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Abstract

A new finite element method for solving the Euler equations in Lagrangian coordinates is proposed. The method is stabilized
by adding artificial diffusion terms compatible with positivity of mass and internal energy, a minimum principle on the specific
entropy, and all generalized entropy inequalities. Two options of first-order artificial diffusion are considered. One is in the spirit
of the Eulerian based method (Guermond et al., 2011 [23, 22]; Zingan et al., 2013) and the other is similar to existing viscosity
stabilizations in Lagrangian frame, e.g., Dobrev et al. (2012). The method is verified to be high-order for smooth solutions even with
active viscosity terms. This is achieved by using high-order finite element spaces and an entropy-based viscosity stabilization that
degenerates the first-order viscous terms. This stabilization automatically distinguishes smooth and singular regions. The formal
accuracy and convergence properties of the proposed methods are tested on a series of benchmark problems. This is the first result
extending the entropy–viscosity methodology to the Lagrangian hydrodynamics.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

We are interested in the present paper in simulating the 2D and 3D compressible Euler equations by using a
Lagrangian method, i.e., one where the computational mesh moves with the fluid. These methods preserve material
interface very well, thus they are the preferred approach for solving problems dealing with compressible multi-
phase and multi-material flows, for example numerical simulations of inertial confinement fusion (ICF) and impact
problems. We refer the readers to [1] for a review on hydrodynamics methods and detailed comparisons between
Lagrangian and Eulerian methods.
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There are roughly three major approaches for solving the Lagrangian hydrodynamics equations: staggered grid
hydrodynamics (SGH); cell-centered hydrodynamics (CCH); finite element methods (FEM). SGH schemes represent
the thermodynamic variables (density, energy, pressure) as constants over the mesh cells, and the kinematic variables
(position, velocity) are evolved at the mesh nodes; see [2–5]. CCH methods define all the flow variables as cell-
averages quantities and nodal velocities are reconstructed by using approximate Riemann solvers; see [6–11].
Approaches that combine both SGH and CCH concepts are derived in [12,13].

The purpose of the present paper is to further explore the FEM route. The use of FEM in Lagrangian hydrodynamics
has recently re-gained interest after the work of Dobrev et al. [14], where the authors have shown that high-order FEM
have excellent properties: geometry representation, symmetry preservation, resolution of shock fronts within one
computational cell, high-order convergence for smooth solutions. The FEM formalism has been combined with SGH
methods in [15–17] and with CCH methods in [18] in the form of a Discontinuous Galerkin scheme. Another approach
that uses curvilinear NURBS (Non-Uniform Rational B-splines) meshes in order to obtain symmetry preservation can
be found in [19].

Since hydrodynamics calculations solve problems containing shock waves, special treatment is required in order to
avoid post-shock oscillations. One way to resolve this issue is the artificial viscosity approach as originally suggested
by Von Neumann and Richtmyer [20]. When combined with FEM, this regularization is uniform with respect to the
space dimension, the mesh type and the polynomial degree. High-order convergence can be achieved as long as the
added diffusion terms are active only in the singular regions of the solution. Further requirements and specific artificial
viscosity terms for the Lagrangian case have been proposed by Caramana et al. [21], Caramana and Loubére [22],
Shashkov and Campbell [23], Kolev and Rieben [24], Lipnikov and Shashkov [25].

In this paper we propose a new artificial-viscosity-based high-order finite element method for solving the Euler
equations of the compressible gas dynamics in Lagrangian coordinates. We generalize to the Lagrangian framework
the ideas presented in [26–28] and derive a regularized Lagrangian system that is compatible with all the generalized
entropy inequalities, see [29,28], and the minimum principle on the specific entropy, see [30]. In addition to the
standard viscous regularization of the momentum equation, artificial diffusion is added to both the mass and the
energy equations, thereby allowing a control of density and energy oscillations near shocks and contact regions. Note
that although the mesh moves with the fluid velocity, adding mass viscosity allows material to flow through the mesh
and this might create technical difficulties when dealing with multi-material flow problems. This issue is not addressed
here since we are only concerned in this paper with single phase flows. This approach is nonetheless useful in non-
ideal gas simulations where contacts transform into composite waves. The amount of applied nonlinear dissipation
is based on the local residual of the entropy equation; see [31]. One immediate consequence of this choice is that
the method automatically distinguishes between smooth and singular regions. The proposed method combines the
following features: (i) the equations are regularized in a way that provides control over oscillations around contact
discontinuities as well as oscillations in shock regions. (ii) The method produces high-order convergence rates for
smooth solutions even with active viscosity terms. This is achieved by using high-order finite element spaces and,
more importantly, an entropy-based viscosity that automatically distinguishes between smooth and singular regions;
(iii) the proposed diffusion terms are in agreement with the general requirements stated by Kolev and Rieben [24] for
artificial tensor viscosities. This work is motivated and influenced by the idea of entropy-production-based artificial
viscosity which was developed in [27,32,33] in the Eulerian frame of reference, and the application of high-order finite
elements in Lagrangian Hydrodynamics presented in [14]. The finite element framework is similar to that in [14],
however, our approach is based on different viscous regularizations, viscosity coefficients, and finite element spaces.

This paper is organized as follows: in Section 2, we discuss the basic entropy principles that motivate the specific
form of the viscous regularization, and derive the continuous form of the regularized system in the Lagrangian frame
of reference. In Section 3, we describe the finite element discretization and the viscosity coefficients. Numerical test
on various model Lagrangian problems are presented in Section 4.

2. Preliminaries

In this section we state the problem and give the theoretical background that motivates the particular form of the
viscous regularization that is chosen. We formulate the Lagrangian system of equations that serves as a starting point
for the finite element discretization.
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We start with the compressible Euler equations in Eulerian coordinates:

∂

∂t
ρ + ∇ · (uρ) = 0, (1)

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ∇ p = 0, (2)

∂

∂t
(ρE) + ∇ · (uρE + up) = 0, (3)

where the dependent variables are the density ρ, the momentum (ρu1 . . . ρud)T and the total energy ρE . We use the
usual convention for vector and tensor operations: for column vectors a = (a1 . . . ad)T , b = (b1 . . . bd)T and order 2
tensors g, h with entries gi j , hi j where i, j = 1 . . . d , we have:

a ⊗ b = abT , (∇a)i j =
∂a j

∂xi
, (∇ · g)i =

d
j=1

∂g j i

∂x j
,

(a · g)i =

d
j=1

a j g j i , (g · a)i =

d
j=1

gi j a j , g : h =

d
i j=1

gi j hi j .

The Euclidean norm in Rd and Rd×d is denoted ∥ · ∥ℓ2 indifferently. The following standard identities are going to be
used throughout this document:

∇ · (a ⊗ b) = a · ∇b + b∇ · a, ∇ · (g · a) = g : ∇a + (∇ · g) · a,
∇


a2

2


· b = a · (b · ∇a) .

We focus our attention to the equation of state of an ideal gas, although most of the arguments in the present paper are
independent of the exact nature of the equation of state. The pressure p is given by

p = (γ − 1)ρe, (4)

where γ is the ratio of constant pressure and constant volume heat capacities. Instead of using the conservation
equation for the total energy (3), a common practice in Lagrangian gas dynamics consists of working with the balance
equation for the internal energy:

∂

∂t
(ρe) + ∇ · (uρe) + p∇ · u = 0. (5)

Throughout this document we also use the vector form of the system (1)–(3) to simplify the notation:

∂v
∂t

+

d
m=1

∂f m(v)
∂xm

= 0, (6)

where v = (ρ, ρu1, . . . , ρud , ρE)T , and f = (f 1 . . . f d)T are the fluxes for each dimension.

