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Abstract. A surface reconstruction technique based on minimization of the total variation of the
gradient is introduced. Convergence of the method is established, and an interior-point algorithm
solving the associated linear programming problem is introduced. The reconstruction algorithm
is illustrated on various test cases including natural and urban terrain data, and enhancement of
low-resolution or aliased images.
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1. Introduction. In geometric modeling and image reconstruction, one often
tries to extract a shape or recover a piecewise smooth surface from a set of measure-
ments. That is, one wants to find a surface that satisfies constraints or fits given
data and is visually pleasing. The objectives could vary with the applications, but
the intuitive goal is to preserve the shape of the object. For example, one may want
to reconstruct a convex body if the underlying data comes from a convex object, or
reconstruct a flat surface if the data is locally flat, or preserve a particular structure
of the level sets. Sometimes, this type of problem is solved by minimizing an Lp-
norm of the Hessian or the total variation of the gradient; see, for example, [5, 7, 18].
In this paper we take a different approach, which we think is well suited for man-
made surfaces, digital elevation models (DEM), and enhancement of digital images.
Namely, we minimize the total variation of the gradient of a function constructed
on a finite element space satisfying interpolatory constraints. Similar minimization
problems have been introduced by Lavery [16, 17, 18, 28] and are hereafter referred
to as the L1-spline techniques. Minimizing the total variation of the gradient of a
smooth function amounts to minimizing the L1-norm of its second derivatives. The
key observation from Lavery’s work is that using the L1-norm in the minimization
process produces oscillation-free surfaces.

In recent years, the idea of using the L1-metric instead of the usual L2-metric was
exploited in many different areas with great success. For example, in compressed sens-
ing [3, 4] the �1-metric is used in the decoding step, and in partial differential equations
the L1-norm is used to measure the residual of the equation [9, 10, 11, 12, 14, 15].
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Some image denoising techniques are based on minimizing a K-functional comprising
the Lp-distance between the reconstructed image and the noisy data plus the total
variation of the reconstruction [6, 24]. In all of the above applications, using L1 is
critical to obtaining good numerical results and proving theoretical estimates.

A key ingredient in Lavery’s work is the use of C1-splines. The novelty of the
approach introduced in the present paper is to relax the C1-smoothness on the finite
element space which is used in the data reconstruction process; i.e., we propose using
a discrete space composed of continuous finite elements with possibly discontinuous
gradients. This is the natural discretization setting for functions that are in W 1,1 and
whose gradients have bounded total variation. The objective of the present paper
is to describe in detail this new technique, characterize some of its mathematical
properties, and evaluate it numerically on a series of standard benchmark tests.

The paper is organized as follows. The reconstruction technique is described in
section 2; it essentially amounts to minimizing a functional measuring the norm of the
Hessian in L1. Key results of section 2 are (i) a convergence proof of the method in
the BV-norm and (ii) Proposition 2.5, which states that the proposed reconstruction
technique can generate L1-like splines as a special case. In section 3 we go over
implementation details; in particular, we describe the interior-point algorithm that
we use to solve the minimization problem. Some properties of this algorithm are
discussed. The performance of the method is evaluated on various types of data in
sections 4 and 5. We reconstruct topography from terrain data in section 4, and
we use the method to enhance the resolution of underresolved or aliased images in
section 5. The proof of Proposition 2.5 comprises the appendix.

2. The L1-minimization problem.

2.1. The model problem. Let Ω be a bounded polygonal domain in R2. We use
the notation W s,p(Ω), s ≥ 0, p ∈ [1,∞], for Sobolev spaces, where s is the smoothness
index and p is the metric index. We denoteX to be the subspace ofW 1,1(Ω) composed
of the scalar-valued functions whose gradient has bounded variations,

(2.1) X := {v ∈W 1,1(Ω) | ∇v ∈ [BV (Ω)]2}.

For any scalar function v we define the seminorm

(2.2) |v|BV = sup
0�=φ∈[C∞

0 (Ω)]2

∫
Ω
v∇·φdx

‖φ‖L∞
,

where we use ‖φ‖L∞ = ‖(φ2
1 + φ2

2)
1
2 ‖L∞ for all φ ∈ [C∞0 (Ω)]2. For the gradient of

v ∈ X we use |∇v|BV = |∂1v|BV + |∂2v|BV .
We assume that we are given a set of linear functionals acting on X ; this set is

denoted d := {di}i∈1,I . We assume also that we are given a set of measurements of
a function u using these functionals; this data set is denoted � := {�i}i∈1,I , where

�i := di(u), i ∈ 1, I.
Our goal is to reconstruct a smooth (eye-pleasing) approximation of u, say, uh,

such that the array (d1(uh), . . . , dI(uh)) is either equal to (�1, . . . , �I) or a good
approximation thereof in a sense yet to be defined. A simple solution to this problem
could be to define a polynomial interpolant, but this technique is known to produce
oscillatory reconstructions when using high-order polynomials. The approach that we
follow in this paper is to define an approximation space whose dimension is a multiple
of the cardinality of the data set I, and to reduce possible oscillations we select an
approximant whose Hessian has minimal L1-norm.
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The idea of minimizing the norm of the Hessian in L1 is rooted in a series of
papers by Lavery and coworkers [17, 18, 28], where the approximating functions are
C1-splines. The problem with this choice is that C1-continuity does not allow for
sharp edges; hence, if the object to be reconstructed has edges, then the C1-spline
technique smooths them. To overcome this unsatisfactory property of C1-splines, we
propose a new idea which consists of using cubic C0 finite elements and minimizing
the total variation of the gradient of the approximating function. This leads to an
�1-minimization problem that we solve using an interior-point algorithm.

2.2. The finite element setting. Let Th be a partition of Ω composed of open
triangles and/or quadrilaterals, Ω =

⋃
T∈Th

T . The mesh Th is conforming in the
sense that for any pair of distinct elements T , T ′ in Th, the intersection T ∩ T ′ is

empty and T ∩ T
′
is either a common vertex or a common edge. For any element T

in Th, we denote by hT the diameter of T . Conformity is known to be necessary for
constructing continuous finite elements. The conformity assumption could be relaxed
by introducing hanging nodes which we avoid to simplify the presentation.

We introduce the discrete space Xh composed of continuous functions that are
piecewise cubic on the mesh Th:

(2.3) Xh = {u ∈ C0(Ω) : u|T ∈ P3 if T is a triangle or

u|T ∈ FT (Q3) if T is a quadrilateral ∀T ∈ Th},

where we denote

Pp =

⎧⎨⎩
p∑

i=0

p−i∑
j=0

cijx
iyj : cij ∈ R

⎫⎬⎭ , Qpq =

⎧⎨⎩
p∑

i=0

q∑
j=0

cijx
iyj : cij ∈ R

⎫⎬⎭ ,

and the mapping FT is defined by

(FT q̂)(x) = q̂(F−1
T (x)) ∀x ∈ T, q̂ ∈ C0([0, 1]2),

where FT is the transformation that maps the reference unit square (0, 1)2 to the
quadrilateral T . We henceforth denote Qp := Qpp. Note that Xh is a subspace of X
but not a subspace of W 2,1(Ω).

The set of the vertices of the triangulation Th is denoted Vh. The set of interior
edges of the partition Th is denoted F i

h. Let F ∈ F i
h be any of the interior edges,

and let T, T ′ ∈ Th be the two elements whose intersection is F = T ∩ T
′
. Also, let

nTF denote the normal vector to F pointing from T to T ′. We define the jump of the
normal derivative of a function u to be

[[∂nu]]|F = (∇u|T ) · nTF + (∇u|T ′) · nT ′F .

