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This paper introduces a first-order viscosity method for the explicit approximation of scalar
conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary
grids in any space dimension. Provided the lumped mass matrix is positive definite, the
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The method is independent of the cell type; for instance, the mesh can be a combination
of tetrahedra, hexahedra, and prisms in three space dimensions.
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1. Introduction

The maximum principle is a key property for the analysis of nonlinear scalar conservation equations. Reproducing this
property at the discrete level is a feature that is often desired in applications and, from the theoretical point of view, greatly
facilitates the convergence analysis of algorithms.

Enforcing the maximum principle using discontinuous finite elements or finite volumes with piece-wise constant approx-
imation is a problem that has been solved since the early work of Lax [21] or possibly earlier; the key is to use the upwind
flux. Although it has been shown by Godunov that monotonicity preserving linear methods cannot be second-order accurate,
it is possible to construct higher-order accurate discontinuous Galerkin and finite volume methods by making use of limiting
techniques as demonstrated in [25,22,17] for finite volumes and [32–35] for the discontinuous Galerkin method.
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It seems that the success achieved by finite volume methods and discontinuous Galerkin methods have not yet been
matched by continuous finite elements. The first barrier to overcome is the design of a robust maximum-principle satisfying
first-order continuous finite element method. To the best of our knowledge, we are not aware of the existence in the liter-
ature of an explicit method for continuous piecewise linear finite elements that can be proven to satisfy the maximum prin-
ciple on any grid, irrespective of any angle condition, and for any Lipschitz continuous flux, (although solutions to this
problem have been given for the linear transport equation on particular grids, see e.g., the work of Tabata [26] and Codina
[8], and nonlinear viscosities have been shown to yield the desired result on strictly acute meshes in [3,4]). The primary
objective of the present paper is to propose such a method. The technique that we propose is the first building block on
the road leading to higher-order continuous finite element methods using limiting techniques in the spirit of [25,32] or that
of the flux corrected methodology of [2] (see also the book of [23,20, Chap. 9])).

This paper is organized as follows: The formulation of the problem and introductory material are presented in Section 2.
Some key shortcomings of the standard artificial viscosity based on the operator �r � ðmhrÞ, where mh is scalar-valued, are
listed in Section 2.4. A tensor-valued viscosity is proposed in Section 3 in the particular case of simplicial meshes. The meth-
od is shown to satisfy the maximum principle on any meshes composed of simplices. The key definition of this section is
(3.8) and the main result is Theorem 3.2. The method is extended to general meshes in Section 4. Using the heuristic devel-
oped for simplicial meshes in Section 3, we propose an expression for the artificial viscosity (4.11) for which we prove the
maximum principle. The key result of this section is Theorem 4.2. A high-order extension of the method using the notion of
entropy viscosity is also proposed in this section. The method and its high-order extension are finally illustrated numerically
in Section 5.

2. Preliminaries

We formulate the problem in this section and recall details on the standard approach based on the notion of isotropic
artificial viscosity which we show cannot be extended to general meshes. The material presented in this section is by no
means original; it is, however, useful to better appreciate the material presented in Sections 3 and 4.

2.1. Formulation of the problem

Let X be an open polyhedral domain in Rd, d is the space dimension. Let f 2 LipðR; RdÞ be the flux, and let u0 2 L1ðXÞ be
some initial data. We consider the scalar-valued conservation equations
@tuþr � f ðuÞ ¼ 0; uðx;0Þ ¼ u0ðxÞ; ðx; tÞ 2 X� Rþ: ð2:1Þ
To simplify questions regarding boundary conditions, we assume that either periodic boundary conditions are enforced, or
the initial data is compactly supported and we are interested in the solution before the domain of influence of u0 reaches the
boundary of X. This problem has a unique entropy solution satisfying the additional entropy inequalities
@tEðuÞ þ r � FðuÞ � 0 for all convex entropy E 2 LipðR; RÞ and associated entropy flux F with F 0iðuÞ ¼

R u
0 E0ðvÞf 0iðvÞdv ,

1 6 i 6 d (see [18,1]).

2.2. The mesh

Let fKhgh>0 be a mesh family that we assume to be conforming (no hanging nodes) and shape-regular in the sense of Ciar-
let. By convention, the elements in Kh are closed in Rd. Let fðbK ; bP; bRÞg be a finite family of reference Lagrange finite elements
in the sense of Ciarlet. The map between bK and an arbitrary element K 2 Kh is denoted UK : bK�!K. For the sake of simplicity
we assume that UK is affine.

Our objective is to approximate the entropy solution of (2.1) with H1-conforming Lagrange finite elements. To this end we
define the scalar-valued finite element approximation space
Xh ¼ fv 2 C0ðX; RÞ; vjK �UK 2 bP; 8K 2 Khg; ð2:2Þ
where bP is the reference polynomial space associated with K 2 Kh.
Let fu1; . . . ;uNg be the nodal Lagrange basis associated with the vertices of the mesh Kh, say fa1; . . . ;aNg, i.e., uiðajÞ ¼ dij.

We denote by Si the support of ui and by jSij the measure of Si; i ¼ 1; . . . ;N. We also define Sij :¼ Si \ Sj the intersection of the
two supports Si and Sj. Let E be a union of cells in Kh; we define IðEÞ :¼ fj 2 f1; . . . ;Ng; jSj \ Ej– 0g. The set IðEÞ contains the
indices of all the shape functions whose support on E is non-empty.

Although the notion of local meshsize is not relevant for the method to be presented in the remainder of the paper, it is
useful to define a CFL number. We then define the so-called local minimum meshsize, say hK , of a cell K 2 Kh as follows:
hK :¼ 1
max
i2IðKÞ
kruikL1ðKÞ

; ð2:3Þ
and the global minimum mesh size as h :¼minK2Kh
hK ; this parameter is solely used to define the CFL number.
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2.3. The finite volume/DG0 approaches

Let us restrict ourselves for the time being to one space dimension and assume that the mesh is uniform with mesh size h
and time step Dt. The flux in (2.1) is rewritten f ðuÞ ¼ f ðuÞex where ex is the unit vector on the real line pointing towards þ1.
Let us consider finite volumes or equivalently the piecewise constant Discontinuous Galerkin approximation. Denote by

fUk
i gi¼1;...;N the piecewise constant approximation of u at time tk. Let Uk

i�1, Uk
i and Uk

iþ1 be the three approximate values of

u over cells ½xi�3
2
; xi�1

2
�, ½xi�1

2
; xiþ1

2
� and ½xiþ1

2
; xiþ3

2
� at time tk. Let Ci�1

2
and Ciþ1

2
be the two interfaces separating the three above

cells. The Lax–Friedrichs scheme for (2.1) consists of setting
h
Ukþ1

i � Uk
i

Dt
¼ �ðnC

i�1
2

� bf ðUi;Ui�1Þ þ nC
iþ1

2

� bf ðUi;Uiþ1ÞÞ; ð2:4Þ
where nC is the unit normal vector at the interface pointing from the interior to the exterior of the cell; i.e., nC
i�1