2.1. Entropy principles

Due to the nonlinearities in (6), solutions that are initially smooth may become discontinuous within finite time.
Hence, solutions are defined globally in time by considering the equations in the distributional sense. However,
the resulting weak problem may admit infinitely many weak solutions, and a selection mechanism for determining
whether a weak solution is physical or not must be invoked. A weak solution v of (6) is called admissible in the
vanishing viscosity sense if it is the limit of solutions vδ in L1

x,t,loc as δ → 0 where vδ are the solutions of the viscous
equation

∂vδ

∂t
+ ∇ · f (vδ) = δ∆vδ, vδ(·, 0) = v0. (7)
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If a sequence of solutions of (7) can be proved to converge in L1
x,t,loc, then one can show that the limit is a weak

solution. While the convergence has been established in the scalar case and for some specific systems, see [34–38],
the result for the case of the Euler equations is still an open problem. In the rest of this paper, we assume that the
solutions of (7) converge as δ → 0 and we use the viscous limit as the criterion for selecting a “physical” weak
solution. This result is known to hold for any hyperbolic systems in one space dimensions with small initial data, see
[39] for details. With this assumption, Eq. (7) is used to deduce other conditions which are easier to verify numerically.
This is done through a function called “entropy”, which is a generalization of the thermodynamical entropy.

Definition 1. A function S(v) is an entropy function for the system (6), if:

1. There is vector-valued function F(v), called entropy flux, such that the following identity holds ∂vST (∂vf m) =

(∂v Fm)T , m = 1...d ,
2. S is a convex function of v.

Now we derive an entropy S that is compatible with Definition 1. Note that the first condition in the above definition
implies (after taking a dot product of (6) with ∂vS) that:

∂S(v)
∂t

+ ∇ · F(v) = 0 (8)

for every smooth solution v.
We follow the approach first introduced by Harten [40]. For the EOS p = (γ − 1)ρe and T = (γ − 1)e, we define

the quantity

s(ρ, e) := log(pρ−γ ) = log((γ − 1)eρ1−γ ) = log((γ − 1)e) + (1 − γ ) log ρ, (9)

which we call “specific entropy”. Notice that this is not exactly the physical specific entropy (it does not satisfy
T ds = de −

p
ρ2 dρ). Its derivatives with respect to density and energy are

∂s

∂ρ
=

1 − γ

ρ
,

∂s

∂e
=

1
e
. (10)

For smooth solutions the specific entropy s satisfies ∂s(v)
∂t + u · ∇s(v) = 0. Note that we abuse the notation by using

indifferently s(v) or s(ρ, e). For any scalar differentiable function f (s), the conservation of mass implies that

∂

∂t
(ρ f (s)) + ∇ · (uρ f (s)) = 0. (11)

We set

S := −ρ f (s), F := −uρ f (s) (12)

and arrive at the entropy equation (8). It is shown in [29] that the function S is a convex function of the conservative
variables if and only if

f ′(s) > 0, f ′(s)
γ − 1

γ
+ f ′′(s) > 0. (13)

A family of functionals that satisfy (13) is

f (s) =
γ + α

γ − 1
exp


s

γ + α


⇒ f ′(s) =

1
ρ(γ − 1)

(pρα)
1

γ+α ,

where α > 0 is some constant. Then we have the following family of entropies:

S = −ρ f (s) =
γ + α

1 − γ
(pρα)

1
γ+α , (14)

so that S satisfies both conditions of Definition 1 for any α > 0.
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Based on the results in [29,30], the following “physical” properties are satisfied by strong viscosity limits:

• Positivity of density and internal energy.

• Entropy inequality. A weak solution of (6) is entropy-admissible if it satisfies the inequality

∂S(v)
∂t

+ ∇ · F(v) ≤ 0, (15)

in the distribution sense for every pair of entropy pair (S, F).

• Minimum principle on the specific entropy, derived by Tadmor [30]: if v(x, t) is a weak solution of (6) that satisfies
the entropy inequality (15), then for the specific entropy s defined in (9) we have

Ess inf
x∈Ω

s(x, t) ≥ Ess inf
x∈Ω+tU

s(x, 0), (16)

for all t > 0 and any domain Ω , where U is the maximum of ∥u∥ℓ2 in Ω .

Remark 2.1. When there is a source Q of internal energy, the entropy equation (11) becomes: ∂
∂t (ρ f (s)) + ∇ ·

(ρ f (s)) − Qse f ′(s) = 0, i.e.,

∂S

∂t
+ ∇ · S +

Q f ′(s)

e
= 0. (17)

Remark 2.2. The amount of violation of (11) or (17) is called “entropy production”. It can be non-zero only in regions
of discontinuities of the solution. We will use this quantity to scale the artificial viscosity terms, i.e., it will be our
shock detector (and hence the name “Entropy–Viscosity method”).

Remark 2.3. We usually choose α = 1 in the definition of S in (14). For smaller values of α the explicit density
dependence decreases, for example α = 0 would imply that S is smooth in contact regions (since the pressure is
continuous across contact discontinuities). In that case the entropy production there is zero and the corresponding
shock detector would not add viscosity in contacts. The key reason for this behavior is that the function S is not
strictly convex when α = 0.

Remark 2.4. We have a minus sign in the definitions of S and F, because we want to be consistent with (13). The
specific entropy used by Harten et al. [29] is that in (9) multiplied by a negative constant, namely it is log(ρe1/(1−γ ))

(which is minus the physical specific entropy).

2.2. Viscous regularization

Artificial viscous terms must be introduced to be consistent with entropy dissipation, see [28], and to preserve
invariant domains, see [41,42]. A common way to regularize (1)–(3) consists of adding diffusion terms that are similar
to the viscosity and thermal diffusion in the Navier–Stokes equations. This approach, however, is in agreement with
the minimum principle of the specific entropy (16) only if the thermal diffusion is zero, see Theorem 8.2.3 in [43].
If the thermal diffusion is absent, there is no mechanism to control contact discontinuities, since in contact regions
the velocity is constant (i.e., there is no compression) and the viscosity is inactive since the gradient of the velocity is
zero across the contact. In the Eulerian frame, one would see uncontrolled oscillations resulting from the Gibbs effect
as these contact discontinuities move through the computational mesh. This problem can be concealed in Lagrangian
methods by aligning the initial contact discontinuities with the cell boundaries and by using discontinuous spaces, but
the above problem nevertheless re-appears if contact lines or surfaces form in time.

Our goal is to satisfy the entropy inequality (15) and minimum principle on the specific entropy (16). It is shown
in [28] that to satisfy both these requirement, one needs to add mass and thermal viscosity, in addition to the standard
momentum viscosity. This makes the method more diffusive than those using the Navier–Stokes regularization
approach only, but it is essential for removing oscillation both in contact and shock regions. A regularization that



J.-L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 300 (2016) 402–426 407

takes into account all the above considerations is described in [28] and has the form

∂ρ

∂t
+ ∇ · (ρu) = ∇ · w, (18)

∂

∂t
(ρu) + ∇ · (ρu ⊗ u) + ∇ p = ∇ · g, (19)

∂

∂t
(ρE) + ∇ · (ρEu + pu) = ∇ · (h + g · u), (20)

where the viscous terms are:

w = λ∇ρ, g = νρ∇u + w ⊗ u, h = λ∇(ρe) −
u2

2
w.

Here λ and ν are coefficients that control the amount of added diffusion. These coefficients must have units of (speed
× distance).

