∇ - Zc,p

0 (D) ∇× - Zd,p
0 (D) ∇⋅ - Lp(D)

Pg
0(Th)

J
g
h0

?
∇ - Pc

0(Th)

Jch0

? ∇× - Pd
0(Th)

Jdh0
?

∇⋅ - Pb(Th)

Jbh
?

Proof. The �rst property is a consequence of Jh|P(Th) = I, since Jh∘Jh = Jh|P(Th)∘Jh = Jh. The second property
is proved by observing that the Lp-operator-norm of Jh is bounded by 2 and that of IhKδ is also uniformly
bounded, as established in Lemma 6.3, since ϵ is now a �xed real number. Moreover, using that Jh fh = fh for
all fh ∈ P(Th), we have

‖f − Jh f‖Lp(D;ℝq) = inf
fh∈P(Th)

‖f − fh − Jh(f − fh)‖Lp(D;ℝq)

≤ inf
fh∈P(Th)

(1 + ‖Jh‖L(Lp;Lp))‖f − fh‖Lp(D;ℝq) ≤ c inf
fh∈P(Th)

‖f − fh‖Lp(D;ℝq),

which establishes (ii). Let us now prove (iii). We are just going to show that the leftmost square commutes in
the top diagram; the proof for the other squares is identical, and whether boundary conditions are imposed
or not is immaterial in the argument. Let us �rst show that Jch∇ϕh = ∇(Jghϕh) for all ϕh ∈ Pg(Th). We observe
that

∇ϕh = ∇(IghK
g
δ|Pg(Th)

Jghϕh) = ∇(IghK
g
δJ

g
hϕh) = Ich∇(K

g
δJ

g
hϕh) = IchK

c
δ∇(J

g
hϕh),

wherewehaveused that I = I
g
hK

g
δ|Pg(Th)

Jgh (see (6.3)), then I
g
hK

g
δ|Pg(Th)

Jgh = I
g
hK

g
δJ

g
h (the rangeof J

g
h is in P

g(Th)),
followed by ∇Igh = Ich∇ (see diagram (5.9)) and ∇Kg

δ = Kc
δ∇ (see diagram (3.6)). Since ∇(Jghϕh) ∈ P

c(Th) (see
diagram (5.9)), the above argument together with (6.3) proves that

∇ϕh = (IchK
c
δ|Pc(Th)

)∇(Jghϕh) = (Jch)
−1∇(Jghϕh).

In conclusion, Jch∇ϕh = ∇(Jghϕh). Now we �nish the proof by using an arbitrary function ϕ ∈ Vg(D). We have

Jch∇ϕ = JchI
c
hK

c
δ∇ϕ = JchI

c
h∇(K

g
δϕ) = J

c
h∇(I

g
hK

g
δϕ) = ∇(JghI

g
hK

g
δϕ).

The last equality results from the fact that Jch∇ϕh = ∇(Jghϕh) for all ϕh ∈ Pg(Th), as established above. This
proves that Jch∇ϕ = ∇Jghϕ.

Remark 6.6 (Approximation). Theorem 6.5 (ii) shows that the quasi-interpolation error is bounded by the
best approximation error. Estimates of best approximation errors in fractional-order Sobolev spaces have
been obtained in [16]. As an illustration, consider a Pc(Th)-based �nite element approximation of a �eld
A ∈ Zc,p(D) (typically, with p = 2). Suppose that the natural stability norm for this problem is that of H(curl)
and that the �nite element solution Ah ∈ Pc(Th) satis�es the a priori error estimate

‖A − Ah‖H(curl) ≤ c inf
ah∈Pc(Th)

‖A − ah‖H(curl).

Then, taking ah = JchA and using the commuting property leads to the bound

‖A − Ah‖H(curl) ≤ c(‖A − JchA‖L2(D) + ‖∇×A − Jdh(∇×A)‖L2(D)).

Assume that A, ∇×A ∈ Hr(D) for some real number r ∈ (0, k + 1] where k is the degree of the �nite elements
composing Pc(Th). Then, using Theorem 6.5 (ii) together with [16, Corollary 5.4] leads to

‖A − Ah‖H(curl) ≤ chr(|A|Hr(D) + |∇×A|Hr(D)).

Note that no lower bound on r is assumed a priori.
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6.4 Discrete Poincaré Inequalities

We illustrate the usefulness of the operators constructed above by proving discrete Poincaré inequalities for
H(curl)-elements in dimension d = 2, 3; we expose the material for d = 3. Assume also that D is partitioned
into M connected, strongly Lipschitz subdomains D1, . . . , DM. We consider two piecewise-smooth second-
order tensor �elds � and �, i.e., we assume that these �elds are in

W1,∞(
M
⋃
i=1
Di) := {� ∈ L∞(D) | ∇(�|Di ) ∈ [L∞(Di)]d , i = 1, . . . ,M},

whereL∞(E) := L∞(E;ℝd×d).We additionally assume that � and� are symmetric and the smallest eigenvalue
of each of these two tensors is bounded away from zero from below uniformly over D. Consider the following
Maxwell eigenvalue problems: Find E and 0 ̸= ω ∈ ℝ such that

∇×(�−1∇×E) = ωE, ∇⋅(�E) = 0, E × n|∂D = 0. (6.5)

