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Abstract. A new second-order method for approximating the compressible Euler equations is
introduced. The method preserves all the known invariant domains of the Euler system: positivity
of the density, positivity of the internal energy, and the local minimum principle on the specific
entropy. The technique combines a first-order, invariant domain preserving, guaranteed maximum
speed method using a graph viscosity (GMS-GV1) with an invariant domain violating, but entropy
consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by
the GMS-GV1 method, are used to define local bounds for the high-order method, which is then made
invariant domain preserving via a convex limiting process. Numerical tests confirm the second-order
accuracy of the new GMS-GV2 method in the maximum norm, where the 2 stands for second-order.
The proposed convex limiting is generic and can be applied to other approximation techniques and
other hyperbolic systems.
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1. Introduction. It is well known that solutions of the compressible Euler equa-
tions satisfy physical constraints like positivity of the density, positivity of the internal
energy, and minimum principle on the specific entropy. Any numerical method that
satisfies these constraints or similar constraints is usually called invariant domain
preserving in the literature, e.g., Chueh, Conley, and Smoller [7]. The objective of
the present work is to present an approximation technique for the compressible Euler
equations that is explicit in time, second-order accurate in space and time, and invari-
ant domain preserving. The method is presented in the context of continuous finite
elements, but it is quite general and can be applied to other discretization settings like
discontinuous Galerkin and finite volume techniques. Like in many other high-order
approximation methods, the proposed technique consists of combining a first-order,
invariant domain preserving, and entropy satisfying approximation with a high-order
entropy consistent approximation. The high-order method is made invariant domain
preserving and formally entropy compliant by adapting the artificial viscosity through
a limiting process. One key novelty is that the density, the internal energy, and the
specific entropy are limited by using bounds that are in the domain of dependence
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of the local data. Another novelty is that the limiting bounds are local for all the
quantities, and these bounds are naturally satisfied by the low-order solution.

The so-called Flux Corrected Transport (FCT) method, introduced in Boris and
Book [5] for approximating the one-dimensional mass conservation equation and later
generalized to multiple dimensions in Zalesak [49], are among the first successful
techniques to produce second-accuracy while imposing pointwise bounds such as pos-
itivity of the density. This methodology can be used to preserve the maximum prin-
ciple for any scalar conservation equation. We refer the reader to Kuzmin and Turek
[31], Kuzmin, L\"ohner, and Turek [32] for reviews on FCT. Unfortunately, the FCT
algorithm, as proposed in the above references, is not well suited to enforce con-
straints that are not affine. For instance, it cannot be (easily) applied to guarantee
the positivity of the specific internal energy and the minimum principle on the spe-
cific entropy since these are quasi-concave constraints. (Said constraints can be made
concave by multiplication by the density as is shown in section 4.) In the context
of finite volumes, efficient second-order limiting techniques for the specific internal
energy and the specific entropy were first proposed in Khobalatte and Perthame [27],
Perthame and Qiu [39], and Perthame and Shu [40]. These ideas have been extended
to discontinuous Galerkin framework in a series of papers by Zhang and Shu [51, 52]
and Jiang and Liu [26]. The key argument common to [27, 40, 39] is to rely upon con-
vex combinations and concavity. In the present paper we are going to build on these
ideas and propose a general postprocessing methodology to enforce general concave
constraints for the Euler equations, which we call convex limiting. Instead of limiting
slopes or reconstructed approximations, we adopt an algebraic point of view similar
to FCT. The method is presented in the context of continuous finite elements, but
since it is algebraic, it can be applied to finite volumes and discontinuous Galerkin
approximation techniques as well.

This paper is organized as follows. The problem is formulated in section 2. The
finite element setting and the notation are also introduced in this section. The time
and space approximation using continuous finite elements is described in section 3.
Both the first-order, invariant domain preserving, entropy satisfying method and the
high-order invariant domain violating method are detailed in this section. The bulk
of the novel material is reported in section 4. The main results of this section are the
local bounds given in (4.1)--(4.4) together with Lemmas 4.3 and 4.4. The performance
of the proposed method is illustrated in section 5.

2. Preliminaries. In this section, we introduce the Euler equations and the
finite element setting. Some important properties of the Euler equations that are
used later in this paper are also recalled. The reader who is familiar with the Euler
equations, invariant domains, and the finite element theory is invited to jump to
section 3.

2.1. The Euler equations. Let d be the space dimension, and let D be an
open polyhedral domain in \BbbR d. We consider the compressible Euler equations in
conservative form in \BbbR d:

\partial t\rho +\nabla \cdot \bfitm = 0,(2.1a)

\partial t\bfitm +\nabla \cdot (\bfitv \otimes \bfitm ) +\nabla p = 0,(2.1b)

\partial tE +\nabla \cdot (\bfitv (E + p)) = 0,(2.1c)

\rho (\bfitx , 0) = \rho 0, \bfitm (\bfitx , 0) = \bfitm 0, E(\bfitx , 0) = E0.(2.1d)
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CONVEX LIMITING A3213

The independent variables are (\bfitx , t) \in D\times \BbbR +. The dependent variables, henceforth
called conserved variables, are the density, \rho , the momentum, \bfitm , and the total energy,
E. The quantity \bfitv := \rho  - 1\bfitm is the velocity of the fluid particles. The pressure, p, is
given by the equation of state, which we assume to be derived from a specific entropy,
s : \BbbR +\times \BbbR + \rightarrow \BbbR , defined through the thermodynamics identity: T ds := de - p\rho  - 2 d\rho ,
where e := \rho  - 1E  - 1

2\bfitv 
2 is the specific internal energy. For instance, it is common

to take s(\rho , e)  - s0 = log(e
1

\gamma  - 1 \rho  - 1) for a polytropic ideal gas. Using the notation
se(\rho , e) := \partial s

\partial e (\rho , e) and s\rho (\rho , e) := \partial s
\partial \rho (\rho , e), the equation of state then takes the

form p :=  - \rho 2s\rho s - 1
e . To simplify the notation we introduce the conserved variable

\bfitu := (\rho ,\bfitm , E)\sansT \in \BbbR d+2 and the flux f(\bfitu ) := (\bfitm ,\bfitv \otimes \bfitm +p\BbbI d,\bfitv (E+p))\sansT \in \BbbR (d+2)\times d,
where \BbbI d is the d\times d identity matrix. To avoid abuse of notation and ambiguities, we
introduce

(2.2) \Phi (\bfitu ) := s(\rho , e(\bfitu )),

where e(\bfitu ) := \rho  - 1E  - \bfitm 2

2\rho 2 , \bfitm 
2 := \| \bfitm \| 2\ell 2 , and \| \cdot \| \ell 2 is the Euclidean norm, i.e., \Phi 

is the specific entropy expressed as a function of the conserved variables. Finally, we
indicate internal energy by the quantity \varepsilon := \rho e = E  - 1

2\rho \bfitv 
2.

The convention adopted in this paper is that for any vectors \bfita , \bfitb , with en-
tries \{ ak\} k=1,...,d, \{ bk\} k=1,...,d, the following holds: (\bfita \otimes \bfitb )kl = akbl and \nabla \cdot \bfita =\sum 

k=1,...,d \partial xk
ak, (\nabla \bfita )kl = \partial xl

ak. \bfita \cdot \nabla =
\sum 

k=1,...,d ak\partial xk
. Moreover, for any second-

order tensor g, with entries \{ gkl\} l=1,...,d
k=1,...,d+2, we define (\nabla \cdot g)k =

\sum 
l=1,...,d \partial xl

gkl,

(g\bfita )k =
\sum 

l=1,...,d gklal, (\bfita 
\sansT g)l =

\sum 
l=1,...,d akgkl.

To avoid technicalities regarding boundary conditions, we assume that either pe-
riodic boundary conditions are enforced, or the initial data is compactly supported,
in which case we are interested in the solution before the domain of influence of
(\rho 0,\bfitm 0, E0) reaches the boundary of D, i.e., homogeneous Dirichlet boundary condi-
tions are enforced. (Some details are given in section 3.5 on how to deal with the slip
boundary condition.)

2.2. Intrinsic properties. The well-posedness of (2.1) is an extremely difficult
question that is far beyond the scope of the present paper. But to make sense of the
approximation techniques to be presented in the rest of the paper we are going to
rely on the notion of solution of a one-dimensional Riemann problem which is more
tractable. For any unit vector \bfitn \in \BbbR d, we consider the following Riemann problem:

(2.3) \partial t\bfitu + \partial x(f(\bfitu )\bfitn ) = 0, (x, t) \in \BbbR \times \BbbR +, \bfitu (x, 0) =

\Biggl\{ 
\bfitu L if x < 0,

\bfitu R if x > 0,

and assume that there exists a so-called admissible set \scrA such that for any pair
of states (\bfitu L,\bfitu R) \in \scrA \times \scrA , this problem has a unique physical (entropy) solution
henceforth denoted by \bfitu (\bfitn ,\bfitu L,\bfitu R)(x, t). This assumption holds true for small
data (see Bianchini and Bressan [4]), and we refer the reader to Godlewski and
Raviart [10, Thm. II.3.1] for a similar statement for large data. One key property
of the physical solution is that there exists a quantity \lambda max(\bfitn ,\bfitu L,\bfitu R), called maxi-
mum wave speed, such that \bfitu (\bfitn ,\bfitu L,\bfitu R)(x, t) = uL if x/t \leq  - \lambda max(\bfitn ,\bfitu L,\bfitu R) and
\bfitu (\bfitn ,\bfitu L,\bfitu R)(x, t) = uR if x/t \geq \lambda max(\bfitn ,\bfitu L,\bfitu R).

We now introduce notions of invariant sets and invariant domains. (Our definition
is slightly different from those in Chueh, Conley, and Smoller [7], Hoff [23], Frid [9].)
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A3214 J.-L. GUERMOND, M. NAZAROV, B. POPOV, AND I. TOMAS

Definition 2.1 (invariant set). We say that a set B \subset \scrA \subset \BbbR m is invariant for
(2.1a)--(2.1c) if for any pair (\bfitu L,\bfitu R) \in B\times B, any unit vector \bfitn \in \BbbR d, and any t > 0,
the average of the entropy solution of the Riemann problem (2.3) over the Riemann

fan, 1
2t\lambda max

\int \lambda maxt

 - \lambda maxt
\bfitu (\bfitn ,\bfitu L,\bfitu R)(x, t) dx, remains in B.

We are also going to make use of the notion of invariant domain for an approxi-
mation process. Let \bfitX h \subset L1(\BbbR d;\BbbR m) be a finite-dimensional approximation space,
and let Sh : \bfitX h \ni \bfitu h \mapsto  - \rightarrow Sh(\bfitu h) \in \bfitX h be a mapping over \bfitX h. (Think of Sh as
being a one-time-step approximation of (2.1).) Henceforth, we abuse the notation by
saying that a member of \bfitX h, say \bfitu h, is in the set B \subset \BbbR m when actually we mean
that \{ \bfitu h(\bfitx ) | \bfitx \in D\} \subset B.

Definition 2.2 (invariant domain). A convex invariant set B \subset \scrA \subset \BbbR m is
said to be an invariant domain for the mapping Sh if and only if for any state \bfitu h in
B, the state Sh(\bfitu h) is also in B.

It is known that the set

(2.4) Asmin := \{ (\rho ,\bfitm , E) | \rho > 0, e > 0, s \geq smin\} 

is invariant for the Euler system for any smin \in \BbbR . It is also established in Serre [42,
Thm. 8.2.2] that the set Asmin is convex, and it is shown in Frid [9, Thms. 7 and
8] that it is an invariant domain for the Lax--Friedrichs scheme. The finite element
method introduced in Guermond and Popov [13] also satisfies this invariant domain
property; this finite element construction is recalled in section 3.1. It is generally
acknowledged in the literature that physical solutions to (2.1) should satisfy entropy
inequalities. More specifically, let f : \BbbR \rightarrow \BbbR be twice differentiable and be such that

(2.5) f \prime (s) > 0, f \prime (s)c - 1
p  - f \prime \prime (s) > 0 \forall (\rho , e) \in \BbbR 2

+,

where cp(\rho , e) = T\partial T s(p, T ) is the specific heat at constant pressure. It is shown in
Harten et al. [21, Thm. 2.1] that \rho f(s) is strictly concave with respect to the conserved
variables if and only if (2.5) holds, i.e., \scrA \ni \bfitu \mapsto \rightarrow  - \rho f(\Phi (\bfitu )) is convex. Note that
the so-called physical entropy S(\bfitu ) := \rho \Phi (\bfitu ) is obtained by setting f(x) = x. We
say that a weak solution to (2.1) is an entropy solution if it satisfies the following
inequality in the weak sense for every generalized entropy:

(2.6) \partial t(\rho f(s)) +\nabla \cdot (\bfitm f(s)) \geq 0.

In particular, it is known (at least for \gamma -law equations of state) that the entropy
solution to the Riemann problem (2.3) satisfies (2.6). Both the Lax--Friedrichs scheme
and the finite element method introduced in [13] satisfy a discrete version of (2.6) for
every generalized entropy.