2.3. Lagrangian formulation

We want to solve the system (18)–(20) in the Lagrangian frame of reference. We can think of the medium as a set
of particles having original positions x0. In the Lagrangian setting these particles move with the fluid velocity, namely

d

dt
x(x0, t) := u(x, t).

Then the material derivative (also called total, Lagrangian, convective, etc.) of a scalar- or vector-valued function
β = β(x(x0, t), t) is

d

dt
β(x(x0, t), t) =

∂β(x, t)

∂t
+ u(x, t) · ∇xβ(x, t).

Now we rewrite Eqs. (18)–(20) by using the total derivatives. The conservation of mass equation (18) becomes

dρ

dt
= −ρ∇ · u + ∇ · (λ∇ρ).

The velocity equation (19) becomes

ρ
du
dt

= −∇ p + ∇ · (νρ∇u) + (λ∇ρ) · (∇u). (21)

The equation for total energy (20) becomes

ρ
d E

dt
= −∇ · (pu) + ∇ · (λρ∇e + νρ∇u · u) + (λ∇ρ) · ∇E . (22)

Working with the equation for the internal energy instead of (22) is more common in Lagrangian formulation. Taking
the dot product of (21) with u and subtracting the result from (22) we derive

ρ
de

dt
= −p∇ · u + ∇ · (λρ∇e) + νρ∇u : ∇u + (∇e) · (λ∇ρ).

Then the final Lagrangian system that we propose is:

d

dt
x(x0, t) = u(x, t), (23)

dρ

dt
= −ρ∇ · u + ∇ · (λ∇ρ), (24)

ρ
du
dt

= −∇ p + ∇ · (νρ∇u) + (λ∇ρ) · (∇u), (25)

ρ
de

dt
= −p∇ · u + ∇ · (λρ∇e) + νρ∇u : ∇u + (∇e) · (λ∇ρ). (26)
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(a) Original mesh and Q4 shape function. (b) Transformed mesh using the Taylor–Green vortex motion and
Q4 shape function.

Fig. 1. Example of a Q4 shape function on the original mesh and transformed mesh.

The dependent variables are the position x(x0, t), the density ρ(x, t), velocity u(x, t), the specific internal energy
e(x, t). We recall that the equation of state (4) is p = (γ − 1)ρe. Note that the system (24)–(26) is written in non-
conservative form, which is standard in the Lagrangian hydrodynamics literature.

3. Discretization details

In this subsection we derive a fully-discrete finite element method for the system (23)–(26). We propose a semi-
discrete form with high-order continuous finite element spaces and discuss the notions of mesh representation,
mappings, length scale, viscosity coefficients, and time discretization.

3.1. Notation

Let Ω0 be the domain at time 0 and Ω(t) be the domain at time t . Then {Kh}h>0 is a mesh sequence with no hanging
nodes that discretizes Ω0. As we progress in time, the initial mesh is deformed by moving the Lagrange nodes of the
mesh according to the rule (23) where the u is made explicit in time. The reference cell is denoted K . Given a cell
K0 ∈ Kh , we denote by ΦK0 : K → K0 the geometric transformation. As time increases, K0 is deformed into K
and we denote ΦK : K → K the corresponding geometric transformation; details on how these transformations are
constructed are given in Section 3.3. Note that ΦK and K are time-dependent, but we henceforth abuse the notation
by omitting the time index. A natural mapping from K0 to K is given by ΦK ◦ Φ−1

K0
: K0 → K ; note that ΦK ◦ Φ−1

K0

is the identity at t = 0. To simplify the notation we introduce x := ΦK (x) and x0 := ΦK0(x) for anyx ∈ K .
We introduce a scalar-valued nodal finite element space defined with respect to the initial mesh K0 as follows:

Qk = {v ∈ C0(Ω0); v|K0 ◦ ΦK0 ∈ Qk, ∀K0 ∈ Kh}

where Qk is the set of multivariate polynomials of partial degree at most k. Let {a1, . . . , aN } be the Lagrange nodes
of the mesh and let {ϕ1, . . . , ϕN } be the associated nodal shape functions, i.e., ϕi (a j ) = δi j . Since the mesh nodes
move, we define the time-dependent basis functions by

ϕ(x, t) := ϕ(x0)


equivalent to ϕ(x, 0) := ϕ(x0),

d

dt
ϕ(x, t) := 0


, (27)

where by convention x = ΦK ◦ Φ−1
K0

(x0). Note that here again we abuse the notation by using the same symbol for
the reference shape function and the transformed shape function. Examples of Q4 basis functions on the original
and transformed meshes are shown in Figs. 1(a) and 1(b). Note that approximation using such functions stays H1-
conforming in time. Shape functions on the reference cell are denoted by ϕi (x), i = 1 . . . N .

From this point forward, by ρ, u, e, x, p, S we refer to the discrete versions of the dependent variables in Qk .
Quantities that only depend on x0 are defined at the initial time, for example ρ(x0) is the approximation of the initial
density.
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Remark 3.1. The methodology presented in this paper works in principle for any type of continuous finite elements
(it is not restricted to quadrangular and hexahedral meshes) but in this paper we only consider Qk approximations in
the implementation of the method.

3.2. Semi-discrete form

We obtain a semi-discrete form of the problem by multiplying every equation in (24)–(26) with a test function
and integrating over Ω(t). We use spaces of same polynomial degree for all the dependent variables, namely we seek
(ρ, u, e, x) ∈ (Qk × Qd

k × Qk × Qd
k ). Our tests did not show any significant benefits in using different polynomial

degrees for the kinematic and thermodynamic spaces.

• Density—for every j = 1 . . . N we have
Ω(t)

dρ(x, t)

dt
ϕ j (x, t) dx = −


Ω(t)

ρ(x, t)∇ · u(x, t)ϕ j (x, t) dx −


Ω(t)

λ∇ρ(x, t) · ∇ϕ j (x, t) dx. (28)

• Velocity—for every dimension m = 1 . . . d and every j = 1 . . . N we have
Ω(t)

ρ(x, t)
dum(x, t)

dt
ϕ j (x, t) dx = −


Ω(t)

∂p(x, t)

∂xm
ϕ j (x, t) dx

−


Ω(t)

νρ∇um(x, t) · ∇ϕ j (x, t) dx +


Ω(t)

λ∇um(x, t) · ∇ρ(x, t)ϕ j (x, t) dx. (29)

• Internal energy—for every j = 1 . . . N we have
Ω(t)

ρ(x, t)
de(x, t)

dt
ϕ j (x, t) dx = −


Ω(t)

p(x, t)∇ · u(x, t)ϕ j (x, t) dx

−


Ω(t)

λρ(x, t)∇e(x, t) · ∇ϕ j (x, t) dx +


Ω(t)

λ∇e(x, t) · ∇ρ(x, t)ϕ j (x, t) dx

+


Ω(t)

νρ(x, t)∇u(x, t) : ∇u(x, t)ϕ j (x, t) dx. (30)

And the position function x(x0, t) is simply evolved by solving d
dt x(x0, t) = u(x, t) with the initial condition

x(x0, 0) = x0 using the chosen time integrator.

Remark 3.2. One drawback of adding mass viscosity is that the resulting mass matrices are time-dependent. For
example, the left-hand side of (30) and the corresponding matrix are

Ω(t)
ρ(x, t)

d

dt


N

i=1

ei (t)ϕi (x, t)


ϕ j (x, t) dx =

N
i=1

dei (t)

dt


Ω(t)

ρ(x, t)ϕi (x, t)ϕ j (x, t) dx,

(Me)i j =


Ω0

ρ(x(x0, t), t)ϕi (x0)ϕ j (x0)| det Jx0→x| dx0.

