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Summary. The mathematical foundations of Large Eddy Simulation (LES) for
three-dimensional turbulent incompressible viscous flows are discussed and the no-
tion of suitable approximations is introduced.

1 Introduction

1.1 What is LES?

Since the early work of [7], Large Eddy Simulation (LES) has become over
the years an increasingly popular method, as evidenced by the vast amount of
publications on the subject in the literature, and is now considered a tool of
choice for simulating three-dimensional incompressible viscous flows at large
Reynolds numbers. Heuristically speaking, Large Eddy models are obtained
by applying a low-pass filter to the Navier–Stokes equations. The filtered
equations are then similar to the original equations but for the presence of
the so-called subgrid scale stresses accounting for the influence of the small
scales onto the large ones. Assuming that the behavior of the small scales is
almost universal, the objective of LES is to model the subgrid scale stresses
(the so-called closure problem) and to compute the dynamics of the large
scales by using the filtered equations. Although this description of LES is
widely accepted, it nevertheless falls short of an unambiguous mathematical
theory. Our impression is that LES is at the present time a fuzzy concept.
Some authors think of LES as the solution to the filtered equations whereas
others think of it as finite-dimensional approximations thereof. Others expect
LES to reproduce the statistics of the large scales instead of approximating
∗ This paper has been published in Numerical Mathematics and Advanced Applica-

tions, Proceedings of ENUMATH 2005, 6th European Conference on Numerical
Mathematics and Advanced Applications, A. Berúdez de Castro, D. Gómez, P.
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individual solutions. It is also common practice to invoke the filtering of length
scales without defining the filter being used or to outright ignore the concept
of filter when modeling the subgrid scale tensor. Another common unjustified
practice consists of assuming that the filtering length scale is equal to the mesh
size of the approximation method that is used, regardless on the method in
question.

In an attempt to address some of the above issues, we are currently devel-
oping a research program aiming at constructing a framework for a mathemat-
ical theory of LES. The present paper makes a first step is this direction by
introducing the concept of suitable approximation (see § 2.1). We show that
the construction of suitable approximations shares many heuristic features
with what is often referred to in the engineering literature as LES modeling.
The proposal made in this paper is that the notion of suitable approximations
be a concept that, together with other mathematical criteria yet to be clearly
identified, should be seriously considered as part of any future mathematical
definition of LES.

1.2 Suitable weak solutions

Let Ω ⊂ R3 be an open smooth, bounded, connected domain occupied by a
viscous fluid. Let (0, T ) be a time interval. It is generally accepted that the
Navier–Stokes equations accurately model the behavior of turbulent incom-
pressible flows of the fluid in Ω:{

∂tu + u·∇u +∇p− ν∇2u = f in QT ,

∇·u = 0 in QT , u|Γ = 0 or u is periodic, u|t=0 = u0,
(1)

where u and p are the velocity and the pressure respectively, QT = Ω×(0, T ),
Γ is the boundary of Ω, u0 the solenoidal initial data, f a source term, ν the
viscosity, and the density is chosen equal to unity. The problem is nondimen-
sionalized, i.e., ν is the inverse of the Reynolds number.

To implicitly account for boundary conditions, we introduce

X =

{
H1

0(Ω) If Dirichlet conditions,
H1

#(Ω) = {v ∈ H1(Ω), v periodic} If periodic conditions.
(2)

V = {v ∈ X, ∇·v = 0}, H = V
L2

(3)

Henceforth we focus our interest on suitable weak solutions to (1), [10].

Definition 1. A weak solution to the Navier–Stokes equation (u, p) is suitable
if u ∈ L2(0, T ;X)∩L∞(0, T ;L2(Ω)), p ∈ L

5
4 (QT ) and the local energy balance

∂t( 1
2u

2) +∇·(( 1
2u

2 + p)u)− ν∇2( 1
2u

2) + ν(∇u)2 − f · u ≤ 0 (4)

is satisfied in the distributional sense in QT .
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To the present time, the best partial regularity result available for (1) is
the so-called Caffarelli-Kohn-Nirenberg Theorem [1] proving that the one-
dimensional Hausdorff measure of the set of singularities of a suitable weak so-
lution is zero. By analogy with nonlinear conservative laws, (4) can be viewed
as an entropy-like condition which may (hopefully?) selects the physical solu-
tions of (1). Whether suitable weak solutions are indeed classical is not known.
Moreover, despite the fact that the result of the CKN Theorem also holds for
weak solutions[6], it is not known whether weak solutions are in fact suitable.

2 suitable approximations

2.1 Suitable approximations

A general definition for LES is out of the scope of the present paper, but we
believe that a reasonable definition should at least be founded on the following
criteria: (1) A LES approximation should be finite-dimensional, i.e., it should
be computable; (2) A LES approximation should solve a problem which is
consistent with the Navier–Stokes equations; (3) A sequence of LES approxi-
mations should select a physical solution of the Navier–Stokes equations under
the appropriate limiting process, i.e., one which is suitable.