The objective of the present work is to construct an explicit, second-order con-
tinuous finite element method that is consistent with (2.6) and for which Asmin is an
invariant domain.

2.3. Finite element setting. We are going to approximate the solution of (2.1)
with continuous Lagrange finite elements. For this purpose, we introduce a shape-
regular sequence of matching meshes (\scrT h)h>0 and assume that the elements in each

mesh are generated from a small collection of reference elements denoted \widehat K1, . . . , \widehat K\varpi .
In two space dimensions for instance, the mesh \scrT h could be composed of a combination
of parallelograms and triangles (i.e., \varpi = 2). In three space dimensions, \scrT h could also
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CONVEX LIMITING A3215

be composed of a combination of triangular prisms, parallelepipeds, and tetrahedra
(\varpi = 3). Given K \in \scrT h, the geometric transformation mapping \widehat Kr to K \in \scrT h
is denoted TK : \widehat Kr  - \rightarrow K. We are going to construct the approximation space by
using some reference Lagrange finite elements \{ ( \widehat Kr, \widehat Pr, \widehat \Sigma r)\} 1\leq r\leq \varpi , where the objects

( \widehat Kr, \widehat Pr, \widehat \Sigma r) are Ciarlet triples (we omit the index r \in \{ 1:\varpi \} in the rest of the paper

to simplify the notation). Given a reference Lagrange element ( \widehat K, \widehat P , \widehat \Sigma ), we denote by
\{ \widehat \bfitx l\} l\in \scrL the reference Lagrange nodes and by \{ \widehat \theta l\} l\in \scrL the reference shape functions,

i.e., card(\scrL ) = dim( \widehat P ) =: nsh (note that the index r has been omitted). \widehat P is the

reference approximation space (usually a scalar-valued polynomial space) and \widehat \Sigma is
the set of the Lagrange degrees of freedom. Let \BbbP l,d be the vector space composed
of the d-variate polynomials of degree at most l. We henceforth assume that there
is k \geq 1 such that \BbbP k,d \subset \widehat P . The reference degrees of freedom \{ \widehat \sigma l\} l\in \scrL are such that\widehat \sigma l(\widehat p) = \widehat p(\widehat \bfitx l) for all l \in \scrL and all \widehat p \in \widehat P . By definition \widehat \theta l(\widehat \bfitx l\prime ) = \delta ll\prime , for all l.l

\prime \in \scrL ,
which in turn implies the partition of unity property:

\sum 
l\in \scrL 

\widehat \theta l(\widehat \bfitx ) = 1 for all \widehat \bfitx \in \widehat K.
Setting \{ \widehat wl :=

\int \widehat K \theta l dx\} l\in \scrL , the following quadrature is (k+1)th order accurate since

it is exact for all \widehat p \in \widehat P : \int \widehat K \widehat p(\widehat \bfitx ) d\widehat \bfitx =
\sum 

l\in \scrL \widehat p(\widehat \bfitx l) \widehat wl. We henceforth assume that

(2.7)

\int 
\widehat K \widehat \theta l d\widehat \bfitx =: \widehat wl > 0, l \in \scrL .

There are numerous reference finite elements satisfying (2.7). For instance, all of the
elements based on \BbbQ k,d polynomials using tensor product of Gauss--Lobatto points on
quadrangles or hexahedra satisfy (2.7). The question is slightly more nuanced for \BbbP k,d

polynomials on simplices, but one can use Fekete points (see Taylor, Wingate, and
Vincent [44]) or various variations thereof for k \geq 3 (see Hesthaven [22], Warburton
[47]). Note that the standard \BbbP 1,d Lagrange element satisfies (2.7) but \BbbP 2,d does not
for d \geq 2.

We now introduce approximation spaces constructed as usual by using the pull-
back by the geometric transformation. More precisely, we define the following scalar-
valued and vector-valued finite element spaces:

P (\scrT h) = \{ v \in \scrC 0(D;\BbbR ) | v| K\circ TK \in \widehat P \forall K \in \scrT h\} , \bfitP (\scrT h) = [P (\scrT h)]d+2.(2.8)

The global shape functions in P (\scrT h), which we recall form the basis of P (\scrT h), are
denoted by \{ \varphi i\} i\in \scrI , i.e., card(\scrI ) = dim(P (\scrT h)). For any i \in \scrI , we denote \scrI (i) := \{ j \in 
\scrI | \varphi i\varphi j \not \equiv 0\} . The global Lagrange nodes are denoted \{ \bfitx i\} i\in \scrI . Upon introducing

the connectivity array \sansj : \scrT h\times \scrL  - \rightarrow \scrI , we have \varphi \sansj (l,K)(\bfitx ) = \widehat \theta l((TK) - 1(\bfitx )), and
\bfitx \sansj (K,l) = TK(\widehat \bfitx l) for all l \in \scrL and all K \in \scrT h. This implies that \varphi i(\bfitx j) = \delta ij . The
local partition of unity property implies that\sum 

i\in \scrI 
\varphi i(\bfitx ) = 1 \forall \bfitx \in D.(2.9)

Upon defining mi :=
\int 
D
\varphi i(\bfitx ) d\bfitx , the above definitions imply that the following

quadrature is (k+1)th order accurate
\int 
D
v(\bfitx ) d\bfitx =

\sum 
i\in \scrI miv(\bfitx i) since it is exact for

all v \in P (\scrT h). The matrix with entries
\int 
D
\varphi i(\bfitx )\varphi j(\bfitx ) d\bfitx is called the consistent mass

matrix and denoted by \scrM \in \BbbR \scrI \times \scrI . Using the above quadrature and the property
\varphi i(\bfitx j) = \delta ij , the integral

\int 
D
\varphi i(\bfitx )\varphi j(\bfitx ) d\bfitx can be approximated by mi. Note that

(2.9) implies that
\sum 

j\in \scrI mij = mi. We henceforth denote by \scrM L the diagonal matrix

with entries (mi)i\in \scrI and refer to \scrM L as the lumped mass matrix. Note that (2.7)
implies that mi > 0 for all i \in \scrI .
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Denoting by \| \cdot \| \ell 2 the Euclidean norm in \BbbR d, we introduce the following two
quantities which will play an important role in the rest of this paper:

(2.10) \bfitc ij :=

\int 
D

\varphi i\nabla \varphi j dx, \bfitn ij :=
\bfitc ij

\| \bfitc ij\| \ell 2
, i, j \in \scrI .

Note that (2.9) implies
\sum 

j\in \scrI \bfitc ij = 0. Furthermore, if either \varphi i or \varphi j is zero on \partial D,
then \bfitc ij =  - \bfitc ji. In particular, we have

\sum 
i\in \scrI \bfitc ij = 0 if \varphi j is zero on \partial D. This

property will be used to establish conservation. (The definition of \bfitc ij is revisited in
section 3.5 to account for the slip boundary condition.)

3. Time and space approximation. We describe in this section the first-order
technique and the higher-order technique that will be used to construct the second-
order invariant domain preserving and entropy compliant method which is the object
of the present paper. The discussion is restricted to the forward Euler time stepping
since higher-order accuracy in time is trivially achieved by using Strong Stability
Preserving Runge--Kutta (SSP RK) time stepping. All of the numerical tests reported
in section 5 are done with the SSP RK(3,3) method (three stages, third-order); see
Shu and Osher [43, eq. (2.18)] and Kraaijevanger [28, Thm. 9.4].

3.1. Low-order approximation (GMS-GV1). The low-order method that
we are going to use is fully described in [13] and is henceforth referred to as GMS-
GV1 for Guaranteed Maximum Speed method with first-order Graph Viscosity. Let
\bfitu 0
h =

\sum 
i\in \scrI U0

i\varphi i \in \bfitP (\scrT h) be a reasonable approximation of the initial data \bfitu 0. Let
tn be the current time, let \tau be the current time step, and let us set tn+1 = tn + \tau 
for some n \in \BbbN . Letting \bfitu n

h =
\sum 

i\in \scrI Un
i \varphi i be the approximation of \bfitu at time tn, we

estimate the low-order approximation \bfitu L,n+1
h =

\sum 
i\in \scrI UL,n+1

i \varphi i by setting

(3.1)
mi

\tau 
(UL,n+1

i  - Un
i ) +

\sum 
j\in \scrI (i)

f(Un
j )\bfitc ij  - dL,n

ij (Un
j  - Un

i ) = 0,

where dL,n
ij is called graph viscosity and is defined below. There is no need to define

dL,n
ii for (3.1) to make sense, but to simplify the notation used later in the paper

we denote dL,n
ii :=  - 

\sum 
i \not =j\in \scrI (i) d

L,n
ij . Notice that if all of the states \bfitU n

j are equal

to the same constant for all j \in \scrI (i), then the perturbation
\sum 

j\in \scrI (i) d
L,n
ij (Un

j  - Un
i )

is zero. This means that this term introduces a first-order consistency error. This
type of perturbation in known as graph Laplacian in the literature, and we henceforth
refer to it as graph viscosity or artificial viscosity. In the rest of this paper the graph
viscosity coefficients dL,n

ij are defined for all i \not = j \in \scrI by setting

(3.2) dL,n
ij := max(\widehat \lambda max(\bfitn ij ,U

n
i ,U

n
j )\| \bfitc ij\| \ell 2 , \widehat \lambda max(\bfitn ji,U

n
j ,U

n
i )\| \bfitc ji\| \ell 2),

where \widehat \lambda max(\bfitn ,UL,UR) is any upper bound on the maximum wave speed in the Rie-
mann problem (2.3), \lambda max(\bfitn ,UL,UR). Of course the sharper the upper bound, the
better. It is proved in Toro [46, p. 150] that the maximum wave speed in (2.3) is the
same as in the following reduced Riemann problem:

(3.3) \partial t\bfitw + \partial x\bfitf 
1D(\bfitw ) = 0,

with data \bfitw L := (\rho L,mL, \scrE L)\sansT , \bfitw R := (\rho R,mR, \scrE R)\sansT , where m := \bfitm \cdot \bfitn , v := m/\rho ,

\bfitm \bot := \bfitm  - (\bfitm \cdot \bfitn )\bfitn , \scrE := E  - 1
2

\| \bfitm \bot \| 2
\ell 2

\rho , and flux \bfitf 1D(\bfitw ) := (m, vm+ p, v(\scrE + p))\sansT .
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CONVEX LIMITING A3217

We also refer the reader to Guermond and Popov [14, sect. 2] for more details on
this question. Let vL := \bfitm L\cdot \bfitn /\rho L, vR := \bfitm R\cdot \bfitn /\rho R be the left and right velocities,
and let cL, cR be the left and right sound speeds, respectively. The definition of the
maximum speed \lambda max(\bfitn ,UL,UR) = \lambda max(\bfitw L,\bfitw R) is as follows:

(3.4) \lambda max(\bfitw L,\bfitw R) = max((\lambda  - 1 ) - , (\lambda 
+
3 )+),

where \lambda  - 1 and \lambda +3 are the two extreme wave speeds enclosing the Riemann fan of
the one-dimensional problem (3.3); for the co-volume equation of state, p(1  - b\rho ) =
(\gamma  - 1)e\rho , b \geq 0, these two extreme wave speeds are given by

\lambda  - 1 (p
\ast ) = vL  - cL

\Biggl( 
1 +

\gamma + 1

2\gamma 

\biggl( 
p\ast  - pL
pL

\biggr) 
+

\Biggr) 1
2

,(3.5)

\lambda +3 (p
\ast ) = vR + cR

\Biggl( 
1 +

\gamma + 1

2\gamma 

\biggl( 
p\ast  - pR
pR

\biggr) 
+

\Biggr) 1
2

,(3.6)

where the intermediate pressure p\ast is obtained by solving a nonlinear problem; see
Toro [46, Chap. 4] and [14, sect. 3]. Here we use the notation z+ := max(0, z), and

we recall that the local sound speed for the co-volume gas is c =
\sqrt{} 

\gamma p
\rho (1 - b\rho ) . We recall

in passing that the widely used estimate max(| vL| + cL, | vR| + cR) is not a guaranteed
upper bound of \lambda max(\bfitn ,UL,UR).

A guaranteed upper bound on \lambda max(\bfitn ,UL,UR) for (3.3) with the co-volume equa-
tion of state is given in [13, Rem. 2.8] and [14, Lem. 4.3]. For the reader's conve-
nience, we now recall how this upper bound is estimated. We start by observing
that \lambda max(\bfitw L,\bfitw R)(p

\ast ) is a monotone increasing function of p\ast . Therefore, instead
of computing the exact pressure p\ast which requires an iterative process, one can use
an explicit upper bound on p\ast , say \widehat p \geq p\ast . Then, a guaranteed upper bound on
\lambda max(\bfitw L,\bfitw R)(p

\ast ) is \widehat \lambda max(\bfitw L,\bfitw R) := max((\lambda  - 1 (\widehat p)) - , (\lambda +3 (\widehat p))+). One such upper
bound valid for 1 < \gamma \leq 5

3 is established in [14, Lem. 4.3], and the value of \widehat p in
question is given by the so-called two-rarefaction approximation:

(3.7) \widehat p :=
\left(  cL(1 - b\rho L) + cR(1 - b\rho R) - \gamma  - 1

2 (vR  - vL)

cL(1 - b\rho L) p
 - \gamma  - 1

2\gamma 

L + cR(1 - b\rho R) p
 - \gamma  - 1

2\gamma 

R

\right)  
2\gamma 

\gamma  - 1

.

