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a b s t r a c t

In this paper we present extensions of the schemes proposed in Guermond and Minev
(2015) that lead to a decoupling of the velocity components in the momentum equation.
The new schemes reduce the solution of the incompressible Navier–Stokes equations to a
set of classical scalar parabolic problems for each Cartesian component of the velocity. The
pressure is explicitly recovered after the velocity is computed.
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1. Introduction

In [1], we considered the possibility to construct high-order artificial compressibility schemes for incompressible flow
by using a combination of the first-order scheme proposed by Shen [2] and the defect (or deferred) correction approach
(see e.g. [3]). The resulting schemes require the solution of several problems of the type u − τ(µ∆u + ω∇∇·)u = τ f
at each time step, τ being the time step. The corresponding discrete problems clearly have a condition number of order
of τh−2, h being the spatial step. Although these problems are relatively well conditioned, the operator ∇∇· couples all
components of the velocity and, denoting by d the space dimension, the associated linear system is d times larger than the
linear system associated with a scalar PDE. The first objective of the present paper is to introduce algorithms that discretize
explicitly the mixed derivatives in the operator ∇∇· in order to decouple the Cartesian components of the velocity and
thereby reduce the problem to a series of scalar-valued parabolic problems. In fact, such strategies based on the direction
splitting approach, whichwas popular at that time, have been proposed in the literature in the 1960s and 70s. For instance, a
direction splitting scheme that includes the splitting of the∇∇· operator has been proposed in the Russian literature by the
groups of Yanenko (see [4,5], Section 8.3) and Ladyzhenskaya (see [6, chapter VI, Section 9.2], and the references therein).
In the Western literature, such schemes have been proposed and analyzed by Temam [7, chapter III, Section 8.3]. In the
present paper we generalize the approach to make it applicable to non-Cartesian grids without splitting, and we combine it
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with the defect correction approach discussed in [1] to increase the accuracy order. The second objective of the paper is to
show that it is possible to reduce further the complexity of the proposed algorithms and still be unconditionally stable and
accurate by applying direction splitting techniques.

The paper is organized as follows. In Section 2 we introduce notation, the model problem and recall the defect correction
method from [1]. The implicit–explicit coordinate splitting of the operator ∇∇· is done in Section 3 (first objective of the
paper). Further simplifications of the algorithms introduced in Section 3 are proposed in Section 4; these simplifications
essentially consist of using direction splitting (second objective of the paper). It is shown in Section 5 that the algorithms
introduced in Section 3 and Section 4 can be made second and higher-order accurate by using the defect correction method
of [1]. All the proposed algorithms are tested and illustrated numerically in Section 6. Concluding remarks are reported in
Section 7.

2. Preliminaries

2.1. Formulation of the problem

We consider the time-dependent Navier–Stokes equations on a finite time interval [0, T ] and in a domain Ω in Rd

with a Lipschitz boundary. Since the nonlinear term in the Navier–Stokes equations has no significant influence on the
pressure–velocity coupling and since this term is usually made explicit, we henceforth mostly consider the time-dependent
Stokes equations written in terms of velocity u and pressure p:

∂tu + Au + ∇p = f in Ω × [0, T ],
∇ · u = 0 in Ω × [0, T ],
u|∂Ω = 0 in [0, T ], and u|t=0 = u0 in Ω,

(2.1)

where f is a smooth source term and u0 is a solenoidal initial velocity field with zero normal trace at the boundary of Ω .
The operator A is assumed to be linear, H1-coercive and bounded, i.e., there are two constants ν > 0 andM < ∞ such that

Ω
Au · u dx > ν∥u∥

2
H1(Ω)

and |


Ω
Au · v dx| 6 M∥u∥H1(Ω)∥v∥H1(Ω), for all u, v ∈ H1

0(Ω). For the sake of simplicity, we
consider homogeneous Dirichlet boundary conditions on the velocity.

Remark 2.1 (Other Boundary Conditions). All the stability results presented below generalize to other types of boundary
conditions provided that they guarantee the coerciveness of the bilinear form generated by A. We can formalize this
statement by assuming that there exists a closed subspace V of H1(Ω) and a bilinear form a : V × V −→ R such that
the boundary conditions imposed in (2.1) are such that


Ω
(Au + ∇p) · v dx = a(u, v) −


Ω
p∇ · v dx for all v ∈ V and

a(u,u) > ν∥u∥
2
H1(Ω)

, a(u, v) 6 M∥u∥H1(Ω)∥v∥H1(Ω), for all u, v ∈ V .

We are going to be mainly concerned with time discretizations of the above problem. Let τ > 0 be a time step
and set tn = nτ for 0 6 n 6 N = ⌊T/τ⌋, where ⌊·⌋ is the floor function. Let φ0, φ1, . . . φN be some sequence of
functions in a Hilbert space E. We denote by φτ this sequence, and we define the following discrete norms: ∥φτ∥ℓ2(E) :=
τ
N

n=0 ∥φn
∥
2
E

 1
2 , ∥φτ∥ℓ∞(E) := max06n6N (∥φn

∥E). In addition, we denote the first differences of the elements of the
sequence by δtφ

n
= (φn

− φn−1), n = 1, . . . ,N , and their average by φ̄n
= (φn

+ φn−1)/2, n = 1, . . . ,N . The sequences
δtφ

1, . . . δtφ
N and φ̄1, . . . φ̄N are denoted by δtφτ and φ̄τ correspondingly. We also denote by c a generic constant that is

independent of τ and ϵ but possibly depends on the data, the domain, and the solution.