2

¼ �ex and
nC

iþ1
2

¼ ex. The numerical flux bf ðVi;VeÞ chosen is the Lax–Friedrichs flux
bf ðVi;VeÞ ¼ 1
2
ðf ðViÞ þ f ðVeÞÞ þ 1

2
jbjðVi � VeÞnC; ð2:5Þ
where Vi and Ve are the interior and exterior values. The quantity jbj is the maximum wave speed, i.e., jbj :¼ kf 0kL1ðRÞ. It is
then possible to recast (2.4) into the following form
Ukþ1
i � Uk

i

Dt
¼ �ðf ðU

k
iþ1Þ � f ðUk

i�1ÞÞ
2h

þ 1
2
jbjh ðU

k
iþ1 � 2Uk

i þ Uk
i�1Þ

h2 : ð2:6Þ
Remark 2.1 (Upwinding). Note in passing that the so-called Lax–Friedrichs flux (2.5) reduces to the upwind flux in the case
of linear transport. For instance assuming that f ¼ buex, we obtain bf ðVi;VeÞ ¼ Vi

1 ðbex þ jbjnCÞ þ Ve
1 ðbex � jbjnCÞ. Then
2 2bf ðVi;VeÞ ¼ Vebex ¼ f ðVeÞ if bex � nC < 0 (i.e., if the flow enters the cell), and bf ðVi;VeÞ ¼ Vibex ¼ f ðViÞ otherwise (i.e., if the

flow exists the cell).

Remark 2.2 (Lax–Friedrichs scheme). The so-called Lax–Friedrichs as originally introduced in [21, p. 163] is as follows:
Ukþ1
i � Uk

i

Dt
¼ �ðf ðU

k
iþ1Þ � f ðUk

i�1ÞÞ
2h

þ 1
cfl

1
2
jbjh ðU

k
iþ1 � 2Uk

i þ Uk
i�1Þ

h2 ; ð2:7Þ
where cfl :¼ jbjDth�1 is the Courant–Friedrichs–Levy number. This scheme is more dissipative than (2.6) due to the presence
of the CFL number in the denominator of the artificial viscosity. It is an accepted practice to refer to both (2.6) and (2.7) as
Lax–Friedrichs schemes, although this may sometimes lead to confusions.

A key property of the scheme (2.6) is that it satisfies the local discrete maximum principle (formulated in [21, p. 190] for
(2.7)).

Theorem 2.1. Assume that f 2 LipðR; RÞ and �1 < umin :¼ minx2Ru0ðxÞ 6 miniU
0
i 6maxiU

0
i 6 maxx2Ru0ðxÞ :¼ umax <1. Let

jbj ¼ supv2½umin;umax�jf 0ðvÞj. Assume that jbjDt 6 h, then both algorithms (2.6) and (2.7) satisfy the local discrete maximum principle,

i.e., umin 6minðUk
i�1;U

k
i ;U

k
iþ1Þ 6 Ukþ1

i 6 maxðUk
i�1;U

k
i ;U

k
iþ1Þ 6 umax.

Proof. Although the argument is standard and can be found in many textbooks, we give the proof for completeness since we are
going to reuse the argument latter. The argument proceeds by induction. At t0 we have umin 6miniU

0
i 6 maxiU

0
i 6 umax by

assumption. Let us now assume that this property still holds at time tk. The key is to construct a convex combination of
Uk

i�1;U
k
i ;U

k
iþ1. Using the mean-value theorem, there is V between Ui�1 and Uiþ1 so that f ðUk

iþ1Þ � f ðUk
i�1Þ ¼ f 0ðVÞðUk

iþ1 � Uk
i�1Þ.

Then
Ukþ1
i ¼ Uk

i 1� jbjDt
h

� �
þ Uk

iþ1
Dt
2h
ðjbj � f 0ðVÞÞ þ Uk

i�1
Dt
2h
ðjbj þ f 0ðVÞÞ:
The induction assumption implies that V 2 ½umin;umax� which in turn implies that jf 0ðVÞj 6 jbj from the assumptions on f. The

assumption on the CFL number finally implies that Ukþ1
i ¼ ai�1Uk

i�1 þ aiU
k
i þ aiþ1Uk

iþ1 with
P

jaj ¼ 1 and aj P 0, for

j ¼ i� i; i; iþ 1, i.e., Ukþ1
i is a convex combination of Uk

i�1;U
k
i ;U

k
iþ1. This implies in particular that

minðUk
i�1;U

k
i ;U

k
iþ1Þ 6 Ukþ1

i 6maxðUk
i�1;U

k
i ;U

k
iþ1Þ, which in turn proves that the induction hypothesis holds at time tkþ1. This

concludes the proof. h

The key conclusion of this section is that formula (2.6) can be reinterpreted as a continuous piecewise linear finite ele-
ment approximation of (2.1) with an artificial viscosity equal to 1

2 jbjh. This observation is at the origin of a large body of re-
search in the continuous finite element literature trying to reproduce the stabilizing properties of the upwind flux of the DG
approximation by augmenting the Galerkin formulation with semi-linear forms like

R
X mhðuÞru � rv dx where mhðuÞ is some

nonlinear artificial viscosity scaling like 1
2 jbjh in regions of large gradients.
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2.4. Some shortcomings of scalar viscosities

We review in this section some intrinsic shortcomings of the semi-linear form
R

X mhðuÞru � rv dx, where mhðuÞ is scalar-
valued. Let us adopt this definition for the time being and, to simplify, assume that mhðuÞ � jbjh, i.e., we are using linear first-
order artificial viscosity.

The first obstacle one runs into when using continuous finite elements is that of a proper definition of the meshsize h on
non-uniform anisotropic meshes. Although many clever and reasonably well justified ideas have been proposed to address
this non-trivial issue, see e.g., [28,27,5,9], to the best of our knowledge, none of them have yet lead to a provable maximum
principle holding for every nonlinear flux f 2 LipðR;RdÞ and every mesh, assuming piecewise linear approximation of course,
i.e., assuming that (3.1) holds.

Once some meshsize h has been chosen, one then runs into the problem of choosing the constant to multiply jbjh to form
the viscosity. Although 1

2 seems to be a reasonable choice justified by the one-dimensional analysis on uniform grids, we do
not know of any rational for tuning this constant in two and three space dimensions on arbitrary grids besides heuristic argu-
ments and trial and errors tests. Again, even-though it is possible to establish well-founded heuristic arguments to tune the
constant (see e.g., [28,27,15]), we do not know of any argument yielding a provable maximum principle for every nonlinear
flux f and every mesh.