Remark 3.1 (other discretizations). Note that the expression (3.1) that is used
to compute the update Un+1

i is quite generic; many other discretizations of the Euler
equations can be put in this abstract form. The notion of a continuous finite element
only intervenes in the definition of the vectors \bfitc ij , the index set \scrI (i), and the lumped
mass matrix coefficients mi. Other discretizations lead to other forms for \bfitc ij , \scrI (i),
and mi. Almost everything that is said in the rest of the paper can be applied to
these discretizations as well.

3.2. The intermediate limiting states. We now deduce from (3.1) interme-
diate local states that will be useful to limit the yet-to-be-defined high-order solution.
Using that

\sum 
j\in \scrI (i) \bfitc ij = 0, we rewrite (3.1) as follows:

mi

\tau 
UL,n+1

i = Un
i

\Biggl( 
mi

\tau 
 - 
\sum 

i\not =j\in \scrI (i)

2dL,n
ij

\Biggr) 
+
\sum 

i \not =j\in \scrI (i)

(f(Un
i ) - f(Un

j ))\bfitc ij + dL,n
ij (Un

j +Un
i ).
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Then, upon introducing the quantities

U
n+1

ij :=
1

2
(Un

i +Un
j ) - (f(Un

j ) - f(Un
i ))

\bfitc ij

2dL,n
ij

,(3.8)

with the convention U
n+1

ii = Un
i , and the notation U

n+1

ij = (\rho n+1
ij ,\bfitm n+1

ij , E
n+1

ij )\sansT , the

low-order update UL,n+1
i can be represented as a convex combination as follows:

UL,n+1
i =

\Biggl( 
1 - 

\sum 
i \not =j\in \scrI (i)

2\tau dL,n
ij

mi

\Biggr) 
U

n

ii +
\sum 

i \not =j\in \scrI (i)

\biggl( 
2\tau dL,n

ij

mi

\biggr) 
U

n+1

ij ,(3.9)

under the appropriate CFL condition. Lemma 2.1 from [14], inspired by Perthame
and Shu [40, sect. 5] and Nessyahu and Tadmor [38, eq. (2.7)], implies that the in-

termediate state U
n+1

ij is a space average of the Riemann solution \bfitu (\bfitn ij ,U
n
i ,U

n
j );

that is to say, U
n+1

ij =
\int 1

2

 - 1
2

\bfitu (\bfitn ij ,U
n
i ,U

n
j )(x, tij) dx with tij := \| \bfitc ij\| \ell 2/(2dL,n

ij ) pro-

vided tij\lambda max(\bfitn ij ,U
n
i ,U

n
j ) \leq 1

2 . (Let us emphasize that though the time tij is re-
lated to the Riemann problem (3.3), this time has nothing to do with that of the
PDE (2.1).) Notice that the definition of the low-order graph viscosity (3.2) does
imply that tij\lambda max(\bfitn ij ,U

n
i ,U

n
j ) \leq 1

2 . An immediate consequence of this structure is

that U
n+1

ij has positive density, positive internal energy, and satisfies the following

minimum principle on the specific entropy: \Phi (U
n+1

ij ) \geq min(\Phi (Un
i ),\Phi (U

n
j )). Another

consequence of the above observation is the following result.

Theorem 3.2 (local invariance/entropy inequality). Let i \in \scrI . Assume (2.7)

and 1 + 2\tau 
dL,n
ii

mi
\geq 0. (i) Let smin

i = minj\in \scrI (i) \Phi (U
n
j ); then UL,n+1

i \in Asmin
i

. (ii) Let

(\eta := \rho f(\Phi ), \bfitq := \bfitm f(\Phi )) be a generalized entropy pair for (2.1). Then the following
local entropy inequality holds:

mi

\tau 
(\eta (UL,n+1

i ) - \eta (Un
i )) +

\int 
D

\nabla \cdot 

\Biggl( \sum 
j\in \scrI (i)

\bfitq (Un
j )\varphi j

\Biggr) 
\varphi i d\bfitx 

+
\sum 

j\in \scrI (i)

dL,n
ij

\bigl( 
\eta (Un

j ) - \eta (Un
i )
\bigr) 
\geq 0.

A practical interpretation of item (i) is that the low-order solution UL,n+1
i has

positive density, positive internal energy, and satisfies the local minimum principle on
the specific entropy. Item (ii) shows that this solution is also entropy satisfying in
some discrete sense. This result is proved in [13, Thm. 4.7] in a more general setting
for any hyperbolic system with a convex entropy. Note that in mathematical papers
the entropies are generally assumed to be convex, whereas the physical generalized
entropies \rho f(\Phi ) are concave (this is just a matter of sign convention).

3.3. Smoothness-based approximation. In this and the following subsection
we introduce high-order approximation techniques that will provide us with a provi-
sional high-order solution UH,n+1

j . The method presented in this section is easy to
implement but is inherently only second-order accurate in space.

We introduce a technique to reduce the graph viscosity that is based on a measure
of the local smoothness of the solution in the spirit of the finite volume literature (see
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CONVEX LIMITING A3219

e.g., Jameson, Schmidt, and Turkel [25, eq. (12)] and see the second formula in the
right column of page 1490 in Jameson [24]). Given a scalar-valued function g and
its finite element interpolant gh =

\sum 
\sansG i\varphi i, and denoting \epsilon i = \epsilon maxj\in \scrI (i) | \sansG j | where

\epsilon = 10 - 
16
2 in double precision arithmetic, we define the smoothness indicator of g as

follows:

(3.10) \alpha i(gh) :=

\bigm| \bigm| \bigm| \sum j\in \scrI (i) \beta ij(\sansG j  - \sansG i)
\bigm| \bigm| \bigm| 

max(
\sum 

j\in \scrI (i) | \beta ij | | \sansG j  - \sansG i| , \epsilon i)
,

where the real numbers \beta ij are selected to obtain \alpha i(gh) = 0 if gh is linear on the
support of the shape function \varphi i; this property is called linearity-preserving (see
Berger, Aftosmis, and Murman [3] for a review on linearity-preserving limiters in the
finite volume literature). One simple choice for the coefficients \beta ij consists of setting
\beta ij =

\int 
D
\nabla \varphi i\cdot \nabla \varphi j dx (note that we do not require \beta ij > 0 in (3.10)). One can also

use the mean-value coordinates, e.g., Floater [8, eq. 5.1]. Let us finally remark that
although using \beta ij = 1 is not a priori linearity-preserving, we have numerically verified
that this choice works reasonably well on quasi-uniform meshes.

Notice that \alpha i \in [0, 1] for all i \in \scrI and \alpha i = 1 if \sansG i is a local extremum of gh.
Moreover, if the coefficients \beta ij are defined so that the linearity-preserving property
holds, then the numerator of (3.10) behaves like h2\| D2g(\bfitxi )\| \ell 2(\BbbR d\times d) at some point
\bfitxi , whereas the denominator behaves like h\| \nabla g(\bfitzeta )\| \ell 2(\BbbR d) at some point \bfitzeta . Therefore,
we have \alpha i \approx h\| D2g(\bfitxi )\| \ell 2(\BbbR d\times d)/\| \nabla g(\bfitzeta )\| \ell 2(\BbbR d), that is to say \alpha i is of order h in the
regions where g is smooth and does not have a local extremum.

Let \psi \in C0,1([0, 1]; [0, 1]) be any positive function such that \psi (1) = 1. The
high-order smoothness-based graph viscosity is defined by setting

(3.11) dH,n
ij := dL,n

ij max(\psi (\alpha n
i (gh)), \psi (\alpha 

n
j (gh))), dH,n

ii :=  - 
\sum 

i \not =j\in \scrI (i)

dH,n
ij .

A typical choice for \psi consists of setting \psi (\alpha ) = \alpha 2. Then the provisional high-order
approximation is computed as follows:

(3.12)
\sum 

j\in \scrI (i)

mij

\tau 
(UH,n+1

j  - Un
j ) +

\sum 
j\in \scrI (i)

f(Un
j )\bfitc ij  - dH,n

ij (Un
j  - Un

i ) = 0.

One choice for g that we consider in some numerical tests reported at the end of
the paper consists of using the mathematical entropy; that is, g(\bfitu ) = \rho \Phi (\bfitu ) = S(\bfitu ).
Other possible options consist of using generalized entropies of the Euler equations,
g(\bfitu ) = \rho f(\Phi (\bfitu )). In particular, taking f(s) = 1 gives g(\bfitu ) = \rho , which is an extreme
case of generalized entropy; it is extreme in the sense that  - g(\bfitu ) is convex but not
strictly convex. Note in passing that it is shown in Guermond, Popov, and Tomas
[18] that using g(\bfitu ) = \rho guarantees positivity of the density provided the coefficients
\beta ij are defined to be positive, and mass lumping is used in (3.12). Another option,
which is somewhat similar to that of Jameson, Schmidt, and Turkel [25, eq. (12)] and
Jameson [24, p. 1490], consists of taking g(\bfitu ) = p. Note, however, that it might be

better to take p
1
\gamma to be entropy consistent, since p

1
\gamma is an extreme generalized entropy

for polytropic gas as shown in Harten [19, eq. (2.10a)]. Let us emphasize that strict
convexity of the entropy is not needed here for the purpose of the present paper.

Notice that we use the consistent mass matrix in (3.12) to reduce dispersion error
since it is known that the use of the consistent mass matrix corrects the dominating
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dispersion error (at least for piecewise linear approximation); see Christon, Martinez,
and Voth [6], Gresho, Sani, and Engelman [11], Guermond and Pasquetti [12], Thomp-
son [45]. The beneficial effects of the consistent mass matrix are particularly visible
when solving problems with nonsmooth solutions; see, e.g., [12, Fig. 5.5].

Although the above smoothness-based method has been used in the literature for
many years (e.g., [25]) and has been shown to work properly for scalar conservation
equations with convex flux (i.e., genuinely nonlinear flux), it is not robust. More
precisely, it may fail to converge properly in the presence of composite waves; that
is, the method may converge to a weak nonentropic solution. We refer the reader to
Guermond and Popov [15, sect. 6.5] and Kurganov, Petrova, and Popov [29, sect. 4]
where this effect is documented. For this reason, in the next section we describe a
method that is based on a measure of the entropy production and, from our experience,
is more robust than the smoothness-based technique.

3.4. Entropy viscosity commutator. We now introduce a method that is
formally high-order for any polynomial degree, contrary to the one introduced in
section 3.3. Our objective is to construct a high-order method that is entropy con-
sistent and close to being invariant domain preserving. We do not want to rely on
the yet to be explained limiting process to enforce entropy consistency. We refer
the reader to Lemmas 3.2 and 4.6 and section 6.1 in Guermond and Popov [15] and
Guermond and Popov [13, sect. 5.1] for counter-examples of methods that are in-
variant domain preserving but entropy violating. The heuristics we have in mind
is that limiting should be understood as a light polishing applied to a method that
is already entropy consistent and almost invariant domain preserving. Following an
idea introduced in Guermond et al. [16, 17], we construct a high-order graph vis-
cosity that is entropy consistent by estimating a nondimensional entropy residual.
However, contrary to the techniques introduced in [16, 17], we do not want the time
discretization to interfere with the estimation of the residual, so we now propose a
slightly different approach. Given the current approximation \bfitu n

h, we estimate the

next inviscid approximation by setting UG,n+1
i := Un

i  - \tau 
mi

\sum 
j\in \scrI (i) f(U

n
j )\bfitc ij . Es-

sentially, UG,n+1
i is the Galerkin approximation of \bfitu (tn+1). Let (\eta (\bfitv ),\bfitF (\bfitv )) be an

entropy pair for (2.1). We estimate the entropy residual for the degree of freedom i by

computing mi

\tau (UG,n+1
i  - Un

i )\cdot \eta \prime (U
n
i ) +

\sum 
j\in \scrI (i) \bfitF (Un

j )\cdot \bfitc ij . By using the definition of

UG,n+1
i , this is equivalent to computing

\sum 
j\in \scrI (i)(\bfitF (Un

j ) - \eta \prime (Un
i )

\sansT f(Un
j ))\cdot \bfitc ij := Nn

i .
At this point we need to realize that making the following change on the entropy
\rho f(s) \rightarrow \rho (f(s)  - \beta ), where \beta is an arbitrary constant, does not change the value
of Nn

i . To account for this invariance, we define the following relative entropy
\eta ni (U) = \rho (f(\Phi (U))  - f(\Phi (Un

i ))) and the corresponding entropy flux, \bfitF n
i (U) =

M(f(\Phi (U))  - f(\Phi (Un
i ))), with the convention U := (\rho ,M, E)\sansT . These definitions

are equivalent to \eta ni (U) = \eta (U) - \rho 
\rho n
i
\eta (Un

i ) and \bfitF n
i (U) = M(\eta (U)

\rho  - \eta (Un
i )

\rho n
i

). We set

Nn
i :=

\sum 
j\in \scrI (i)

(\bfitF n
i (U

n
j ) - ((\eta ni )

\prime (Un
i ))

\sansT f(Un
j ))\cdot \bfitc ij ,(3.13)

Dn
i :=

\bigm| \bigm| \bigm| \bigm| \bigm| \sum 
j\in \scrI (i)

\bfitF n
i (U

n
j )\cdot \bfitc ij

\bigm| \bigm| \bigm| \bigm| \bigm| +
d+2\sum 
k=1

\bigm| \bigm| \bigm| \partial uk
\eta ni (U

n
i )
\bigm| \bigm| \bigm| \times \bigm| \bigm| \bigm| \bigm| \bigm| \sum 

j\in \scrI (i)

fuk
(Un

j )\cdot \bfitc ij

\bigm| \bigm| \bigm| \bigm| \bigm| ,(3.14)

where fu1
, . . . , fud+2

are the \BbbR d-valued components of the flux f. We then construct a
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normalized entropy viscosity ratio:

(3.15) Rn
i =

| Nn
i | 

Dn
i

.