2.2. High-order artificial compressibility

In [1] we introduced a series of second and third-order schemes based on the following first-order artificial compress-
ibility algorithm, proposed by Shen [2]:

un+1
− un

τ
+ Aun+1

+ ∇pn+1
= fn+1,

ϵ

τ
(pn+1

− pn) + ∇ · un+1
= 0, (2.2)

where ϵ > 0 is a user-dependent parameter that is usually chosen to be proportional to τ , i.e., ϵ = τ/χ where χ is of order
one. One interesting property of this scheme is that it decouples the velocity and the pressure; more precisely, the algorithm
can be recast as follows:

un+1
− un

τ
+ Aun+1

− χ∇∇ · un+1
= fn+1

− ∇pn, pn+1
= pn − χ∇ · un+1. (2.3)

The above algorithm has been extended to third-order accuracy in time in [1] by using a defect correction method. Since
in case of the full Navier–Stokes equations, the nonlinear term Bu := u · ∇u can also be handled by the defect correction,
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we include it in the algorithm for completeness. The full third-order scheme is as follows:

n > 0,


nln+1

0 = Bun
0,

un+1
0 − un

0

τ
+ Aun+1

0 − χ∇∇ · un+1
0 + ∇pn0 = fn+1

− nln+1
0

pn+1
0 = pn0 − χ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un
0)/τ , dpn+1

0 = (pn+1
0 − pn0)/τ

(2.4)

n > 1,



d2un+1
0 = (dun+1

0 − dun
0)/τ ,

nln1 = B(un
0 + τun−1

1 ),

un
1 − un−1

1

τ
+ Aun

1 − χ∇∇ · un
1 + ∇(pn−1

1 + dpn0) = −
1
2
d2un+1

0 −
nln1 − nln0

τ
,

pn1 = pn−1
1 + dpn0 − χ∇ · un

1,

dun
1 = (un

1 − un−1
1 )/τ , dpn1 = (pn1 − pn−1

1 )/τ ,

(2.5)

n > 2,



d2un
1 = (dun

1 − dun−1
1 )/τ , d3un+1

0 = (d2un+1
0 − d2un

0)/τ ,

nln−1
2 = B(un−1

0 + τun−1
1 + τ 2un−2

2 )

un−1
2 − un−2

2

τ
+ Aun−1

2 − χ∇∇ · un−1
2 + ∇(pn−2

2 + dpn−1
1 ) = −

1
2
d2un

1 +
1
6
d3un+1

0 −
nln−1

2 − nln−1
1

τ 2

pn−1
2 = pn−2

2 + dpn−1
1 − χ∇ · un−1

2 ,

un−1
= un−1

0 + τun−1
1 + τ 2un−1

2 , pn−1
= pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(2.6)

The stage (2.4) yields a first-order approximation of the velocity and the pressure, the second stage (2.5) yields a
second-order approximation of the velocity and the pressure, and the third stage (2.6) yields a third-order approximation
of the velocity and the pressure.

One drawback of the above scheme is the presence of the operator ∇∇· since this operator couples all the Cartesian
components of the velocity and can lead to locking if not discretized properly. In the next section we introduce a first-order
artificial compressibility scheme that decouples the different components of the velocity, i.e., we develop a decoupled
version of the first stage (2.4). Wewill use this approach later in the paper to modify the subsequent two stages and create a
high-order time stepping for the Navier–Stokes equations that requires only the solution of a set of scalar-valued parabolic
problems for each Cartesian component of the velocity. Since the proofs of stability of these schemes in two and three
dimensions differ somewhat, we will consider these two cases separately in the next section.

3. Coordinate splitting of the grad–div operator

3.1. Splitting of A

In this section we demonstrate that the velocity components in the grad–div operator can be decoupled by discretizing
the mixed derivatives explicitly, while still preserving the unconditional stability of the scheme. To stay general, we assume
that the operator A admits the following decomposition Au = Au − ∇(λ∇ · u) where λ is a smooth positive scalar field.
We assume also that A is block diagonal, H1-coercive and bounded, i.e., we assume that there are constants ν and M such
that Au = (A1u1, . . . , Adud)

⊤,


Ω
uAiu dx > ν∥u∥2

H1(Ω)
and |


Ω

vAiu dx| 6 M∥u∥H1(Ω)∥v∥H1(Ω), for all u, v ∈ H1
0 (Ω), where

u1, . . . , ud are the Cartesian components of u. We do not need to know how ν depends on λ in the following sections. This
decomposition holds for instance when Au = −∇ · (µ(∇u + (∇u)⊤) + κ∇ · uI) where I is the d × d identity matrix.
Assuming in this case that µ is constant over Ω , we have Au = −∇ · (µ∇u) and λ = µ + κ .

The first-order algorithm (2.3) can be rewritten as follows in this new context:

un+1
− un

τ
+ Aun+1

− ∇(ϖ∇ · un+1) = fn+1
− ∇pn, pn+1

= pn − ϖ∇ · un+1, (3.1)

where ϖ depends on λ and χ is defined by ϖ := λ + χ and we recall that χ = τ/ϵ. In the rest of the paper, the presence
of the field λ in the decomposition Au = Au − ∇(λ∇ · u) is encoded in (3.1) through the field ϖ .

Remark 3.1 (Other Boundary Conditions). In line with Remark 2.1, if general boundary conditions are imposed, then the
meaning of (3.1) and un+1 is that there are d closed subspaces V1, . . . , Vd ⊂ H1(Ω) and d bilinear forms a1, . . . , ad such that

Ω

(un+1
i − un

i )v

τ
+ ai(un+1

i , v) −


Ω

ϖ∇ · un+1∂iv dx =


Ω

fn+1
i v dx +


Ω

pn∂iv dx,

for all v ∈ Vi, i = 1, . . . , d, and pn+1
= −pn − ϖ∇ · un+1,
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3.2. Gauss–Seidel and Jacobi ansätze in two dimensions

In this section we consider the decoupling of the velocity components for the two-dimensional version of the algorithm
(3.1). Let us denote by u1, u2 the Cartesian components of u, i.e., u = (u1, u2)

⊤. Then consider the following modification of
the algorithm:

un+1
− un

τ
+ Aun+1

−


∂x1(ϖ(∂x1u

n+1
1 + ∂x2u

n
2 ))

∂x2(ϖ(∂x1u
n+1
1 + ∂x2u

n+1
2 ))


= fn+1

− ∇pn (3.2)

with pn+1
= pn − ϖ∇ · un+1. Note that since we assumed that A is block diagonal, meaning that Au = (A1u1, A2u2), the

Cartesian components of u are indeed decoupled because the algorithm can be recast as follows:
un+1
1 − un

1

τ
+ A1un+1

1 − ∂x1(ϖ∂x1u
n+1
1 ) = f n+1

1 − ∂x1

pn − ϖ∂x2u

n
2


un+1
2 − un

2

τ
+ A2un+1

2 − ∂x2(ϖ∂x2u
n+1
2 ) = f n+1

2 − ∂x2

pn − ϖ∂x1u

n+1
1


.

