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1 Introduction

Aprimarymainstay of difficulty when working with problems of very high Reynolds
numbers is the lack of computational resources; this implies that numerical simula-
tions in this realm are, in general, always under-resolved. That is, large gradients and
eddy-phenomena, exist at the sub-grid level and cannot be correctly represented by
the mesh; therefore, at the mesh scale, these solutions can be considered as behaving
in a singularmanner. As time progresses, these unresolved facets of the flow are likely
to produce still larger gradients through the coupling of wave modes via the action of
the nonlinear term; this induces an accumulation of energy at the grid scale.A solution
proposed in [1] consists of monitoring the local kinetic energy balance and introduc-
ing a localized dissipation in these regions that is proportional to the violation of this
balance (this is the so-called entropy viscosity). The deviation from the local energy
balance (whichwe call the entropy residual) can be thought of as an indicator for local
entropy production in analogy with entropy production for scalar conservation laws.

1.1 Motivation

Here a brief overview of the motivation for the entropy-viscosity is presented. See
[1] and the references therein for a more in-depth discussion of the central ideas of
the entropy-viscosity technique.
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Let (uh, ph) be an approximate velocity and pressure, where h denotes the grid
scale, and define the numerical residual of the energy equation, Dh(x, t), by

Dh(x, t) := ∂t (
1
2u2

h) + ∇ · (( 12u2
h + ph)uh)

− Re−1�( 12u2
h) + Re−1(∇uh)2 − f · uh . (1)

In a resolved flow Dh(x, t) should be on the order of the consistency error of the
method; a large value1 of |Dh(x, t)| is caused by under-resolution. In such situations,
one would therefore wish to enforce

|Dh(x, t)| = 0. (2)

However, enforcing (2) directly may over-determine the problem. In [1], the authors
circumvent this difficulty by constructing a viscosity proportional to |Dh(x, t)|. This
viscosity is called the entropy-viscosity (EV), and is defined by

νE (x, t) := min

(
cmax h(x)|uh(x, t)|, cE h2(x)

|Dh(x, t)|
||u2||L∞(Ω)

)
. (3)

Themomentum equation is thenmodified by adding the term−∇·(νE (x, t)∇u). The
entropy-viscosity2 regularizes regions which are in violation of (2) and promotes a
dissipative effect on numerical singularities.

In definition (3), the constants cmax and cE are tunable parameters which depend
only on the numerical method and the geometry of the mesh. For instance, in the
setting of scalar conservation laws, the analogue of (3) gives cmax = 1

2 in one space
dimension with piecewise linear finite elements. Definition (3) ensures that the LES
viscosity will never exceed the first-order upwind viscosity. When h(x), the local
grid size, is small enough so that all scales are resolved, then |Dh(x, t)| is on the
order of the consistency error. Hence, the LES viscosity which is proportional to
h2(x)|Dh(x, t)|, is far smaller than the first order upwind viscosity. The entropy-
viscosity is therefore consistent, and it vanishes when all of the scales of the flow are
properly resolved at the grid scale. The remainder of this paper details the context in
which the entropy viscosity was tested as well as the ensuing numerical results.

2 Numerical Method

Our investigations into the efficacy of the entropy-viscosity for regularizing the
Navier-Stokes equation are carried out via a well-verified periodic spectral code dis-
cussed in the context of [3, 4]. Entropy-viscosity in the setting of bounded domains,

1 The sign of the residual has a physical interpretation discussed in [1].
2 For a discussion of a generalized framework for definition an entropy-viscosity, presented in the
context of hyperbolic conservation laws, see [2].
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utilizing an ADI approach found in [5], is currently being investigated by the authors;
results will appear in a forthcoming paper. The spectral code mentioned above has
been well validated [3, 4, 6]. Standard 2/3’s de-aliasing was utilized in a periodic
box of length L = 1. The time-stepping scheme implemented is a fully explicit
four-stage Runge-Kutta method with dynamic time-stepping respecting the CFL
condition. The entropy-viscosity is formed via the canonical pseudo-spectral tech-
nique whereby derivatives are computed in spectral space and products in physical
space. For this situation, cmax = 0.1 and cE = 0.25 were used in (3). The entropy-
viscosity, computed explicitly following (3), is formulated using the current time
step in conjunction with the two time-steps prior; BDF2 is employed to compute
the time derivative. The result is applied, as a regularization, for the next time-step.
The action of the entropy-viscosity is not present for the first three time-steps of the
simulation; in practice this has caused no stability issues, even in the case of high
Reynolds numbers. Finally, the divergence free condition is enforced exactly via
projection onto the space of solenoidal vector fields. All the simulations presented
here are done with a low-wave number forcing designed to keep the total kinetic
energy approximately constant, as described in [7].

3 Results

In this section we discuss three main results: the consistency of the entropy-viscosity
(i.e., when all scales are properly resolved, there is no noticeable contribution from
the entropy-viscosity), energy spectrum verification results, and the action of the
entropy-viscosity in the context of under-resolved and severely under-resolved flows.
Results regarding additional statistics are forthcoming.