Notice that Rn
i \in [0, 1] and the definition of Rn

i is invariant by the following scaling
of the entropy: \rho f(s) \rightarrow \rho (\alpha f(s) - \beta ) for any \alpha , \beta \in \BbbR . The quantity Nn

i appearing
at the numerator in the definition of the entropy residual Rn

i can be interpreted as a
commutator. More specifically, Nn

i can be rewritten as follows:
\int 
D
(\nabla \cdot (\Pi h\bfitF (\bfitu n

h))  - 
(\eta ni )

\prime (Un
i )

\sansT \nabla \cdot (\Pi h(f(\bfitu 
n
h))))\varphi i d\bfitx , where \Pi h : C0(D;\BbbR d+2) \rightarrow \bfitP (\scrT h) is the Lagrange

interpolation operator. Notice in passing that Nn
i = 0 in the hypothetical case that

\eta : \BbbR d+2 \rightarrow \BbbR is linear. Finally, the high-order graph viscosity (or entropy viscosity
(EV)) is defined by setting

(3.16) dH,n
ij = dL,n

ij max(| Rn
i | , | Rn

j | ), dH,n
ii :=  - 

\sum 
i\not =j\in \scrI (i)

dH,n
ij ,

and the provisional high-order approximation is computed as follows:

(3.17)
\sum 

j\in \scrI (i)

mij

\tau 
(UH,n+1

j  - Un
j ) +

\sum 
j\in \scrI (i)

f(Un
j )\bfitc ij  - dH,n

ij (Un
j  - Un

i ) = 0.

Note again that we use the consistent mass matrix to reduce dispersion errors, as
explained in section 3.3.

Remark 3.3 (decay rate on Rn
i ). Let us now convincingly show that Rn

i is at least

one order smaller (in term of mesh size) than dL,n
ij . Let use denote F \prime \prime 

max and f \prime \prime max the
maximum over the convex hull of the states \{ Un

j \} j\in \scrI (i) of the matrix norm (say the

norm induced by the Euclidean norm in \BbbR d+2) of the Hessians D2\bfitF and D2f. Then,
denoting by Nn

i the numerator in (3.15), and recalling that D\bfitF (U) = \eta \prime (U)\sansT Df(U),
we have

\| Nn
i \| \ell 2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
j\in \scrI (i)

\bigl( 
\bfitF (Un

j ) - \bfitF (Un
i ) - \eta \prime (Un

i )
\sansT (f(Un

j ) - f(Un
i ))
\bigr) 
\cdot \bfitc ij

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\ell 2

\leq 1

2
(F \prime \prime 

max + \eta \prime (Un
i )f

\prime \prime 
max) max

j\in \scrI (i)
\| \bfitc ij\| \ell 2

\sum 
j\in \scrI (i)

\| Un
j  - Un

i \| 2\ell 2 .

Assuming that \eta \prime is not zero over Di and denoting by \eta \prime min the minimum of \| \eta \prime \| \ell 2
over conv(Un

j )j\in \scrI (i), the quantity \eta \prime min

\sum 
j\in \scrI (i) \| U

n
j  - Un

i \| \ell 2 is a lower bound for the

denominator in (3.15). The conclusion follows readily.

Remark 3.4 (choice of high-order graph viscosity). One advantage we see in the
EV (3.16) over the smoothness-based viscosity (3.11) is that, in addition to being
consistent for any polynomial degree, it is also consistent with at least one entropy
inequality. That is to say the viscosity is large when the entropy production is large
and it is small otherwise. In any case, we have observed that (3.16) always gives
a scheme that is more robust than (3.11) albeit being slightly more oscillatory. We
refer the reader to Guermond and Popov [15, sect. 6.5], where this issue is discussed
in detail.

Remark 3.5 (entropy). We have found in our numerical experiments that using

p
1
\gamma for polytropic gases is a very good choice to construct the entropy residual since
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it minimizes dissipation across contact discontinuities. Recall that p
1
\gamma is indeed an

entropy in the case of polytropic gases. All of the numerical tests reported at the end
of the paper are done with this entropy.

Remark 3.6 (entropy ansatz). In realistic applications the equation of state is
often tabulated, and the entropy \Phi (U) may be either unavailable or costly to estimate.
We have found that the pressure may be used as an ansatz for the entropy; one
can then replace (3.15) by setting Nn

i :=
\sum 

j\in \scrI (i) V
n
i \cdot \bfitc ij(\sansP n

j  - D\sansP (Un
i )

\sansT Un
j ), D

n
i :=

max(| \sansP max
i  - \sansP min

i | , \epsilon i)
\sum 

j\in \scrI (i) | V
n
i \cdot \bfitc ij | , with \epsilon i = \epsilon max(| \sansP max

i | , | \sansP min
i | ) and Vi :=

Mi/\rho i.

3.5. Slip boundary condition. Since some of the numerical examples reported
at the end of the paper involve using the slip boundary condition \bfitv \cdot \bfitn = 0, we explain
in this section how this condition is enforced with Lagrange finite elements.

The slip boundary condition can be imposed weakly by adding a penalty term
to the system as done in traditional discontinuous Galerkin formulations, but our
experience is that weakly imposing the slip boundary condition may cause severe
time-step restriction for explicit schemes; see, for example, Nazarov and Larcher [37,
sect. 4]. Therefore, we impose the slip boundary condition strongly. Let \partial D0 be the
part of the boundary where the condition \bfitv \cdot \bfitn = 0 has to be enforced, i.e., \partial D0 = \{ \bfitx \in 
\partial D | \bfitv (\bfitx , t)\cdot \bfitn (\bfitx ) = 0, a.e. t > 0\} . Let \scrI \partial be the set of the indices of the boundary
Lagrange nodes, and let \scrI \partial 

0 = \{ j \in \scrI \partial | \varphi j| \partial D0
\not \equiv 0\} . Let \scrF \partial 

h be the boundary faces of

the mesh. We assume that the mesh \scrT h is constructed so that there exists a subset \scrF \partial 
h0

of \scrF \partial 
h that exactly covers \partial D0. For any j \in \scrI \partial 

0 let (Fl)l\in Lj
be the list of the boundary

faces in \scrF \partial 
h0 such that \bfitx j belongs to Fl for all l \in Lj , and let \bfitn j

l := \bfitn | Fl
(\bfitx j) for all

l \in Lj ; then we set \widetilde \bfitn j = card(Lj)
 - 1
\sum 

l\in Lj
\bfitn j

l and \bfitn j := \widetilde \bfitn j/\| \widetilde \bfitn j\| \ell 2 . The vector \bfitn j

is an approximation of the outward pointing unit normal at the Lagrange nodes \bfitx j for
any j \in \scrI \partial 

0 . Let us now approximate the flux term
\int 
D
\nabla \cdot f(\bfitu )\varphi i d\bfitx . One integration

by parts gives the identity
\int 
D
\nabla \cdot f(\bfitu n)\varphi i d\bfitx =  - 

\int 
D
f(\bfitu n)\nabla \varphi i d\bfitx +

\int 
\partial D

(f(\bfitu n)\bfitn )\varphi i d\bfitx ,
which we approximate as follows:\int 

D

\nabla \cdot f(\bfitu n)\varphi i d\bfitx \approx 
\sum 

j\in \scrI (i)

 - f(Un
j )

\int 
D

\varphi j\nabla \varphi i d\bfitx + f(Un
j )

\sum 
F\in \scrF h\setminus \scrF \partial 

h0

\int 
F

\varphi j\varphi i\bfitn d\bfitx 

+ f(Un
j )\bfitn j

\sum 
F\in \scrF \partial 

h0

\int 
F

\varphi j\varphi i d\bfitx .

We then slightly change the definition of \bfitc ij given in (2.10) and set instead

(3.18) \bfitc ij :=  - 
\int 
D

\varphi j\nabla \varphi i d\bfitx +
\sum 

F\in \scrF h\setminus \scrF \partial 
h0

\int 
F

\varphi j\varphi i\bfitn d\bfitx + \bfitn j

\sum 
F\in \scrF \partial 

h0

\int 
F

\varphi j\varphi i d\bfitx .

The expressions (2.10) and (3.18) are identical if \bfitx i or \bfitx j are internal nodes, or
if \bfitx i and \bfitx j are boundary nodes and these two nodes sit on a flat portion of the
boundary. Notice also that (3.18) is an approximation of (2.10) that is consistent
with the polynomial degree of the finite element space when the boundary is smooth.

The boundary conditions are enforced at the end of each Euler substep of the
SSP RK algorithm. In particular, denoting by \bfitm n+1

h the approximation of the mo-
mentum at the time step tn+1, the slip boundary condition is enforced by replacing
Mn+1

j by Mn+1
j  - (Mn+1

j \cdot \bfitn j)\bfitn j for all the indices j in \scrI \partial 
0 .
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Lemma 3.7 (conservation). Let \bfitc ij be defined by (3.18). Assume that \scrI \partial = \scrI \partial 
0 ,

and let m\partial 
j :=

\int 
\partial D

\varphi j ds. Assume that Mn
j \cdot \bfitn j = 0 for all j \in \scrI \partial . Let \bfitU n+1 be the

update given by one of the following schemes: (3.1), (3.12), or (3.17); then\sum 
j\in \scrI 

mj\rho 
n+1
j =

\sum 
j\in \scrI 

mj\rho 
n
j ,

\sum 
j\in \scrI 

mj\sansE 
n+1
j =

\sum 
j\in \scrI 

mj\sansE 
n
j ,\sum 

j\in \scrI 
mjM

n+1
j =

\sum 
j\in \scrI 

mjM
n
j  - \tau 

\sum 
j\in \scrI 

m\partial 
j\sansP 

n
j \bfitn j .

Proof. Summing (3.1), (3.12), or (3.17) over i in \scrI and using the partition of
unity property together with (3.18) gives\sum 

i\in \scrI 
miU

n+1
i =

\sum 
i\in \scrI 

miU
n+1
i  - \tau 

\sum 
j\in \scrI \partial 

f(Un
j )\bfitn j

\sum 
F\in \scrF \partial 

h

\int 
F

\varphi j d\bfitx .

The rest of the proof follows from the definition of f and the boundary condition
Mj \cdot \bfitn j = 0 for all j \in \scrI \partial .

4. Quasiconcavity-based limiting. In this section we discuss the bounds we
want the numerical solution Un+1

i to satisfy, and we develop a novel limiting technique
that is convexity-based and does not invoke arguments like linearization, worst-case
scenario estimates, a posteriori fixes, or auxiliary discontinuous spaces as is often seen
in the literature. This technique takes its roots in Khobalatte and Perthame [27],
Perthame and Qiu [39], and Perthame and Shu [40]. We also refer to Zhang and
Shu [51, 52] and Jiang and Liu [26] for extensions in the context of the discontinuous
Galerkin approximation.

4.1. Bounds and quasi-concavity. Since the high-order update UH,n+1
i (using

either (3.12) or (3.17)) is not guaranteed to be oscillation free, and to preserve physical
bounds, some form of limiting must applied. The question is now the following: What
should be limited and how? Whichever representation is chosen for the dependent
variable (conserved, primitive, or characteristic variables), the Euler equations are
not known to satisfy any maximum or minimum principle, with the exception of the
minimal principle on the specific entropy. Despite this fundamental negative result
and with varying levels of success, a number of techniques have been proposed over
the years in the finite element literature to enforce some kinds of discrete maximum
principles (see, for instance, Boris and Book [5], Zalesak [49], L\"ohner et al. [35],
Kuzmin and M\"oller [30], Zalesak [50], and Lohmann and Kuzmin [34]). Some of these
limiting techniques enforce properties that are not necessarily satisfied by the Euler
equations, or in the best case scenario, satisfied by the first-order method of choice
(usually a Lax--Friedrichs-like first-order scheme).