(3.3)

These two problems only require to solve classical scalar-valued parabolic equations. Before going through the stability
analysis, let us first observe that (3.2) can be rewritten as follows:

un+1
− un

τ
+ Aun+1

− ∇(ϖ∇ · ũn+1) − (0, ∂x2(ϖ∂x2δtu
n+1
2 ))⊤ = fn+1

− ∇pn (3.4)

where ũn+1
= (un+1

1 , un
2)

⊤. We assume that f = (f1, f2) = 0 in order to establish the stability of the scheme with respect
to the initial data. The case of a non-zero source term can be considered similarly, but since this unnecessarily introduces
irrelevant technicalities we will omit the source term in the rest of the paper. The scheme (3.2) is unconditionally stable as
stated by the following theorem.

Theorem 3.1. Under suitable initialization and smoothness assumptions, the algorithm (3.2) is unconditionally stable, i.e., for
any finite time interval (0, T ] we have:

∥uτ∥
2
ℓ∞(L2(Ω))

+ τ∥ϖ−
1
2 pτ∥

2
ℓ∞(L2(Ω))

+ τ∥ϖ
1
2 ∂x2u2,τ∥

2
ℓ∞(L2(Ω))

+ τ−1
∥δtuτ∥

2
ℓ2(L2(Ω))

+ 2ν∥uτ∥
2
ℓ2(H1(Ω))

+ ∥ϖ
1
2 ∇ · ũ∥

2
ℓ2(L2(Ω))

6 c(∥u0
∥
2
L2(Ω)

+ τ∥ϖ−
1
2 p0∥2

L2(Ω)
+ τ∥ϖ

1
2 ∂x2u

0
2∥

2
L2(Ω)

). (3.5)

Proof. We first multiply the momentum equation in (3.4) by 2τun+1, then, using the identity 2(a − b, a) = ∥a∥2
+ ∥a −

b∥2
− ∥b∥2 and the coerciveness of A in H1(Ω), we obtain:

∥un+1
∥
2
L2(Ω)

+ ∥δtun+1
∥
2
L2(Ω)

− ∥un
∥
2
L2(Ω)

+ 2ντ∥un+1
∥
2
H1(Ω)

+ 2τ(ϖ∇ · ũn+1, ∇ · un+1)

+ τ(∥ϖ
1
2 ∂x2u

n+1
2 ∥

2
L2(Ω)

+ ∥ϖ
1
2 ∂x2δtu

n+1
2 ∥

2
L2(Ω)

− ∥ϖ
1
2 ∂x2u

n
2∥

2
L2(Ω)

) − 2τ(pn, ∇ · un+1) 6 0.

Now taking the square of the pressure equation ϖ−
1
2 pn+1

= ϖ−
1
2 pn − ϖ

1
2 ∇ · un+1 gives

τ∥ϖ−
1
2 pn+1

∥
2
L2(Ω)

= τ∥ϖ−
1
2 pn∥2

L2(Ω)
− 2τ(∇ · un+1, pn) + τ∥ϖ

1
2 ∇ · un+1

∥
2
L2(Ω)

.

Adding the above inequality and equation, we obtain:

∥un+1
∥
2
L2(Ω)

+ ∥δtun+1
∥
2
L2(Ω)

+ 2ντ∥un+1
∥
2
H1(Ω)

+ τ∥ϖ−
1
2 pn+1

∥
2
L2(Ω)

+ τ∥ϖ
1
2 ∇ · ũn+1

∥
2
L2(Ω)

− τ∥ϖ
1
2 ∇ · (un+1

− ũn+1)∥2
L2(Ω)

+ τ∥ϖ
1
2 ∂x2δtu

n+1
2 ∥

2
L2(Ω)

τ∥ϖ
1
2 ∂x2u

n+1
2 ∥

2
L2(Ω)

6 ∥un
∥
2
L2(Ω)

+ τ∥ϖ−
1
2 pn∥2

L2(Ω)
+ τ∥ϖ

1
2 ∂x2u

n
2∥

2
L2(Ω)

.

Note that∇ · (un+1
− ũn+1) = ∂x2δtu

n+1
2 , i.e., ∥ϖ

1
2 ∇ · (un+1

− ũn+1)∥L2(Ω) = ∥ϖ
1
2 ∂x2δtu

n+1
2 ∥L2(Ω). Then summing the above

inequality for n = 0, . . . ,N − 1, with N = ⌊T/τ⌋, yields the desired result. �

The algorithm (3.2) can be thought of as a Gauss–Seidel approximation of (3.1). This observation, then leads
us to consider also the Jacobi approximation which consists of replacing ∇∇ · un+1 in (3.1) by ∇(ϖ∇ · un) +

(∂x1(ϖ∂x1δtu
n+1
1 ), ∂x2(ϖ∂x2δtu

n+1
2 ))⊤, that is to say

un+1
− un

τ
+ Aun+1

− ∇(ϖ∇ · un) −


∂x1(ϖ∂x1δtu

n+1
1 )

∂x2(ϖ∂x2δtu
n+1
2 )


= fn+1

− ∇pn (3.6)

with pn+1
= pn − ϖ∇ · un+1. Let us define ǔn+1

= (un
1, u

n+1
2 )⊤.
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Theorem 3.2. Under suitable initialization and smoothness assumptions, the Jacobi algorithm (3.6) is unconditionally stable, i.e.,
for any finite time interval (0, T ] we have:

∥uτ∥
2
ℓ∞(L2(Ω))

+ τ∥ϖ−
1
2 pτ∥

2
ℓ∞(L2(Ω))

+ τ∥ϖ
1
2 ∂x1u1,τ∥

2
ℓ∞(L2(Ω))

+ τ∥ϖ
1
2 ∂x2u2,τ∥

2
ℓ∞(L2(Ω))

+ τ−1
∥δtuτ∥

2
ℓ2(L2(Ω))

+ 2ν∥uτ∥
2
ℓ2(H1(Ω))

+ ∥ϖ
1
2 ∇ · ũ∥

2
ℓ2(L2(Ω))

+ ∥ϖ
1
2 ∇ · ǔ∥

2
ℓ2(L2(Ω))

