SECOND-ORDER INVARIANT DOMAIN PRESERVING APPROXIMATION OF THE EULER EQUATIONS USING CONVEX LIMITING (SUPPLEMENTARY MATERIAL)*

JEAN-LUC GUERMOND ${ }^{\dagger}$, MURTAZO NAZAROV ${ }^{\ddagger}$, BOJAN POPOV ${ }^{\dagger}$, AND IGNACIO TOMAS ${ }^{\dagger}$

5.8. Mach 3 step. Let us now illustrate the method on the classical Mach 3 flow in a wind tunnel with a forward facing step. The computational domain is $D=(0,1) \times(0,3) \backslash(0.6,3) \times(0,0.2)$; the geometry of the domain is shown in Figure 1. The initial data is $\rho=1.4, p=1, \boldsymbol{v}=(3,0)^{\top}$. The inflow boundary conditions are $\rho_{\mid\{x=0\}}=1.4, p_{\mid\{x=0\}}=1, \boldsymbol{v}_{\mid\{x=0\}}=(3,0)^{\top}$. The outflow boundary conditions are free, i.e., we do nothing at $\{x=3\}$. On the top and bottom boundaries of the channel we enforce $\boldsymbol{v} \cdot \boldsymbol{n}=0$.

The computation is done from $t=0$ to $t=4$. We show in Figure 1 a Schlierentype snapshot of the density at $t=4$ obtained with the three codes. The meshes used with Code 1 and Code 2 are nonuniform Delaunay triangulations composed of 207340 and $209741 \mathbb{P}_{1}$ nodes, respectively. The mesh used with Code 3 is uniform and composed of quadrangles with a total of $310101 \mathbb{Q}_{1}$ nodes. The Kelvin-Helmholtz instability of the contact discontinuity is clearly visible. The top left corner of the step is rounded for Code 1 and Code 2 (the corner is a quarter circle of radius 0.01) and it is sharp for Code 3; no regularization or smoothing is applied at the corner. We show a Schlieren-type snapshot of the density at $t=4$ in Figure 1 for the three codes; that is, after defining the norm of the gradient as follows $r_{i}^{n}:=m_{i}^{-1}\left\|\sum_{j \in \mathcal{I}\left(D_{i}\right)} \boldsymbol{c}_{i j} \rho_{j}^{n}\right\|_{\ell^{2}}$, for all $i \in \mathcal{I}$, we show the scalar field with point values $\exp \left(-\beta\left(r_{i}^{n}-\min _{j \in \mathcal{I}} r_{j}^{n}\right) /\left(\max _{j \in \mathcal{I}} r_{j}^{n}-\right.\right.$ $\left.\min _{j \in \mathcal{I}} r_{j}^{n}\right)$) where $\beta=10$; see Banks et al. [1, Eq. (35)].
5.9. Two-dimensional double Mach reflection. In this section we solve the well-known double Mach reflection problem at Mach 10 with a gamma-law equation of state, $\gamma=\frac{7}{5}$. The shock impinges a wall with a 60 degree angle. The computational domain for this problem is the rectangle $\Omega=(0,3.2) \times(0,1)$. The post-shock values are $\rho=8, p=116.5, \boldsymbol{v}=\left(8.25 \cos \left(30^{\circ}\right),-8.25 \sin \left(30^{\circ}\right)\right)^{\top}$, and the values ahead of the shock are $\rho=1.4, p=1, \boldsymbol{v}=(0,0)^{\top}$. The slip boundary condition is applied on the wall $\left\{x_{1} \geq \frac{1}{6} ; x_{2}=0\right\}$. No boundary condition is applied at the outflow boundary $\left\{x_{1}=3.2 ; x_{2}>0\right\}$. On the rest of the boundary, the post-shock values are applied if $x_{1}<\frac{1}{6}+\frac{x_{2}+20 t}{\sqrt{3}}$, and the values ahead of the shock are applied if $x_{1}>\frac{1}{6}+\frac{x_{2}+20 t}{\sqrt{3}}$.

The problem is solved until $t=0.2$. The mesh for Code 1 is a nonuniform Delaunay triangulation with $453969 \mathbb{P}_{1}$ nodes. The mesh for Code 2 is a uniform triangulation with $h_{K}=1 / 400$, which in total gives $513861 \mathbb{P}_{1}$ nodes. The mesh for Code 3 is composed of uniform quadrangles with $513600 \mathbb{Q}_{1}$ nodes. We show a Schlieren-like representation of the density in Figure 2 for the three codes.

[^0]

Fig. 1. Mach 3 step, $t=4$, density. Top: Code 1, unstructured grid, $207340 \mathbb{P}_{1}$ nodes. Middle: Code 2, unstructured grid $209741 \mathbb{P}_{1}$ nodes. Bottom: Code 3, structured grid, $310101 \mathbb{Q}_{1}$ nodes.

Fig. 2. Mach 10 double reflection. Schlieren-like representation of the density. Top Code 1, unstructured mesh, $453969 \mathbb{P}_{1}$ nodes. Center Code 2, structured mesh, $513861 \mathbb{P}_{1}$ nodes. Bottom Code 3, structured mesh, $513600 \mathbb{Q}_{1}$ nodes.

References.

[1] J. W. Banks, W. D. Henshaw, D. W. Schwendeman, and A. K. Kapila. A study of detonation propagation and diffraction with compliant confinement. Combust. Theory Model., 12(4):769-808, 2008.

[^0]: *Supplementary material for SISC MS\#M114996.
 †Department of Mathematics, Texas A\&M University 3368 TAMU, College Station, TX 77843 (guermond@math.tamu.edu, popov@math.tamu.edu, itomas@tamu.edu).
 \ddagger Division of Scientific Computing, Department of Information Technology, Uppsala University, Uppsala, Sweden (murtazo@math.tamu.edu).