In the present paper, we take a different point of view. In addition to the local
minimum principle on the specific entropy, the strategy that we propose consists of
enforcing bounds that are naturally satisfied by the low-order solution. More precisely,
let us set

\rho min
i := min

j\in \scrI (i)
(\rho n+1

ij , \rho nj ), \rho max
i := max

j\in \scrI (i)
(\rho n+1

ij , \rho nj ),(4.1)

Emin
i := min

j\in \scrI (i)
(E

n+1

ij , En
j ), Emax

i := max
j\in \scrI (i)

(E
n+1

ij , En
j ),(4.2)

smin
i := min

j\in \scrI (i)
\Phi (Un

j ).(4.3)
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We have already established in section 3.2 that \rho min
i \leq \rho L,n+1

i \leq \rho max
i , Emin

i \leq 
EL,n+1

i \leq Emax
i , and smin

i \leq \Phi (UL,n+1
i ). In the next section we are going to modify

the graph viscosity so that the resulting high-order update Un+1
i satisfies \rho min

i \leq 
\rho n+1
i \leq \rho max

i and smin
i \leq \Phi (Un+1

i ) (and possibly Emin
i \leq En+1

i \leq Emax
i if one wishes).

In general, the equation for the specific entropy may not be explicitly available
and, therefore, limiting the specific entropy may not be possible. An alternative
strategy consists of limiting the internal energy \rho e. Using the Frechet derivative
notation, a straightforward computation shows that D2(\rho e(\bfitu ))((\varrho , \bfitq , a), (\varrho , \bfitq , a)) =
 - 1

\rho (
\varrho 
\rho \bfitm  - \bfitq )2 for all directions (\varrho , \bfitq , a)\sansT \in \BbbR d+2 and all points \bfitu = (\rho ,\bfitm , E)\sansT \in \BbbR d+2,

thereby showing that the internal energy is concave with respect to the conserved
variables irrespective of the equation of state. Hence, the concavity of (\rho e) along with

the convex combination (3.9) implies that the low-order solution UL,n+1
i satisfies the

following discrete minimum principle:

(4.4) (\rho e)(UL,n+1
i ) \geq \varepsilon min

i := min
\Bigl( 

min
j\in \scrI (i)

(\rho e)(Un
j ), min

j\in \scrI (i)
(\rho e)(U

n+1

ij )
\Bigr) 
.

In order to unify into one single framework all of the bounds that we want to
enforce, we are going to rely on the notion of quasi-concavity, the definition of which
we now recall.

Definition 4.1 (quasi-concavity). Given a convex set \scrA \subset \BbbR m, we say that a
function \Psi : \scrA \rightarrow \BbbR is quasi-concave if every upper level set of \Psi is convex; that is,
the set L\lambda (\Psi ) := \{ U \in \scrA | \Psi (U) \geq \lambda \} is convex for any \lambda \in \BbbR in the range of \Psi .

Note in passing that concavity implies quasi-concavity. We are going to use the
above definition in the following three settings: (i) \scrA = \BbbR d+2 and \Psi (U) = \rho  - \rho min

i or
\Psi (U) = \rho max

i  - \rho . Note that in both cases the upper level sets are half spaces (i.e., these
sets are obviously convex). (ii) \scrA = \{ U := (\rho ,\bfitm , E) | \rho > 0\} and \Psi (U) = (\rho e) - \varepsilon min

i .
We have shown above that (\rho e)(U) is concave provided \rho > 0 (the Hessian of \rho e is
nonpositive); then it follows that \{ U := (\rho ,\bfitm , E) | \rho > 0, e > 0\} is convex. (iii)
\scrA = \{ U := (\rho ,\bfitm , E) | \rho > 0, e > 0\} , \Psi (U) = \Phi (U)  - smin

i . The quasi-convexity of
\Psi : \scrA \rightarrow \BbbR is proved in Serre [42, Thm. 8.2.2].

Remark 4.2 (concavity versus quasi-concavity). Note that the two sets

\{ (\rho ,\bfitm , E) | \rho > 0, e > 0, s \geq r\} , \{ (\rho ,\bfitm , E) | \rho > 0, \rho e > 0, \rho (s - r) \geq 0\} 

are identical. In the first case, quasi-concavity is invoked to prove that the upper level
sets are convex, whereas in the second case one just has to rely on concavity since the
three functions \rho , \rho e(\bfitu ), and \rho (\Phi (\bfitu ) - r) are concave. It is easier to impose concave (or
convex) constraints than quasi-concave ones. More precisely, in practice it is simpler to
apply Newton's method on a concave function than on a quasi-concave function; in the
first case Newton's method is guaranteed to converge under appropriate assumptions
on the initial guess, whereas it may not in the second case.

4.2. An abstract limiting scheme. Simple linear constraints, such as \rho min
i \leq 

\rho n+1
i \leq \rho max

i and E
min

i \leq En+1
i \leq E

max

i , can be easily enforced by using the Flux
Transport Corrected paradigm of Zalesak [49] (see also Boris and Book [5]). However,
to the best of our knowledge, the Zalesak's grouping methodology cannot be (easily)
extended to handle general convex constraints like the minimum principle on the
specific entropy without losing second-order accuracy. We introduce in this section a
methodology that does exactly that.
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We start as in the FCTmethodology by estimating the differenceUH,n+1
i  - UL,n+1

i .
Subtracting (3.1) from (3.12) (or (3.17)) we obtain the following identity satisfied by
the low-order and the (provisional) high-order solution:\sum 
j\in \scrI (i)

mij(U
H,n+1
j  - Un

j ) - \tau d
H,n
ij (Un

j  - Un
i ) - \delta ijmi(U

L,n+1
i  - Un

i )+\tau d
L,n
ij (Un

j  - Un
i ) = 0.

This equality is rewritten in the following form better suited for postprocessing:

mi(U
H,n+1
i  - UL,n+1

i ) =
\sum 

j\in \scrI (i)

\Delta ij(U
H,n+1
j  - Un

j ) + \tau (dH,n
ij  - dL,n

ij )(Un
j  - Un

i ),

where we have set \Delta ij := mi\delta ij - mij . The above identity can be rewritten as follows:

(4.5)

\left\{     
mi(U

H,n+1
i  - UL,n+1

i ) =
\sum 

j\in \scrI (i)

\bfitA n
ij ,

\bfitA n
ij := \Delta ij

\bigl( 
UH,n+1

j  - Un
j  - (UH,n+1

i  - Un
i )
\bigr) 
+ \tau (dH,n

ij  - dL,n
ij )(Un

j  - Un
i ),

where we used
\sum 

j\in \scrI (i) \Delta ij = 0. Observe that the matrix \bfitA n is skew-symmetric; the

immediate consequence is that
\sum 

i\in \scrI miU
H,n+1
i =

\sum 
i\in \scrI miU

L,n+1
i , i.e., the total mass

of the provisional high-order solution is the same at that of the low-order solution.
The next step consists of introducing symmetric limiting parameters \ell ij = \ell ji \in 

[0, 1] and estimating \ell ij so that the new quantity Un+1
i = UL,n+1

i + 1
mi

\sum 
j\in \scrI (i) \ell ij\bfitA 

n
ij

satisfies the expected bounds. Note again that the skew-symmetry of \bfitA n together
with the symmetry of the limiter implies that

\sum 
i\in \scrI miU

n+1
i =

\sum 
i\in \scrI miU

L,n+1
i for

any choice of limiter \ell ij , i.e., the limiting process is conservative. Using the notation
introduced at the end of section 4.1, we seek \ell ij so that \Psi (Un+1

i ) \geq 0.
We now depart from the FCT algorithm as described in [49] by introducing \lambda j :=
1

card(\scrI (i)) - 1 , j \in \scrI (i) \setminus \{ i\} , and rewriting (4.5) as follows:

Un+1
i =

\sum 
j\in \scrI (i)\setminus \{ i\} 

\lambda j(U
L,n+1
i + \ell ijPij), with Pij :=

1

mi\lambda j
An

ij .(4.6)

Note that Un+1
i = UL,n+1

i if \ell ij = 0 and Un+1
i = UH,n+1

i if \ell ij = 1. The following
lemma is the driving force of the limiting technique that we propose.

Lemma 4.3. Let \Psi (\bfitu ) : \scrA \rightarrow \BbbR be a quasi-concave function. Assume that the

limiting parameters \ell ij \in [0, 1] are such that \Psi (UL,n+1
i + \ell ijPij) \geq 0 for all j \in 

\scrI (i)\setminus \{ i\} ; then the following inequality holds true:

\Psi 

\Biggl( \sum 
j\in \scrI (i)\setminus \{ i\} 

\lambda j(U
L,n+1
i + \ell ijPij)

\Biggr) 
\geq 0.

Proof. Let L0 = \{ U \in \scrA | \psi (U) \geq 0\} . By definition all of the limited states

UL,n+1
i +\ell ijPij are in L0 for all i \not = j \in \scrI (i). Since \Psi is quasi-concave, the upper level

set L0 is convex. As a result, the convex combination
\sum 

j\in \scrI (i)\setminus \{ i\} \lambda j(U
L,n+1
i + \ell ijPij)

is in L0, i.e., \Psi 
\bigl( \sum 

j\in \scrI (i)\setminus \{ i\} \lambda j(U
L,n+1
i + \ell ijPij)

\bigr) 
\geq 0, which concludes the proof.

Lemma 4.4. Let \ell ij be defined by

(4.7) \ell ij =

\Biggl\{ 
1 if \Psi (UL,n+1

i + Pij) \geq 0,

max\{ \ell \in [0, 1] | \Psi (UL,n+1
i + \ell Pij) \geq 0\} otherwise
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for every i \in \scrI and j \in \scrI (i). The following two statements hold true: (i) \Psi (UL,n+1
i +

\ell Pij) \geq 0 for every \ell \in [0, \ell ij ]. (ii) In particular, setting \ell ij = min(\ell ij , \ell 
j
i ), we have

\Psi (UL,n+1
i + \ell ijPij) \geq 0 and \ell ij = \ell ji for every i \in \scrI and j \in \scrI (i).

Proof. (i) First, if \Psi (UL,n+1
i + Pij) \geq 0, we observe that \Psi (UL,n+1

i + \ell Pij) \geq 0

for any \ell \in [0, 1] because UL,n+1
i \in L0(\Psi ), UL,n+1

i + Pij \in L0(\Psi ), and L0(\Psi ) is

convex. Second, if \Psi (UL,n+1
i + Pij) < 0, we observe that \ell ij is uniquely defined,

and for any \ell \in [0, \ell ij ] we have \Psi (UL,n+1
i + \ell Pij) \geq 0 because UL,n+1

i \in L0(\Psi ),

UL,n+1
i + \ell ijPij \in L0(\Psi ), and L0(\Psi ) is convex. (ii) Since \ell ij = min(\ell ij , \ell 

j
i ) \leq \ell ij ,

the above construction implies that \Psi (UL,n+1
i + \ell ijPij) \geq 0. Note, finally, that

\ell ij = min(\ell ij , \ell 
j
i ) = \ell ji.

Remark 4.5 (extension to general hyperbolic systems). Notice that Lemmas 4.3
and 4.4 are not specific to the Euler equations. These results can be used to limit
solutions of arbitrary hyperbolic systems where the invariant domain is described by
quasi-concave constraints.

4.3. Application to the Euler equations. In this section we explain how
to use Lemmas 4.3 and 4.4 to enforce the quasi-concave constraints described in
section 4.1. The algorithm goes as follows:

(i) Given the state Un, which we assume to be admissible, we compute UL,n+1

and UH,n+1 as explained in section 3.1 as well as section 3.3 or 3.4.
(ii) The density is limited by invoking Lemmas 4.3 and 4.4 and the bounds de-

scribed in section 4.1 to enforce the quasi-concave constraints \Psi (U) = \rho  - \rho min
i \geq 0

and \Psi (U) = \rho max
i  - \rho \geq 0. The resulting limiter is denoted by \ell \rho ij and the details on

the computation of \ell \rho ij are given in section 4.4.

(iii) The internal energy \rho e := E - \bfitm 2

2\rho is limited by invoking Lemmas 4.3 and 4.4 to

enforce the quasi-concave constraint \Psi (U) = E  - \bfitm 2

2\rho  - \varepsilon min
i \geq 0. The corresponding

limiter is denoted \ell eij \leq \ell \rho ij and the details on the computation of \ell eij are given in
section 4.5.

(iv) The minimum principle on the specific entropy is enforced by using \Psi (U) =
\Phi (U)  - smin

i . The details on the computation of the corresponding limiter \ell sij \leq \ell eij
are given in section 4.6.