6 c(∥u0
∥
2
L2(Ω)

+ τ∥ϖ−
1
2 p0∥2

L2(Ω)
+ τ∥ϖ

1
2 ∂x1u

0
1∥

2
L2(Ω)

+ τ∥ϖ
1
2 ∂x2u

0
2∥

2
L2(Ω)

). (3.7)

3.3. Jacobi ansatz in higher dimensions

It seems natural to consider the multidimensional extension of the Jacobi-like algorithm (3.6). More generally in d
dimensions one could think of replacing ∇∇ · un+1 by ∇∇ · un

+ (∂x1x1δtu
n+1
1 , . . . , ∂xdxdδtu

n+1
d )⊤. This approximation may

be stable in dimension three but we did not make attempts to verify this. However, the following alternative perturbation
is also first-order consistent ∇∇ · un

+ d(∂x1x1δtu
n+1
1 , . . . , ∂xdxdδtu

n+1
d )⊤, and we can consider the algorithm

un+1
− un

τ
+ Aun+1

− ∇(ϖ∇ · un) − d

∂x1(ϖ∂x1δtu
n+1
1 )

. . .

∂xd(ϖ∂xdδtu
n+1
d )

 = fn+1
− ∇pn (3.8)

with pn+1
= pn − ϖ∇ · un+1.

Theorem 3.3. Under suitable initialization and smoothness assumptions, the Jacobi algorithm (3.8) is unconditionally stable, i.e.,
for any finite time interval (0, T ] we have:

∥uτ∥
2
ℓ∞(L2(Ω))

+ τ∥ϖ−
1
2 pτ∥

2
ℓ∞(L2(Ω))

+ τd
d

i=1

∥ϖ
1
2 ∂xiui,τ∥

2
ℓ∞(L2(Ω))

+τ−1
∥δtuτ∥

2
ℓ2(L2(Ω))

+ 2ν∥uτ∥
2
ℓ2(H1(Ω))

+ ∥ϖ
1
2 ∇ · u∥

2
ℓ2(L2(Ω))

6 c


∥u0

∥
2
L2(Ω)

+ τ∥ϖ−
1
2 p0∥2

L2(Ω)
+ τd

d
i=1

∥ϖ
1
2 ∂xiu

0
i ∥

2
L2(Ω)


. (3.9)

Proof. Proceeding as in the proof of Theorem 3.1, we obtain

∥un+1
∥
2
L2(Ω)

+ ∥δtun+1
∥
2
L2(Ω)

+ 2ντ∥un+1
∥
2
H1(Ω)

+ τ∥ϖ−
1
2 pn+1

∥
2
L2(Ω)

− τ∥ϖ
1
2 ∇ · un+1

∥
2
L2(Ω)

+ 2τ(ϖ∇ · un, ∇ · un+1) + τd
d

i=1


∥ϖ

1
2 ∂xiu

n+1
i ∥

2
L2(Ω)

+ ∥ϖ
1
2 ∂xiδtu

n+1
i ∥

2
L2(Ω)


6 ∥un

∥
2
L2(Ω)

+ τ∥ϖ−
1
2 pn∥2

L2(Ω)
+ τd

d
i=1

∥ϖ
1
2 ∂xiu

n
i ∥

2
L2(Ω)

.

We now observe that (∇ · δtun+1)2 6 d
d

i=1(∂xiδtui)
2, which in turn implies that

−∥ϖ
1
2 ∇ · un+1

∥
2
L2(Ω)

+ 2(ϖ∇ · un, ∇ · un+1) + d
d

i=1

∥ϖ∂xiδtui∥
2
L2(Ω)

= −∥ϖ
1
2 ∇ · δtun+1

∥
2
L2(Ω)

+ ∥ϖ
1
2 ∇ · un

∥
2
L2(Ω)

+ d
d

i=1

∥ϖ∂xiδtui∥
2
L2(Ω)

> ∥ϖ
1
2 ∇ · un

∥
2
L2(Ω)

.

The conclusion follows readily. �

3.4. Gauss–Seidel ansatz in higher dimensions

The two-dimensional Gauss–Seidel scheme (3.2) introduced in the previous section can be directly extended in three
space dimensions as follows:

un+1
− un

τ
+ Aun+1

−

 ∂x1(ϖ(∂x1u
n+1
1 + ∂x2u

n
2 + ∂x3u

n
3 ))

∂x2(ϖ(∂x1u
n+1
1 + ∂x2u

n+1
2 + ∂x3u

n
3 ))

∂x2(ϖ(∂x1u
n+1
1 + ∂x2u

n+1
2 + ∂x3u

n+1
3 ))

 = fn+1
− ∇pn (3.10)
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with pn+1
= pn − ϖ∇ · un+1. Then again the three Cartesian components of the velocity are decoupled. Unfortunately,

we have not been able to prove the stability of this scheme, but our numerical experiments lead us to conjecture that
it is unconditionally stable. We have found though that stability can be proved by adding the first-order perturbation
−(0, ∂x2(ϖ∂x2δtu

n+1
2 ), ∂x3(ϖ(−∂x2δtu

n+1
2 + ∂x3δtu

n+1
3 )))⊤, leading to the alternative following scheme

un+1
− un

τ
+ Aun+1

−

 ∂x1(ϖ(∂x1u
n+1
1 + ∂x2u

n
2 + ∂x3u

n
3))

∂x2(ϖ(∂x1u
n+1
1 + ∂x2(2u

n+1
2 − un

2) + ∂x3u
n
3))

∂x2(ϖ(∂x1u
n+1
1 + ∂x2u

n
2 + ∂x3(2u

n+1
3 − un

3)))

 = fn+1
− ∇pn, (3.11)

and pn+1
= pn − ϖ∇ · un+1. Stability will be established by relying on the following result.