The last argument that finally lead us to revisit the first-order theory is that it is not robust with respect to the shape of
the cells. When trying to reproduce the one-dimensional argument in arbitrary space dimension with continuous finite ele-
ments one observes that the convex combination argument in the proof of Theorem 2.1 can be made to work only ifR

Sij
rui � ruj dx < 0 for all pairs of shape functions, ui;uj, with common support of nonzero measure. This is the well-known

acute angle condition assumption, see e.g., [24, p. 182], [8, Eq. (35)], see also [30, Eq. (2.5)], [4, Eq. (8)] for a slightly weaker
version of this condition. For instance, one easily verifies that the acute angle condition assumption fails on the grid shown in
Fig. 2.1.

Remark 2.3 (Re-orientation of the gradients). We show in the next section that the acute angle assumption can be avoided on
simplicial meshes by realizing that, since the viscosity is artificial and has no particular physical meaning, one can reorient
rui and rui at will to make the scalar product of the two new vectors negative and bounded away from zero uniformly.
This observation, which makes the viscosity tensor-valued, is the key to the entire paper.
3. A tensor-valued viscosity for simplices

We restrict ourselves in this section to meshes composed of simplices only and we assume that the shape functions are
piecewise P1 (i.e., multivariate polynomials of total degree at most 1). General meshes (quadrangular, hexahedral) and high-
er-order polynomial approximations are considered in Section 4. The objective of this section is to introduce the definitions
(3.3) and (3.4), which are the inspiration for the definitions (4.9) and (4.11) that we are going to use in the general case pre-
sented in Section 4.

3.1. Some geometry

We assume in this entire section that bK is the regular simplex whose edges all have length 1, i.e., bK is the equilateral tri-
angle of side 1 in two space dimension, and bK is the regular tetrahedron (all four faces are equilateral triangles) in three
space dimensions. Since Xh is composed of piecewise linear functions, we have
min
‘2IðKÞ

vða‘Þ 6 vðxÞ 6 max
‘2IðKÞ

vða‘Þ; 8v 2 Xh; 8x 2 K; 8K 2 Kh: ð3:1Þ
This property holds on simplicial meshes with bP ¼ P1 (set of multivariate polynomials of total degree at most 1). It holds also
on quadrilateral and hexahedral meshes with bP ¼ Q1 (set of multivariate polynomials of partial degree at most 1). It also
works with prismatic elements.
Fig. 2.1. Example of a mesh violating the minimal angle condition:
R

S23
ru2 � ru3 dx ¼ 0.
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Let K be an arbitrary cell in the mesh. Denoting by UK : bK�!K the affine mapping that transforms bK to K, JK the Jacobian
matrix of UK , and JT

K its transpose, the chain rule implies that
rðu �UKÞ ¼ JT
KðruÞðUKÞ; ð3:2Þ
for all weakly differentiable function u defined over K.
Let ui – uj be two shape functions with non-empty support in K. We now claim that JT

KðruiÞ � JT
KðrujÞ has exactly the

right property we are looking for.

Lemma 3.1. Under the assumptions on the mesh family fKhgh>0 and approximation spaces fXhgh>0 stated in Section 2.2, there is

are constants a :¼ 1

dbh2
> 0, c :¼ 1bh2

> 0, where bh ¼ ffiffiffiffiffiffiffi
dþ1
2d

q
is the height of bK, so that
Z

K
ðJT

KruiÞ � ðJT
KrujÞdx ¼ �ajKj; 8K 2 Kh; 8i;8j 2 SðKÞ; j – i; ð3:3ÞZ

K
kJT

Kruik
2 dx ¼ cjKj; 8K 2 Kh; 8i 2 SðKÞ: ð3:4Þ
Proof. Let Kh be a mesh and K be a mesh cell in Kh. Let us define bul :¼ ul �UK for all l 2 IðKÞ. Let i – j 2 IðKÞ. Making use of
(3.2) and the symmetry properties of bK , we obtain
Z

K
ðJT

KruiÞ � ðJT
KrujÞ

dx
jdetðJKÞj

¼
Z
bK r bui � r buj dbx ¼ 1

d

X
IðKÞ3l–i

Z
bK r bui � r bul dbx ¼ �1

d

Z
bK r bui � r bui dbx

¼ �1
d

Z
bK kr buik2 dbx < 0:
Note that the constant a :¼ 1

djbK j RbK krbuik2 dbx is actually independent of i owing to the symmetry properties of bK . The defi-

nition bui :¼ ui �UK implies that kr buik ¼ bh�1, meaning that (3.3) holds with a :¼ 1

dbh2
> 0, since detðJKÞ ¼ jKj=jbK j. h

The above argument shows that a ¼ 2
dþ1 and c ¼ 2d

dþ1, i.e.,
Z
K
ðJT

KruiÞ � ðJT
KrujÞdx ¼ �jKj

2
3 in 2D;
1
2 in 3D:

(
ð3:5Þ

Z
K
kJT

Kruik
2 dx ¼ jKj

4
3 in 2D;
3
2 in 3D:

(
ð3:6Þ
3.2. The tensor-valued viscosity

The argumentation in the above section suggests that a proper way to reformulate the action of the artificial viscosity
consists of using the following bilinear form:

P
K2Kh

R
K mKðJT

KruÞ � ðJT
KrvÞdx.

Let u0h 2 Xh be an approximation of u0. Let us denote by uk
h :¼

PN
j¼1Uk

j uj 2 Xh an approximation of uð�; tkÞ where tk P 0 is
some time. Let Dtk be the next time step so that tkþ1 ¼ tk þ Dtk. We construct ukþ1

h ¼
PN

j¼1Ukþ1
j uj 2 Xh to be such that
Ukþ1
i ¼ Uk

i � Dtkm�1
i

X
K	Si

Z
K

mk
KðJT

Kruk
hÞ � ðJT

KruiÞ þ r � ðf ðuk
hÞÞui

� �
dx: ð3:7Þ
Note that the mass matrix has been lumped so that
R

Si
uhui dx has been replaced by Uimi where mi :¼

R
Si
ui dx. The above

definition can be recast into the following more algebraic form:
Ukþ1
i ¼ Uk

i 1� Dtkm�1
i

X
K	Si

Z
K

mk
KkJT

Kruik
2 þ ðf 0ðuk

hÞ � ruiÞui

� �
dx

 !