It is not true here that ρ(x(x0, t), t)| det Jx0→x| = ρ(x0), which would otherwise be the case if we did not have the
additional viscous term in the mass equation, see [14].

Remark 3.3. Note that no special effort is made here to make the method exactly conservative. Actually the method,
semi-discretized in space as explained above but with continuous time, is conservative. More precisely, summing (28)
over j and using the partition of unity property, we have


Ω(t)

dρ(x,t)
dt dx +


Ω(t) ρ(x, t)∇ · u(x, t) dx = 0, which,

owing to Reynolds Theorem, gives that the time derivative of

Ω(t) ρ(x, t) dx is zero; whence conservation of mass.

This property does not hold though when time discretization is applied; strictly speaking the fully discrete algorithm
as described in Section 3.7 is not conservative.
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Fig. 2. Example of a Q2 mapping between the reference and the current element.

3.3. Mesh representation and mappings

Assuming again that the velocity field u(x, t) is known, the motion of the mesh is controlled by the motion of the
nodes {a1 . . . aN }, i.e., we define the functions {X1(t) . . . XN (t)} by

dXi (t)

dt
= u(Xi (t), t), Xi (0) = ai . (31)

Then the trajectory of a particle with original position x0 is obtained by using the finite element expansion

x(x0, t) =

N
j=1

X j (t)ϕ j (x0). (32)

The use of high-order polynomial basis functions implies that the nodes are connected by high-order curves and the
mesh is curvilinear. Notice that in order to obtain the position of any point in the computational mesh, we only need the
positions of the nodes. This approach is very efficient since it does not involve any complicated curve reconstructions.

Let j : Kh × {1 . . . N } ∋ (K , i) −→ j (K , i) ∈ {1 . . . N } be the connectivity array associating the reference
shape functions with the global shape functions over each cell, i.e., ϕ j (K ,i)(ΦK (x)) = ϕi (x) for all x ∈ K
for all t ≥ 0. The formula (32) provides a straightforward way to define the time-dependent position mapping
ΦK (·, t) : K ∋x −→ x ∈ K from the reference cell K to an actual cell of interest K :

ΦK (x, t) := x(x, t) =

N
i=1

X j (K ,i)(t)ϕi (x), (33)

where recall that ϕ1 . . .ϕN are the basis functions on the reference cell. The time-dependent Jacobian matrix of this
mapping is then simply

J (x, t) :=
∂x
∂x =

N
i=1

X j (K ,i)(t) ⊗ ∇ϕi (x). (34)

Note that with this definition J has the usual form:

Jkl =
∂xk

∂xl
, k, l = 1 . . . d. (35)

At t = 0, we have ΦK0 := ΦK (·, 0) : x → x0 with Jacobian J0(x) := J (x, 0). Later in the text, we also use the
mapping ΦK ◦ Φ−1

K0
: x0 → x with Jacobian J J−1

0 . A realization of the mapping (ΦK )K∈Kk using the Q2 space is
shown in Fig. 2. For instance, looking at this figure, we understand that (33) tells us that we can obtain the position
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of the black points on the right side of the current element by using only the positions of the red dots on the right side
of the reference cell.

3.4. Length scales

Artificial viscosity coefficients (λ, ν) must scale like a speed times a distance. This is usually done in Eulerian
methods by defining (i) a mesh dependent length scale and (ii) a shock-capturing quantity, for example the entropy
production. We are going to adapt this technique to the Lagrangian situation. The key difference is that now the mesh
moves and the notion of meshsize is dynamic and therefore must be revised. In this subsection we define three different
length scales and we match them with specific coefficients in the next subsection. All the scales are defined pointwise
in order to be computable at Gauss points and be compatible with the usage high order polynomial spaces.

We start by defining a smooth initial mesh length scale function h0(x): (i) On each initial cell K0, we define

h∗(x) =
1
k |K0|

1
d for all x ∈ K0 and set h∗

min = minx∈Ω0 h∗(x), where recall that k is the degree of the polynomials
in Qk . (ii) If h∗(x) is smooth (i.e., the initial mesh is uniform), then we set h0 = h∗, otherwise h0 is computed by a
smoothing procedure with some smoothing constant ε:

Ω0

h0(x)ϕ(x) dx + (εh∗

min)
2

Ω0

∇h0(x) · ∇ϕ(x) dx =


Ω0

h∗(x)ϕ(x) dx. (36)

We approximate h0 in the same finite element space as the dependent variables.
Once h0(x) is known, we define three length scales by using the mapping ΦK ◦Φ−1

K0
: x0 → x with Jacobian J J−1

0 :

1. Recalling that ∥ · ∥ℓ2 is the Euclidean norm in Rd , h1(x) is defined as a perturbation of the initial mesh in the
direction of the current motion u(x, t):

h1(x(x0, t)) = h0(x0)
∥J J−1

0 (x0)u(x, t)∥ℓ2

∥u(x, t)∥ℓ2
. (37)

2. h2(x) is defined as in [14], i.e., it is a perturbation of the initial mesh in the direction of maximal compression:

h2(x(x0, t)) = h0(x0)
∥J J−1

0 (x0)s(x)∥ℓ2

∥s(x)∥ℓ2
(38)

where s(x) is the eigenvector corresponding to the smallest eigenvalue µ(x) of ∇
su(x). Here µ(x) is a measure of

the maximal compression (or minimal expansion if the value is positive), and s(x) is the direction in which this
compression occurs.

3. h3(x) is defined to be the measure of the volume change at x:

h3(x(x0, t)) = h0(x0)| det(J J−1
0 (x0))|. (39)

Note that h1 and h2 are direction-dependent, whereas h3 is not. These functions are time-dependent and are not
represented in the finite element space, their values are computed whenever needed (usually at quadrature points).

3.5. Viscosity coefficients

As discussed in the previous subsection, the artificial viscosity coefficients (λ, ν) must be an appropriate
combination of a length scale and a shock detector, and they should be computed at each quadrature point. We first
define the “first-order” viscous coefficients. Let xn be the position of the quadrature point of interest at time tn , and let
cvisc ≥ 0 be a tunable constant. We propose two options corresponding to h1 and h2:

• Option 1:

λvisc
1 := cvisch1(xn)∥un(xn)∥ℓ2 ,

νvisc
1 := cvisch1(xn)


a(xn) + ∥un(xn)∥ℓ2


,

(40)

where a(xn) is the sound speed. These quantities are not shock detectors since diffusion is active everywhere the
velocity is nonzero.
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• Option 2: (which is used in [14]):

λvisc
2 := cvisch2

2(x
n)|µ(xn)|,

νvisc
2 :=


cvisch2(xn)


a(xn) + h2(xn)|µ(xn)|


µ(xn) < 0,

cvisch2
2(x

n)|µ(xn)| otherwise,

(41)

where recall that µ(x) ≤ 0 in compressive regions. Note that the above definition is formally less diffusive than the
first one, but it is nevertheless first-order in compressive regions. Note also that both λvisc

2 and νvisc
2 are small when the

velocity is close to a constant, which is the case, for instance, in contact regions.
Then we define “non-linear” viscosity coefficients by using the property that the entropy production is zero in

regions where the solution is smooth (at the continuous level) and non-zero in singular regions. In the Lagrangian
frame of reference, Eq. (11) becomes

d S

dt
+ S∇ · u = 0,

where S is defined in (12). Then at the discrete level, we define

D :=
Sn

− Sn−1

tn − tn−1
+ Sn

∇ · un(xn), (42)

where Sn
= S(ρn, en) is the entropy functional at tn . If there is an energy source as in (17) then (42) becomes

D :=
Sn

− Sn−1

tn − tn−1
+ Sn

∇ · un(xn) +
Q

f ′(sn)
en, (43)

where sn
= s(ρn, en) is the specific entropy at tn and Q is the source contribution at the quadrature point of interest.