Lemma 3.4. Let a1, b1, c1, b0, c0 be three real numbers, then the following identity holds:

2((a1 + b0 + c0)a1 + (a1 + b1 + c0)b1 + (a1 + b1 + c1)c1) + 2(b1 − b0)b1 − 2(b1 − b0)c1 + 2(c1 − c0)c1

= (a1 + b1 + c1)2 + (a1 + b0 + c0)2 + 2(b21 + c21 − b20 − c20 ) + (b1 − b0 − c1 + c0)2. (3.12)

Theorem 3.5. Under suitable initialization and smoothness assumptions (assuming that f = 0), the algorithm (3.11) is
unconditionally stable, i.e., upon setting ũn+1

= (un+1
1 , un

2, u
n
3)

⊤, the following holds for any finite time interval (0, T ]:

∥uτ∥
2
ℓ∞(L2(Ω))

+ τ∥ϖ−
1
2 pτ∥

2
ℓ∞(L2(Ω))

+ 2τ∥ϖ
1
2 ∂x2u2,τ∥

2
ℓ∞(L2(Ω))

+ 2τ∥ϖ
1
2 ∂x3u3,τ∥

2
ℓ∞(L2(Ω))

+ τ−1
∥δtuτ∥

2
ℓ2(L2(Ω))

+ 2ν∥uτ∥
2
ℓ2(H1(Ω))

+ ∥ϖ
1
2 ∇ · ũτ∥

2
ℓ2(L2(Ω))

+ ∥ϖ
1
2 (∂x2δtu2,τ − ∂x3δtu3τ )∥

2
ℓ2(L2(Ω))

6 c

∥u0

∥
2
L2(Ω)

+ ∥ϖ−
1
2 p0∥2

L2(Ω)
+ 2τ∥ϖ

1
2 ∂x2u

0
2∥

2
L2(Ω)

+ 2τ∥ϖ
1
2 ∂x3u

0
3∥

2
L2(Ω)


. (3.13)

Proof. The stability has been established by proceeding as in the two dimensional case. Assuming that f = 0, we first test
(3.11) with 2τun+1, then using the identity 2(a − b, a) = ∥a∥2

+ ∥a − b∥2
− ∥b∥2 and Lemma 3.4 to handle the ∇∇· term,

we have

∥un+1
∥
2
L2(Ω)

+ ∥δtun+1
∥
2
L2(Ω)

− ∥un
∥
2
L2(Ω)

+ 2ντ∥un+1
∥
2
H1(Ω)

− 2τ(pn, ∇ · un+1)

+ τ∥ϖ
1
2 ∇ · un+1

∥
2
L2(Ω)

+ τ∥ϖ
1
2 ∇ · ũn+1

∥
2
L2(Ω)

+ 2τ∥ϖ
1
2 ∂x2u

n+1
2 ∥

2
L2(Ω)

+ 2τ∥∂x3u
n+1
3 ∥

2
L2(Ω)

− 2τ∥ϖ
1
2 ∂x2u

n
2∥

2
L2(Ω)

− 2τ∥ϖ
1
2 ∂x3u

n
3∥

2
L2(Ω)

+ τ∥ϖ
1
2 (∂x2δtu

n+1
2 − ∂x3δtu

n+1
3 )∥2

L2(Ω)
6 0.

Then we add the pressure equation

τ∥ϖ−
1
2 pn+1

∥
2
L2(Ω)

= τ∥ϖ−
1
2 pn∥2

L2(Ω)
− 2τ(∇ · un+1, pn) + τ∥ϖ

1
2 ∇ · un+1

∥
2
L2(Ω)

,

and obtain

∥un+1
∥
2
L2(Ω)

+ ∥δtun+1
∥
2
L2(Ω)

+ 2ντ∥un+1
∥
2
H1(Ω)

+ τ∥ϖ−
1
2 pn+1

∥
2
L2(Ω)

+ τ∥ϖ
1
2 ∇ · ũn+1

∥
2
L2(Ω)

+ 2τ∥ϖ
1
2 ∂x2u

n+1
2 ∥

2
L2(Ω)

+ 2τ∥∂x3u
n+1
3 ∥

2
L2(Ω)

+ τ∥ϖ
1
2 (∂x2δtu

n+1
2 − ∂x3δtu

n+1
3 )∥2

L2(Ω)

6 ∥un
∥
2
L2(Ω)

+ τ∥ϖ−
1
2 pn∥2

L2(Ω)
+ 2τ∥ϖ

1
2 ∂x2u

n
2∥

2
L2(Ω)

+ 2τ∥ϖ
1
2 ∂x3u

n
3∥

2
L2(Ω)

.

Finally, the result follows by summing the above inequality for n = 0, . . . ,N − 1. �

4. Direction splitting schemes

We show in this section that the coordinate splitting schemes considered so far can be further simplified by splitting
the operator A direction-wise, thus reducing the multidimensional scalar parabolic subproblems to a sequence of d
one-dimensional scalar problems. It will demonstrated below in Section 5 that the direction-splitting schemes proposed
in the present section can be combined with the defect-correction approach in order to increase their accuracy in time.

Direction splitting algorithms based on the artificial compressibility formulation of the Navier–Stokes equations have
been proposed many years ago (see [5, Section 8.3], [6, chapter VI, Section 9.2], [7, chapter III, Section 8.3]), and they have
largely been abandoned in the last twenty years. Restricting the discussion to two dimensions for simplicity, all these direc-
tion splitting schemes can be considered as discretization of the following set of PDEs formulated in [5] and approximating
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the incompressible Navier–Stokes equations with constant viscosity:
1
2
∂tu1 + u1∂x1u1 + ∂x1p = µ∂x1x1u1,

1
2
∂tu2 + u1∂x1u2 = µ∂x1x1u2,

ϵ

2
∂tp + ϵu1∂x1p + p∂x1u1 = 0,

(4.1)

in the first half of a given time interval [tn, tn +
1
2τ ] and

1
2
∂tu1 + u2∂x2u1 = µ∂x2x2u1,

1
2
∂tu2 + u2∂x2u2 + ∂x2p = µ∂x2x2u2,

ϵ

2
∂tp + ϵu2∂x2p + p∂x2u2 = 0,

(4.2)

in the second half [tn +
1
2τ , tn+1

]. Note that in [6,7] the pressure equations are formulated slightly differently:

ϵ

2
∂tp + ∂x1u1 = 0, in


tn, tn +

1
2
τ


, (4.3)

ϵ

2
∂tp + ∂x2u2 = 0, in


tn +

1
2
τ , tn+1


. (4.4)

In the scheme of Yanenko [5] the pressure equations are derived from the compressible mass conservation equation at
vanishing Mach number, in [6,7] they are derived from the simpler (but less physical) perturbation of the incompressibil-
ity constraint: ϵ∂tp + ∇ · u = 0. Both algorithms are formally first-order accurate in time. However, the actual rate of
convergence was not established in the above references, despite that convergence was proven in both cases.