� Dtkm�1
i

X
IðSiÞ3j–i

Uk
j

X
K	Sij

Z
K

mk
KðJT

KrujÞ � ðJT
KruiÞ þ ðf 0ðuk

hÞ � rujÞui

� �
dx:
This equation can also be formally put into the form of linear combination as follows:
Ukþ1
i ¼

X
j2IðSiÞ

aijU
k
j ; i 2 f1; . . . ;Ng:
Note that owing to the fact that
P

j2IðSiÞujjSi
¼ 1, we have

P
j2IðSiÞaij ¼ 1, since
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1 ¼ 1� Dtkm�1
i

X
K	Si

Z
K

mk
KðJT

Kr
X

j2IðSiÞ
ujÞ � ðJT

KruiÞ þ ðf 0ðuk
hÞ � r

X
j2IðSiÞ

ujÞui

 !
dx ¼

X
j2IðSiÞ

aij:
At this point, a reasonable definition of the artificial viscosity mk
K becomes clear. The maximum principle will be satisfied if

the above combination is convex, i.e., aij P 0. A sufficient condition for this property to hold is that
mk
K ¼ max

i–j2IðKÞ

R
Sij
ðf 0ðuk

hÞ � rujÞui dx
			 			
�
R

Sij
ðJTrujÞ � ðJTruiÞdx

; ð3:8Þ
where we defined J so that JjK ¼ JK for all K 2 Kh.

Remark 3.1. (Anisotropic viscosity). Note that the above definition makes sense since the denominator in (3.8) is negative.

Actually
R

Sij
ðJTrujÞ � ðJTruiÞdx ¼ �ajSijj, i.e., mk

K ¼ 1
a maxi–j2IðKÞ

1
jSij j
R

Sij
ðf 0ðuk

hÞ � rujÞui dx
			 			. We have thus defined a viscous-

tensor Mk
K :¼ mk

KJKJT
K . The corresponding artificial viscosity operator is �r � ðMk

K � ruhÞ.
Remark 3.2 (Scaling). Note that the piecewise constant scalar-valued function mk

K scales like a wave speed times h�1
K

whereas the Frobenius norm of Mk
K scales like a wave speed times hK .

3.3. Maximum principle

We establish the maximum principle for the scheme (3.7) in this section.

Theorem 3.2. Assume that f 2 LipðR; RdÞ and let umin :¼ infx2Rd u0ðxÞ, umax :¼ supx2Rd u0ðxÞ, and b ¼ supv2½umin ;umax �kf 0ðvÞk.
Assume that umin 6 U0

i 6 umax, for all i ¼ 1; . . . ;N, and bDtkh�1
6 1=ð1þ dÞ. Then the solution to (3.7) satisfies the local discrete

maximum principle, i.e., umin 6 minj2IðSiÞU
k
j 6 Ukþ1

i 6maxj2IðSiÞU
k
j 6 umax for all k P 0.
Proof. We proceed by induction. Let us assume that umin 6 Uk
i 6 umax for some k P 0 and for all i ¼ 1; . . . ;N. Note that the

induction assumption holds for k ¼ 0 by definition. Note that uk
hðxÞ 2 ½umin;umax� for all x 2 X, since the approximation space

satisfies the convexity property (3.1) and the nodal values of uk
h, fUk

i gi¼1;...;N , satisfy the induction assumption. The definition
of hK , (2.3), implies that krujkL1ðKÞ 6 h�1

K . This bound together with the definition of mk
K in (3.8) and the identityR

K jujjdx ¼
R

K uj dx ¼ ðdþ 1Þ�1jKj implies that
mk
K 6 max

v2½umin ;umax �
kf 0ðvÞk max

i–j2IðKÞ

j
R

Sij
krujkui dx

ajSijj
6 a�1bh�1ðdþ 1Þ�1

:

Let us now evaluate aii,
aii :¼ 1� Dtkm�1
i

X
K	Si

Z
K

mk
KkJ

T
Kruik

2 þ ðf 0ðuk
hÞ � ruiÞui

� �
dx

P 1� Dtkm�1
i

X
K	Si

ða�1bh�1cjKj þ bh�1jKjÞðdþ 1Þ�1

P 1� bDtkh�1ð1þ ca�1ÞjSijðdþ 1Þ�1m�1
i P 1� bDtkh�1ð1þ dÞ;
where we used that mi ¼ ðdþ 1Þ�1jSij and ca�1 ¼ d. This implies that aii P 0 since jbjDtkh�1
6 1=ð1þ dÞ. The definition (3.8)

implies that
aij :¼ �Dtkm�1
i

X
K	Sij

Z
K

mk
KðJT

KrujÞ � ðJT
KruiÞ þ ðf 0ðuk

hÞ � rujÞui

� �
dx P 0:
Finally the property
P

j2IðSiÞaij ¼ 1 implies that Ukþ1
i is a convex combination of fUjgj2IðSiÞ

. This proves the local discrete max-
imum principle, which in turns implies that the induction hypothesis holds for kþ 1. h
Remark 3.3 (SSP extension). The result of Theorem (3.2) can be directly extended to any higher-order Strong Stability Pre-
serving time stepping (see e.g., [10] for a review), since these schemes construct higher-order accurate approximations in
time by making convex combination of solutions of forward Euler sub-steps.
Remark 3.4 (CFL condition). The CFL condition in Theorem 3.2 is slightly suboptimal by the factor d=ðdþ 1Þ. For instance we
obtain CFL 6 1

2 in one space dimension on uniform grids instead of the standard result CFL 6 1. The reason for this is that the
expression

R
Si
r � ðf ðuk

hÞÞui dx has not been integrated by parts; as a result there is the term
R

Si
ðf 0ðuk

hÞ � ruiÞui dx in the def-
inition of aii that inflates the evaluation of the CFL number. This extra term is actually zero for linear transport, and in this
particular case we obtain CFL 6 1

d, which is optimal.
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3.4. Examples

We apply in this section the above theory to the linear transport equation on a uniform Cartesian mesh composed of tri-
angles to give a better intuition of the action of the viscosity defined in (3.8). We want in particular to illustrate the fact that
the definition (3.8) puts the right amount of viscosity in each direction of the mesh, independently of the anisotropy ratio.

Consider the uniform Cartesian mesh shown in Fig. 3.1 and denote by hx;hy the mesh size in direction x and y, respec-
tively. Assume that f ðuÞ ¼ bu where b ¼ ðbx; byÞ is a constant vector. Owing to the symmetries of the mesh, definition
(3.8) gives
mk
K ¼ max

i–j2IðKÞ

R
Sij
ðb � r/jÞui dx

			 			
4
3 jKj

¼ 1
4

max 2
jbxj
hx
þ
jbyj
hy

;
jbxj
hx
þ 2
jbyj
hy

� �
; ð3:9Þ
i.e., the viscosity coefficient mk
K is constant over the entire mesh and scales like a speed over a distance (see Remark 3.2). Upon