We now assume that we are given a family of meshes (Th)h>0 and the corre-
sponding spaces (Xh)h>0. We also assume that we are given a family of func-
tionals (dh := {d1, . . . , dIh})h>0 acting on (Xh)h>0 and a family of measured data
(�h := {�1, . . . , �Ih})h>0. Typically Ih < dim(Xh). We say that dh(v) = �h when
d1(v) = �1, . . . , dIh(v) = �Ih .

Remark 2.1. The measurements can be point values at the vertices of the mesh,
i.e., di(u) = u(xi), for all xi ∈ Vh. Note that the functionals dh are bounded on X
owing to the continuous embedding X ⊂ C0(Ω); see [23]. They can also be averages
around the vertices, and again averages define bounded functionals on X .
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In order to analyze the convergence properties of our reconstruction method, we
assume that there exists a low-order approximation linear operator Πh : X −→ Xh

such that the following hold for all v ∈ X :∑
T∈Th

hj−2
T |v −Πhv|W j,1(T ) ≤ c|∇v|BV, j = 0, 1,(2.4)

|∇Πhv|BV ≤ c|∇v|BV,(2.5)

with c independent of h. We also assume that

dh(Πh(v)) = dh(v) ∀v ∈ X,(2.6)

dh|ΠhX is injective.(2.7)

Note that these two conditions imply that Πh is a projector on ΠhX � Xh. The
existence of Πh ensures that for any given sequence of measurements, it is possible
to reconstruct a low-order stable convergent approximation. From now on, c denotes
a generic constant whose generic value may change from place to place, and this
constant is always independent of the mesh-size h.

Remark 2.2. In the case of point value measurements, say, di(u) = u(xi), xi ∈ Vh,
it can be verified that the Lagrange P1/Q1 interpolant on the mesh Th satisfies the
assumptions (2.4)–(2.7). For instance, (2.4) is a well-known estimate for any v ∈
W 2,1(Ω), and by density of W 2,1(Ω) in X (see [23]) it follows for any v ∈ X . One
can prove (2.5) for any v ∈ W 2,1(Ω) using standard scaling arguments, trace results,
and the norm equivalence (2.9). The result for any v ∈ X follows by density. The
remaining properties (2.6)–(2.7) are true for the Lagrange interpolant.

2.3. The semidiscrete functional. At this point we consider two options:
either we interpolate the constraints �h = dh(u) or we relax those constraints by
incorporating them into the discrete problem.

2.3.1. First option: Interpolation. We introduce the affine set of functions
Yh ⊂ Xh that interpolate the data

(2.8) Yh =
{
vh ∈ Xh : di(vh) = �i ∀i ∈ 1, Ih

}
.

Note that when �h is such that there exists a function u ∈ X so that �h = dh(u),
then Πh(u) ∈ Yh, which means that Yh �= ∅. However, it may happen that Yh = ∅ if
the measurements are incompatible; for instance, specifying two different point values
at the same mesh vertex is not solvable.

Our goal now is to find a function in Yh that oscillates as little as possible. The
main idea that we are pursuing is to minimize the seminorm |∇ · |BV over Yh. (Note
that |∇·|BV is an extension to X of the L1-norm of the Hessian for smooth functions.)
It can be shown that for every function v ∈ Xh the total measure of the Hessian of v
is equivalent to

(2.9) |∇v|BV ≈
∑
T∈Th

∫
T

(|vxx|+ 2|vxy|+ |vyy|) +
∑

F∈Fi
h

∫
F

|[[∂nv]]| .

In order to give ourselves more flexibility across edges, we introduce a parameter
α > 0 and consider the functional

(2.10) J̃h(v) =
∑
T∈Th

∫
T

(|vxx|+ 2|vxy|+ |vyy|) + α
∑

F∈Fi
h

∫
F

|[[∂nv]]| , v ∈ Xh,
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which induces a seminorm equivalent to the total variation of the ∇v. Note that J̃h
defines a seminorm which vanishes if and only if its argument is a linear polynomial
over Ω.

2.3.2. Second option: Relaxation. Since interpolating the measurements
may be impossible (Yh = ∅) or not desirable, we relax the problem by setting

(2.11) Yh = Xh

and adding the constraints �h = dh(u) to the functional

(2.12) J̃h(v) =
∑
T∈Th

∫
T

(|vxx|+ 2|vxy|+ |vyy|)

+ α
∑

F∈Fi
h

∫
F

|[[∂nv]]|+ β

Ih∑
i=1

|di(v)−�i|, v ∈ Xh,

where the additional term in the functional is the �1-norm of the difference between
(d1(v), . . . , dI(v)) and (�1, . . . , �I) and the parameters α > 0, β > 0 are user-defined.

In the rest of the paper we use definition (2.12) with either β = 0 when Yh is
defined by (2.8) or β > 0 when Yh is defined by (2.11). Moreover, we assume that
Yh �= ∅ when Yh is defined by (2.8).

2.4. The semidiscrete minimization problem. The data reconstruction
problem is formulated as follows: Find uh ∈ Yh such that

(2.13) J̃h(uh) = min
v∈Yh

J̃h(v).

In order to ensure solvability of this problem, we assume that the set of measurements
dh is such that

(2.14) ∀v ∈ P1(Ω) (dh(v) = 0)⇒ (v = 0).

Proposition 2.1. The solution set of problem (2.13) is not empty provided that
(2.14) holds.

Proof. Since Yh �= ∅, let uh be a fixed element in Yh and define S = {v ∈ Yh :

J̃h(v) ≤ J̃h(uh)}. Owing to (2.14), ‖v‖h := |∇v|BV + |dh(v)|�1 is a norm on Xh. For
all v ∈ S we have

‖v‖h ≤ |∇v|BV + |dh(v) −�h|�1 + |�h|�1
≤ c J̃h(v) + |�h|�1 ≤ c J̃h(uh) + |�h|�1 ,

meaning that S is bounded. This implies the proposition since J̃h is continuous.
Since computing a minimizer for (2.13) may be a difficult task, we introduce the

notion of almost minimizer.
Definition 2.1. We say that a sequence {uh}h>0, with uh ∈ Yh, is a sequence

of almost minimizers if there is a constant ca ≥ 1, uniform with respect to h, such
that

(2.15) J̃h(uh) ≤ ca min
v∈Yh

J̃h(v) ∀h > 0.

The following result clarifies the approximation properties of (2.13).
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Proposition 2.2. Assume that Yh is defined by (2.8). Assume that there is
u ∈ X such that dh(u) = �h for all h > 0 and that there exists Πh satisfying (2.4)–
(2.7). Let {uh}h>0 be a sequence of almost minimizers; then the following error
estimates hold: ∑

T∈Th

hj−2
T |u− uh|j,1,T ≤ c|∇u|BV(Ω), j = 0, 1.

Proof. Since uh is a member of Yh, dh(uh) = �h; moreover, (2.6) implies
dh(Πh(uh)) = dh(uh) and dh(Πh(u)) = �h. Since the restriction of dh to ΠhX is
injective, we deduce that Πh(uh) = Πh(u). This immediately implies∑

T∈Th

hj−2
T |u− uh|j,1,T ≤

∑
T∈Th

hj−2
T (|u −Πh(u)|j,1,T + |Πh(u)− uh|j,1,T )

≤ c|∇u|BV +
∑
T∈Th

hj−2
T |Πh(uh)− uh|j,1,T

≤ c(|∇u|BV + |∇uh|BV).

Since uh is an almost minimizer, we have

|∇uh|BV ≤ cJ̃h(uh) ≤ cca min
vh∈Yh

J̃h(vh) ≤ ccaJ̃h(Πh(u))

≤ c1|∇Πh(u)|BV ≤ c2|∇u|BV.