In the present paperwe are aiming at the development of artificial compressibility schemes of order two and higher. In [1]
we proposed two possible approaches for extending the convergence order. The first one uses a bootstrapping perturbation
of the incompressibility constraint combined with a high-order BDF time stepping for the momentum equation. The second
approach is based on a defect (or deferred) correction for both, the momentum and the continuity equations. Since we
are presently unable to devise a higher-order defect correction scheme based on any of the first-order direction splitting
methods discussed above (see e.g., (4.1)–(4.2)), we consider here a scheme that is a first-order perturbation of the formally
second-order splitting scheme due to Douglas [8]. For simplicity, we will not consider the nonlinear terms in what follows,
however, there is no particular difficulty to extend the scheme to the nonlinear case by using Euler explicit discretization.
It is also possible to discretize the nonlinear terms semi-implicitly by proceeding as in [5–7]. Denoting by pn+1/2 and p̄τ the
approximation of the pressure at time tn+1/2 and the time sequence of pressure values, respectively, the derivation of the
scheme starts from the Crank–Nicolson discretization of the momentum equation of the artificial compressibility system
that is given by:

δtun+1

τ
+

1
2
A(un+1

+ un) = −
1
2
∇pn+1/2

+ fn+1/2,

(pn+1/2
− pn−1/2) +

ϖ

2
∇ · (un+1

+ un) = 0.
(4.5)

Let us assume that the operators A1 and A2 can be split into a sum of two self-adjoint semi-definite positive operators
i.e., A1 = A11 + A12 and A2 = A21 + A22. For example, if A1 = −µ∆ and A2 = −µ∆ then the direction splitting algorithm
presumes the splittingA11 = −µ∂x1x1 , A12 = −µ∂x2x2 ,A21 = −µ∂x1x1 , A22 = −µ∂x2x2 . Let us also assume thatϖ is constant
over Ω and let us introduce the operators: C11 = −ϖ∂x1x1 , C12 = −ϖ∂x1x2 , C21 = −ϖ∂x2x1 , C22 = −ϖ∂x2x2 . Then the
direction splitting scheme is given by:


I +

τ

2
(A11 + C11)

 
I +

τ

2
A12

 δtun+1
1

τ
+ (A11 + C11 + A12) un

1 = −
1
2
C12(un

2 + un−1
2 ) − ∂x1p

n−1/2
+ f n+1/2

1 ,
I +

τ

2
(A22 + C22)

 
I +

τ

2
A21

 δtun+1
2

τ
+ (A22 + C22 + A21) un

2 = −
1
2
C21(un+1

1 + un
1) − ∂x2p

n−1/2
+ f n+1/2

2 ,

(pn+1/2
− pn−1/2) +

ϖ

2
∇ · (un+1

+ un) = 0,

(4.6)

where I is the identity operator. Note that this is a perturbation of the Crank–Nicolson discretization (4.5) that includes the
formally second-order terms τ(A11+C11)A12δtun+1

1 /4, τ (A22+C22)A21δtun+1
2 /4, and the term C12(un+1

2 +un
2) is extrapolated

by C12(un
2 + un−1

2 ). The last perturbation is first-order accurate of course, but since the perturbation of the incompressibility
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constraint is also first-order, it does not change the overall first-order approximation of the unsteady Stokes equations.
In the next section we will demonstrate how to correct these first-order defects of the scheme and lift the accuracy to
second-order.

Let us now assume that the operator A11+C11 commuteswith A12, and A22+C22 commuteswith A21. Such commutativity
conditions are satisfied if, for example, the viscosity µ is constant and if the domain boundary consists of straight lines
parallel to one of the coordinate axes. Then the operator

B = (B1, B2)
T

= ((A11 + C11)A12, (A22 + C22)A21)
T

=
1
2
((A11 + C11)A12 + A12(A11 + C11), (A22 + C22)A21 + A21(A22 + C22))

T

is a self-adjoint positive semi-definite operator defining a semi-norm which we denote by | · |B(Ω). Under such conditions
it is quite straightforward to prove the following theorem providing the stability estimate for the splitting scheme. The
stability without the commutativity assumption is significantly more difficult to verify, particularly in 3D, and it is still an
open problem (see for example the discussion about splitting schemes for non-commutative operators in [9]).

Theorem 4.1. Under suitable initialization and smoothness assumptions, if (A11 + C11)A12 = A12(A11 + C11), (A22 +

C22)A21 = A21(A22 + C22), and if f = 0, the algorithm (4.6) is unconditionally stable, i.e., for any finite time interval (0, T ]

we have:

∥uτ∥
2
ℓ∞(L2(Ω))

+ τ∥ϖ−
1
2 p̄τ∥

2
ℓ∞(L2(Ω))

+ τ∥ϖ
1
2 ∂x2 ū2,τ∥

2
ℓ∞(L2(Ω))

+ 2µ∥ūτ∥
2
ℓ2(H1(Ω))

+
τ 2

4
|uτ |

2
ℓ∞(B(Ω)) + ∥ϖ

1
2 ∇ · ũ∥

2
ℓ2(L2(Ω))

6 c


∥u0
∥
2
L2(Ω)

+ τ∥ϖ−
1
2 p−1/2

∥
2
L2(Ω)

+ τ∥ϖ
1
2 ∂x2 ū

0
2∥

2
L2(Ω)

+
τ 2

4
|u0

|
2
B(Ω)


,

where ū0
2 = u0

2, p
−1/2

= p0, and ũn+1
= (ūn+1

1 , ūn
2)

⊤.