The time derivative of S can be approximated by higher-order backward differencing; this is what is actually done in
the convergence tests reported below for smooth solutions. The high-order viscosity coefficient is defined to be

νentr
:=

centrh2
3(x

n)|D|

∥Sn − Sn∥L∞(Ω(tn)) + ϵSn
, Sn :=

1
|Ω(tn)|


Ω(tn)

Sndx, (44)

where centr is a tunable constant and ϵ = 10−10. Finally the so-called entropy–viscosity is obtained by taking the
minimum of the first-order and high-order viscosities. We consider two options:

• Option 1:

λn
1 := min(λvisc

1 , νentr), νn
1 := min(νvisc

1 , νentr). (45)

• Option 2:

λn
2 := min(λvisc

2 , νentr), νn
2 := min(νvisc

2 , νentr). (46)

Note that the definitions (45) and (46) are dimensionally coherent since the quantities λvisc
1 , λvisc

2 , νvisc
1 , νvisc

2 , and νentr

scale like a speed times a length. The heuristics for the above definitions is that we expect the first-order viscosity to
be the active in shocks and contacts and the high-order vanishing viscosity to be active in the smooth regions.

Using appropriate combinations of length scales and shock detectors is essential for avoiding incorrect mesh
behavior, see definitions (40), (41) and (44). The first-order shock detectors depend on the relative orientation of
the velocity with respect to the mesh, whereas the entropy production coefficient and its associated length scale are
direction-independent. In Option 1, the length scales in (44) are h1 and h3, but they are h2 and h3 in Option 2. And
example of incorrect combination of length scales is shown in Fig. 3. The left panel shows the mesh obtained by
solving the Sedov problem (see Section 4.3 for details) using Option 2 with the correct combination of length scales
(i.e., h2 in (41)). The right panel shows the result obtained by using h1 instead on h2 in (41).
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Fig. 3. Resulting meshes from applying the Option 2 coefficients to a Q4 position function with h3 (left panel) and h1 (right panel) in Eq. (44).

Table 1
Butcher tableau for a r -stage explicit RK method.

a1
a2 b21
a3 b31 b32
. . . . . .

ar br1 br2 . . . br,r−1
c1 c2 . . . cr−1 cr

3.6. Consistency with general viscosity requirements

Here we comment on the compatibility of the viscosity tensors with the general requirements for artificial tensor
viscosities stated in [23] and [24]. We use the terminology from [24]:

• The viscous terms must be invariant under orthogonal transformations of x and u: the method satisfies this
requirement at the discrete level; the details are given in Appendix A.1.

• For the specific entropy s, see (9), we must have ds
dt ≥ 0: the regularization satisfies a weaker version of this

requirement, namely the minimum principle on the specific entropy (16) on continuous level. This result is
established in [28, Theorem 3.5].

• The regularized system must be Galilean invariant: the system in Lagrangian form (24)–(26) is Galilean invariant.
All the viscosity coefficients in option 2, the entropy production D, h2, h3 satisfy the requirement at the discrete
level. Option 1 and h1 are not Galilean invariant, though, since they depend explicitly on u.

• The artificial viscosity must preserve radial symmetry: the symmetry preservation of our method is presented by the
numerical tests in Sections 4.3–4.5. In general, achieving radial symmetry on fully-discrete level is a difficult task,
because that would require the artificial viscosity, and in particular its length scale part, to be radially symmetric.
Length scales, however, typically depend on initial cell sizes and directions, which are not in general radially
symmetric. Exact radial symmetry can be achieved in special cases, for example by constructing the initial mesh
with curved radial cells obtained from each other by orthogonal transformation, see Section 8.2 in [24].

• The artificial dissipation in the momentum equation must be zero for linear velocity (uniform contractions, rigid
rotations) and all the artificial viscosity terms must be zero in regions of expansion: these requirements are not
satisfied exactly but are satisfied up to the consistency error of the method. More precisely the entropy–viscosity
(44) is O((∆t+h)h2) in smooth regions by construction. (It can be made O(∆t2

+h)h2 by using Crank–Nicolson’s
or BDF2 approximation in (43), see Section 4.1.)

3.7. Time discretization

We discretize the time derivatives of (ρ, u, e, x) by using a standard explicit Runge–Kutta method (i.e., either RK3
or RK4). To be generic, we assume the method is composed of r stages and be fully described by its Butcher tableau
(Table 1). Let v = (ρ, u, e, x) be the discrete solution at time t . We introduce the discrete operators Wρ, Wu, We, Wx
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defined by solving the following discrete weak versions of (28)–(30):
Ω(t)

Wρ(v, t)ϕ dx =


Ω(t)


−ρ∇ · uϕ − (λ∇ρ) · ∇ϕ


dx,

Ω(t)
ρ[Wu(v, t)]mϕ dx =


Ω(t)


λ∇um · ∇ρϕ − νρ∇um · ∇ϕ −

∂p

∂x j
ϕ


dx, m = 1...d,

Ω(t)
ρWe(v, t)ϕ dx =


Ω(t)


νρ∥∇u∥

2
ℓ2ϕ − λρ∇e · ∇ϕ + (λ∇e · ∇ρ)ϕ − p∇ · uϕ


dx,

Wx(v, t) = u.

Then upon denoting W(v, t) := (Wρ, Wu, We, Wx), the solution v is updated at time tn+1 by

vn+1
= vn

+ ∆t
r

i=1

ci ki , ki := W


vn

+ ∆t
r

j=1

bi j k j , tn + ai∆t


.

3.8. Time step control

Because of the finite speed of propagation in hyperbolic problems, the time step for explicit methods is restricted
by a CFL condition. We then introduce the CFL number c and control the time step by using the following heuristic
technique:

1. Given (ρ0, u0, e0, x0) at time t0, compute the first time step:

∆t = min
x∈Ωn

ccflh2(x)
γ T 0(x) + |u0(x)|

. (47)

2. Use ∆t to compute the update (ρn+1, un+1, en+1, xn+1) and compute:

∆t∗ = min
x∈Ωn+1

ccflh2(x)
γ T n+1(x) + |un+1(x)|

.

3. If ∆t∗ < ∆t ⇒ ∆t = 0.9∆t , discard the update and go to step 2 (i.e., repeat the step).
4. Else, set n = n + 1. If ∆t∗ > 1.25∆t then set ∆t = 1.02∆t . Set t = t + ∆t and go to step 2.

4. Numerical tests

In this section we illustrate the behavior of the method on standard Lagrangian hydrodynamics test cases with
known exact solutions. First we use a smooth solution to estimate the convergence properties of the method. Then,
we use a one-dimensional Riemann problem to demonstrate the shock-capturing properties of the entropy production-
based viscosity coefficients and the non-oscillating behavior of the method in contact regions. Finally, we turn to
two-dimensional shock problems to test the symmetry properties of the method.

For all the test cases, we solve the linear systems associated with the mass matrix by using a conjugate gradient
algorithm with a diagonal Jacobi preconditioner. The list of the parameters used in each of the test cases is reported
in Appendix A.2.

The method is made parallel by using the parallel finite element method library [44]. The results are visualized by
using the OpenGL visualization tool [45].