The conclusion follows readily.
Remark 2.3. When Yh is defined using (2.11), we do not have a convergence

proof yet, but we expect that convergence can be obtained by using the fact that∑Ih
i=1 |di(v) −�i| is bounded as h → 0 combined with a Chebyshev inequality argu-

ment.

2.5. Quadratures. The evaluation of the functional J̃h involves the computa-
tion of integrals with integrands that are absolute values. Therefore, we discretize J̃h
by replacing the integrals with quadrature rules. More specifically, the terms of
the functional J̃h are approximated using quadrature rules as follows:∫

S

|Lv| ≈
∑

(p,ω)∈I(S,L)

ω|L(v)(p)|,

where either S ∈ Th and L is one of the linear operators {∂xx, 2∂xy, ∂yy} or S ∈ F i
h

and L = α[[∂n]]. For each pair (S,L) the set I(S,L) is composed of pairs (p, ω) of
points p ∈ R2 and weights ω > 0.

We require that the integration rules I(S,L) satisfy the following two conditions:
1. Be exact when the sign of the integrant Lv does not change over S.
2. Give an approximation that is equivalent to the exact integral; i.e., there are

constants c1, c2 independent of S, L, and h such that

(2.16) c1

∫
S

|Lv| ≤
∑

(p,ω)∈I(S,L)

ω|L(v)(p)| ≤ c2

∫
S

|Lv| ∀v ∈ Xh.
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In general, the second condition requires the use of integration rules with more
points than are required by the first one. For example, if T is a triangle and L = ∂xx,
then vxx is linear and the midpoint rule satisfies the first condition but not the second.
The following proposition gives a natural construction of quadrature rules satisfying
both the conditions above under an easily verifiable assumption.

Proposition 2.3. Let Ŝ be a (closed) reference element (e.g., triangle, square,

or segment), and let T be an invertible affine transformation mapping Ŝ to S. Also,

let P̂ be a finite-dimensional subspace of C0(Ŝ) (e.g., polynomials) and P = T P̂ be

its image under the transformation T : C0(Ŝ) −→ C0(S) defined by

v(x) := T(v̂)(x) = v̂(T−1(x)) ∀x ∈ S.

Let Î = {(p̂i, ω̂i)}ni=1 be an integration rule with positive weights on Ŝ. If Î is exact

for every function in P̂ and the quadrature points are such that

(2.17)
[
v̂ ∈ P̂ and v̂(p̂i) = 0, i = 1, . . . , n

]
implies

[
v̂(x̂) = 0 ∀x̂ ∈ Ŝ

]
,

then the integration rule I = {(pi, ωi)}ni=1 with pi = T (p̂i) and ωi =
|S|
|̂S| ω̂i (where | · |

denotes the measure of the corresponding set) is exact for every function in P and

(2.18) c1

∫
S

|v| ≤
n∑

i=1

ωi|v(pi)| ≤ c2

∫
S

|v| ∀v ∈ P ,

with constants c2 > c1 > 0 that depend on Ŝ and P̂ but do not depend on the trans-
formation T .

Proof. Since T is affine and invertible, for any v̂ ∈ C0(Ŝ) and v = T v̂ we have

(2.19)

∫
̂S

v̂ =
|Ŝ|
|S|

∫
S

v.

Thus, in particular, for any v ∈ P we have v̂ = T−1v ∈ P̂ and∫
S

v =
|S|
|Ŝ|

∫
̂S

v̂ =
|S|
|Ŝ|

n∑
i=1

ω̂iv̂(p̂i) =

n∑
i=1

ωiv(pi);

that is, the integration rule I is exact for v. The assumption about the quadrature
points of Î implies that the mapping v̂ →

∑n
i=1 ω̂i|v̂(p̂i)| is a norm on the finite-

dimensional space P̂ , and therefore it is equivalent to the norm in L1(Ŝ):

c1

∫
̂S

|v̂| ≤
n∑

i=1

ω̂i|v̂(p̂i)| ≤ c2

∫
̂S

|v̂| ∀v̂ ∈ P̂ .

Multiplying these inequalities by |S|/|Ŝ| and using (2.19) and the definitions of pi and
ωi completes the proof.

Based on the above proposition we use the following quadrature rules:
• When S ∈ Th is a triangle and L ∈ {∂xx, 2∂xy, ∂yy}, then L(Xh|S) = P1 =

P̂ = P , and therefore the 3-point quadrature rule using the midpoints of the
sides of the triangle satisfies the conditions of the proposition (this rule is
exact for P2).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1598 VESELIN DOBREV, JEAN-LUC GUERMOND, AND BOJAN POPOV

• When S ∈ Th is a rectangle with sides parallel to the coordinate axes, we
use three different quadrature rules for the three different second derivatives.
For L = ∂xx we have L(Xh|S) = Q1,3 = P̂ = P , and therefore we could use
the 2×4 tensor product Gaussian rule; however, numerical experiments show
some undesired oscillations which can be avoided by using the 3×4 tensor
product Gaussian rule. For L = 2∂xy we have L(Xh|S) = Q2,2 = P̂ = P ,
and we use the 3×3 tensor product Gaussian rule. For L = ∂yy, L(Xh|S) =
Q3,1 = P̂ = P , and we use the 4×3 tensor product Gaussian rule.
• When S ∈ Th is not a rectangle with sides parallel to the coordinate axes, we
have P̂ �= P , and it is more convenient to replace the second derivatives in
J̃h by second derivatives in directions parallel to the sides of S. This case is
not considered in the numerical experiments reported in this paper.
• When S ∈ F i

h and L = α[[∂n]] we have two cases: (1) S is the edge of two

triangles, and (2) S is a side in a quadrilateral. P and P̂ are composed of one-
dimensional quadratic polynomials in the first case and cubic polynomials in
the second case. Therefore, we use the 3-point Gaussian rule in the first case
and the 4-point Gaussian rule in the second.

Using the above quadrature rules, we obtain the approximate functional

(2.20) Jh(u) =
∑
T∈Th

L∈{∂xx,2∂xy,∂yy}

∑
(p,ω)∈I(T,L)

ω|L(u)(p)|

+ α
∑

F∈Fi
h

∑
(p,ω)∈I(F,[[∂n]])

ω|[[∂nu]](p)|+ β

Ih∑
i=1

|di(u)−�i|.

Note that Jh defines a seminorm on Xh which is equivalent to that induced by J̃h
with constants independent of h.

The fully discretized version of problem (2.13) is the following: Find uh ∈ Yh such
that

(2.21) Jh(uh) = min
vh∈Yh

Jh(vh).

Proposition 2.4. Assume that Yh is defined by (2.8). Assume that there is
u ∈ X such that dh(u) = �h for all h > 0 and that there exists Πh satisfying (2.4)–
(2.7). Let (uh)h>0 be a sequence of almost minimizers of problem (2.21); then the
following error estimates hold:∑

T∈Th

hj−2
T |u− uh|j,1,T ≤ c|∇u|BV(Ω), j = 0, 1.

Proof. The proof is similar to that of Proposition 2.2. The only technicality
consists of controlling |∇uh|BV. Using successively the lower and the upper bounds
in (2.16), we infer that

c1|∇uh|BV ≤ c Jh(uh) ≤ c ca min
vh∈Yh

Jh(vh) ≤ c ca Jh(Πh(u))

≤ c |∇Πh(u)|BV ≤ c |∇u|BV.

This concludes the proof.
Proposition 2.5. Assume that all elements of the mesh Th are quadrilaterals

and the functionals dh are point evaluations at the vertices of the mesh.
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1. If Yh is defined by (2.8), then there exists ᾱ > 0 such that for all α > ᾱ,
every solution uh to (2.21) is in C1(Ω).