We collect the above three criteria by defining the notion of suitable ap-
proximation as follows:

Definition 2. A sequence (uγ , pγ)γ>0 with uγ ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;X)
and pγ ∈ D′((0, T ), L2(Ω)) is said to be a suitable approximation to (1) if

i. There are two finite-dimensional vectors spaces Xγ ⊂ X and Mγ ⊂ L2(Ω)
such that uγ ∈ C0([0, T ];Xγ) and pγ ∈ L2((0, T );Mγ) for all T > 0.

ii. The sequence converges (up to subsequences) to a weak solution of (1),
say uγ ⇀ u weakly in L2(0, T ;X) and pγ → p in D′((0, T ), L2(Ω)).

iii. The weak solution (u, p) is suitable.

2.2 Practical construction of suitable approximations

In practice, the construction of a suitable approximations can be decomposed
into the following three steps:

(1) Construction of what we hereafter call the pre–LES–model. This step
consists of regularizing the Navier–Stokes equations by introducing a regu-
larization parameter ε associated with some filtering of the Navier–Stokes
equations. This parameter is a user-defined length scale of the smallest ed-
dies that are allowed to be nonlinearly active in the flow. The purpose of the
regularization technique is to yield a well-posed problem for all times. More-
over, the limit solution of the pre–LES–model must be a weak solution to the
Navier–Stokes equations as ε → 0 and should be suitable. The pre–LES–model
can be thought of as a filtered version of the Navier–Stokes equations where
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the subgrid scale stresses have been modeled in such a way that the resulting
PDE is well-posed and yields a unique weak solution that converges (up to
subsequences) to a suitable weak solution to the Navier–Stokes equations.

(2) Discretization of the pre–LES–model. This step introduces the mesh-
size parameter h associated with the size of the smallest scale that can be
represented in the finite-dimensional spaces Xγ , Mγ ; roughly dim(Xγ) =
O((L/h)3) where L = diam(Ω).

(3) Determination of a (possibly maximal) relationship between ε and h.
The large eddy scale ε and the mesh size h must be selected in such a way that
the sequence of discrete solutions is ensured to converge to a suitable solution
of the Navier–Stokes equations when ε → 0 and h → 0. In the above definition
the parameter γ is a yet to be specified combination of the two parameters h
and ε that reminds us that the process limε→0,h→0 is a distinguished limit.

3 Review of existing pre–LES–models

We show in this section that some of the regularization techniques recognized
in the literature as LES models are indeed pre–LES–models in the sense of
our definition, i.e., they all select suitable solutions as ε → 0.

3.1 Hyperviscosity

Lions [9] proposed the following hyperviscosity model:
∂tuε + uε·∇uε +∇pε − ν∇2uε + ε2α(−∇2)αuε = f in QT ,

∇·uε = 0 in QT ,

uε|Γ , . . . , ∂α−1
n uε|Γ = 0, or uε is periodic u|t=0 = u0,

(5)

where ε > 0 and α is an integer. Hyperviscosity models are frequently used
in so-called LES simulations of oceanic and atmospheric flows or to control
the Navier–Stokes equations. The appealing aspects of this regularization are
that it yields a well-posed problem in the classical sense when α ≥ 5

4 in three
space dimensions and that limit solutions as ε → 0 are suitable.

3.2 Leray mollification

A simple construction yielding suitable solutions has indeed been proposed
by Leray [8] before this very notion was introduced in the literature.

Assume that Ω is the three-dimensional torus (0, 2π)3 and let (φε)ε>0 be
a sequence of non-negative mollifying functions. Leray suggested to regularize
the Navier–Stokes equations as follows:{

∂tuε + (φε∗uε)·∇uε +∇pε − ν∇2uε = φε∗f ,
∇·uε = 0, uε is periodic, uε|t=0 = φε∗u0.

(6)
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The mollification device has been introduced by Leray to prove the existence
of weak solutions to (1). Quite amazingly not only the pair (uε, pε) converges
to a weak solution to (1), but the weak solution in question is also suitable.
Roughly speaking, the convolution process removes scales that are smaller
than ε. Hence, by using φε∗uε as the advection velocity, scales smaller than
ε are not allowed to be nonlinearly active. This is a feature shared by most
LES models.

3.3 Leray-α model

A variant of the Leray mollification consists of the so-called Leray–α model
∂tuε + uε·∇uε − ν∇2uε +∇πε = f , uε|Γ = 0 or uε is periodic,
(I − ε2∇2)uε = uε, uε|Γ = 0 or uε is periodic,
∇·uε = 0, uε|t=0 = u0,

(7)

as introduced in [2]. Once again, regularization yields existence and uniqueness
in the large. Moreover, when periodic boundary conditions are enforced the
pair (uε, pε) converges, up to subsequences, to a suitable solution.

