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Abstract. This note describes a general class of regularizations for the com-

pressible Euler equations. A unique regularization is identified that is com-

patible with all the generalized entropies à la [8] and satisfies the minimum
entropy principle. All the results announced herein will be reported in detail

in [5].

1. Introduction. A new numerical method for approximating nonlinear conserva-
tion laws using an artificial viscosity based on entropy production has been described
in [4, 6, 16]. This so-called entropy viscosity method uses finite elements, either con-
tinuous or discontinuous, and consists of augmenting the numerical discretization
at hand with a parabolic regularization where the nonlinear viscosity is based on
the local size of a discrete entropy production. The idea of using the entropy to
design numerical methods for nonlinear conservation equations is not new. For in-
stance it is shown in [11] that the entropy production can be used as an a posteriori
error indicator and therefore is useful for adaptive strategies. The main originality
of the entropy viscosity method is that one directly uses the entropy production
to construct an artificial viscosity. This strategy makes an automatic distinction
between shocks and contact discontinuities. This method is simple to program and
does not use any flux or slope limiters. The method can be reasonably justified
for scalar conservation equations. For instance it is now well established that the
solution of the parabolic regularization of a scalar conservation equation converges
to the entropy solution as the regularization parameter goes to zero. This funda-
mental fact is the key justification for constructing approximation techniques based
on artificial viscosity. Stability results have been established in [10] and [1] for fully
discrete versions of the entropy viscosity method for scalar conservation equations
using simple entropies. The extension of this strategy to hyperbolic systems is not
so clear, since the question of how parabolic regularizations should be constructed
for hyperbolic systems is still an open problem. In particular, our experience is
that the Navier-Stokes system is not a robust regularization of the Euler system,
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one key reason being that there is no mechanism therein to help the density to
stay positive, another one being that the Navier-Stokes regularization is known to
violate the minimum entropy principle if the thermal diffusivity is zero.

The objective of this note is to investigate a nonstandard family of regularization
of the Euler system that can serve as a reasonable starting point for an entropy
viscosity technique. We identify a single family that preserves positivity of the
density, satisfies a minimum entropy principle (see [14]), and is compatible with the
largest class of generalized entropies inequalities of [8].

2. Statement of the problem. Consider the compressible Euler equations in
conservative form in Rd,

∂tU +∇·F (U) = 0, U(x, 0) = (ρ0(x),m0(x), E(x))T , (1)

where U = (ρ,m, E)
T

, F (U) = (m,u⊗m + pI,u(E + p))
T

. The dependent vari-
ables are the density, ρ, the momentum, m and the total energy, E. We adopt
the usual convention that for any vectors a, b, with entries {ai}i=1,...,d, {bi}i=1,...,d,
the following holds: (a⊗ b)ij = aibj and ∇·a = ∂xjaj , (∇a)ij = ∂xiaj . Moreover,
for any order 2 tensors g, h, with entries {gij}i,j=1,...,d, {hij}i,j=1,...,d, we define
(∇·g)j = ∂xigij , a·∇ = ai∂xi , (g·a)i = gijaj , g:h = gijhij where repeated indices
are summed from 1 to d.

The equation of state is assumed to derive from a specific entropy, s(ρ, e), through
the thermodynamics identity: T ds := de+ pdτ , where τ := ρ−1, e := ρ−1E − 1

2u
2

is the specific internal energy, u := ρ−1m is the velocity of the fluid particles. For

instance it is usual to take s = log(e
1

γ−1 ρ−1) for a polytropic ideal gas. Using
the notation se := ∂s

∂e and sρ := ∂s
∂ρ , this definition implies that se := T−1, sρ :=

−pT−1ρ−2. The equation of state takes the form p := −ρ2sρs−1e . The key structural
assumption is that −s is strictly convex with respect to τ := ρ−1 and e. Upon
introducing σ(τ, e) := s(ρ, e), the convexity hypothesis is equivalent to assuming
that σττ ≤ 0, σee ≤ 0, and σττσee−σ2

τe ≤ 0. This in turn implies that ∂ρ(ρ
2sρ) < 0,

see < 0, 0 < ∂ρ(ρ
2sρ)see − ρ2s2ρe, or equivalently that the following matrix

Σ :=

(
ρ−1∂ρ(ρ

2sρ) ρsρe
ρsρe ρsee

)
, (2)

is negative definite. In the rest of the note we assume that the entropy is strictly
convex and the temperature is positive, i.e., 0 < se.

A physical way to regularize the Euler system (1) consists of considering this
system as the limit of the Navier-Stokes equations. We claim that the Navier-Stokes
regularization is not appropriate for numerical purposes. The first problem that we
identify is that the minimum entropy principle cannot be satisfied for general initial
data if the thermal dissipation is not zero. More precisely, assuming that the thermal
diffusivity is nonzero, for any r ∈ R, there exist initial data so that the set {s ≥ r}
is not positively invariant, where s is the specific entropy, see e.g., [12, Thm 8.2.3].
Another argument often invoked against the presence of thermal dissipation is that
it is incompatible with symmetrization of the Navier-Stokes system when using the
generalized entropies of [7] for polytropic ideal gases. The function ρf(s) is said to be
a generalized entropy if f ′(γ−1)γ−1−f ′′ > 0, f ′ > 0 and f ∈ C2(R; R). It is proved
in [9] that the only generalized entropy that symmetrizes the Navier-Stokes system
is the trivial one ρs when the thermal diffusivity is nonzero, see also [15, (2.11) and
Remark 2, page 460]. Although symmetrization of the viscous fluxes is not necessary
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to establish entropy dissipation (see e.g., [13, §1.1]), it is nevertheless true that the
Navier-Stokes system violates generalized entropy inequalities if f ′′(s) 6= 0.