2. If Yh = Xh, β > 0, then we have the following:
(a) For fixed α, there is a threshold value β̄ = β̄(α) such that for all β > β̄,

every solution uh to (2.21) interpolates the data.
(b) For fixed β, there is a threshold value ᾱ = ᾱ(β) such that for all α > ᾱ,

every solution uh to (2.21) is in C1(Ω).
(c) There exists γ > 0 such that for all α, β satisfying min(α, β) > γ, every

solution uh to (2.21) is in C1(Ω) and interpolates the data.
In all cases, the threshold values may be chosen to be independent of the data, {�i}.

Proof. See the appendix.
This proposition shows that by increasing the values of the parameters α and β,

one can reconstruct C1 interpolants similar to the cubic L1-splines developed in [13,
17, 29].

Remark 2.4. The value of ᾱ in Proposition 2.5, part 1, is not a priori uniform
with respect to the typical mesh-size h. However, numerical tests indicate that using
α = 5 guarantees C1-smoothness independently of h.

Remark 2.5. For triangular meshes, the statements of Proposition 2.5, parts 1
and 2(c), hold if and only if the data and the mesh are compatible in the sense that
Xh contains at least one C1 interpolant of the data; parts 2(a) and 2(b) hold with no
restrictions.

3. The interior-point algorithm. In this section we focus on the algebraic
formulation of the minimization problem (2.21), establish some properties of the min-
imizer, and describe an interior-point technique for computing an almost minimizer.

3.1. Matrix formulation. Let {φi}n̂i=1 be a basis for Xh, let {(pi, ωi)}mi=1 be
an enumeration of all the quadrature points (and weights) in all the quadrature rules

used in the discretization of J̃h, and let {Li}mi=1 be the collection of linear operators
corresponding to the quadrature rule. Thus, the total number of quadrature points
is given by

(3.1) m =
∑
T∈Th

L∈{∂xx,2∂xy,∂yy}

#(I(T,L)) +
∑

F∈Fi
h

#(I(F, [[∂n]])) ,

where #(·) denotes the cardinal number function. We denote

(3.2) I(Th) := {i : Li ∈ {∂xx, 2∂xy, ∂yy}} and I(F i
h) := {i : Li = [[∂n]]}.

3.1.1. Interpolation. Let us assume first that β = 0; i.e., Yh is defined by (2.8).
The functional Jh can then be rewritten as

(3.3) Jh(v) = |Âx|1 where x ∈ Rn̂ : v =

n̂∑
i=1

xiφi,

and the entries of the matrix Â are given by

(3.4) Âij =

{
ωiLi(φj)(pi), i ∈ I(Th),
αωiLi(φj)(pi), i ∈ I(F i

h),
j = 1, . . . , n̂.

Since the minimization is done in Yh, the total number of degrees of freedom is not
n̂ but n := n̂− Ih, provided that the measurements are linearly independent. We now
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explain how to reduce the constrained minimization problem into an unconstrained
one similar to (3.5). The linear independence of the measurements implies that one
can construct a basis {φj}n̂j=1 for Xh so that di(φj) = δij for all i ∈ 1, Ih and j ∈ 1, n̂,

where δij is the Kronecker symbol. This construction is trivial if {φi}n̂i=1 is a nodal
basis, and the measurements assign point values at the vertices in Vh. Let � ∈ RIh be
the vector representing the measurements (�1, . . . , �Ih). Then the coordinate vector

of any function in Yh is of the form x = (�, y) and y ∈ Rn. The matrix Â can be

written in 1 × 2 block form Â = (Â1A), where Â1 is m × Ih and A is m × n. Let

b = −Â1�; then the discrete problem (2.21) simplifies as follows: Find x ∈ Rn such
that

(3.5) |Ax− b|1 = min
y∈Rn

|Ay − b|1.

It can be shown that A is full rank owing to (2.14).

3.1.2. Relaxation. If β is not zero, then the minimization problem is uncon-
strained and has the same form as (3.5). In particular, we have n = n̂ and

(3.6) Âij =

⎧⎪⎨⎪⎩
ωiLi(φj)(pi), i ∈ I(Th),
αωiLi(φj)(pi), i ∈ I(F i

h),

βdi−m(φj), i = m+ 1, . . . ,m+ Ih,

j = 1, . . . , n̂,

and

(3.7) bi =

{
0, i = 0, . . . ,m,

β�i−m, i = m+ 1, . . . ,m+ Ih.

3.2. Discrete problem. In this section we study properties of �1-minimization
problems of generic form (3.5). Let A be an m× n real matrix (m > n) and b ∈ Rm.
We define the Lagrangian

L(x, λ) = (b −Ax)tλ, x ∈ Rn, λ ∈ Rm,

and the primal and dual functions f and g, respectively,

f(x) = max
λ∈R

m

|λ|∞≤1

L(x, λ) = |b −Ax|1,

g(λ) = min
x∈Rn

L(x, λ) =

{
btλ, Atλ = 0,

−∞, Atλ �= 0.

It is clear that for all x ∈ Rn and all λ ∈ Rm, |λ|∞ ≤ 1 we have

(3.8) f(x) ≥ L(x, λ) ≥ g(λ).

The primal problem is defined to be

(3.9) minimize f(x) = |b− Ax|1, x ∈ Rn,

and the dual problem is defined to be

(3.10)
maximize g(λ) = btλ,

subject to λ ∈ Λ := {λ ∈ Rm : Atλ = 0, |λ|∞ ≤ 1}.

The set Λ is referred to as the dual feasible set.
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3.3. Primal-dual interior-point method. We now describe an approach for
solving the minimization problem (3.5). First, we reformulate (3.5) as a linear pro-
gramming problem: Find y ∈ Rm and x ∈ Rn such that

(3.11) minimize yt1 =

m∑
i=1

yi, subject to

{
y ≥ b−Ax,

y ≥ Ax − b.

We apply the primal-dual interior-point method described in [1, section 11.8.2]
(see also [30]). Upon setting

Ã =

(
A −I
−A −I

)
, b̃ =

(
b
−b

)
, x̃ =

(
x
y

)
, z =

(
0
1

)
}n,
}m,

we rewrite (3.11) in a more compact form:

minimize ztx̃, subject to Ãx̃ ≤ b̃.

The dual of this problem can be formulated as follows: find λ̃ ∈ R2m solving

maximize − b̃tλ̃, subject to Ãtλ̃+ z = 0, λ̃ ≥ 0.

We observe that this dual problem is equivalent to (3.10) in the sense that λ solves
(3.10) if and only if λ̃ := (1−λ

2 , 1+λ
2 ) solves the problem above.

We now describe the primal-dual interior-point algorithm that we use to solve (3.11)
(see Algorithm 1).

Algorithm 1. Interior-point method.