setting B ¼maxð2 jbx j
hx
þ jby j

hy
; jbx j

hx
þ 2 jby j

hy
Þ, (3.7) is recast into the following form:
Ukþ1
5 ¼ Uk

5ð1� DtkBÞ þ Uk
6
Dtk

6
�2

bx

hx
�

by

hy
þ B

� �
þ Uk

8
Dtk

6
� bx

hx
� 2

by

hy
þ B

� �
þ Uk

4
Dtk

6
2

bx

hx
þ

by

hy
þ B

� �
þ Uk

2
Dtk

6
bx

hx
þ 2

by

hy
þ B

� �
þ Uk

3
Dtk

6
� bx

hx
þ

by

hy
þ B

� �
þ Uk

7
Dtk

6
bx

hx
�

by

hy
þ B

� �
; ð3:10Þ
which is clearly a convex combination of Uk
2; . . . ;Uk

8. We can also rewrite this equation as follows:
Ukþ1
5 � Uk

5

Dtk
þ 1

3
2bx þ by

hx

hy

� �
Uk

6 � Uk
4

2hx
þ 1

3
2by þ bx

hy

hx

� �
Uk

8 � Uk
2

2hy
þ 1

3
bx

hx
�

by

hy

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q Uk
3 � Uk

7

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
� Bh2

x

6
Uk

6 � 2Uk
5 þ Uk

4

h2
x

�
Bh2

y

6
Uk

8 � 2Uk
5 þ Uk

2

h2
y

�
Bðh2

x þ h2
yÞ

6
Uk

3 � 2Uk
5 þ Uk

7

h2
x þ h2

y

¼ 0: ð3:11Þ
This computation is summarized in Table 3.1. The representation (3.11) shows that the effective wave speed in the directions

a4a6;a2a8, and a7a3 is 1
3 ð2bx þ by

hx
hy
Þ; 1

3 ð2by þ bx
hy

hx
Þ, and 1

3 ð
bx
hx
� by

hy
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
Þ, respectively. In the direction a4a6, the viscosity, Bh2

x
6 ,

is larger than 1
3 ð2jbxj þ jbyj hx

hy
Þ 1

2 hx; in the direction a2a8, the viscosity, Bh2
y

6 , is larger than 1
3 ð2jbyj þ jbxj

hy

hx
Þ 1

2 hy; and in the direc-

tion a7a3, the viscosity, 1
6 Bðh2

x þ h2
yÞ, is larger than 1

3 ð
jbx j
hx
þ jby j

hy
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
. In conclusion, the scheme puts exactly the

right amount of viscosity in each direction irrespective of the anisotropy ratio of the mesh.
4. General meshes and higher-order extension

We revisit the above theory in this section and adapt it to general meshes and higher-order approximation settings that
may not satisfy (3.1). We also extend the method to the entropy viscosity framework to make it higher-order.

4.1. The cubic obstruction

We show in this section that definitions (4.1) and (4.2) are not appropriate to prove the maximum principle on hexahe-
dral meshes.

Let us assume that the mesh Kh is composed of quadrangles in two space dimensions or hexahedra in three space dimen-
sions. Surprisingly, the direct extension of the above theory to this type of cells is not trivial. Let us assume that bK is the unit
square or unit cube with side of unit length. Let K be an arbitrary cell in Kh and let UK : bK�!K be the Q1 mapping that
Fig. 3.1. Example of an anisotropic mesh.



Table 3.1
Artificial viscosity for example (3.10).

Dir. h Speed 1
2 jspeedj � h Viscosity

a4a6 hx 1
3 ð2bx þ by

hx
hy
Þ 1

6 ð2
jbx j
hx
þ jby j

hy
Þh2

x
Bh2

x
6

a2a8 hy 1
3 ð2by þ bx

hy

hx
Þ 1

6 ð2
jby j
hy
þ jbx j

hx
Þh2

y
Bh2

y

6

a7a3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
1
3 ð

bx
hx
� by

hy
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

x þ h2
y

q
1
6 ð
jbx j
hx
þ jby j

hy
Þðh2

x þ h2
y Þ Bðh2

xþh2
y Þ

6
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transforms bK to K. Let JK be the Jacobian matrix of UK . A seemingly reasonable definition of the first-order artificial viscosity
is as follows:
mk
K ¼ max

i–j2IðKÞ

R
Sij
ðf 0ðuk

hÞ � rujÞui dx
			 			

�
P

K	Sij

R
KðJ

TrujÞ � ðJTruiÞjKjjdet J�1
K jdx

: ð4:1Þ
Note that if the mapping UK is affine, i.e., the mesh is composed of parallelograms or parallelepipeds, jKjjdet J�1
K j ¼ 1, and the

above definition is identical to (3.8). The artificial viscosity bilinear form is then
ðuk
h;vhÞ#

X
K	Kh

Z
K
mk

KðJTruk
hÞ � ðJTrvhÞjKjjdet J�1

K jdx: ð4:2Þ
One then runs in a major obstruction in three space dimension. To illustrate the problem we are facing, assume that the
mesh is composed of identical cubes with sides of length h. Let ui and uj be two shape functions whose nodes are located
at the two extremities of one edge of a cell K in the mesh. In that case JK ¼ hI, where I is the identity matrix, and
jKjjdet J�1

K j ¼ 1. A simple computation shows that
R

KðJ
T
KruiÞ � ðJT

KrujÞdx ¼ 0. This observation shows that definitions
(4.1) and (4.2) are not sufficient to prove the maximum principle on hexahedral meshes.

4.2. General case

The obstruction that we have identified on uniform cubic meshes shows that simple geometric arguments are not enough
to construct a general theory of artificial viscosity. We now propose to change the point of view and adopt a graph theoretic
perspective.

4.2.1. Mesh considerations
We do not make any specific assumption on the shape of the cells composing Kh, and the degree of the reference poly-

nomial spaces in the family fbPg is unspecified. Note that Kh could be composed of a mixture of triangles and quadrangles in
two space dimensions, or composed of a mixture of tetrahedra, hexahedra, and prims in three space dimensions. At this point
we do not require that Xh satisfy (3.1). It is essential though that Xh be such that the mass matrix can be lumped and be po-
sitive definite. We formalize this hypothesis by introducing the following notation and assumption for all K 2 Kh:
0 < lmin
K :¼ min

i2IðKÞ

1
jKj

Z
K
uiðxÞdx; lmax

K :¼max
i2IðKÞ

1
jKj

Z
K
juiðxÞjdx: ð4:3Þ
Lemma 4.1. The following inequalities hold:
0 < lmin
K jSij 6 mi 6 lmax

K jSij: ð4:4Þ
Proof. Let ui be a shape function, 1 6 i 6 N. The definition of mi implies that
mi ¼
Z

Si

uiðxÞdx ¼
X
K	Si

jKj 1
jKj

Z
K
uiðxÞdx P lmin

K jSij > 0:
The upper bound in (4.4) is derived similarly. h

Let K be a cell in K and let nK be the number of vertices in K, i.e., nK ¼ cardðIðKÞÞ. Owing to the mesh being affine, the
quantities lmin