Find B and 0 ̸= ω ∈ ℝ such that

∇×(�−1∇×B) = ωB, ∇⋅(�B) = 0, (�B) ⋅ n|∂D = 0. (6.6)

Upon setting

H×n := {z ∈ H(curl) | ∇⋅(�z) = 0, z × n|∂D = 0},
H ⋅n := {z ∈ H(curl) | ∇⋅(�z) = 0, (�z) ⋅ n|∂D = 0},

the L2-theory of the well-posedness of this problem is based on the following embedding inequality: There
are c > 0 and s > 0 (both depending on D and �) such that

‖e‖Hs(D) ≤ c‖∇×e‖L2(D) for all e ∈ H×n , (6.7a)
‖b‖Hs(D) ≤ c‖∇×b‖L2(D) for all b ∈ H ⋅n , (6.7b)

provided ∂D is connected and D is simply connected, respectively. The above inequalities, proved by Bonito,
Guermond and Luddens [6], generalize classical inequalities established by Costabel [14] and Birman and
Solomyak [4] assuming that the tensor � is smooth over the entire domain.

Let us consider the �nite element approximation of the above eigenvalue problem using the setting de-
scribed in the previous sections. The approximation theory of this problem is non-trivial, especially when
using �nite elements that do not �t the De Rham diagram. We refer to the book of Monk [26] and the review
by Hiptmair [21] for an overview on the topic.

Let Pc(Th), Pc
0(Th) be de�ned as above. A key step for approximating (6.5) or (6.6) consists of establishing

the following discrete Poincaré inequalities: There is c > 0, uniform with respect to h, such that

‖eh‖L2(D) ≤ c‖∇×eh‖L2(D) for all eh ∈ Hh,×n , (6.8a)
‖bh‖L2(D) ≤ c‖∇×bh‖L2(D) for all bh ∈ Hh,⋅n , (6.8b)

where

Hh,×n := {vh ∈ Pc
0(Th) | ∫

D

(�vh) ⋅ ∇qh dx = 0, ∀qh ∈ Pg
0(Th)},

Hh,⋅n := {vh ∈ Pc(Th) | ∫
D

(�vh) ⋅ ∇qh dx = 0, ∀qh ∈ Pg(Th)}.

There are many ways of proving (6.8) when � is smooth, since in this case it can be proved that the Sobolev
index s in (6.7a) is larger than 1

2 . The �rst route described in [21, §4.2] consists of invoking subtle regularity
estimates by Amrouche et al. [1, Lemma 4.7]. The second one, which avoids invoking regularity estimates, is
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based on the so-called discrete compactness argument of Kikuchi [23] and further developed by Monk and
Demkowicz [27] and Caorsi, Fernandes and Ra�etto [9]. The proof is not constructive and is based on an
argument by contradiction.

We now show that using the approximation operators described in the previous sections gives a direct
answer to the above question without requiring any particular condition on the Sobolev index s in (6.7a); see
also the work of Arnold, Falk and Winther [3, Theorem 3.6].

Theorem 6.7 (Discrete Poincaré). Assume that ∂D is connected (resp., D is simply connected). Then there is a
uniform constant c > 0 such that (6.8a) holds (resp., (6.8b) holds).

Proof. We only do the proof for (6.8a), the proof for (6.8b) is similar. Let vh ∈ Hh,×n be a nonzero discrete
�eld. Let ϕ(vh) ∈ H1

0(D) be the solution to the following Poisson problem:

∇⋅(�∇ϕ(vh)) = ∇⋅(�vh), ϕ(vh)|∂D = 0.

Note that this problem is well-posed owing to the assumed regularity and structure of �. Let us de�ne
v(vh) := vh − ∇ϕ(vh). This de�nition implies that

∇⋅(�v(vh)) = 0, ∇×(v(vh)) = ∇×vh , v(vh) × n|∂D = 0,

so that v(vh) ∈ H×n. We now bound ‖vh‖L2(D) as follows:

c‖vh‖2L2(D) ≤ ∫
D

(�vh) ⋅ vh dx = ∫
D

(�vh) ⋅ (vh − Jch0v(vh) + Jch0v(vh))dx

= ∫
D

(�vh) ⋅ Jch0(vh − v(vh))dx + ∫
D

(�vh) ⋅ Jch0v(vh)dx

= ∫
D

(�vh) ⋅ Jch0∇(ϕ(vh))dx + ∫
D

(�vh) ⋅ Jch0v(vh)dx.

Note here that we used that Jch0vh = vh. Then using the commuting property Jch0∇(ϕ(vh)) = ∇(Jgh,0ϕ(vh)) and
since Jgh,0 maps onto Pg

0(Th), we infer that

c‖vh‖2L2(D) ≤ ∫
D

(�vh) ⋅ ∇(Jgh,0ϕ(vh))dx + ∫
D

(�vh) ⋅ Jch0v(vh)dx

= ∫
D

(�vh) ⋅ Jch0v(vh)dx ≤ c�‖vh‖L2(D)‖Jch0v(vh)‖L2(D).

The uniform boundedness of Jch0 on L2(D) and (6.7a) with s = 0 imply

‖vh‖L2(D) ≤ c‖Jch0v(vh)‖L2(D) ≤ c
�‖v(vh)‖L2(D) ≤ c��‖∇×vh‖L2(D).

This concludes the proof.
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