1. input: A, b, x, λ; μ, ε;
2. r = b−Ax;
3. a = (|r|1 − rtλ)/m; yi = |ri|+ a, i = 1, . . . ,m;
4. while (|r|1 > (1 + ε) rtλ) do
5. t−1 = (yt1− rtλ)/(2mμ);
6. s1 = y + r; s2 = y − r;
7. d1 = (1 − λ)/(2s1); d2 = (1 + λ)/(2s2);
8. d = 4d1d2/(d1 + d2);
9. v = t−1(s−1

2 − s−1
1 ) + (d2 − d1)/(d1 + d2)[1− t−1(s−1

1 + s−1
2 )];

10. w = Atv;
11. Δx = (At diag(d)A)−1w;
12. v = AΔx;
13. Δy = [−1 + t−1(s−1

1 + s−1
2 ) + (d1 − d2)v]/(d1 + d2);

14. Δλ = −λ+ t−1(s−1
2 − s−1

1 )− (d1 + d2)v + (d1 − d2)Δy;
15. σ = max{τ ∈ (0, 2] : −1 ≤ λ+ τΔλ ≤ 1,

y + τΔy ≥ r − τv, y + τΔy ≥ −r + τv}
16. σ = min{1, 0.99σ};
17. x = x+ σΔx; y = y + σΔy; r = r − σv; λ = λ+ σΔλ;
18. end while
19. output: x, λ;

The input parameter μ is a positive real number (we use μ = 10), and ε is a given
tolerance. The initial input value of the dual variable λ is assumed to be strictly dual
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feasible; that is, Atλ = 0 and |λ|∞ < 1 (we use λ = 0). In the algorithm, a, t, and σ
are scalar variables; r, y, d, v,Δy,Δλ ∈ Rm; w,Δx ∈ Rn; and the vectors s1, s2, d1, d2
do not need to be stored since their components can be evaluated one by one when
needed (one time when computing d and v, and another time when computing Δy and
Δλ). All operations in the definitions of d1, d2, d, v,Δy, and Δλ are componentwise.

This algorithm is a specialization of [1, Alg. 11.2] to our setting, and we now
present the key steps in its derivation. The critical part of this iterative algorithm
consists of computing the next primal-dual search direction, and this is done by con-
sidering the modified KKT equations for (3.11),

(3.12)

{
rdual(λ̃) := z + Ãtλ̃ = 0,

rcent(x̃, λ̃, t) := diag(λ̃)(b̃ − Ãx̃)− t−11 = 0,

where t > 0 is a regularization parameter (see [1, section 11.2]). Then, given a strictly

feasible pair (x̃, λ̃) (i.e., b̃ − Ãx̃ > 0 and λ̃ > 0) and t > 0, the next primal-dual
search direction (Δx̃,Δλ̃) is obtained by applying one Newton step to (3.12):

(3.13)

(
0 Ãt

− diag(λ̃)Ã diag(b̃ − Ãx̃)

)(
Δx̃

Δλ̃

)
= −

(
rdual
rcent

)
.

To simplify the notation and when the context is such that no confusion is possible, in-
stead of using diag(a) we simply use a. Since x̃ is strictly feasible (i.e., b̃ − Ãx̃ > 0),
we can express Δλ̃ from the second equation of (3.13) as

Δλ̃ = s−1(−rcent + λ̃ÃΔx̃),

where we have set s = b̃ − Ãx̃. Note that s can be written as s = (s1, s2) = (r + y,
−r + y) with r = b − Ax. Substituting Δλ̃ into the first equation of (3.13) and
simplifying the right-hand side gives

Ãts−1λ̃ÃΔx̃ = −rdual + Ãts−1rcent = −z − Ãtλ̃+ Ãts−1(λ̃s− t−11)

= −z − t−1Ãts−11.
(3.14)

Now we want to express the two components of Δx̃ := (Δx,Δy). For this purpose we
denote di = s−1

i λ̃i, i = 1, 2, e1 = d1 + d2, and e2 = d2 − d1 (recall that λ̃1 = 1−λ
2 and

λ̃2 = 1+λ
2 ; see line 7 in Algorithm 1). Then the matrix Ãts−1λ̃Ã has the following

block structure:

Ãts−1λ̃Ã =

(
At −At

−I −I

)(
d1 0
0 d2

)(
A −I
−A −I

)
=

(
Ate1A Ate2
e2A e1

)
,

and the right-hand side in (3.14) can be rewritten as follows:

−z − t−1Ãts−11 =

(
−t−1At(s−1

1 − s−1
2 )1

−1 + t−1(s−1
1 + s−1

2 )1

)
=:

(
rx
ry

)
.

Then (3.14) can be recast into(
Ate1A Ate2
e2A e1

)(
Δx
Δy

)
=

(
rx
ry

)
.
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Since s and λ̃ are positive, the diagonal matrix diag(e1) is invertible, and we infer
that Δx and Δy are given by

At(e1 − e2e
−1
1 e2)AΔx = rx −Ate2e

−1
1 ry ,(3.15)

Δy = e−1
1 (ry − e2AΔx);(3.16)

see lines 11 and 13 in Algorithm 1. Using the definitions above, we have

e1 − e2e
−1
1 e2 = (e21 − e22)e

−1
1 = 4d1d2(d1 + d2)

−1 =: d.

The right-hand side of the equation for Δx, (3.15), can be simplified to require only
one multiplication by At:

rx −Ate2e
−1
1 ry = At

[
t−1(s−1

2 − s−1
1 )1

+ (d2 − d1)(d1 + d2)
−1{1− t−1(s−1

1 + s−1
2 )1}

]
=: w.

Finally, we can compute the increment Δλ̃:

Δλ̃ = s−1(−rcent + λ̃ÃΔx̃) = s−1(t−11− λ̃s+ λ̃ÃΔx̃)

=

(
−λ̃1 + t−1s−1

1 1 + d1(AΔx −Δy)

−λ̃2 + t−1s−1
2 1− d2(AΔx +Δy)

)
=:

(
Δλ̃1

Δλ̃2

)
.

Formally, the algorithm could stop here since we have defined the increments Δx̃
and Δλ̃. We further simplify the algorithm by using the property

Δλ̃1 +Δλ̃2 = −λ̃1 − λ̃2 + t−1(s−1
1 + s−1

2 )1 + (d1 − d2)AΔx − (d1 + d2)Δy

= −λ̃1 − λ̃2 + t−1(s−1
1 + s−1

2 )1 + (d1 − d2)AΔx

− [−1 + t−1(s−1
1 + s−1

2 )1− (d2 − d1)AΔx] = 1− λ̃1 − λ̃2,

which holds even if Δx is not the exact solution of (3.15), provided that Δy is defined
by (3.16). The equality Δλ̃1 +Δλ̃2 = 1− λ̃1 − λ̃2 implies that if the initialization for
λ̃ is such that λ̃1 + λ̃2 = 1, which is the second block equality in the constraint
Ãtλ̃ + z = 0, then it will still hold after the update λ̃ ← λ̃ + σΔλ̃. As a result,
instead of working with the pair (λ̃1, λ̃2), we simplify the algorithm by working with
λ = λ̃2 − λ̃1 only. The increment Δλ is given by Δλ := Δλ̃2 − Δλ̃1 (see line 14 in
Algorithm 1).

Note that the strict feasibility condition λ̃ > 0 is equivalent to |λ|∞ < 1 and the

constraint Ãtλ̃+ z = 0 is equivalent to Atλ = 0. All the vectors λ and y generated by
Algorithm 1 are strictly dual feasible (Atλ = 0 and |λ|∞ < 1, |r| < y) provided that
the input λ is strictly dual feasible. To see this, observe that line 15 in Algorithm 1
implies that the new λ is such that |λ|∞ ≤ 1 and line 16 implies that |λ|∞ < 1. The
same comment applies to y; i.e., the new vector y is larger than the absolute value
of the new residual. Moreover, by construction one can verify from the first equation
in (3.13) that Δλ and λ are related by AtΔλ = −Atλ; as a result, if Atλ = 0, then
At(λ + σΔλ) = 0.

The surrogate duality gap defined by η̂ := (b̃ − Ãx̃)tλ̃ should be zero at conver-
gence. This quantity can also be rewritten as follows:

η̂ = stλ̃ = st1λ̃1 + st2λ̃2 = yt1− rtλ.
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This expression justifies the definition of the regularization parameter t in line 5 in
Algorithm 1.

Proposition 3.1. The output vector x generated by Algorithm 1 is an almost
minimizer for (3.5) with a tolerance 1 + ε.