Proof. We first notice that the momentum equation in (4.6) can be rewritten in a form similar to (3.4):

un+1
− un

τ
+ Aūn+1

+
τ 2

4
B
un+1

− un

τ
− ∇(ϖ∇ · ũn+1) − (0, ∂x2(ϖ∂x2δt ū

n+1
2 ))⊤ = −∇pn−1/2

where ũn+1
= (ūn+1

1 , ūn
2)

⊤. Multiplying this equation by 2τ ūn+1, then using the identities 2(a−b)a = ∥a∥2
+∥a−b∥2

−∥b∥2

and (a − b)(a + b) = ∥a∥2
− ∥b∥2, and the coerciveness of A in H1(Ω), we obtain:

∥un+1
∥
2
L2(Ω)

− ∥un
∥
2
L2(Ω)

+ 2µτ∥ūn+1
∥
2
H1(Ω)

+ 2τ(ϖ∇ · ũn+1, ∇ · ūn+1) +
τ 2

4


|un+1

|
2
B(Ω) − |un

|
2
B(Ω)


+ τ


∥ϖ

1
2 ∂x2 ū

n+1
2 ∥

2
L2(Ω)

+ ∥ϖ
1
2 ∂x2δt ū

n+1
2 ∥

2
L2(Ω)

− ∥ϖ
1
2 ∂x2 ū

n
2∥

2
L2(Ω)


− 2τ(pn−1/2, ∇ · ūn+1) 6 0.

The rest of the proof follows along the same lines as the proof of Theorem 3.1. �

Remark 4.1 (Shape of Ω). The stability analysis of direction-split schemes is usually based on the assumption that the
domain of the problem is a rectangle or parallelepiped. Some of these schemes can be extended to domains of a more
complex shape, however, their stability is far more difficult to establish. Such possibilities are considered in [10,9], the later
work proving the unconditional stability of such schemes in the case of non-commutative one-dimensional operators.

5. Higher-order extensions

The first-order schemes discussed in the previous two sections can be extended to second-order by at least two possible
approaches described in [1]. The resulting schemes are quite efficient if the linear systems are solved by means of iterative
solvers. In order to handle the 2D and the 3D case together it is convenient to introduce the following operator corresponding
to the mixed second-order derivatives appearing in the formulation:

C△ =


0 C12
0 0


in 2D, and

C△ =

0 C12 C13
0 0 C23
0 0 0


in 3D,
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with C13, C23 being defined similarly to C12 i.e. Ci3 = ϖ∂xix3 , i = 1, 2. An example of a 2D second-order BDF bootstrapping
procedure based on (3.3) and analogous to the scheme (5.1)–(5.2) of Guermond and Minev [1] is given by:

ũn+1
− ũn

τ
+ Aũn+1

+ ∇p̃n+1
1 − C△(ũn+1

− ũn) = fn+1,

p̃n+1
− p̃n + ϖ∇ · ũn+1

= 0,
3un+1

− 4un
+ un−1

2τ
+ Aun+1

+ ∇pn+1
− C△(un+1

− 2un
+ un−1) = fn+1,

pn+1
− pn − (p̃n+1

− p̃n) + ϖ∇ · un+1
= 0.

(5.1)

Note that the only difference with the scheme (5.1)–(5.2) of Guermond and Minev [1] is the presence of the terms
C△(ũn+1

− ũn) and C△(un+1
− 2un

+ un−1) in the two momentum equations. Presuming enough smoothness of the exact
solution, these terms are of order τ and τ 2 respectively, and their presence is compatible with the overall second-order of
consistency of the scheme. In the case of the Navier–Stokes equations the advection terms can be approximated by means
of a first and second-order Adams–Bashforth (AB2) schemes in the first and second stages of the bootstrapping procedure
in (5.1).

As shown in [1], in the case of the full Navier–Stokes equations, the defect correction schemes have better stability
properties than the high-order schemes based on BDF time stepping. Using the third-order approximation to the velocity
and pressure un

0 + τun
1 + τ 2un

2, p
n
0 + τpn1 + τ 2pn2, we can write the third-order scheme with a decoupled grad–div operator,

analogous to the scheme (2.4)–(2.6), as:

for n > 0,


nln+1

0 = Bun
0,

un+1
0 − un

0

τ
+ Aun+1

0 − ϖ∇∇ · un+1
0 + C△(un+1

0 − un
0) + ∇pn0 = fn+1

− nln+1
0

pn+1
0 = pn0 − ϖ∇ · un+1

0 ,

dun+1
0 = (un+1

0 − un
0)/τ , dpn+1

0 = (pn+1
0 − pn0)/τ

(5.2)

for n > 1,



d2un+1
0 = (dun+1

0 − dun
0)/τ ,

nln1 = B(un
0 + τun−1
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un
1 − un−1

1

τ
+ Aun

1 − ϖ∇∇ · un
1 + C△(un

1 − un−1
1 ) − C△(un

0 − un−1
0 )+

∇(pn−1
1 + dpn0) = −

1
2
d2un+1
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nln1 − nln0

τ
+ ϖCdun+1
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pn1 = pn−1
1 + dpn0 − ϖ∇ · un

1,

dun
1 = (un

1 − un−1
1 )/τ , dpn1 = (pn1 − pn−1

1 )/τ ,

(5.3)

for n > 2,



d2un
1 = (dun

1 − dun−1
1 )/τ , d3un+1

0 = (d2un+1
0 − d2un

0)/τ ,

nln−1
2 = B(un−1

0 + τun−1
1 + τ 2un−2

2 )

un−1
2 − un−2

2

τ
+ Aun−1

2 − ϖ∇∇ · un−1
2 + C△(un−1

2 − un−2
2 ) − C△(un−1

1 − un−2
1 )+

∇(pn−2
2 + dpn−1

1 ) = −
1
2
d2un

1 +
1
6
d3un+1

0 −
nln−1

2 − nln−1
1

τ 2
+ ϖCdun+1

1 ,

pn−1
2 = pn−2

2 + dpn−1
1 − ϖ∇ · un−1

2 ,

un−1
= un−1

0 + τun−1
1 + τ 2un−1

2 , pn−1
= pn−1

0 + τpn−1
1 + τ 2pn−1

2 .

(5.4)

In 3D, this scheme is the defect correction extension of the scheme (3.10). Although we are presently unable to prove its
stability, we use it in the numerical experiments presented below. Our tests show that this scheme is unconditionally stable
in the case of the unsteady Stokes equations.