(v) Finally, upon setting \ell ij := \ell sij , the update Un+1 is computed by setting

Un+1 = UL,n+1+ 1
mi

\sum 
j\in \scrI (i) \ell ij\bfitA 

n
ij . This type of limiting can be iterated a few times

by observing that

UH,n+1 = UL,n+1 +
1

mi

\sum 
j\in \scrI (i)

\ell ij\bfitA 
n
ij +

1

mi

\sum 
j\in \scrI (i)

(1 - \ell ij)\bfitA 
n
ij .

Then setting U(0) := UL,n+1 and \bfitA 
(0)
ij := \bfitA n

ij , the iterative algorithm proceeds as
shown in Algorithm 1. In the numerical simulations reported at the end of this paper
we have taken kmax = 1.

Remark 4.6 (other quantities). As observed in section 4.1 it is also possible
to impose additional limiting based on quasi-concave constraints. For example, one
could limit the total energy from below and from above. Numerical experiments reveal
that this extra limiting does not improve the performance of the scheme. All of the
tests reported in section 5 are done by limiting the density and the specific entropy
as described above. We have found that limiting the internal energy delivers second-
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CONVEX LIMITING A3227

Algorithm 1. Iterative limiting.

Input: UL,n+1, \bfitA n, and kmax

Output: Un+1

1: Set U(0) := UL,n+1 and \bfitA (0) := \bfitA n

2: for k = 0 to kmax  - 1 do
3: Compute limiter matrix \ell (k)

4: Update U(k+1) = U(k) + 1
mi

\sum 
j\in \scrI (i) \ell 

(k)
ij \bfitA 

(k)
ij

5: Update \bfitA 
(k+1)
ij = (1 - \ell 

(k)
ij )\bfitA 

(k)
ij

6: end for
7: Un+1 = U(kmax)

order accuracy in the maximum norm, but has a tendency to overdissipate contact
discontinuities. Note that limiting the specific entropy amounts in effect to limiting
the internal energy.

Remark 4.7 (equation of state). So far, everything we have described is inde-
pendent of the equation of state.

4.4. Limiting on the density. The limiting on the density as specified by (4.7)
proceeds as follows. To avoid divisions by zero, we introduce the small parameter
\epsilon := 10 - 14 and we set \epsilon i = \epsilon \rho max

i for all i \in \scrI . Let us denote by P \rho 
ij the \rho -component

of \bfitP ij , and let us set

(4.8) \ell i,\rho j =

\left\{       
min(

| \rho min
i  - \rho L,n+1

i | 
| P\rho 

ij | +\epsilon i
, 1) if \rho L,n+1

i + P \rho 
ij < \rho min

i ,

1 if \rho min
i \leq \rho L,n+1

i + P \rho 
ij \leq \rho max

i ,

min(
| \rho max

i  - \rho L,n+1
i | 

| P\rho 
ij | +\epsilon i

, 1) if \rho max
i < \rho L,n+1

i + P \rho 
ij .

Setting \Psi +(U) = \rho  - \rho min
i and \Psi  - (U) = \rho max

i  - \rho , we have the following result whose
proof is left to the reader.

Lemma 4.8. The definition (4.8) implies that \Psi \pm (U
L,n+1
i + \ell Pij) \geq 0 for all

\ell \in [0, \ell i,\rho j ].

Remark 4.9 (co-volume EOS). In the case of the co-volume equation of state,
p(1 - b\rho ) = (\gamma  - 1)\rho e, it is known that \scrA = \{ (\rho ,\bfitm , E) | \rho > 0, e > 0, s \geq smin, b\rho < 1\} 
is an invariant domain; see Guermond and Popov [14, Prop. A.1]. The above method
will enforce the additional affine constraint 1 - b\rho > 0 automatically.

Remark 4.10 (total energy). The limiting on the total energy can be done exactly
as for the density. Let us emphasize though that we have not found this operation
to be useful, and it is not done in the numerical tests reported at the end of this
paper.

4.5. Local minimum on the internal energy \bfitrho \bfite . In this section we explain
how to compute the limiter to enforce the local minimum principle on the internal
energy \rho e as stated in (4.4).

Upon setting \Psi (U) := (\rho e)(U)  - \varepsilon min
i with U := (\rho ,\bfitm , E) and \varepsilon min

i defined in

(4.4), by virtue of Lemmas 4.3 and 4.4, we have to estimate \ell i,ej \in [0, \ell i,\rho j ] so that

\Psi (UL,n+1
i + \ell Pij) \geq 0 for all \ell \in [0, \ell i,ej ]. In order to facilitate this computation, we
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A3228 J.-L. GUERMOND, M. NAZAROV, B. POPOV, AND I. TOMAS

define the auxiliary function \psi : \{ U | \rho > 0\} \rightarrow \BbbR ,

\psi (U) := \rho \Psi (U) = (\rho 2e)(U) - \varepsilon min
i \rho = \rho E  - 1

2
\bfitm 2  - \varepsilon min

i \rho .

Then the above problem is equivalent to seeking \ell i,ej \in [0, \ell i,\rho j ] so that \psi (UL,n+1
i +

\ell Pij) \geq 0 for all \ell \in [0, \ell i,ej ]. The key observation is that now \psi is a quadratic
functional with

D\psi (U) =

\left(  E  - \varepsilon min
i

 - \bfitm 
\rho 

\right)  , D2\psi (U) =

\left(  0 0\sansT 1
0  - \BbbI d 0
1 0\sansT 0

\right)  .

Then upon setting a := 1
2P

\sansT 
ijD

2\psi Pij , b := D\psi (UL,n+1
i )\cdot Pij , and c := \psi (UL,n+1

i ), we
have

\psi (UL,n+1
i + tPij) = at2 + bt+ c.

Let t0 be the smallest positive root of the equation at2+bt+c = 0, with the convention
that t0 = 1 if the equation has no positive root. Then we choose \ell i,ej to be such that

(4.9) \ell i,ej = min(t0, \ell 
i,\rho 
j ).

Lemma 4.11. The definition (4.9) implies that \Psi (UL,n+1
i + \ell Pij) \geq 0 for all \ell \in 

[0, \ell i,ej ].

Proof. If there is no positive root to the equation at2+bt+c = 0 and since we have
established that c = \psi (UL,n+1

i ) \geq 0 (see (4.4)), we have at2 + bt+ c \geq 0 for all t \geq 0;

that is, \Psi (UL,n+1
i + \ell Pij) \geq 0 for all \ell \geq 0, and in particular this is true for all \ell \in 

[0, \ell i,ej ]. Otherwise, if there is at least one positive root to the equation at2+bt+c = 0,

then denoting by t0 the smallest positive root, we have at2+bt+c \geq 0 for all t \in [0, t0]
(if not, there would exist t1 \in (0, t0) s.t. at

2
1 + bt1 + c < 0, and the intermediate value

theorem would imply the existence a root t\ast \in (0, t1) which contradict that t0 is the

smallest positive root). This implies that \Psi (UL,n+1
i + \ell Pij) \geq 0 for all \ell \in [0, t0], and

in particular this is true for all \ell \in [0, \ell i,ej ] owing to (4.9).

Remark 4.12 (equation of state). Observe that the proposed limiting on \rho e is
independent of the equation of state.

4.6. Minimum principle on the specific entropy. We now describe how to
compute the limiter to enforce the local minimum principle on the specific entropy.
Khobalatte and Perthame [27] is the first paper we are aware of where this type of
limiting is done.

By virtue of Lemmas 4.3 and 4.4, we have to estimate \ell i,sj \in [0, \ell i,ej ] so that

\Psi (UL,n+1
i + \ell Pij) \geq 0 for all \ell \in [0, \ell i,sj ], with \Psi (U) := \Phi (U) - smin

i , where we recall
that \Phi (U) := s(\rho , e(U)) is the specific entropy as a function of the conserved variables.

Lemma 4.13. Let t0 be defined as follows: (i) If \Psi (UL,n+1
i + Pij) \geq 0, then we

set t0 = 1. (ii) If \Psi (UL,n+1
i + Pij) < 0 and \Psi (UL,n+1

i ) > 0, we set t0 to be the

unique positive root to the equation \Psi (UL,n+1
i + tPij) = 0. (iii) If \Psi (UL,n+1

i +Pij) <

0 and \Psi (UL,n+1
i ) = 0, the equation \Psi (UL,n+1

i + tPij) = 0 has exactly two roots
(possibly equal) and we take t0 to be the largest nonnegative root. More precisely, if

D\psi (UL,n+1
i )\cdot Pij \leq 0, then t0 = 0, and if D\psi (UL,n+1

i )\cdot Pij > 0, then t0 > 0 is the

unique positive root of \Psi (UL,n+1
i + tPij) = 0 and has to be computed. Then setting

\ell i,sj = min(t0, \ell 
i,e
j ), we have \Psi (UL,n+1

i + \ell Pij) \geq 0 for all \ell \in [0, \ell i,sj ].
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CONVEX LIMITING A3229

Proof. Let us first observe that the equation \Psi (UL,n+1
i + tPij) = 0 has at most

two roots (possibly equal) because the upper level set L0 = \{ U | \Psi (U) \geq 0\} is convex,
and any line that intersects the upper level set crosses the boundary at two points, at
most, say t - \leq t+ (t - = t+ when the line is tangential to the boundary of the upper

level set). Note that if there are two roots, then t - \leq 0 \leq t+, since \Psi (UL,n+1
i ) \geq 0.

(i) If \Psi (UL,n+1
i + Pij) \geq 0, then t+ \geq 1 and the entire segment \{ UL,n+1

i + tPij | t \in 
[0, t0 = 1]\} is in L0 by convexity. (ii) If \Psi (UL,n+1

i + Pij) < 0 and \Psi (UL,n+1
i ) > 0,

then t+ \in (0, 1), and upon setting t0 = t+, the entire segment \{ UL,n+1
i + tPij | t \in 

[0, t0]\} is in L0 by convexity. (iii) If \Psi (UL,n+1
i + Pij) < 0 and \Psi (UL,n+1

i ) = 0,

there are two possibilities: (i) D\psi (UL,n+1
i )\cdot Pij \leq 0; and (ii) D\psi (UL,n+1

i )\cdot Pij > 0. If

D\psi (UL,n+1
i )\cdot Pij \leq 0, then by convexity \Psi (UL,n+1

i + tPij) < 0 for all t > 0. Hence,

t+ = 0 is the largest nonnegative root of the equation \Psi (UL,n+1
i + tPij) = 0 and,

therefore, t0 = t+ = 0. In the remaining case, D\psi (UL,n+1
i )\cdot Pij > 0, we have that

0 < t+ < 1 and t0 = t+.

Let us now explain how the above line search can be done efficiently. Thermody-
namic principles imply that there exists a smooth function g : \BbbR +\times \BbbR \rightarrow \BbbR + such that
\rho e = g(s, \rho ). Note that the identity \partial se(\rho , s) =

1
\partial es(\rho ,e)

together with the fundamental

thermodynamic inequality \partial es(\rho , e) > 0, which is equivalent to the temperature being
positive, implies \partial sg(\rho , s) > 0. Since \partial sg > 0, the minimum principle on the specific
entropy \Phi (U)  - smin

i \geq 0 is equivalent to enforcing g(s, \rho ) = \rho e \geq g(smin
i , \rho ); i.e.,

\Psi (U) := \rho e(U)  - g(smin
i , \rho ) \geq 0. When the function g(s, \rho ) satisfies \partial \rho \rho g \geq 0, the

function \Psi (U) is concave with respect to the conserved variables; as a result, the line

search h(t) := \psi (UL,n+1
i + tPij) = 0 can be done efficiently because h is concave and

h(0) \geq 0. If h(1) \geq 0, we set t0 = 1, and if h(1) < 0, we use a combination of secant
and Newton methods to find the unique 0 \leq t0 < 1 such that h(t0) = 0. For example,
the co-volume equation of state falls into this category since in this case we have
\rho e = \rho \gamma 

(1 - b\rho )\gamma  - 1 exp((\gamma  - 1)(s  - s0)) =: g(s, \rho ). This is also the case for the stiffened

gas equation of state, \rho e = e0\rho +p\infty (1 - b\rho )+ \rho \gamma 

(1 - b\rho )\gamma  - 1 exp((\gamma  - 1)(s - s0)) =: g(s, \rho ),

where e0, s0, and p\infty are are constant coefficients characteristic of the thermodynamic
properties of the fluid; see Metayer and Saurel [36] for details.

In the general case, i.e., when g(s, \rho ) does not satisfy \partial \rho \rho g \geq 0, we can use a
different strategy for imposing \Phi (U) - smin

i \geq 0. Namely, using that \rho > 0 and using
again a change of notation, we transform the constraint to \Psi (U) := \rho \Phi (U) - smin

i \rho \geq 0.
Note that the function  - \rho \Phi (U) is a mathematical entropy for the Euler system, and
under the standard assumptions (hyperbolicity and positive temperature) it is convex;

see Harten et al. [21, Thm. 2.1]. Therefore, the line search h(t) := \psi (UL,n+1
i + tPij) =

0 can be done efficiently because h is concave and h(0) \geq 0. If h(1) \geq 0, we set t0 = 1,
and if h(1) < 0, we use a combination of secant and Newton methods to find the unique
0 \leq t0 < 1 such that h(t0) = 0.