Proof. The stopping criterion used in the algorithm guarantees that

f(x)− f(x∗) ≤ f(x)− g(λ) = |r|1 − rtλ ≤ ε rtλ ≤ εf(x∗),

which proves the statement.
The most expensive step at each iteration of the while loop is the solution

of (3.15) for Δx. Since direct solution methods are not practical for large n, we
use an iterative method to solve the linear system approximately. In the resulting
algorithm the vectors λ do not satisfy Atλ = 0. However, numerically we observe
that solving iteratively with relative tolerance ε/10 produces results that are very
similar to the results obtained by solving almost exactly. The iterative method we
use is the preconditioned conjugate gradient (PCG) method with a simple symmetric
Gauss–Seidel preconditioner.

Remark 3.1. It is not guaranteed that Algorithm 1 will produce an output in all
cases in a reasonable amount of time. We observe that 20 to 50 interior-point steps
are sufficient in our numerical examples for ε = 10−2, the linear system being solved
with relative tolerance ε/10, but to the best of our knowledge there is no theoretical
result limiting the number of steps in general when the linear system (3.15) is not
solved exactly. If the linear system (3.15) is solved exactly, using a direct method, we
expect that Algorithm 1 will terminate in approximately

√
n interior-point steps; see

[20, 25] for convergence and complexity analysis of similar interior-point methods.

4. Surface reconstruction. We illustrate our data reconstruction technique in
this section. In all our numerical experiments, Ω is a square, and we use a uniform
rectangular mesh with equal step size in both x and y directions. The tolerance in
the interior-point (IP) method is ε = 10−2, and the linear systems for Δx are solved
with relative tolerance 10−3.

4.1. Piecewise smooth data. The data for this set of experiments is obtained
from point values of the function

(4.1) u(x, y) = f(max{|x− 1/2|, |y − 1/2|}), (x, y) ∈ Ω := [0, 1]2,

where

(4.2) f(r) =

⎧⎪⎨⎪⎩
5/3, r ∈ [0, 1/8],

1, r ∈ (1/8, 5/16],

16(1/2− r)/3, r ∈ (5/16, 1/2].

Note that u(x, y) is discontinuous at Γ1 = {r = 1/8}, and its gradient also has jumps
across Γ2 = {r = 5/16} and Γ3 = ({x = y} ∪ {x+ y = 1})∩ {5/16 ≤ r ≤ 1/2}. Away
from those discontinuities the function is linear. The graph of u looks like an Aztec
pyramid (see Figure 2).

We construct a uniform Cartesian mesh composed of 1/h× 1/h square cells, and
we define Vh = {x1, . . .} to be the Q1 vertices of this mesh. Our goal is to reconstruct
a nonoscillatory approximation of u from pointwise values; i.e., we set di(v) := v(xi)
for all xi ∈ Vh.
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Fig. 1. The pyramid test case, h = 1/16. Thin plate spline reconstruction (left) and �2-
reconstruction (right).

In the left panel of Figure 1 we show the graph obtained using the thin plate
spline reconstruction [8, 27] (the thin plate spline technique is based on radial basis
functions). In the right panel of Figure 1 we show the graph of the approximate
solution obtained by using the discrete �2-norm instead of the discrete �1-norm, i.e.,
uh ← Argminy∈Rn |Ay−b|�2 , whereA and b have been defined in section 3.1. The graph
of the thin plate spline approximation and that obtained from the �2-minimization
process are very similar and obviously oscillatory. This type of result motivates our
interest in L1-minimization techniques.

Fig. 2. L1-reconstruction of the graph of the pyramid test case, h = 1/16; α = 3 (left) and
α = 5 (right).

Figure 2 shows two reconstructed surfaces obtained by solving (2.21) with exact
interpolation (β = 0) using α = 3 (left panel) and α = 5 (right panel) on the 16× 16
mesh. The solution obtained with α = 5 is C1 everywhere, and that obtained with
α = 3 is C1 almost everywhere but around the edges defined by Γ3. The improvement
over the results shown in Figure 1 is clear.

Figure 3 shows the isocontours of the two L1-reconstructed solutions shown in
Figure 2. The result in the left panel has been computed using α = 3. The solution
is not C1, but the level sets seem to be convex. The result shown in the right panel
has been computed using α = 5. We have checked that the solution is C1 by verifying
that the constraints on the jump of the normal derivative across all the mesh cells
are satisfied. We observe that the price to pay for C1-continuity is the introduction
of oscillations and the loss of convexity of the level sets.
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Fig. 3. Isocontours of the L1-reconstruction of the pyramid test case, h = 1/16; zoom on the
bottom left corner; α = 3 (left) and α = 5 (right).

In order to recover some convexity on the isocontours, we now relax the inter-
polation constraint by solving (2.21) with Yh = Xh and using β = 7 in (2.20). The
results are shown in Figure 4. The graph of the approximate solution is shown in
the left panel, and the isocontours are shown in the right panel. We observe that
the isocontours are now approximately convex. We have verified numerically that the
solution is C1 everywhere; increasing the parameter α does not change the output
since the solution is C1.

Fig. 4. L1-reconstruction of the graph of the pyramid test case with the interpolation constraint
relaxed, using α = 3 and β = 7, h = 1/16; 3D view (left) and isocontours zoom on the bottom left
corner (right).

In Table 1 (left side), we present results illustrating the convergence properties of
the IP method as the mesh is refined. We performed tests with mesh-sizes h = 1/16,
1/32, 1/64, 1/128, and 1/256 using exact interpolation at all mesh vertices (β = 0).
For each mesh we report the number of IP iterations to reach the tolerance ε = 10−2.
We observe that the number of IP iterations increases like ln(1/h). We also report
in this table the total number of PCG iterations, the linear system being solved with
relative tolerance 10−3. For two consecutive meshes we compute the ratio of the
number of PCG iterations from one level to the next, and we multiply this ratio
by 4, which roughly measures the increase in the computational cost per level. When
we compare these ratios with the actual increase in computing time (last line in the
table), we observe that both ratios are fairly close. These numbers show that the
computational complexity of the algorithm (and the CPU time) scales like O(nγ)
with γ = ln(6)/ ln(4) ≈ 1.29.
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Table 1

Convergence tests for the pyramid test case with α = 3.

1/h 16 32 64 128 256

IP iter. 15 16 17 18 19

n̂ 2 401 9 409 37 249 148 225 591 361

m 10 368 41 728 167 424 670 720 2 684 928

PCG iter. 1 512 1 599 2 437 3 628 4 751

Ratio×4 — 4.23 6.10 5.95 5.24

Time, sec. 4.62 21.22 126.68 754.37 3 908.27

Ratio — 4.59 5.97 5.95 5.18

4.2. Real terrain data. Next, we present results for two data sets coming from
elevation maps of real terrains.

Fig. 5. Small terrain data set. Q1 interpolant (top); L1-reconstruction using α = 3, β = 0
(left) and α = 5, β = 0 (right).

The first test case (hereafter called the small terrain data set) is a reference test
from [28]. The domain is the unit square, Ω = (0, 1)2, and terrain elevations are given
at the vertices of a uniform 20 × 20 Cartesian grid covering Ω. Denoting by Vh the
Q1 vertices of the mesh, our objective is to reconstruct the terrain topography using
the interpolation constraints di(v) = v(xi) for all xi in Vh. The Q1 interpolant of the
data set is shown in Figure 5.

The results using penalty parameters α = 3 and α = 5 (and β = 0 for both) are
shown in Figure 5. It is clear that both reconstructions are significantly smoother
than the Q1 interpolant. We have verified numerically that the solution computed
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with α = 5 is C1. By looking at fine details it seems that the solution computed with
α = 3 is slightly more monotone than the C1 solution and is thus more eye-pleasing.