3.4 Nonlinear Galerkin Method (NLGM)

We focus in this section on the Nonlinear Galerkin Method as introduced in
[3]. Let Ω be the torus (0, 2π)3. Let PN be the set of trigonometric polynomials
of partial degree at most N : PN =

{
p(x) =

∑
|k|∞≤N ckeik·x, ck = c−k

}
, and

denote by ṖN the subspace of PN composed of the trigonometric polynomials
of zero mean value. For any k ∈ ZZZ, we denote by |k| the Euclidean norm of
k and by |k|∞ the maximum norm. We denote by z the conjugate of z. Let
ε > 0 be a large eddy scale. Let us set N = 1

ε (or the integer the closest to
1
ε ). We now introduce the following finite-dimensional vector spaces:

Xε = ṖPPN , and Mε = ṖN , (8)

Let Pε : H1
#(Ω) 3

∑
k∈ZZZ vkeik·x 7−→

∑
|k|∞≤N vkeik·x ∈ PPPN be the usual

truncation operator. All fields v can be decomposed as follows: v = Pεv +
(1− Pε)v. The component Pεv in Xε is called the large scale component of v
and the remainder (1− Pε)v is called the small scale component.

The nonlinear Galerkin method can be recast into the following form: Seek
uε and pε in the Leray class such that{

∂tPεuε − ν∇2uε + Pεuε·∇uε +∇pε,= f ,

∇·uε = 0, Pεuε|t=0 = Pεu0.
(9)

It is then possible to prove that (9) has a unique solution and that this solution
converges, up to subsequences, to a suitable weak solution of (1).
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4 Discretization

The purpose of this section is to introduce discrete versions of some of the
pre–LES–models described above. In each case, we show that the requirement
for the approximate solutions to be suitable approximations determines the
relationship between the mesh size h and the large eddy scale ε, thus solving
a question very often left open or simply heuristically answered in the LES
literature.

4.1 The discrete hyperviscosity model

We turn our attention to the hyperviscosity model introduced in §3.1 and
we construct a Galerkin-Fourier approximation assuming that Ω is the torus
(0, 2π)3. Let N ∈ N\{0} and introduce the meshsize and large eddy scale

h = N−1, ε = hθ, (10)

where 0 < θ < 1. We set Ni = 1
ε = Nθ. To approximate the velocity and the

pressure fields we introduce the following finite-dimensional vector spaces:

Xh = ṖPPN , and Mh = ṖN . (11)

We introduce Q(x) = (2π)−3
∑

Ni≤|k|∞≤N |k|2αeik·x where α > 5
4 . The spec-

tral hyperviscosity model consists of the following: Seek uh ∈ C0([0, T ];Xh)
and ph ∈ L2([0, T ];Mh) such that ∀v ∈ Xh, ∀q ∈ Mh, and a.e. t in (0, T ),{

(∂tuh, v) + (uh·∇uh, v)− (ph,∇·v) + ν(∇uh,∇v) + ε2α
N (Q∗uh,v) = (f ,v),

(∇·uN , q) = 0,∀t ∈ (0, T ], (uN ,v)|t=0 = (u0,v).
(12)

The following result is proved in [5]:

Theorem 1. Let f ∈ L2(0, T ;L2(Ω)) and u0 ∈ Hα(Ω) ∩ V. Assume that
0 < θ < 4α−5

4α if α ≤ 3
2 , or 0 < θ < 2(α−1)

2α+3 otherwise, then the pair (uh, ph) is
a suitable approximation to (1).

4.2 The discrete Leray, Leray-α, and NLGM models

Let us keep the same notation as above; in particular, h = N−1 and ε = hθ.
Let us approximate φε∗uε in (6) by the truncated Fourier series of uε. Then,
the discrete Leray model takes the following form: Seek uh ∈ C0([0, T ];Xh)
and ph ∈ L2([0, T ];Mh) such that ∀v ∈ Xh, ∀q ∈ Mh, and a.e. t in (0, T ),{

(∂tuh,v) + (PεN
uh·∇uh,v)− (ph,∇·v) + ν(∇uh,∇v) = (f ,v),

(∇·uh, q) = 0, (u,v)|t=0 = (u0,v).
(13)
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Using again the Fourier setting, the discrete version of the Leray-α model
(7) takes the following form: Seek uh ∈ C0([0, T ];Xh) and ph ∈ L2([0, T ];Mh)
such that for all v ∈ Xh, for all q ∈ Mh, and a.e. t in (0, T ),