4.7. Relaxation. It is observed in Khobalatte and Perthame [27, sect. 3.3] that
strictly enforcing the minimum principle on the specific entropy degrades the converge
rate to first-order; it is said therein that ``It seems impossible to perform second-
order reconstruction satisfying the conservativity requirements . . . and the maximum
principle on S."" We have also observed this phenomenon. Moreover, it is well known
that when applied to scalar conservation equations, limiting (in some broad sense)
reduces the accuracy to first-order near maxima and minima of the solution. One
typical way to address this issue in the finite volume literature consists of relaxing
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the slope reconstructions; see Harten and Osher [20] and Schmidtmann, Abgrall, and
Torrilhon [41, sect. 2.1]. In the present context, since we do not have any slope to
reconstruct, we are going to relax the constraints so that the violation of the constraint
is second-order accurate.

4.7.1. Relaxation on the density and the internal energy. Let us denote
by \varrho one of the quantities that we may want to limit from below, excluding the specific
entropy, say \rho ,  - \rho , or (\rho e), and let \varrho min be the corresponding bound given by the
technique described in section 4.1. (Recall that limiting  - \rho from below is equivalent
to limiting \rho from above.) For each i \in \scrI , we set \Delta 2\varrho ni :=

\sum 
i \not =j\in \scrI (i) \varrho 

n
i  - \varrho nj , and we

define

\Delta 2\varrho ni :=
1

2card(\scrI (i))
\sum 

i \not =j\in \scrI (i)

\biggl( 
1

2
\Delta 2\varrho ni +

1

2
\Delta 2\varrho nj

\biggr) 
,(4.10)

\widetilde \Delta 2\varrho ni := minmod
\Bigl\{ 1
2
\Delta 2\varrho nj | j \in \scrI (i)

\Bigr\} 
,(4.11)

where the minmod function of a finite set is defined to be zero if there are two numbers
of different sign in this set, and it is equal to the number whose absolute value is the
smallest otherwise. Then we propose two types of relaxation defined as follows:

\varrho min
i = max((1 - rh)\varrho 

min
i , \varrho min

i  - | \Delta 2\varrho ni | ),(4.12) \widetilde \varrho min
i = max((1 - rh)\varrho 

min
i , \varrho min

i  - | \widetilde \Delta 2\varrho ni | ),(4.13)

where rh = (mi

| D| )
1.5
d . When applying limiting we use either \varrho min

i or \widetilde \varrho min
i instead of

\varrho min
i . It is shown in the numerical section that both relaxations are robust.

Remark 4.14 (relaxation versus no relaxation). We have observed numerically
that the proposed method is second-order accurate in the L1-norm without relaxation
if limiting is done on the density and the internal energy. Relaxation is necessary
only to get second-order accuracy in the L\infty -norm. We have observed though that
the minmod relaxation is slightly more restrictive than the other one since it does not
deliver second-order accuracy in the maximum norm; only the averaging relaxation
(4.12) has been found to give second-order in the L\infty -norm.

Remark 4.15 (positivity). Note that the somewhat ad hoc threshold (1  - rh)
in the above definitions is positive and, when applied to the density or the internal
energy, guarantees positivity of the density and the internal energy. The exponent
1.5 is somewhat ad hoc; in principle, one could take rh = (mi

| D| )
\delta 
d with \delta < 2. Taking

\delta = 2 would require one to multiply the tolerance | \Delta 2\varrho ni | by a problem-dependent
constant. Taking \delta = 1.5 gives uniform performance of the method for all meshes
without tuning any constant.

4.7.2. Relaxation on the specific entropy. We proceed as in Khobalatte
and Perthame [27, sect. 3.3] and relax the lower bound on the specific entropy more
aggressively than on the density since in smooth regions this function is constant. Let
\varrho be the quantity associated with the constraint on the specific entropy; it could be
s or exp(s) (i.e., \rho e/\rho \gamma in the case of polytropic gases), depending on the way one
chooses to enforce the minimum principle on the specific entropy (see section 4.6).
Let \bfitx ij = 1

2 (\bfitx i + \bfitx j). We measure the local variations of \varrho by setting \Delta \varrho ni =
maxi\not =j\in \scrI (i)(\varrho 

n(\bfitx ij) - \varrho min
i ) and we relax \varrho min

i by setting

(4.14) \varrho min
i = max((1 - rh)\varrho 

min
i , \varrho min

i  - \Delta \varrho ni ).
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Note that contrary to the appearances, and as already observed in [27], the size of
the relaxation is \scrO (h2): In the vicinity of shocks, there is no need for relaxation since
the first-order viscosity takes over and thereby makes the solution minimum principle
preserving on the specific entropy. In smooth regions, i.e., isentropic regions, the
specific entropy is constant, and \Delta \varrho ni measures the local curvature of s induced by
the nonlinearity of s, which is to say \Delta \varrho ni is \scrO (h2).

Remark 4.16 (positivity). The threshold (1  - rh)\varrho 
min
i guarantees positivity of

the internal energy. It also enforces a weak minimum principle on the specific entropy
when using \varrho = \rho e

\rho \gamma in the case of polytropic gases.

5. Numerical illustrations. We report in this section numerical tests we have
done to illustrate the performance of the proposed method. All of the tests are done
with the equation of state p = (\gamma  - 1)\rho e, i.e., s(\rho , e) = 1

\gamma  - 1 log(\rho e/\rho 
\gamma ).

5.1. Technical details. Three different codes implementing the method de-
scribed in the paper have been written to ensure reproducibility. Limiting is done
only once in the three codes, i.e., kmax = 1. The three codes use the same low-order
method (GMS-GV1) described in section 3.1. For two of these codes the high-order
method is the entropy viscosity (EV) method as described in section 3.4; the third
code uses the smoothness-based viscosity described in section 3.3.

The first code, henceforth called Code 1, does not use any particular software.
It is based on Lagrange elements on simplices. This code has been written to be
dimension-independent, i.e., the same data structure and subroutines are used in
one dimension and in two dimensions. The two-dimensional meshes used for Code 1
are nonuniform triangular Delaunay meshes. All of the computations reported in the
paper are done with continuous \BbbP 1 elements. The high-order method uses the entropy

viscosity commutator described in (3.15)--(3.16) with the entropy p
1
\gamma . Limiting on the

density is enforced by using the technique described in section 4.4. The bounds on
the density are relaxed by using the averaging technique described in section 4.7.
The minimum principle on the specific entropy exp((\gamma  - 1)s) \geq exp((\gamma  - 1)smin) is
enforced by using the method described in section 4.6 with the constraint \Psi (U) :=
\rho e  - \varrho min\rho \gamma \geq 0, where we recall that \rho e/\rho \gamma = exp((\gamma  - 1)s). The lower bound
on the specific entropy is defined by using \varrho min

i = minj\in \scrI (i) \rho 
n
i e

n
i /(\rho 

n
i )

\gamma (instead of
(4.3)), and \varrho min

i is relaxed by using (4.14) with \varrho = \rho e/\rho \gamma . No limiting on the internal
energy is applied in Code 1; the positivity of the internal energy is guaranteed by the
minimum principle on the specific entropy.

The second code, henceforth called Code 2, uses the open-source finite element
library FEniCS (see, e.g., Logg, Mardal, and Wells [33]) and the computations are
done on simplices. The implementation in FEniCS is independent of the space dimen-
sion and the polynomial degree of the approximation. The library is fully parallel.
All of the numerical integrations are done exactly by automatically determining the
quadrature degree with respect to the complexity of the underlying integrand and
the polynomial space. The results reported in the paper use the EV method with

the entropy p
1
\gamma . The limiting and bound relaxation is done on the density, and the

specific entropy is exactly like in Code 1. We refer the reader to the description of
Code 1 for the details.

The last code, henceforth called Code 3, is based on the open-source finite ele-
ment library deal.II; see Arndt et al. [1] and Bangerth, Hartmann, and Kanschat [2].
The tests reported in the paper are done with continuous \BbbQ 1 (quadrilateral) elements.
The code is written in a dimension-independent fashion, and all of the computational
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tasks (e.g., assembly, linear solvers, and output) are implemented in parallel via mes-
sage passing interface (MPI). This code implements the smoothness-based high-order
graph viscosity described in section 3.3 with \beta ij =

\int 
D
\nabla \varphi i\cdot \nabla \varphi j dx for all i, j. All

the computations reported in the paper are done with g(\bfitu ) = S(\bfitu ) and \psi (\alpha ) = \alpha 4.
(We have verified that the other choices for g(\bfitu ) mentioned in section 3.3 produce
comparable results.) As stated at the beginning of section 3.3, this method introduces
additional diffusion close to local extrema (whether smooth or not). While this does
not affect the second-order decay rates in the L1-norm, it degrades the accuracy in
the L\infty -norm. Limiting is done on the density and the specific entropy exactly as
explained above for Code 1. The minimum principle on the specific entropy is relaxed
as explained in section 4.7.2, but no relaxation is applied on the density bounds.

The time stepping is done in the three codes by using the SSP(3,3) method
(three stages, third-order); see Shu and Osher [43, eq. (2.18)] and Kraaijevanger [28,
Thm. 9.4]. The time step is recomputed at each time step by using the formula

\tau = CFL\times mini\in \scrI 
mi

| dL,n
ii | 

with dL,n
ii =  - 

\sum 
ij d

L,n
ij given in (3.2).

When working with manufactured solutions, for q \in [1,\infty ], we compute a con-
solidated error indicator at time t by adding the relative error in the Lq-norm of the
density, the momentum, and the total energy as follows:

\delta q(t) :=
\| \rho h(t) - \rho (t)\| Lq(D)

\| \rho (t)\| Lq(D)
+

\| \bfitm h(t) - \bfitm (t)\| \bfitL q(D)

\| \bfitm (t)\| \bfitL q(D)
+

\| Eh(t) - E(t)\| Lq(D)

\| E(t)\| Lq(D)
.(5.1)

As some tests may exhibit superconvergence effects we also consider the fully discrete
consolidated error indicator \delta \Pi q (t) defined as above with \rho (t), \bfitm (t), and E(t) replaced
by \Pi h\rho (t), \Pi h\bfitm (t), and \Pi hE(t), where \Pi h is the Lagrange interpolation operator.

5.2. One-dimensional smooth wave. We start with a one-dimensional test,
the purpose of which is to estimate the convergence rate of the method with a very
smooth solution. We consider the following exact solution to the Euler equations:
v(x, t) = 1, p(x, t) = 1, and

\rho (x, t) =

\Biggl\{ 
1 + 26(x1  - x0)

 - 6(x - t - x0)
3(x1  - x+ t)3 if x0 \leq x - t < x1,

1 otherwise
(5.2)

with x0 = 0.1, x1 = 0.3, and \gamma = 7
5 . The computational domain is D = (0, 1), and

the computation is done from t = 0 to t = 0.6. The consolidated error indicator in
the maximum norm \delta \infty (t) is reported in Table 1. Note that we report the discrete
error indicator \delta \Pi \infty (t) for Code 1 (based on the EV method) in order to show that
we obtain \scrO (h3) superconvergence in compliance with the theoretical result stated
in Guermond and Pasquetti [12, Prop 2.2]. Code 3, which we recall is based on the
smoothness of the mathematical entropy, delivers \scrO (h1.5) as expected due to clipping
effects induced by the smoothness indicator.

5.3. Rarefaction wave. We now consider a Riemann problem with a solu-
tion whose components are all continuous and whose derivatives have bounded varia-
tions. The best-approximation error in the L1-norm on quasi-uniform meshes is then
\scrO (h2). The Riemann problem in question has the following data: (\rho L, vL, pL) =
(3, cL, 1), (\rho R, vR, pR) = ( 12 , vL + 2

\gamma  - 1 (cL  - cR), pL(
\rho R

\rho L
)\gamma ), where cL =

\sqrt{} 
\gamma pL/\rho L,

cR =
\sqrt{} 
\gamma pR/\rho R. The equation of state is a gamma-law with \gamma = 7

5 . The exact
solution to this problem is a rarefaction wave which can be constructed analytically;
see, e.g., Toro [46, sect. 4.4]. The solution is given in Table 2. In this table, the ratio
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Table 1
One-dimensional smooth wave, \BbbP 1 meshes. Convergence tests with Code 1 and Code 3, CFL =

0.25.