For the second test case we use the elevation map of a 3km×3km terrain near
Barton Creek in Austin, Texas. The data comes from the Digital Elevation Models
(DEM) data files produced by the U.S. Geological Survey (USGS).1 The data set
is sampled on a 100 × 100 uniform Cartesian mesh. Denoting again by Vh the Q1

vertices of the mesh, we reconstruct the topography using the interpolation constraints
di(v) = v(xi) for all xi in Vh. The Q1 interpolant of the data and the reconstructed
Q3 solution using α = 3 (and β = 0) are shown in Figure 6 (two top panels). So that
the reader may better appreciate the quality of the reconstruction, we show in the
two bottom panels of Figure 6 a zoom of a small region.

Fig. 6. Barton Creek data set. Q1 interpolant (top left); L1-reconstruction using α = 3 (top
right); zoom of the Q1 interpolant (bottom left); zoom of the L1-reconstruction using α = 3 (bottom
right).

In Table 2, we present the computational characteristics of the IP method applied
to the small terrain data set and the Barton Creek case. The computation has been
done on a desktop, and no particular attention has been given to the optimization
of the code. The complexity we report in Tables 1 and 2 seems to outperform that
reported in Table 1 in [26]. The complexity of the method seems to be O(nγ), with
γ ≈ 1.29.

5. Image enhancing. We now apply the reconstruction technique to image
processing. Given a gray-scale image, our goal is to enhance the resolution of under-
resolved or aliased gray-scale images.

1DEM data is available at http://www.webgis.com/terraindata.html.
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Table 2

Convergence tests for the small terrain (20× 20) and Barton creek (100 × 100) tests with α = 3.

1/h 20× 20 100× 100

IP iter. 21 28

n̂ 3 721 90 601

m 16 240 409 200

PCG iter. 4 656 3 923

Time, sec. 21.78 498.55

5.1. The principle. We represent digital gray-scale pictures on uniform Carte-
sian grids as piecewise constant functions, each square in the mesh representing a
pixel and the value therein �i being the light intensity.

To reconstruct a better image, we can define the constraint functionals dh in
various ways. One possible way, which we call the s0 technique, consists of setting
di(v) = v(xi) for all xi ∈ Bh, where Bh is the set of barycenters of the mesh elements.
These constraints impose the original light intensity at the barycenter of each pixel
for the reconstructed image. Another possible way, which we call the s1 technique,
consists of setting di(v) = 1

|T |
∫
T
v(x) dx for all T ∈ Th. With these constraints we

impose the average light intensity over each pixel of the reconstructed image to be
equal to that of the original image.

5.2. Target test case. We start with a test from [26] which we call the “target
test.” In this test, we take a low resolution aliased image (see the top panel in Figure 7)
and use the s0 and s1 reconstruction techniques to enhance the image. The results
are shown in Figure 7.

Fig. 7. Target test: Original image (top left); s0 reconstruction (top center); s1 reconstruction
(top right). BW thresholding: Original image (bottom left); s0 reconstruction (bottom center); s1
reconstruction (bottom right).

We observe that both the s0 and s1 reconstructions reduce the aliasing effect
with maybe the s1 technique producing slightly sharper edges. For the reader who is
familiar with superresolution techniques let us stress that, contrary to what is done in
the superresolution community, we use only one original image. Our technique cannot



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1610 VESELIN DOBREV, JEAN-LUC GUERMOND, AND BOJAN POPOV

be compared to other superresolution techniques which use ten or more samples of
the same image to remove the aliasing.

In the second row of Figure 7 we show all images in black and white. The gray-
scale goes from 0 to 255, and we have set the black/white threshold at 127. These
pictures show that our technique reconstructs the level sets well.

5.3. Text test case. Our second image enhancing test case comes from [21].2

It is an aliased picture of the word “ČESKOSLOVENSKO.” The original image is
shown in the top panel in Figure 8. Again, our approach consists of enhancing the
image using the reconstruction techniques described above.

The results obtained using the s0 and s1 reconstructions are shown in the panels
in the second row in Figure 8. The improvement is clear, the s1 reconstruction
being slightly sharper than the s0 reconstruction. The dealiasing effect is a little less
dramatic than in [21], but recall again that we are using only one original image for
the reconstruction.

Fig. 8. ČESKOSLOVENSKO test case. Original picture (top). Detailed region of the central
letters: Original picture (second row left); s0 reconstruction (second row center); s1 reconstruction
(second row right). BW thresholding: Original picture (third row left); s0 reconstruction (third row
center); s1 reconstruction (third row right). The original image was first published in The Computer
Journal (L. C. Pickup, D. P. Capel, S. J. Roberts, and A. Zisserman, “Bayesian methods for image
super-resolution,” The Computer Journal, 52 (1) (2009)) and appears here with permission of Oxford
University Press.

In the third row of Figure 8 we show all images in black and white. The gray-scale
goes from 0 to 255, and we have set the black/white threshold at 186 for the three
pictures. These images show that our technique reconstructs the level sets well, with
the s1 reconstruction being the best again.

5.4. Pepper test case. We now show how our L1-reconstruction method works
on a pepper image. The original image is shown in the top panel and bottom left

2A full sequence of superresolution tests is available at http://www.robots.ox.ac.uk/∼vgg/data.
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panel in Figure 9. The result obtained using the s1 reconstruction is shown in the
right bottom panels in Figure 9. The improvement is clear again.

Fig. 9. Pepper test case. Original picture (top and bottom left); s1 reconstruction (bottom right).

5.5. Lena test. We finish this series on image enhancing by reconstructing a
down-sampled version of the standard test image of Lena. Similarly to [19], we down-
sample the 512×512 gray-scale original image to a 128×128 image by averaging 4×4
pixel blocks. The result obtained using the s1 reconstruction is shown in Figure 10.
Compared to the results in [19, section 5.1], our reconstruction does not have the
same sharpness at the edges; however, the staircase effect is substantially reduced as
a result of the algorithm smoothing the boundary of the level sets. The staircase effect
is a typical problem of the BV-regularized reconstruction methods. Regularizing the
BV-norm of the gradient, as advocated in the present paper, is a way to avoid this
problem.

6. Conclusion. As claimed by Lavery [16, 18], we have observed that the L1-
metric is suitable for nonoscillatory surface reconstruction. We have proposed a finite
element technique which is more flexible than L1-cubic splines for this purpose. We
have proposed a preconditioned interior-point technique for solving the minimization
problem whose complexity is O(nγ), with γ ≈ 1.29 in our numerical experiments.
In general, one should expect that the number of interior-point steps scales like

√
n

(see [20, 25] for details), but in our examples we observe only a logarithmic growth.
The observed cost reduction is based on the use of the PCG method when solving the
linear system (3.15) instead of a direct method. For instance, the method in [28] scales
like n2 per interior-point step, and the method in [13] scales like n3 per interior-point
step. We have also demonstrated that the method can be useful for enhancing low
resolution images, creating oscillation-free surfaces, and reducing aliasing effects.
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Fig. 10. Lena test: Original image and zoomed part (top); downscaled (bottom left); and s1
reconstruction (bottom right).

Appendix. Proof of Proposition 2.5. The proof is split into a series of
lemmas.

Lemma A.1 (strong duality). For any x∗ ∈ Rn and λ∗ ∈ Λ, the pair (x∗, λ∗)
solves (3.9)–(3.10) if and only if f(x∗) = g(λ∗).

Proof. Let us denote the open �1-ball in Rm of radius r by

Br = {z ∈ Rm : |z|1 < r}

and then define the number

ρ = inf
{
r ∈ R : Br ∩ (b+ ImA) �= ∅

}
.