K , lmax
K , and nK only depend on bK . Since the number of reference elements defining the mesh family fKhgh>0

is finite, we now define
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k :¼max
Kh

max
K2Kh

lmax
K

lmin
K

< þ1; q :¼min
Kh

min
K2Kh

1
nK � 1

> 0: ð4:5Þ
Remark 4.1 (Higher-order polynomials). Note that k ¼ 1 and the assumption lmin
K > 0 holds if Xh is such that the convexity

assumption (3.1) holds. For instance q ¼ 1
d and lmin

K ¼ lmax
K ¼ ðdþ 1Þ�1 for P1 approximation on simplices, and q ¼ 1

d and
lmin

K ¼ lmax
K ¼ 2�d for Q1 approximation on parallelotopes. Note that lmin

K ¼ 0 for P2 approximation. The assumption
lmin

K > 0 does hold though for P3 approximation on simplices, at least in R2, when the reference nodes on bK are either
equidistributed on a uniform lattice or are the Fekete points. More generally, Qk finite elements with tensor-product
Gauss–Lobatto nodes are such that lmin

K > 0.
We now estimate the maximum wave speed to define a CFL number. If (3.1) holds, we set
b :¼ sup
v2½umin ;umax �

kf 0ðvÞk: ð4:6Þ
Otherwise we define Bh :¼ fvh 2 Xh j umin 6min16i6NvhðaiÞ 6max16i6NvhðaiÞ 6 umaxg 	 Xh. Note that Bh is not a vector space.
It can be shown that
u
min :¼ inf
fKhgh>0

inf
vh2Bh ; x2X

vhðxÞ and u
max :¼ sup
fKhgh>0

sup
vh2Bh x2X

vhðxÞ; ð4:7Þ
are two finite numbers; in particular, there are constants cmin and cmax, that depend only on the collection of reference finite
elements fðbK ; bP ; bRÞg, such that cminumin 6 u
min and u
max 6 cmaxumax. We then define the maximum wave speed to be
b :¼ sup
v2½u


min
;u
max �
kf 0ðvÞk: ð4:8Þ
4.2.2. Viscous bilinear form
Taking inspiration from (3.3) and (3.4), we define the local bilinear form bK so that
bKðuj;uiÞ ¼
� 1

nK�1 jKj if i – j; i; j 2 IðKÞ;
jKj if i ¼ j; i; j 2 IðKÞ;
0 if i R IðKÞ or j R IðKÞ:

8><>: ð4:9Þ
The global artificial viscosity bilinear form at time tk is then defined as follows:
bðuk
h;vhÞ ¼

X
K2Kh

X
i;j2IðKÞ

mk
K Uk

j VibKðuj;uiÞ; ð4:10Þ
where uk
h ¼

PN
i¼1Uk

i ui, vh ¼
PN

i¼1Viui. Taking inspiration again from (3.8), the local artificial coefficient mk
K is defined as

follows:
mk
K ¼ max

i–j2IðKÞ

R
Sij
ðf 0ðuk

hÞ � rujÞui dx
			 			
�
X
T	Sij

bTðuj;uiÞ
: ð4:11Þ
4.2.3. Algorithm
The time stepping is done by proceeding like in (3.7). Let u0h 2 Xh be an approximation of u0 that satisfies the discrete

maximum principle,
umin :¼ inf
x2X

u0ðxÞ 6 min
16i6N

u0hðaiÞ 6 max
16i6N

u0hðaiÞ 6 sup
x2X

u0ðxÞ :¼ umax: ð4:12Þ
Let Dtk be the next time step so that tkþ1 ¼ tk þ Dtk. The nodal values of the solution ukþ1
h ¼

PN
j¼1Ukþ1

j uj 2 Xh at time tkþ1 is
evaluated as follows:
Ukþ1
i ¼ Uk

i � Dtkm�1
i

X
K	Si

mk
K bKðuk

h;uiÞ þ
Z

K
r � ðf ðuk

hÞÞui dx
� �

: ð4:13Þ
Note again that the mass matrix has been lumped and mi :¼
R

Si
ui dx is positive owing to (4.4).

Theorem 4.2 (Discrete maximum principle). Assume that the CFL number is small enough, i.e., bDtkh�1
6 1=ðkð1þ q�1ÞÞ. Then

the solution to (4.13) satisfies the local discrete maximum principle, i.e., umin 6minj2IðSiÞU
k
j 6 Ukþ1

i 6 maxj2IðSiÞU
k
j 6 umax for all

k P 0.
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Proof. The proof is similar to that of Theorem 3.2, i.e., we proceed by induction. Let k P 0 and assume that umin 6 Uk
i 6 umax

for all i ¼ 1; . . . ;N. Note that the induction assumption holds for k ¼ 0. The definition of mk
K in (4.11) together with the def-

inition of q in (4.5), the inequality krujkL1ðKÞ 6 h�1
K and the inequality

R
K jujjdx 6 lmax

K jKj (see (4.3)) implies that
mk
K 6 b max

i–j2IðKÞ

j
R

Sij
krujkui dx

qjSijj
6 q�1bh�1lmax

K :
The expression (4.13) can be recast into the following more algebraic form:
Ukþ1
i ¼ Uk

i 1� Dtkm�1
i

X
K	Si

mk
K bKðui;uiÞ þ

Z
K
ðf 0ðuk

hÞ � ruiÞui dx
� � !

� Dtkm�1
i

X
IðSiÞ3j–i

Uk
j

X
K	Sij

mk
K bKðuj;uiÞ þ

Z
K
ðf 0ðuk

hÞ � rujÞui dx
� �

;

that we formally rewrite as Ukþ1
i ¼

P
j2IðSiÞaijU

k
j . First, we observe that
X
j2IðSiÞ

aij ¼ 1� Dtkm�1
i

X
K	Si

mk
K bK

X
j2IðSiÞ

uj;ui

 !
þ
Z

K
ðf 0ðuk

hÞ � r
X

j2IðSiÞ
ujÞui dx

 !
¼ 1
since
P

j2IðSiÞujjSi
¼ 1 and bKð

P
j2IðSiÞuj;uiÞ ¼ bKð

P
j2IðKÞuj;uiÞ ¼ 0 owing to the definition (4.9). Second, we evaluate a bound

from below for aii,
aii :¼ 1� Dtkm�1
i

X
K	Si

mk
K bKðui;uiÞ þ

Z
K
ðf 0ðuk

hÞ � ruiÞui dx
� �

P 1� Dtkm�1
i

X
K	Si

ðq�1bh�1jKj þ bh�1jKjÞlmax
K

P 1� bDtkh�1ð1þ q�1ÞjSijlmax
K m�1

i P 1� bDtkh�1ð1þ q�1Þk;
where we used that lmax
K jSijm�1

i 6 lmax
K =lmin

K 6 k (see (4.4)). This implies that aii P 0 since jbjDtkh�1
6 1=ðkð1þ q�1ÞÞ. Third,

we evaluate a bound from below for aij, with i – j. Observing that bKðuj;uiÞ 6 0. The definition (4.11) implies that
�
X
K	Sij

mk
K bKðuj;uiÞP �

X
K	Sij

R
Sij
ðf 0ðuk

hÞ � rujÞui dx
			 			
�
X
T	Sij

bTðuj;uiÞ
bKðuj;uiÞP j

Z
Sij

ðf 0ðuk
hÞ � rujÞui dxj;
which gives
aij :¼ Dtkm�1
i

X
K	Sij

� mk
K bKðuj;uiÞ �

Z
Sij

ðf 0ðuk
hÞ � rujÞui dx

0@ 1A P 0:
The above argument shows that Ukþ1
i is a convex combination of fUjgj2IðSiÞ