4.1. 2D Taylor–Green vortex

The goal of this test case is to demonstrate that the method achieves high-order convergence rates on smooth
solutions. This is essentially a consistency test. All the simulations are done by keeping the viscosity terms active
in Eqs. (28)–(30) (i.e., we do not set them to zero explicitly). This confirms the convergence to zero of the entropy
production-based viscosity coefficients on discrete level.
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Fig. 4. Velocity magnitude on the initial mesh (left panel), and on the final mesh (right panel) computed with the Q4 FE space using 16 × 16 cells
for the 2D Taylor–Green vortex problem.

Table 2

L1-norm of the error on the velocity and convergence rates for the 2D Taylor–Green vortex problem, ccfl = 0.1.

Q1 Q2 Q3 Q4
h0 L1 error rate L1error rate L1error rate L1error rate

1/4 4.08e−1 3.61e−2 1.87e−2 6.22e−3
1/8 7.39e−2 2.46 6.13e−3 2.55 2.53e−3 2.88 2.35e−4 4.72
1/16 1.07e−2 2.78 1.54e−3 1.99 1.71e−4 3.88 8.47e−6 4.79
1/32 1.96e−3 2.44 3.99e−4 1.94 6.69e−6 4.67 7.14e−7 3.56
1/64 4.26e−4 2.20 1.00e−4 1.99 4.65e−7 3.84 4.89e−8 3.86
1/128 1.00e−4 2.09 2.42e−5 2.04 4.89e−8 3.24 3.23e−9 3.92

The 2D Taylor–Green vortex test case is designed so that the solution in Eulerian coordinates is smooth and time-
independent. This is done by introducing a manufactured source of internal energy Q

ρ
de

dt
= −p∇ · u + Q.

Using the following initial conditions and source

ρ0(x0) = 1, u0(x0) = (sin(πx0) cos(πy0) − cos(πx0) sin(πy0)),

p0(x0) =
ρ

4
(cos(2πx0) + cos(2πy0)) + 1, γ =

5
3
,

Q =
3π

8
(cos(3πx) cos(πy) − cos(πx) cos(3πy)) ,

the exact solution is ρ(x, t) = ρ0(x), u(x, t) = u0(x), e(x, t) = e0(x) for all x ∈ Ω(t).
For smooth solutions, the order of accuracy of the method depends on the polynomial degree of the approximation

space and on how fast the artificial viscosity terms converge to zero. In order to minimize the consistency error in the
entropy residual equation (43), we approximate the time derivative of the entropy by using BDF2. This, together with
the h2

3 scaling in (44) produces a consistency error of 4th order, i.e., the artificial viscosity is formally fourth order.
One can use backward differencing with more points in (43) in order to achieve orders higher than 4.

We run the problem up to t = 0.5 with the boundary condition u · n = 0. The initial and final meshes and the
corresponding velocity magnitudes with a Q4 finite element space are shown in Fig. 4. We compare a Q1 and a Q4
simulation with similar number of degrees of freedom in Fig. 5. Although it may not be clearly visible in the figure,
the convergence rates reported in Table 2 show that the resolution of the Q4 space is far superior to that of the Q1
space. In Table 2 we show L1-convergence rates for the velocity computed with finite element spaces of different
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Fig. 5. Final mesh and velocity magnitude for a Q1 simulation with 16×16 cells (left panel), and for a Q4 simulation with 4×4 cells (right panel)
for the 2D Taylor–Green vortex problem.

Fig. 6. 1D Sod tube problem using Option 2 for the viscosity coefficients. Density field (left panel) and compression measure (right panel).

order. The expected high-order convergence rates are observed. Note that the Q4 approximation is limited to fourth
order since we used BDF2 to evaluate the time derivative of the entropy in the entropy residual.

4.2. 1D Sod tube

The goal of this test is to demonstrate the capabilities of the method to capture shocks and contact discontinuities
properly. This is a 1D Riemann problem developing a rarefaction, a contact and a shock wave. The initial
computational domain is [0, 1]. The initial conditions are:

ρ(x0) =


1.0 x0 ≤ 0.5,

0.125 otherwise,
, u(x0) = 0, p(x0) =


1.0 x0 ≤ 0.5,

0.1 otherwise,
, γ = 1.4.

The final time is 0.2 and we enforce u · n = 0 at the boundary.
We first discuss the effects of using the viscosity coefficients defined in Option 2, see (41). In Fig. 6 we show density

field (on the left panel) and the magnitude of the compression measure µ(x) at the final time, see (41). The simulation
is done with Q1 FE on a mesh composed of 128 cells. We observe that Option 2 provides sufficient dissipation in
the shock region, but almost none in the contact. The reason for this is that the compression measure µ(x) is based
only on the gradient of the velocity, and the velocity is almost constant in the region of the contact. The oscillations in
density, pressure and energy around the contact cause some small velocity gradients, but the generated compression is
too small to dampen those oscillations. Next we present in Fig. 7 results obtained by using Option 1 for the viscosity.
On the left panel of the figure we show the density field computed with Q1 and Q4 FE spaces using the first-order
viscosity only, i.e., centr = ∞ in (40). There are 256 and 1024 cells for the Q4 and Q1 spaces, respectively, so that
the numbers of degrees of freedom are almost identical for the two spaces. We observe that for both the Q1 and Q4
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Fig. 7. Sod shocktube, Q1 vs. Q4 approximation, both with Option 1. Density field computed with the first-order viscosity (left panel). Density
(center panel) and pressure (right panel) computed with the entropy–viscosity.

Fig. 8. 1D Sod tube problem. Comparison between the L2-projections of the first-order viscosity and the high-order viscosity in Option 1.

Table 3

L1-norm of error on density and convergence rates for the 1D Sod tube problem.

Q1 Q2 Q4
h0 L1 error rate h0 L1error rate h0 L1error rate

1/64 0.02194 1/32 0.02216 1/16 0.02190
1/128 0.01319 0.73 1/64 0.01335 0.73 1/32 0.01264 0.79
1/256 0.00723 0.86 1/128 0.00747 0.83 1/64 0.00701 0.85
1/512 0.00382 0.92 1/256 0.00394 0.92 1/128 0.00383 0.87
1/1024 0.00199 0.94 1/512 0.00204 0.95 1/256 0.00207 0.88

approximations, the definition (40) provides enough diffusion throughout the domain. In the center and in the right
panel of Fig. 7 we show the density and pressure fields obtained with the entropy–viscosity, see (45). The results are
sharper than those generated by the first-order viscosity and there are no oscillations in the contact region, meaning
that the entropy production provides sufficient dissipation. On the left figure, where we use the first-order viscosity,
we observe that the results for the Q1 and Q4 FE spaces are essentially the same.

In Fig. 8 we compare the L2-projections of the first order viscosity field (40), which was used to generate the
results in the left panel of Fig. 7, and the entropy-based viscosity field (44) which was used to generate the results in
the center and right panels of Fig. 7. We observe that in the smooth regions the entropy production coefficient is the
active part of the minimum in (45), and the first order coefficient is the active part in the shock, thereby confirming
the heuristic argument that leads to the notion of entropy-based viscosity.

We show in Table 3 the convergence rates in the L1-norm for the density computed with Q1, Q2 and Q4 spaces.
The rows are aligned so that the rates in each row are computed with approximately the same number of degrees of
freedom. We observe that the errors and rates for all the finite element spaces are similar, they are close to the optimal
rate of 1.
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Fig. 9. 2D Sedov problem at t = 1. Density vs. radius for entropy–viscosity from Option 1 to Option 2 (left panel). Density vs. for radius for
entropy–viscosity and first-order viscosity from Option 2 (right panel).