3.1 Consistency

For a resolved flow, we expect that the contribution of the entropy-viscosity should
be on the order of the local consistency error of the method. Indeed, the notion of
entropy-viscosity is constructed to satisfy this requirement. It is expected that the
entropy-viscosity should go to zero significantly faster than O(h2).

We first test an inviscid flow with the following two-dimensional initial data:
u = cos(8πx) sin(8πy), v = − sin(8πx) cos(8πy), w = 0. The flow remains two-
dimensional at later times (i.e. laminar) and the total kinetic energy is constant in time.
We compute the Euler solution up to t = 4 using theDNS code, the entropy-viscosity
technique and the Smagorinsky model on various grids (323, 643, 1283, 2563). We
show in Fig. 1a the time evolution of the kinetic energy for the entropy-viscosity
solution and the Smagorinsky solution on the 323 grid and that of the DNS solution
on the 2563 grid. It is striking that the Smagorinsky solution loses energy fast even
though the flow is laminar, whereas the entropy-viscosity solution tracks the DNS
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DNS EV Smag.
32 4.0e-13 2.1e-06 6.8e-1
64 1.6e-16 1.1e-06 3.6e-1
128 6.5e-14 5.6e-10 1.2e-1
256 1.1e-13 8.7e-11 3.3e-2

(a) (b)

Fig. 1 a Total energy versus time for Smagorinsky and EV models for an inviscid flow at 323.
b Energy loss ‖u − u0‖L2/‖u0‖L2 at t = 4

solution rather closely. The reason why the entropy-viscosity model outperforms
the Smagorinsky model is that the entropy-viscosity is very small since the flow is
laminar. The entropy viscosity is significantly smaller than h2 due to the spectral
accuracy of the Fourier approximation.

We show in Fig. 1b a table displaying the relative kinetic energy loss for the DNS,
entropy-viscosity, and the Smagorinsky solutions at time t = 4 on the four grids
323, 643, 1283, 2563. We observe that the DNS does not lose any energy at all the
resolutions and the entropy-viscosity solution does not lose any significant amount
of energy, even at low resolution. The Smagorinsky solution on the other hand has
lost 68% of the energy by time t = 4 on the 323 grid and 3.3% on the 2563 grid.
This test confirms that contrary to the Smagorinsky method, the entropy-viscosity
method does not dissipate energy in the laminar regions of the flow.

A full investigation of the consistency of the entropy viscosity method will be
carried out in a forthcoming paper.

3.2 Entropy-Viscosity as an LES Model

We are interested in the applicability of the entropy-viscosity as an LES model.
One expects that the entropy-viscosity should damp spurious high wave-mode con-
tributions and resolve an otherwise unresolved flow. Therefore it is reasonable to
conjuncture that entropy-viscosity is well-suited to LES.

The fundamental question of whether or not the local energy balance, being
enforced via the entropy-viscosity, evinces the quintessential dynamics of resolved
flow, and to what extent, is addressed; specifically the Kolmogorov − 5

3 trend in the
inertial range of the energy spectrum is examined.

We examine how entropy-viscosity effects the energy spectrum of under-resolved
flows. In Fig. 2a–d, we show the energy spectra of simulation runs at Re ≈ 6,500
for various resolutions. All runs are compared against a resolved DNS run at reso-
lution 2563 (called “No Model”). Each under-resolved simulation is done using the
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Fig. 2 a 2563 resolution with entropy-viscosity (EV) and with Smagorinsky (Smag). DNS sim-
ulation included for comparison (DNS). b 1283 resolution: entropy viscosity, unresolved DNS,
Smagorinsky. “NoModel” 2563 DNS simulation included for comparison. c 643 resolution: entropy
viscosity, unresolved DNS, Smagorinsky. “No Model” 2563 DNS simulation included for compar-
ison. d 323 resolution: entropy viscosity, unresolved DNS, Smagorinsky. “No Model” 2563 DNS
simulation included for comparison

entropy-viscosity model and the Smagorinsky model. One can see that unregularized
(“No Model”) flows fail to capture the correct spectra as expected, while the flows
regularized with entropy-viscosity perform significantly better. Note also that the
entropy viscosity model is always closer to the DNS spectrum than the Smagorin-
sky model.

3.3 Structure of the Enstropy

An important characteristic to capture in modeling isotropic turbulent flow is the
structure of coherent vortex tubes, that is, the level sets of the enstropy, |∇ ×u(x, t)|.
We compare vortex tubes of an unresolved simulation against a simulation with
exactly the same parameters, except that entropy-viscosity is added. In Fig. 3a,
b, several level-surfaces with values in a range of ≈50–75% of the maximum
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Fig. 3 a Surfaces of constant enstrophy for a 643 simulation with Re ≈ 6,500 (unresolved).
Darker surfaces indicate larger enstrophy. b Surfaces of constant enstrophy for a 643 simulation
with Re ≈ 6,500 with entropy-viscosity regularization at the same time step

enstropy at the same fixed time step (taken after the flow has reached a statistical
steady-state) are shown. While the enstrophy of the unresolved flow appears quite
polluted (Fig. 3a), the enstrophy of the entropy-viscosity regularized flow (Fig. 3b)
contains well-defined vortex tubes, and is more characteristic of turbulent flow.
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