(∂tuN ,v) + (ūh·∇uh,v)− (ph,∇·v) + ν(∇uh,∇v) = (f ,v),

(ūh,v) + ε2(∇ūh,∇v) = (uh,v),
(∇·uh, q) = 0, (uh,v)|t=0 = (u0,v),

(14)

Still retaining the Fourier setting, the discrete version of NLGM (9) is as
follows: Seek uh ∈ C0([0, T ];Xh), and ph ∈ L2(0, T ;Mh) such that ∀t ∈ (0, T ],
∀v ∈ Xh, ∀q ∈ Mh, and a.e. t in (0, T ),{

(∂tPεuh,v) + ν(∇uh,∇v) + (Pεuh·∇uh,v)− (ph,∇·v) = (f ,v),
(∇·uh, q) = 0, uh|t=0 = Pεu0.

(15)

The following result holds for the three above approximation techniques:

Theorem 2. Let f ∈ L2(0, T ;L2(Ω)) and u0 ∈ H. If 0 < θ < 2
3 , the pair

(uh, ph) is a suitable approximation to (1).

4.3 The case of DNS

A natural question that comes to mind is whether a sequence of Direct Nu-
merical Solutions (DNS) is a suitable approximation. To clarify this issue,
let Xh ⊂ X and Mh ⊂ L2(Ω) be two finite-dimensional vector spaces and
consider the following Galerkin approximation: Seek uh ∈ C0([0, T ];Xh) and
ph ∈ L2([0, T ];Mh) such that for all vh ∈ Xh, all qh ∈ Mh, and a.e. t ∈ (0, T ){

(∂tuh,v) + bh(uh,uh,v)− (ph,∇·v) + ν(∇uh,∇v) = (f ,v),
(q,∇·uh) = 0, and (uh|t=0,v) = (u0,v),

(16)

where bh accounts for the nonlinear term and can be written as follows:

bh(u,v,w) =

{
(u·∇v + 1

2v∇·u,w), or
((∇×u)×v + 1

2∇(Kh(u·v)),w),
(17)

where Kh : L2(Ω) −→ Mh is a linear L2-stable interpolation operator.
Owing to standard a priori estimates uniform in h, it is clear that the pair

(uh, ph) complies with items (i) and (ii) of Definition 2. Although it is not
known in general whether such a construction yields a suitable solution at
the limit, it has been proved in [4] that it is indeed the case when low-order
finite elements are used and periodic boundary conditions are enforced. More
specifically, let πh : L2(Ω) −→ Xh be the L2-projection onto Xh. We assume
that there exists c > 0 independent of h such that

∀qh ∈ Mh, ‖∇qh‖L2 ≤ c ‖πh∇qh‖L2 . (18)
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This hypothesis is shown to hold in, at least, the following two situations
(1) Xh is composed of P1–Bubble H1-conforming finite elements and Mh is
composed of P1 H1-conforming finite elements; (2) Xh is composed of P2

H1-conforming finite elements, Mh is composed of P1 H1-conforming finite
elements, and no tetrahedron has more than 3 edges on ∂Ω.

Definition 3. We say that Xh (resp. Mh) has the discrete commutator prop-
erty if there exists Ih ∈ L(H1

#(Ω);Xh) (resp. Jh ∈ L(L2(Ω);Mh)) such that
∀φ in W 2,∞

# (Ω) (resp. ∀φ in W 1,∞
# (Ω)) and ∀vh ∈ Xh (resp. ∀qh ∈ Mh)

‖φvh − Ih(φvh)‖Hl ≤ c h1+m−l‖vh‖Hm‖φ‖W m+1,∞ , 0 ≤ l ≤ m ≤ 1
‖φqh − Jh(φqh)‖L2 ≤ c h‖qh‖L2‖φ‖W 1,∞ .

Standard H1-conforming finite element spaces actually possess the discrete
commutator property. This is not the case of Fourier-based approximation
spaces since Fourier series do not have local interpolation properties.

The main result is the following (see [4] for details)

Theorem 3. Under the above hypotheses, if Xh and Mh have the discrete
commutator property, the pair (uh, ph) is a suitable approximation to (1).

This result underlines that the nature of the approximation technique
that is used plays a key role in the construction of suitable approximations.
Low-order approximations seem to do the trick without requiring extra reg-
ularization provided the nonlinear term is written in skew-symmetric form,
whereas spectral methods need smoothing or extra viscosities. This is related
to the fact that spectral methods suffer from the Gibbs phenomenon. This re-
sult tends to confirm statements sometimes made in the literature that, when
using low-order methods, it is preferable to let the “numerical diffusion do
the job” than to perform any LES modeling. This result is also a cautionary
notice to LES practitioners that heuristic arguments in the Fourier space may
not be equivalent to arguments in the physical space. This point is important
since a lot of heuristic LES argumentation is done in the Fourier space.
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