The objective of this note is to introduce a regularization of (1) that is compatible
with thermodynamics and can be used for numerical approximations.

3. General regularization. We investigate in this section the properties of fol-
lowing general regularization for the Euler system:

∂tU +∇·F (U) = ∇·T , U(x, 0) = (ρ0(x),m0(x), E(x))T , (3)

where T = (f , g,h+ g·u)T and the fluxes f , g, and h are as general as possible. A
regularization theory for general nonlinear hyperbolic system has been developed
in [13] and [12, Chap 6]. Our objective in this note is more restrictive. We want to
construct the fluxes f , g, and h so that (3) gives a positive density, gives a minimum
principle on the specific entropy, and is compatible with a large class of entropies.
It is assumed in the rest of the note that (3) has a smooth solution.

3.1. Positivity of the density. Modulo mild regularity assumptions on the ve-
locity, the theory of second-order elliptic equations implies that f = a(ρ, e)∇ρ is
appropriate to guaranty the positivity of the density, where a(ρ, e) is a smooth
positive function. The following is established in [5]

Lemma 3.1 (Positive Density Principle). Let f = a(ρ, e)∇ρ in (3), with a ∈
L∞(R2; R) and inf(ξ,η)∈R2 a(ξ, η) > 0. Assume that u and ∇·u ∈ L∞(Rd×R+; R).
Assume also that there are constant states at infinity ρ∞, u∞, so that the supports
of ρ(·, ·) − ρ∞ and u(·, ·) − u∞ are compact in Rd×(0, t), for any t > 0. Assume
finally that ρ0 − ρ∞ ∈ L2(Rd; R). Then the solution of (3) is such that

ess inf
x∈Rd

ρ(x, t) ≥ 0, ∀t ≥ 0. (4)

3.2. Minimum entropy principle. Since physically admissible weak solutions of
the Euler equations satisfy the following inequality ∂ts+u·∇s ≥ 0, they also satisfy
a minimum entropy principle, i.e., the set {s ≥ s0}, where s0 is the infimum of the
specific entropy of the initial data, is positively invariant. The importance of the
minimum entropy principle has been established by [14].

Requesting that the triple f , h and G be such that the solution of (3) satisfies
a minimum entropy principle narrows down the choices that can be made for the
viscous fluxes. It is shown in [5] that the following structure is sufficient for this
purpose:

f = a(ρ, e)∇ρ a(ρ, e) ≥ 0, (5)

g = G(∇su) + f ⊗ u, G(∇su):∇u ≥ 0, (6)

h = l− 1
2u

2f , l = (a− d)(pρ−1 + e)∇ρ+ d∇(ρe) d(ρ, e) ≥ 0. (7)

Theorem 3.2 (Minimum Entropy Principle). Assume that ρ0 and e0 are constant
outside some compact set. Assume also that (5)-(6)-(7) hold. Assume that the
solution to (3) is smooth, then the minimum entropy principle holds,

ess inf
x∈Rd

s(x, t) ≥ ess inf
x∈Rd

s0(x), ∀t ≥ 0.
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3.3. Generalized entropies. We investigate in this section whether the regular-
ization of the Euler equations (3) is compatible with some or all generalized entropy
inequalities identified in [8]. A function ρf(s) is called a generalized entropy if f is
twice differentiable and

f ′(s) > 0, f ′(s)c−1p − f ′′(s) > 0, ∀(ρ, e) ∈ R2
+, (8)

where cp(ρ, e) = T∂T s(p, T ) is the specific heat at constant pressure. It is shown in
[8] that −ρf(s) is strictly convex with respect to ρ−1 and e if and only if (8) holds,
i.e., (8) characterizes the maximal set of admissible entropies for the compressible
Euler equations that are of the form ρf(s). The following result is proved in [5]:

Theorem 3.3 (Entropy Inequalities). Assume that (6)-(5)-(7) hold. Any weak
solution to the regularized system (3) satisfies the entropy inequality

∂t(ρf(s)) +∇·
(
uρf(s)− dρ∇f(s)− af(s)∇ρ

)
≥ 0, (9)

for all generalized entropies ρf(s) if and only if a = d.

Corollary 1. Any weak solution to the regularized system (3) satisfies the entropy

inequality (9) for the physical entropy ρs (i.e., f(s) = s) if 2Γ − 2∆
1
2 < 1 − a

d <

2Γ + 2∆
1
2 where Γ = det(Σ)ρ2s−2e p−2e and ∆ = Γ(1 + Γ).