. This proves the local discrete maximum principle,
which in turns implies that the induction hypothesis holds for kþ 1. h
Corollary 4.3. Under the assumptions of Theorem 4.2, the solution to (4.13) satisfies the following L1-estimates
cminumin 6 un
hðxÞ 6 cmaxumax; 8n P 0; 8x 2 X: ð4:14Þ
Moreover the following holds for all K 2 Kh if the space Xh satisfies (3.1):
min
i2IðKÞ

min
j2IðSiÞ

Un
j 6 unþ1

h ðxÞ 6max
i2IðKÞ

max
j2IðSiÞ

Un
j ; 8n P 0: ð4:15Þ
Proof. The estimate (4.14) is a consequence of Theorem 4.2 and (4.7). The second estimate is a consequence of Theorem 4.2
and the convexity assumption (3.1). h
Remark 4.2 (Graph Laplacian). The definition (4.10) is somewhat reminiscent of that of a graph Laplacian, (see e.g., [30, Eq.
(2.3)] where a graph Laplacian is used to stabilized an advection diffusion equation).



Table 5.1
Burger’s equation: convergence tests for P1 entropy viscosity and first-order viscosity.

h P1 Entropy viscosity P1 First-order viscosity

L1 Rate L2 Rate L1 Rate L2 Rate

1=25 3.95E�02 – 1.16E�01 – 4.33E�02 – 1.21E�01 –
1=50 2.43E�02 0.70 1.01E�01 0.20 2.87E�02 0.59 1.07E�01 0.17
1=100 1.19E�02 1.00 6.85E�02 0.56 1.52E�02 0.92 7.27E�02 0.56
1=200 5.94E�03 1.03 4.87E�02 0.49 8.28E�03 0.87 5.31E�02 0.45
1=400 3.09E�03 0.94 3.64E�02 0.42 4.57E�03 0.86 4.04E�02 0.40
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Remark 4.3 (CFL condition). Note that the CFL condition in Theorem 4.2 is exactly the same as in Theorem 3.2 for simplicial
meshes, since in that case q�1 ¼ nK � 1 ¼ d and k ¼ 1. It is remarkable that the CFL number scales like 1=ðkð1þ q�1ÞÞ on
every meshes; see also Remark 3.4.
Remark 4.4 (Convergence). We expect that the solution of (4.13) converges to the entropy solution, since the method is
essentially a first-order viscosity method. This result will be established in a forthcoming paper.
4.3. Extension to the entropy viscosity method

We now propose a variation of the above technique to make it higher-order using the notion of entropy viscosity intro-
duced in [13,15]. The method consists of using a SSP method to step in time where each Runge–Kutta sub-step is of the form
(4.13) with a higher-order viscosity.
Fig. 5.1. Burger’s equation at time t ¼ 0:5 on an unstructured mesh composed of 36836 P1 nodes. First row: first-order approximation; solution
�1:0 6 u 6 0:8; viscosity coefficient 9:5 6 m 6 209:14. Second row: entropy viscosity approximation; solution �1:002 6 u 6 0:802; viscosity coefficient
0 6 m 6 176:04; cE ¼ 1, cJ ¼ 4.



Fig. 5.2. KPP problem at time t ¼ 1 on an unstructured mesh composed of 52963 P1 nodes. First row: first-order approximation; solution p
4 6 u 6 14p

4 ;
viscosity coefficient 10:18 6 mK 6 44:62. Second row: entropy viscosity approximation; solution 0:67 6 u 6 11:02; viscosity coefficient 0 6 mK 6 42:02;
cE ¼ 1, cJ ¼ 4.
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The higher-order viscosity is defined to be the minimum of the first-order viscosity defined in (4.11) and an entropy resid-
ual. Let E 2 LipðR; RÞ be a convex entropy. Let K be a cell in the mesh Kh. We define an entropy residual over K as follows:
Rk
Kðuk

h;u
k�1
h Þ ¼

1
Dtk�1 ðEðu

k
hÞ � Eðuk�1

h ÞÞ þ f 0ðuk
hÞ � rEðuk

hÞ




 





L1ðKÞ
: ð4:16Þ
The L1-norm over K is estimated by evaluating the residual at the quadrature points. A first-order approximation of the time
derivative @tEðuÞ is used here, but a second-order or a higher-order approximation of the derivative of the entropy can easily
be constructed. For instance, the evaluation of the entropy residual can be embedded within Runge–Kutta sub-steps; we
omit the details for simplicity. Let F be a face of K and assume that F is an interface, i.e., F is not a boundary face. It is useful
to evaluate the entropy jump across the cell interfaces
Jk
Fðuk

hÞ ¼ f 0ðuk
hÞ � ns@nEðuk

hÞt


 



L1ðFÞ: ð4:17Þ
Let mv ;k
K be the first-order viscosity defined in (4.11). The so-called entropy viscosity is constructed as follows:
mk
K ¼min mv;k

K ;
cERk

Kðuk
h;u

k�1
h Þ þ cJmax

F2@K
Jk

Fðuk
hÞ

kEðuk
hÞ � Eðuk

hÞkL1ðXÞ

0@ 1A; ð4:18Þ
where cE and cJ are user-defined parameters of order unity and Eðuk
hÞ is the mean of Eðuk

hÞ over X. The key improvement over
earlier versions of the method, see e.g., [13,15], is that the definition (4.18) does not require a notion of mesh-size. This sim-
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plifies significantly the implementation of the method and makes it better suited for realistic computations on arbitrary or/
and anisotropic meshes. All the quantities mv ;k

K , Rk
K , Jk

K scale like the inverse of the distance to the square times a wave speed.
The method is not yet parameter free due to the presence of cE and cJ . We have observed that cE ¼ 1 and cJ ¼ 4 makes the
method work satisfactorily in all the applications we have investigated.

Let us finally mention that the method is implemented without lumping the mass matrix in the time stepping.
Although, this strategy makes the method to lose the maximum principle property, it is nevertheless more accurate to
work with the consistent mass matrix, since lumping the mass matrix induces high dispersion errors as shown in e.g.,
[6,7,11,29,14].