Fig. 10. 2D Sedov problem at t = 1. Mesh and L2-projection of the entropy residual |D| (left panel). Zoom at the shock region (right panel).

4.3. 2D Sedov explosion

The Sedov explosion, introduced in [46], is a standard problem to test the ability of codes to preserve the radial
symmetry of shocks. The initial conditions are

ρ(x0) = 1, u(x0) = 0, e(x0) = δ0,


Ω0

e(x0) dx0 = Etot, γ = 1.4

where δ0 is the Dirac measure supported at x0 = 0, and Etot = 1 if the origin x0 = 0 is in the interior of Ω0. The
internal energy deposited at the origin converts into kinetic energy thereby creating an expanding shock wave. The
problem is usually run up to t = 1.0.

First we discuss results obtained by using Q2 FE spaces on a Cartesian uniform mesh for the sector Ω0 =

[0, 1.2] × [0, 1.2] with 64 × 64 cells. Note that since one quarter of the Dirac measure is supported in Ω0, the initial
energy is Etot =

1
4 for this case. We enforce the symmetry condition u · n = 0 on the left and bottom boundaries. In

the left panel of Fig. 9 we compare the exact density and the approximate density fields obtained by using the Option
1, see (45), and Option 2, see (46), for the viscosity coefficients. This figure shows the nodal value of the density as
a function of the radial distance to the origin for all the nodes in the mesh. This representation is meant to evaluate
the radial symmetry of the approximate solutions. There is no clear difference between the two options. The results
shown in the right panel compare the density obtained with the first order viscosity (41) and the entropy–viscosity
from Option 2, (46). We see that the entropy-based viscosity (46) is sharper than the first-order one (the maximum is
higher).

In Fig. 10 we show the L2-projection of the entropy residual, i.e., |D| in (44). Note that the residual |D| focuses
very well in the shock as expected.



J.-L. Guermond et al. / Comput. Methods Appl. Mech. Engrg. 300 (2016) 402–426 419

Fig. 11. 2D Sedov explosion problem. Entropy–viscosity solution at t = 1 using Option 2: density (left), velocity magnitude (center), and pressure
(right).

Fig. 12. 2D Sedov problem on a non-uniform mesh. Density and mesh at t = 1 (left panel), and density vs. radius along the lines |x | = |y| (right
panel).

In Fig. 11 we show the mesh, the density, the velocity magnitude and pressure obtained by the Option 2 viscosity
(46). The shock is properly captured and the motion of the mesh is correct.

Next we consider a Cartesian non-uniform mesh for Ω0 = [−1.2, 1.2] × [−1.2, 1.2]. In this case the initial energy
is Etot = 1.0 since the Dirac measure at the origin is entirely supported in Ω0. We use 32 × 64 cells in quadrant #1,
64 × 64 cells in quadrant #2, 64 × 32 cells in quadrant #3, and 32 × 32 cells in quadrant #4. The purpose of this test is
to evaluate the ability of the scheme to preserve the radial symmetry of the solution in the presence of non uniformities
in the mesh. The computation is done up to t = 1 with Q2 finite elements. We show in the left panel of Fig. 12 the
density and the mesh at t = 1. We show in the right panel of the figure the distribution of the density as a function
of the distance to the origin along the lines |x | = |y| for each quadrant. The method performs satisfactorily since the
radial symmetry is well preserved and the mesh motion is correct.

4.4. 2D Noh implosion

The Noh implosion, introduced in [47], is another benchmark problem tailored for testing the ability of numerical
schemes to preserve symmetry. The initial conditions are

ρ(x0) = 1, u(x0) = −
x

∥x∥ℓ2
, e(x0) = 0, γ =

5
3
.

The initial velocity generates an outward traveling shock wave. This test is usually run up to t = 0.6.
First we discuss results obtained by using Q2 FE spaces on a uniform Cartesian mesh for the quadrant Ω0 =

[0, 1.2] × [0, 1.2]. We enforce u · n = 0 on the left and bottom boundaries of Ω0. All the simulations reported
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Fig. 13. 2D Noh problem at t = 1. Density (left panel), velocity magnitude (center panel), pressure (right panel) and Q2 mesh with 64 × 64 cells.

Fig. 14. 2D Noh problem at t = 1. Density vs. radius on different Q2 meshes, 32 × 32, 64 × 64 and 128 × 128 (left panel). L2-projections of the
high-order viscosity (center panel) and first-order viscosity (right panel) from Option 1, 64 × 64 cells.

hereafter are done with the Option 1 of the viscosity (40). When using the same parameters for both options, Option
2 tangles the mesh and the simulation fails. It is possible to stabilize the computation with Option 2 by increasing
centr, but in all the cases the results obtained with Option 1 are always less oscillatory and therefore the results from
Option 2 are not reported. Fig. 13 shows the mesh, the density (left), the velocity magnitude (center) and the pressure
(right) obtained at t = 1 by using the entropy–viscosity from Option 1 (45) on a mesh composed of 64 × 64 cells.
The left panel of Fig. 14 shows the exact density and the densities computed on meshes composed of 32×32, 64×64
and 128 × 128 cells. The method is slightly oscillatory but convergent. In the two other panels are shown the L2-
projections of the high-order viscosity (center panel) and the first-order coefficient (right panel). Again we observe
that the high-order viscosity is almost zero away from the shock region and it dominates the first order viscosity in the
shock. This justifies the heuristic definition of the entropy–viscosity in (45) and (46).

Next we consider a non-uniform Cartesian mesh with Ω0 = [−1.2, 1.2]×[−1.2, 1.2]. We use the Q2 approximation
and put 32 × 64 cells in quadrant #1, 64 × 64 cells in quadrant #2, 64 × 32 cells in quadrant #3, and 32 × 32 cells in
quadrant #4. The purpose of this mesh is to test again the ability of the scheme to preserve radial symmetry for radial
shocks. The left panel of Fig. 15 shows the density and the mesh at t = 1. The right panel of the figure shows the
density as a function of the distance to the origin for the four quadrants. Some motion is observed in the middle of the
domain. This problem is caused by the combination of wall heating, see [47], and the presence of cells of different
size in the middle of the domain. These heterogeneities produce a nonuniform density in the different quadrants which
causes the more dense material to push the less dense one. One way to limit this effect consists of smoothing the initial
length scale h0. The initial length scale that is used in the computation is shown in the left panel of Fig. 16. Although
a large smoothing constant ε = 30.0 has been used in the smoothing procedure (36), the large gradient on h0 in the
middle of the domain causes mesh deformation. Using a uniform initial length scale is not appropriate either, since
it would cause adding too much (or too little) artificial viscosity to one of the quadrants. The right panel of Fig. 16
shows the pressure field. The wall heating already mentioned above is clearly visible in the middle of the domain.
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Fig. 15. 2D Noh problem on a non-uniform mesh at t = 0.6. Density and mesh (left panel), density vs. radius (right panel).

Fig. 16. 2D Noh problem on a non-uniform mesh at t = 0.6. Length scale field h0 (left panel) and pressure (right panel).

4.5. 3D Noh implosion and parallel performance

Here we demonstrate the capabilities of the method to perform parallel 3D calculations. We consider the three-
dimensional Noh problem with the initial conditions

ρ(x0) = 1, u(x0) = −
r

∥r∥ℓ2
, e(x0) = 0, γ =

5
3
.