If ρ = 0, then b ∈ ImA, and we have

0 = f(x∗) ≥ g(λ∗) ≥ g(0) = 0.

When ρ > 0, the set Bρ∩ (b+ImA) is nonempty (which implies existence of solutions
of (3.9)), and it is a subset of the boundary of Bρ. In particular, the convex sets Bρ
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and b+ImA are disjoint and can be separated by a hyperplane; i.e., there are μ ∈ Rm

and χ ∈ R such that

μtz ≤ χ ∀z ∈ Bρ and μtz ≥ χ ∀z ∈ b+ ImA,

where we can take μ such that |μ|∞ = 1. By taking a supremum over z in the first
inequality, we find

sup
|z|1<ρ

μtz = ρ|μ|∞ = ρ ≤ χ.

The second inequality is equivalent to

μt(b−Ax) ≥ χ ∀x ∈ Rn,

which implies that Atμ = 0, and therefore we have

μtb ≥ χ ≥ ρ.

Thus, we showed that μ is dual feasible, and for any pair of solutions x∗ and λ∗ of
(3.9) and (3.10) we have

g(μ) = μtb ≥ ρ = f(x∗) ≥ g(λ∗) ≥ g(μ).

The converse is evident from (3.8). Note that the lemma can also be deduced from
[22, Prop. 6.2].

Lemma A.2. For any x∗ ∈ Rn and λ∗ ∈ Λ, the pair (x∗, λ∗) solves (3.9)–(3.10)
if and only if (b − Ax∗)iλ

∗
i = |(b − Ax∗)i| for all i = 1, . . . ,m. In particular, if

λ∗ is a solution of (3.10) and |λ∗
i | < 1, then for every solution x∗ of (3.9) we have

(b−Ax∗)i = 0.
Proof. For any λ∗ ∈ Λ we have g(λ∗) = (b − Ax∗)tλ∗ ≤ |b −Ax∗|1 = f(x∗), and

thus g(λ∗) = f(x∗) is equivalent to (b − Ax∗)iλ
∗
i = |(b − Ax∗)i| for all i = 1, . . . ,m,

owing to Lemma A.1.
We now assume that the matrix A and the vector b have the block structure

A =

(
A1

αA2

)
, b =

(
b1
αb2

)
,

which is exactly the structure they have in problem (3.5), where A2 and b2 correspond
to the rows generated by the terms

∫
F |[[∂nuh]]|, F ∈ F i

h, plus the rows generated by

terms β
α |di(uh)−�i|, i = 1, . . . , Ih, if β �= 0. (Recall that (3.5) is the matrix version

of (2.21).) The primal function has the form

f(x) = |b−Ax|1 = |b1 −A1x|1 + α|b2 −A2x|1.

Lemma A.3. Assume that the rows of A2 are linearly independent. Then there
exists a number ᾱ such that when α > ᾱ every solution x∗ of (3.9) satisfies

b2 −A2x
∗ = 0.

Proof. We will show that when α is large enough, the feasible set of the dual
problem (3.10) (and therefore any solution) satisfies |λ2|∞ < 1, which, in view of
Lemma A.2, implies the proposition. Indeed, if λ is dual feasible, then we have

0 = Atλ = At
1λ1 + αAt

2λ2.
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The assumption on A2 implies the existence of right inverse R of A2,

A2R = I or RtAt
2 = I,

and thus we have λ2 = − 1
αR

tAt
1λ1. Now, if we define ᾱ = |RtAt

1|∞ and take α > ᾱ,
then we get

|λ2|∞ =
1

α
|RtAt

1λ1|∞ ≤
1

α
|RtAt

1|∞|λ1|∞ < 1,

which combined with Lemma A.2 concludes the proof.
Lemma A.4. There exists a number ᾱ so that for all b2 ∈ ImA2 every solution

x∗ of (3.9) satisfies b2 − A2x
∗ = 0 for all α > ᾱ.

Proof. Let Ã2 denote the matrix whose rows are a maximal linearly independent
set of rows of A2. Without loss of generality we can write

A2 =

(
Ã2

A3

)
, b2 =

(
b̃2
b3

)
.

We have the following property: if b2 ∈ ImA2 and Ã2x = b̃2, then A3x = b3. Let us
now define

Ã =

(
A1

αÃ2

)
, b̃ =

(
b1
αb̃2

)
and consider the reduced minimization problem

(A.1) minimize f̃(x) = |b̃ − Ãx|1 = |b1 −A1x|1 + α|b̃2 − Ã2x|1,

obtained from (3.9) by replacing A and b with Ã and b̃, respectively. Since the rows of

Ã2 are linearly independent, we apply Lemma A.3 to this problem and conclude that
for α > ᾱ every solution x̃ of (A.1) satisfies Ã2x̃ = b̃2. We now assume that α > ᾱ
and b2 ∈ ImA2, and we want to show that problems (3.9) and (A.1) are equivalent.
First we note that for all x ∈ Rn

f̃(x) = |b1 −A1x|1 + α|b̃2 − Ã2x|1
≤ |b1 −A1x|1 + α|b̃2 − Ã2x|1 + α|b3 −A3x|1 = f(x),

and therefore for any two solutions x∗ and x̃ of (3.9) and (A.1), respectively, we have

f̃(x̃) ≤ f(x∗). Since Ã2x̃ = b̃2 and we assumed that b2 ∈ ImA2, we conclude that
A3x̃ = b3, and therefore

f(x̃) = f̃(x̃) ≤ f(x∗) ≤ f(x̃),

which shows that f̃(x̃) = f(x∗) and x̃ is a solution to (3.9). For f̃(x∗) we have

f̃(x∗) ≤ f(x∗) = f̃(x̃) ≤ f̃(x∗),

which shows that f̃(x∗) = f̃(x̃), and therefore x∗ is a solution to (A.1). Since we

already know that Ã2x̃ = b̃2 and A3x̃ = b3, i.e., A2x̃ = b2, and since x̃ is an arbitrary
solution to (A.1) (or, as we just proved, to (3.9)), this completes the proof.

Let us now finish the proof of Proposition 2.5. We assume that Yh is defined
by (2.8); the proof of the second case is analogous. Since the mesh is composed of
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quadrilateral elements, it is possible to construct a function vh ∈ Yh∩C1(Ω) using the
Bogner–Fox–Schmit-type interpolation (see, e.g., [2, p. 72]), for which one prescribes
the values of the function, its gradient, and its mixed second derivatives at the vertices
of the mesh. The functional (2.21) can be put in the form

Jh(wh) = |Ax− b1|1 + α|A2x− b2|1,

where A2 and b2 correspond to the rows generated by the terms
∫
F |[[∂nuh]]| (the

pointwise constraint dh(wh) = �h is satisfied for all wh ∈ Yh by the definition of Yh).
Moreover, vh ∈ C1(Ω) implies that

∫
F
|[[∂nuh]]| = 0 for all F ∈ F i

h, and because |A2x−
b2|1 is an equivalent discretization (see (2.16)) of

∑
F∈Fi

h

∫
F |[[∂nuh]]|, we conclude that

|A2x− b2|1 = 0,

which is equivalent to b2 ∈ ImA2. Now, we apply Lemma A.4, and this completes the
proof of Proposition 2.5.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, 2004.

[2] D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics,
2nd ed., Cambridge University Press, Cambridge, UK, 1997.

[3] E. J. Candès, J. K. Romberg, and T. Tao, Stable signal recovery from incomplete and
inaccurate measurements, Comm. Pure Appl. Math., 59 (2006), pp. 1207–1223.

[4] E. J. Candes and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51
(2005), pp. 4203–4215.

[5] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related
problems, Numer. Math., 76 (1997), pp. 167–188.
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