The resulting method is not maximum preserving, but it has been established in [12] that it can be made so after some
limiting and still be conservative and be formally second-order. The key to the argument is to combine a conservative treat-
ment of the mass matrix proposed in [14] with the flux corrected methodology of Boris–Book–Zalesak [2,31] (see also [23,20,
Chap. 9]).
5. Numerical illustrations

To illustrate numerically the methods presented in the previous sections, we now solve three different scalar conserva-
tion equations in two space dimensions on nonuniform triangular grids using P1 approximation. All the results presented
below are done using SSP RK3 to step in time. For the first-order algorithm we use the artificial viscosity defined in
(4.9)–(4.11) and each RK3 substep is done using (4.13). For the higher-order version of the algorithm we use the definition
(4.18) for the viscosity and the variant of (4.13) with the consistent mass matrix.

5.1. 2D Burgers

Consider the two dimensional Burger’s equation in R2
@tuþr �
1
2

bu2
� �

¼ 0; uðx; 0Þ ¼ u0ðxÞ; ð5:1Þ
where b ¼ ð1;1Þ is a constant vector field, and the initial condition is
u0 ¼

�0:2; if x < 0:5 and y > 0:5;
�1; if x > 0:5 and y > 0:5;
0:5; if x < 0:5 and y < 0:5;
0:8; if x > 0:5 and y < 0:5:

8>>><>>>: ð5:2Þ
This exact solution to this problem is as follows:
Fig. 5.3. First-order viscosity given by (4.11) for the KPP problem at t ¼ 1. Left panel: uniform grid. Right panel: unstructured grid.



Fig. 5.4. Two wave problem at time t ¼ 2 on an unstructured triangular grid composed 64720 P1 nodes. First row: first-order approximation, solution
�0:69 6 u 6 0:69, viscosity coefficient 0 6 m 6 79:89. Second row: entropy viscosity approximation; solution �0:712 6 u 6 0:711; viscosity coefficient
0 6 m 6 71:62, cE ¼ 1, cJ ¼ 4.
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uðx; y; tÞ ¼

�0:2
0:5

if x < 1
2� 3t

5 and
y > 1

2þ 3t
20 ;

otherwise;

(
�1
0:5

if 1
2� 3t

5 < x < 1
2� t

4 and
y > � 8x

7 þ 15
14� 15t

28 ;

otherwise;

(
�1
0:5

if 1
2� t

4 < x < 1
2þ t

2 and
y > x

6þ 5
12� 5t

24 ;

otherwise;

�
�1
2x�1

2t

if 1
2þ t

2 < x < 1
2þ 4t

5 and y > x� 5
18t xþ t � 1

2

� �2
;

otherwise;

(
�1
0:8

if x > 1
2þ 4t

5 and
y > 1

2� t
10 ;

otherwise:

(

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

ð5:3Þ
Convergence tests are presented in Table 5.1. We compare the convergence rates in the L1- and L2-norms for the entropy
viscosity and first-order methods in the left and right panels of the table, respectively. Note that the rate of convergence in
the L1-norm is close to optimality for the entropy viscosity method, whereas it is suboptimal for the fist-order viscosity, as
expected. We have verified numerically that the first-order viscosity method satisfies the local maximum principle up to
round off errors at every time step.

Fig. 5.1 presents the solution (left panels) and the viscosity coefficient mK (right panel) at the final time. The figures in the
top row are the results of the first-order viscosity method, and the those in the bottom row are the results of the entropy
viscosity method using definition (4.18). The entropy for this problem is chosen to be: EðuÞ ¼ 1

2 u2. The control parameters
are cE ¼ 1, cJ ¼ 4. The computations are done with CFL = 0.2 on an unstructured triangular mesh consisting of 36826 P1

nodes. We observe that the entropy viscosity technique adds dissipation only in the shock regions.
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5.2. 2D KPP rotating wave

In this section we solve so called KPP rotating wave problem, a 2D scalar nonlinear conservation laws
@tuþr � f ðuÞ ¼ 0; uðx; 0Þ ¼ u0ðxÞ ¼
14p

4 ; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
6 1;

p
4 ; otherwise:

(
; ð5:4Þ
where f ðuÞ ¼ ðsin u; cos uÞ. This test was originally proposed in [19]. It is challenging to many high-order numerical schemes
because the solution has a two-dimensional composite wave structure. For example central-upwind schemes based on
WENO5, Minmod 2 and SuperBee reconstructions converge to non-entropic solutions; see [19] for details.

The computation is done in the square ½�2;2� � ½�2:5;1:5�, with CFL ¼ 0:2. Fig. 5.2 shows the solution (left panels) com-
puted on an unstructured triangular grid composed of 52964 P1 nodes. The magnitude of the viscosity coefficient is shown in
the right panels. The figures in the top row are the results of the first-order viscosity method, and the those in the bottom
row are the results of the entropy viscosity method using definition (4.18) and the entropy EðuÞ ¼ 1

2 u2. The parameters for
this computations are cE ¼ 1 and cJ ¼ 4. We have verified numerically that the first-order viscosity method satisfies the local
maximum principle up to round off errors provided the integral

R
Sij
ðf 0ðuk

hÞ � rujÞdx in the definition of the viscosity (see
(4.11)) is evaluated exactly. In particular, replacing f 0ðuk

hÞ by its Lagrange interpolant leads to slight violations of the local
maximum principle.

The focusing of the entropy viscosity in the shock region is striking. Observe also that using an unstructured grid makes
the first-order viscosity coefficient mK to appear like a random field (see top right panel in Fig. 5.2). To emphasize that the
viscosity coefficient mK given in (4.11) does indeed encode the meshsize information, we have redone the above computation
using a structured grid composed of 91� 91 square cells divided into two triangles and an unstructured Delaunay grid com-
posed of triangles of similar sizes. The structure grid has 8464 P1 nodes and the unstructured grid has 8560 P1 nodes. The
resulting viscosity fields mK are shown in the Fig. 5.3. The differences between the viscosity fields in the left and right panels
are just due to the differences in the mesh structure.

5.3. Two wave test

We finally consider a two-dimensional scalar conservation equation studied in [16]:
@tuþ @x
1
2

u2
� �

þ @y
1
3

u3
� �

¼ 0; uðx;0Þ ¼ u0ðxÞ; ð5:5Þ
with periodic boundary conditions and the following initial condition:
u0 ¼
�1; if ðx� 0:5Þ2 þ ðy� 0:5Þ2 < 0:16;

1; if ðxþ 0:5Þ2 þ ðyþ 0:5Þ2 < 0:16;
0; otherwise:

8><>: ð5:6Þ
This problem has a fully two dimensional structure; there are two shock waves traveling in different directions. Fig. 5.4
shows the solution (left panels) computed on an unstructured triangular grid composed of 64720 P1 nodes. The magnitude
of the viscosity coefficient is shown in the right panels. The figures in the top row are the results of the first-order viscosity
method, and those in the bottom row are the results of the entropy viscosity method using definition (4.18) and the entropy
EðuÞ ¼ 1

2 u2. The parameters for this computations are cE ¼ 1 and cJ ¼ 4. The CFL number is 0.3.
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