Note that all these schemes require only the solution of problems of the type

v − τ∇ · (κ∇v) = r,

for each component of the velocity, where κ is a d × d diagonal matrix. For example, in 2D either

κ =


µ + ϖ 0

0 µ


or κ =


µ 0
0 µ + ϖ


,

when we solve for the first or the second Cartesian component of the velocity, respectively. The solution process for
the incompressible unsteady Navier–Stokes equations is thereby reduced to the solution of a fixed number of classical
scalar-valued parabolic problems.
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(a) ∥u − w∥L2 versus τ . (b) ∥p − q∥L2 versus τ . (c) ∥∇ · w∥L2 versus τ .

Fig. 1. Log–log plot of the L2-norm of the error at T = 10 of the 2D unsteady Stokes equations on a 200 × 200 MAC grid. Continuous lines represent the
slope 3, solid lines with × symbols represent the results with (5.2)–(5.4), solid lines with � symbols represent the results with (2.4)–(2.6).

Using the defect correction approach ofGuermond andMinev [1] the direction splitting scheme (4.6) can also be extended
to second-order as follows:


I +

τ

2
(A11 + C11)

 
I +
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2
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 ũn+1
1 − ũn
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+
ϖ
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(5.5)
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 un+1
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2
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2 ,
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− (p̃n+1/2
− p̃n−1/2) +

ϖ

2
∇ · (un+1

+ un) = 0.

(5.6)

The nonlinear terms of the Navier–Stokes equations can be included in the above algorithm exactly as in the scheme
(5.2)–(5.3).

6. Numerical results

We first present some two dimensional numerical results comparing the performance of the third-order artificial
compressibility method in [1], (2.4)–(2.6) and the scheme with the explicit mixed derivatives (5.2)–(5.4). The spatial
discretization is done by means of the classical MAC finite volume stencil. The accuracy is tested on the following
manufactured solution of the unsteady Stokes equations:

u = (sin x sin(y + t), cos x cos(y + t))⊤, p = cos x sin(y + t). (6.1)

and the problem is solved in Ω = (0, 1) × (0, 1), for 0 6 t 6 T := 10 with Dirichlet boundary conditions (given by the
pointwise values of the exact solution). The initial condition is the exact solution at t = 0. In Fig. 1 we present the L2-norm
of the errors in the velocity, the pressure, and the divergence for the unsteady Stokes equations as a function of the time
step. The spatial grid consists of 200 × 200 MAC cells and provides enough spatial resolution to avoid any interference
with the temporal convergence rate over the range of time steps used in the graph. The formal convergence rate of both
schemes is third-order and this theoretical rate seems to be confirmed by the numerical results. The results with both
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(a) ∥u − w∥L2 versus τ . (b) ∥p − q∥L2 versus τ . (c) ∥∇ · w∥L2 versus τ .

Fig. 2. Log–log plot of the L2-norm of the error at T = 10 of the 2D unsteady Stokes equations on a 200 × 200 MAC grid. Continuous lines represent the
slope 2, solid lines with × symbols represent the results with (5.2)–(5.3), solid lines with � symbols represent the results with (5.5)–(5.6).

schemes are very similar, however, the equations in (5.2)–(5.4) aremuch easier to solve since all the velocity components are
decoupled.

Next, we compare the accuracy of the formally second-order scheme (5.2)–(5.3) and the second-order direction-splitting
bootstrapping scheme (5.5)–(5.6) in Fig. 2. We use the same spatial resolution as in the previous case and it again seems
to be enough to not significantly affect the temporal convergence over the range of time steps shown in the graphs. Al-
though being slightly less accurate in the pressure, the direction splitting scheme clearly has a good potential since it is less
computationally demanding; we recall that this scheme only requires the solution of tridiagonal problems and thus can be
massively parallelized as in [11].

Finally we present 3D numerical results that demonstrate the accuracy of (5.2)–(5.3) in the case of the unsteady Stokes
and Navier–Stokes problems at Re = 100. The 3D manufactured solution is given by: u1 = cos x sin y sin(z + t), u2 =

sin x cos y sin(z + t), u3 = −2 sin x sin y cos(z + t), p = cos(x + y + z + t). The problem is solved in a cube of size
one, for 0 6 t 6 T := 10. The results on a grid of 20 × 20 × 20 MAC cells are presented in Fig. 3. Although the spatial
resolution is much lower than the one used in 2D, it influences the convergence results only at the final time step used in
the study τ = 0.00625. This suggests that the accuracy of the overall discretization is mostly dominated by the temporal
discretization accuracy and this confirms the need to use higher-order time discretization techniques. Again, the defect
correctionmethod (5.2)–(5.3) demonstrates good accuracy and robustness,maintaining stability even at relatively large time
steps τ = 0.1.

7. Conclusions

In this paperwehave revisited the first-order artificial compressibilitymethod for incompressible flow, proposed by Shen
[2], andwe have demonstrated that the coupling of the Cartesian components of the velocity, which is due to the presence of
the implicit operator∇∇· can be avoided by discretizing themixed derivatives explicitly in time.While the original scheme
requires the solution at each time step of a coupled vectorial problem of the type u − τ∇∇ · u = f, the modified scheme
requires only the solution of a set of d classical scalar parabolic problems of the type: uk − τ∇ · (κ∇uk) = f , d being the
dimensionality of the original problem. Similarly to the approach in [1], the resulting scheme can be combined with the
defect correction technique, so that its order in time can be extended to second, third, etc. by performing the necessary
number of correction steps. These schemes can also be factorized direction-wise to yield computationally very simple, and
yet accurate direction splitting schemes.

When compared to the classical Chorin–Temam-type projection schemes, the algorithms proposed in this paper are
computationally more efficient since they require the solution of problems with conditioning scaling like τh−2 whereas
projection methods require the solution of an elliptic problem for the pressure whose conditioning scales like h−2. In
addition, the present approach allows to develop schemes of any order in timeunlike the projectionmethodswhose accuracy
is limited to second-order.
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(a) ∥u − w∥L2 versus τ . (b) ∥p − q∥L2 versus τ . (c) ∥∇ · w∥L2 versus τ .

Fig. 3. Log–log plot of the L2-normof the error at T = 10 on a 20×20×20MACgrid. Top row: 3Dunsteady Stokes equations, bottom row: 3DNavier–Stokes
equations at Re = 100. Continuous lines represent the slope of 2, solid lines with × symbols represent the results with (5.2)–(5.3).
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