\# nodes
Code 1 Code 3

\delta \Pi \infty (t) Rate \delta \infty (t) Rate
100 9.02E-03 2.32E-01
200 1.34E-04 6.07 8.30E-02 1.48
400 1.01E-05 3.72 2.87E-02 1.53
800 1.12E-06 3.18 9.66E-03 1.57
1600 1.23E-07 3.19 3.22E-03 1.58
3200 1.33E-08 3.21 1.07E-03 1.58
6400 1.42E-09 3.22 3.74E-04 1.52

\xi := x - x0

t is the self-similar variable, where x0 is the location of the discontinuity
at t = 0. This problem is quite challenging for any method enforcing the minimum
principle on the specific entropy. We have observed that the convergence rate on this
problem reduces to \scrO (h) if the minimum on the specific entropy is not relaxed (see
also Khobalatte and Perthame [27, sect. 3.3]). This test is meant to validate the
relaxation technique described in (4.14).

Table 2
Solution to the rarefaction wave.

\xi \leq vL  - cL vL  - cL < \xi \leq vR  - cR vR  - cR < \xi 

\rho \rho L \rho L
\bigl( 

2
\gamma +1

+ \gamma  - 1
\gamma +1

vL - \xi 
cL

\bigr) 2
\gamma  - 1 \rho R

v vL
2

\gamma +1
(cL + \gamma  - 1

2
vL + \xi ) vR

p pL pL
\bigl( 

2
\gamma +1

+ \gamma  - 1
\gamma +1

vL - \xi 
cL

\bigr) 2\gamma 
\gamma  - 1 pR

We run Code 1, Code 2, and Code 3 on the computational domain D = (0, 1) with
x0 = 0.2, and the initial time is t0 = 0.2

vR - cR
. The initial data is the exact solution at

t = 0.2
vR - cR

given in Table 2. The simulations are run until t = 0.5. The consolidated
error indicator \delta 1(t) defined in (5.1) is reported in Table 3 for Code 1 and Code 3
only for brevity. This series of tests shows that the proposed method, with limiting of
the density and the specific entropy as described in sections 4.4--4.6, converges with
rate at least \scrO (h1.5) on the rarefaction wave problem. We observe that the low-order
method is indeed asymptotically first-order (the rate is 0.96 for 12800 grid points).

Table 3
Rarefaction wave, \BbbP 1 meshes. Convergence tests with Code 1 and Code 3, CFL = 0.25.

\# nodes
Code 1 Code 3 Galerkin Low-order

\delta 1(t) Rate \delta 1(t) Rate \delta 1(t) Rate \delta 1(t) Rate
100 1.30E-03 3.33E-03 1.44E-03 5.10E-02
200 4.06E-04 1.68 1.08E-03 1.61 4.38E-04 1.71 2.96E-02 0.78
400 1.40E-04 1.54 3.57E-04 1.61 1.42E-04 1.62 1.68E-02 0.82
800 5.00E-05 1.48 1.18E-04 1.60 4.73E-05 1.59 9.23E-03 0.86
1600 1.78E-05 1.49 3.96E-05 1.58 1.60E-05 1.57 4.96E-03 0.89
3200 6.24E-06 1.51 1.31E-05 1.59 5.47E-06 1.55 2.62E-03 0.92
6400 2.11E-06 1.57 4.32E-06 1.61 1.82E-06 1.59 1.37E-03 0.94
12800 6.80E-07 1.63 1.38E-06 1.64 5.83E-07 1.64 7.05E-04 0.96

When comparing the results from Code 1 with the Galerkin solution, we observe
that the extra dissipation induced in Code 1 by the entropy viscosity and limiting
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is of the order of the truncation error, which is optimal. That is, the method does
not introduce any extraneous dissipation on smooth solutions. Note in passing that
the maximum norm error indicator \delta \infty (t) has also been computed for this test (not
reported here for brevity), yielding the rate \scrO (h) for Code 1 and \scrO (h0.75) for Code 3.
The rate \scrO (h) is optimal since the solution is in \bfitW 1,\infty (D).

5.4. Leblanc shocktube. We continue with a Riemann problem that is known
in the literature as the Leblanc shocktube. The data are as follows: (\rho L, vL, pL) =
(1, 0, (\gamma  - 1)10 - 1) and (\rho R, vR, pR) = (10 - 3, 0, (\gamma  - 1)10 - 10) and the equation of state
is a gamma-law with \gamma = 5

3 . The exact solution is described in Table 4. Denoting
by x0 the location of the discontinuity at t = 0, the quantity \xi = x - x0

t is the self-
similar variable and the other numerical values in the table are given with 15 digit
accuracy by \rho \ast L = 5.40793353493162\times 10 - 2, \rho \ast R = 3.99999806043000\times 10 - 3, v\ast =
0.621838671391735, p\ast = 0.515577927650970\times 10 - 3, \lambda 1 = 0.495784895188979, \lambda 3 =
0.829118362533470.

Table 4
Solution of the Leblanc shocktube.

\xi \leq  - 1
3

 - 1
3
< \xi \leq \lambda 1 \lambda 1 < \xi \leq v\ast v\ast < \xi \leq \lambda 3 \lambda 3 < \xi 

\rho \rho L (0.75 - 0.75\xi )3 \rho \ast L \rho \ast R \rho R

v vL 0.75( 1
3
+ \xi ) v\ast v\ast vR

p pL
1
15

(0.75 - 0.75\xi )5 p\ast p\ast pR

We do simulations with x0 = 0.33 until t = 2/3 with Code 1 and Code 3. The
error indicator \delta 1(t) is reported in Table 5. The convergence rate on \delta 1(t) is close to
\scrO (h0.9) for Code 1 and \scrO (h) for Code 3, which is optimal for this problem.

Table 5
Leblanc shocktube, \BbbP 1 meshes. Convergence tests with Code 1 and Code 3, CFL = 0.25.

\# nodes
Code 1 Code 3 Low-order

\delta 1(t) rate \delta 1(t) rate \delta 1(t) rate
100 1.21E-01 1.49E-01 2.61E-01
200 7.56E-02 0.68 9.01E-02 0.72 1.94E-01 0.43
400 4.50E-02 0.75 4.92E-02 0.87 1.41E-01 0.46
800 2.64E-02 0.77 2.61E-02 0.91 9.95E-02 0.50
1600 1.49E-02 0.82 1.34E-02 0.96 6.74E-02 0.56
3200 8.35E-03 0.84 6.83E-03 0.97 4.40E-02 0.62
6400 4.55E-03 0.88 3.42E-03 0.99 2.78E-02 0.66
12800 2.49E-03 0.87 1.70E-03 1.00 1.73E-02 0.68

5.5. Sod, Lax, blast wave. We now illustrate the method on a series of tradi-
tional problems without giving the full tables for the convergence rates for the sake
of brevity. We consider the Sod shocktube, the Lax shocktube, and the Woodward--
Collela blast wave. We refer the reader to the literature for the initial data for these
test cases. The computations are done on the domain D = (0, 1) with CFL = 0.5 on
four different grids with Code 1. The final times are t = 0.225 for the Sod shocktube,
t = 0.15 for the Lax shocktube, and t = 0.038 for the Woodward--Collela blast wave.
We show the graph of the density for these three cases and for the four meshes in
Figure 1. We have observed the convergence rate to be between \scrO (h0.9) and \scrO (h)
on \delta 1(t) for both the Sod and the Lax shocktubes, which is near optimal (results not
reported for the sake of brevity).
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Fig. 1. Code 1, CFL = 0.5. Left: Sod shocktube, t = 0.225. Center: Lax shocktube, t = 0.15.
Right: Woodward--Collela blast wave, t = 0.038.

5.6. Two-dimensional isentropic vortex. We now consider a two-dimensional
problem introduced in Yee, Sandham, and Djomehri [48]. This test case is often used
to assess the accuracy of numerical schemes. The flow field is isentropic; i.e., the
solution is smooth and does not involve any steep gradients or discontinuities. Let
\rho \infty = P\infty = T\infty = 1, \bfitu \infty = (u\infty , v\infty )\sansT , u\infty = 1, v\infty = 1, be free stream values;
then the exact solution that we consider is a passive convection of a vortex with mean
velocity \bfitu \infty :

\rho (\bfitx , t) = (T\infty + \delta T )1/(\gamma  - 1), \bfitu (\bfitx , t) = \bfitu \infty + \delta \bfitu , p(\bfitx , t) = \rho \gamma ,(5.3)

\delta \bfitu (\bfitx , t) =
\beta 

2\pi 
e

1 - r2

2 ( - \=x2, \=x1), \delta T (\bfitx , t) =  - (\gamma  - 1)\beta 2

8\gamma \pi 2
e1 - r2 ,(5.4)

with \=\bfitx = (x1  - x01  - u\infty t, x2  - x02  - v\infty t), and r2 = \| \=\bfitx \| 2\ell 2 . It is standard to take
\gamma = 7

5 = 1.4 and \beta = 5 for this test, (x01, x
0
2) = (4, 4).

We perform the numerical computations in the rectangle D = ( - 5, 15)\times ( - 5, 15)
from t = 0 until t = 2. The computations are done with Code 2 only. The initial
mesh is uniform and consists of 20\times 20 squares each divided into two triangles; then
the mesh is refined uniformly to compute finer solutions. The consolidated error
indicators \delta 1(t), \delta 2(t), and \delta \infty (t) are reported in Table 6. Two series of computations
are done: one with limiting and one without limiting. Here again we observe second-
order accuracy in the maximum norm thereby confirming the accuracy of the proposed
method. When comparing the results with limiting and without limiting we observe
that limiting does not deteriorate the accuracy of the method. Contour lines of the
density computed on two coarse meshes and contour lines of the exact solution are
shown in Figure 2.

5.7. Supersonic flow around circular cylinder. In this example we consider
a supersonic flow past a circular cylinder of radius 0.25 centered at the point \bfitx =
(0.6, 1) in a two-dimensional wind tunnel of size (x1, x2) \in [0, 4] \times [0, 2]. We use the
\gamma -law with \gamma = 7

5 . The initial data is \rho = 1.4, p = 1, \bfitv = (3, 0)\sansT . The Mach 3
flow enters from the left boundary \{ x1 = 0\} , where Dirichlet boundary conditions
are prescribed. The slip boundary condition is applied at the walls \{ x2 = 0\} and
\{ x2 = 2\} and on the cylinder. Since the flow is supersonic, no boundary condition is
applied at the outflow \{ x1 = 4\} .
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Table 6
Isentropic vortex, \BbbP 1 meshes. Convergence tests with limiting and without limiting, t = 2.

Code 2, CFL = 0.1.

\# nodes \delta 1(t) Rate \delta 2(t) Rate \delta \infty (t) Rate

L
im

it
in
g

441 2.46E-02 -- 9.61E-02 -- 1.31E+00 --
1681 8.50E-03 1.59 3.36E-02 1.57 4.45E-01 1.62
6561 1.99E-03 2.13 7.45E-03 2.21 9.40E-02 2.28
25921 4.16E-04 2.28 1.50E-03 2.33 2.05E-02 2.21
103041 8.11E-05 2.37 2.92E-04 2.37 4.68E-03 2.14

N
o
li
m
it
in
g 441 2.47E-02 -- 9.61E-02 -- 1.31E+00 --

1681 8.48E-03 1.60 3.34E-02 1.58 4.52E-01 1.59
6561 1.99E-03 2.13 7.45E-03 2.20 9.40E-02 2.31
25921 4.16E-04 2.28 1.50E-03 2.33 2.05E-02 2.21
103041 8.11E-05 2.37 2.92E-04 2.37 4.68E-03 2.14

Fig. 2. Two-dimensional isentropic vortex, t = 2, contour lines of density for 1681 \BbbP 1 grid
points (left), 6561 \BbbP 1 grid points (middle), and the exact solution (right).

The flow enters the wind tunnel and hits the cylinder; then a strong bow shock
develops at the front of the cylinder, while two attached oblique shocks develop from
the back side of the cylinder. The flow separates at the points where the oblique
shocks start. After separation the flow fluctuates and creates small scale vortices
traveling downstream. The strong shocks travel towards the wall boundaries, reflect
back in the tunnel, and pass through the small scale vortices.

We show in Figure 3 the density and the entropy residual defined in (3.15). The
computation is done with Code 2 with a mesh composed of 252820 unstructured \BbbP 1

points and CFL = 0.3. The entropy residual captures the area with shocks and steep
gradients, while it is almost zero in the smooth regions. As in the Mach 3 flow around
a forward facing step, we observe two shock wave triple points. The Kelvin--Helmholtz
instability deforming the two contact lines emerging from these triple points is clearly
visible. This instability is usually hard to capture when the numerical diffusion is too
large. The dynamics of the flow are captured as well as in Nazarov and Larcher [37,
sect. 5.6], where the same problem is solved with about 500k \BbbP 2 nodes.
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Fig. 3. Supersonic Mach 3 flow around a circular cylinder; 252820 unstructured \BbbP 1 nodes. The
density \rho h is plotted at different time levels in the left panels; the corresponding residual defined in
(3.15) is shown in the right panels.

Supplementary material. Additional tests on the forward facing step at Mach
3 and the two-dimensional double Mach reflection at Mach 10 are reported in the
supplementary material section of this paper (supplementary.pdf [local/web 2.34MB]).
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