In the case of a polytropic ideal gases, i.e., s = log(e
1

γ−1 ρ−1) with γ > 1, we have
cp = γ(γ−1)−1, det(Σ) = (γ−1)−1e−2, f = a∇ρ, and l = γde(ad−1+ 1

γ )∇ρ+dρ∇e.
The range for the ratio ad−1 for Corollary 1 to hold is

2

γ − 1
(1−√γ) < 1− a

d
<

2

γ − 1
(1 +

√
γ). (10)

In particular the choice 1− a
d = 1

γ is clearly in the admissible range. For this choice

l = dρ∇e and f = dγ−1γ ∇ρ, i.e., l does not involve any mass dissipation.

4. Conclusions. We show in this section that the regularization proposed above
reconciles the Navier-Stokes and the parabolic regularization points of view.

4.1. Parabolic regularization. One natural question that comes to mind is how
different is the general regularization (3) from the simple parabolic regularization:

∂tU +∇·F (U) = ε∆U , U(x, 0) = U0(x), (11)

where U = (ρ,m, E)
T

, F (U) = (m,u⊗m + pI,u(E + p))
T

. The answer is given
by the following, somewhat a priori frustrating result:

Proposition 1 (Parabolic regularization). The parabolic regularization (11) is
identical to (3) with (6)–(7) where a = d = ε, G = ερ∇u.

Even when a = d, one important interest of the class of regularization (3), when
compared to the monolithic parabolic regularization (11), is that it decouples the
regularization on the velocity from that on the density and internal energy. In
particular the regularization on the velocity can be made rotation invariant by
making the tensor G a function of the symmetric gradient ∇su. This decoupling
was not a priori evident when looking at (11).
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4.2. Connection with phenomenological models. Using the assumptions (6)–
(7) in the balance equation (3) we obtain the following system:

∂tρ+∇·m−∇·f = 0, (12)

∂tm +∇·(u⊗m) +∇p−∇·(G(∇su) + f ⊗ u) = 0, (13)

∂tE +∇·(u(E + p))−∇·(l + 1
2u

2f + G(∇su)·u) = 0, (14)

When looking at (12)–(14) it is not immediately clear how this system can be rec-
onciled either with the Navier-Stokes regularization or with any phenomenological
modeling of dissipation. It is remarkable that this exercise can actually been done
by introducing the quantity um = u − ρ−1f . The above conservation equations
then become

∂tρ+∇·(umρ) = 0, (15)

∂tm +∇·(um ⊗m) +∇p−∇·(G(∇su)) = 0, (16)

∂tE +∇·(umE)−∇·(l− ef) +∇·
(
(pI− G(∇su))·u

)
= 0. (17)

This system resembles the Navier-Stokes regularization with two velocities. If one
sets a = d, the term l − ef becomes dρ∇e, which upon assuming de = cv dT ,
reduces to d(ρ, e)ρcv∇T , i.e., one obtains Fourier’s law: l− ef = d(ρ, e)ρcv∇T .

The system (15)–(17) resembles, at least formally, a model of fluid dynamics of
[2] (see e.g., equations (1) to (5) in [2]). The author has derived the above system of
conservation equations (up to some non-essential disagreement on the term l− ef)
by invoking phenomenological considerations. The mathematical properties of this
system have been investigated by [3]. Brenner has been defending for years the
idea that it makes phenomenological sense to distinguish the so-called mass veloc-
ity, um, from the so-called volume velocity, u. This idea seems to be supported
by our mathematical derivation which did not invoke any had oc phenomenological
assumption. Recall that our primal motivation in this project is to find a regulariza-
tion of the compressible Euler equations that can serve as a good numerical device,
and by being good we mean that the model must give positive density, positive
internal energy, a minimum entropy principle and be compatible with a large class
of entropy inequalities.

4.3. Concluding remarks. Let us finally rephrase our findings. In its most gen-
eral form, the regularized system (15)–(17) can be re-written as follows:

∂tρ+∇·(umρ) = 0, (18)

∂tm +∇·(um ⊗m) +∇p−∇·(G(∇su)) = 0, (19)

∂tE +∇·(umE)−∇·q +∇·
(
(pI−G(∇su))·u

)
= 0 (20)

um = u− a(ρ, e)∇ log ρ (21)

q = (a− d)p∇ log ρ+ dρ∇e, a(ρ, e) ≥ 0, d(ρ, e) ≥ 0. (22)

It is established in Lemma 3.1 that the definition of f = a(ρ, e)∇ρ is compatible
with the positive density principle. The particular form of q in (22) results from
the definition of l, see (7), which is required for the minimum entropy principle to
hold, as established in Theorem 3.2. It is finally proved in Theorem 3.3 that the
most robust regularization, i.e., that which is compatible with all the generalized
entropy à la [8], corresponds to the choice a = d. A relaxation of the constraint
a = d is described in Corollary 1. As observed in §4.1, the parabolic regularization



124 JEAN-LUC GUERMOND AND BOJAN POPOV

can be put into the form (18)–(22) with the particular choice G = a∇u, which is
not rotation invariant and uses the same viscosity coefficient for all fields.
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