Again we run this test up to t = 0.6 with the entropy–viscosity from Option 1.
Although the purpose of the present paper is not to detail the computational aspects of the method; we have

programmed the algorithm in parallel and in three space dimensions to give some ideas on the performances in
realistic situations. Communication between parallel tasks occurs for the following procedures:

• Computation of the time step (47).
• Computation of the global entropy production normalization constant used in the denominator of Eq. (44).
• Assembly of global matrices for density, velocity and specific internal energy at each Runge–Kutta sub-stage.
• Solving the mass matrix linear systems for density, velocity and specific internal energy, and redistribution of the

new solution to the different MPI tasks at each Runge–Kutta sub-stage.

Figs. 17 and 18 show the density and the mesh using Q2 approximation on a uniform Cartesian mesh composed of
32 cells in each space direction. The initial domain is Ω0 = [−1.2, 1.2]

3. The center panel of Fig. 18 shows the mesh
division between 64 parallel tasks. We also present a strong scalability test for Q2 (on 323 cells) and Q4 (on 163 cells)
simulations. We have performed 20 time steps for all the scalability simulations.
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Fig. 17. Density cuts for the 3D Noh problem at t = 0.6.

Fig. 18. 3D Noh problem at t = 0.6. Density vs. radius (left panel), 64 MPI tasks division (center panel), and strong scalability test from 1 to 256
processors (right panel).

5. Conclusion

We have presented a new high-order curvilinear finite element method for Lagrangian hydrodynamics that is non-
oscillatory in contacts, has a good shock detection capability, is compatible at the continuous level with generalized
entropy inequalities (15) and the minimum principle on the specific entropy (16). The artificial viscosity is also
compatible with the requirements from [24]. The method is general with respect to the polynomial degree of the
finite element approximation in space and the order of the time integration. The results reported confirm that the
artificial viscosity converges to zero for smooth solutions and the convergence rate is optimal. The method achieves
convergence with a rate close to one for standard shock wave problems, which is optimal. Proper radial symmetry
preservation is observed on uniform and non-uniform meshes. The method has the ability to represent details of the
flow within one single zone for high-order polynomial degrees. All these features come with the price of adding
artificial viscosity in all the equations and using continuous finite element spaces for all variables. Being more
diffusive, Option 1 is overall slightly more robust than Option 2. Our next objective is to replace the notion of artificial
viscosity based on differential operators like −∇ · (ν∇) by a graph Laplacian approach outlined in http://arxiv.org/
abs/1509.07461.

Appendix

A.1. Orthogonal transformations invariance

Here we show that the artificial viscosity is invariant under any orthogonal transformation of x and u as stated in
Section 3.6.

http://arxiv.org/abs/1509.07461
http://arxiv.org/abs/1509.07461
http://arxiv.org/abs/1509.07461
http://arxiv.org/abs/1509.07461
http://arxiv.org/abs/1509.07461
http://arxiv.org/abs/1509.07461
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Proposition 1. The scalar diffusion in the mass equation (24) and the energy equation (26) are invariant by
orthogonal transformation of x and u. The viscous force in the momentum equation (25) is transformed the same
way as x and u.

Proof. Since this argument is discrete, we introduce the notation:

ρ(x, t) =

N
j=1

ρ j (t)ϕ j (x, t), e(x, t) =

N
j=1

e j (t)ϕ j (x, t),

um(x, t) =

N
j=1

U jm(t)ϕ j (x, t), m = 1...d, U j = (U j1...U jd)T ,

xm(x0, t) =

N
j=1

X jm(t)ϕ j (x0), m = 1...d, X j = (X j1...X jd)T ,

where the details of the mesh representation can be found in (32)–(35). Let A be unitary matrix and consider the
orthogonal transformation

X∗

j = AX j , U∗

j = AU j , where AT
= A−1.

By convention all quantities used with upper index ∗ are defined in the transformed frame, i.e., are functions of x∗.
The Jacobian J ∗ of the transformationx → x∗ can be expressed by the Jacobian ofx → x → x∗:

J ∗
= AJ, det(J ∗) = det(J ).

Then the gradient of the finite element shape functions are obtained as follows:

∇ϕ∗
= (J ∗)−T

∇ϕ = AJ−T
∇ϕ

and the gradient of u∗ is

∇u∗
=

N
j=1

U∗

j ⊗ ∇ϕ∗

j =

N
j=1

(AU j ) ⊗ (AJ−T
∇ϕ j ) =

N
j=1

AU j (∇ϕ j )
T AT

= A∇uAT .

Let us examine the contribution of the artificial viscosity to a node j in the mass equation (28). After mapping
everything to the reference frame and applying a quadrature rule with weights and nodes (wq ,xq)1≤q≤Q , the
contribution from an arbitrary cell K ∗ is computed by

−

Q
q=1


wq | det(J ∗

q )|λ∗
q

N
i=1

ρi (AJ−T
q ∇ϕiq) · (AJ−T

q ∇ϕ jq)


,

where ∇ϕiq := ∇ϕi (xq), Jq := J (xq), λ∗
q := λ∗(x∗

q), etc. But this is the same as

−

Q
q=1


wq | det(Jq)|λ∗

q

N
i=1

ρi (J−T
q ∇ϕiq) · (J−T

∇ϕ jq)


,

which is the contribution from the corresponding cell K if λ∗(x∗
q) = λ(xq). Now we look at the artificial force term

in the momentum equation (29). The contribution of the Cartesian component m from a cell K ∗ to a node j is

Q
q=1

wq | det(J ∗
q )|


−ν∗

qρq

N
i=1

U∗

im(AJ−T
q ∇ϕiq) · (AJ−T

q ∇ϕ jq)

+ λ∗
qϕ jq

N
k=1

N
i=1

U∗

kmρi (AJ−T
q ∇ϕkq) · (AJ−T

∇ϕiq)


=

Q
q=1

wq | det(Jq)|


−ν∗

qρq

N
i=1

Am · Ui (J−T
q ∇ϕiq) · (J−T

q ∇ϕ jq)

+ λ∗
qϕ jq

N
k=1

N
i=1

Am · Ukρi (J−T
q ∇ϕkq) · (J−T

q ∇ϕiq)


,
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where Am is the mth row of A. Hence the artificial viscosity force is transformed the same way as u and x
are if λ∗(x∗

q) = λq(xq) and ν∗(x∗
q) = ν(xq). The viscous terms in the internal energy equation (30) can be

handled similarly and we reach the same conclusion. The only non trivial term there is ∥∇u∗
∥

2
ℓ2 ; but we have

∇u∗
: ∇u∗

= ∇u : ∇u since the Frobenius norm is invariant under orthogonal transformations. Hence the orthogonal
transformation invariance holds if λ∗

q = λq and ν∗
q = νq .

Now we consider the shock detectors. For the entropy production (42) we have D∗
= D since it depends only on

scalars and ∇ · u∗:

∇ · u∗
=

N
j=1

∇ϕ∗

j · U∗

j =

N
j=1

(AJ−T
∇ϕ j ) · (AU j )

=

N
j=1

(A∇ϕ j ) · (AU j ) =

N
j=1

∇ϕ j · U j = ∇ · u.

The first-order viscosity of Option 1 in (40) is also invariant since ∥u∗
∥ℓ2 = ∥Au∥ℓ2 = ∥u∥ℓ2 . For Option 2, see

(41), we have ∇
su∗

= A∇
suAT , hence ∇

su∗ and ∇
su are similar matrices; thereby implying that µ∗

= µ and
s∗

= As, where recall that (µ, s) is an eigenpair of ∇
su. Hence the first-order viscosity is invariant under orthogonal

transformation in both Option 1 and Option 2.
We now investigate how the length scales are transformed. It is clear that h∗

0 = h0 since lengths and angles are
invariant by orthogonal transformation. Consider the Jacobian of the transformation x∗

0 → x∗, that is to say, the
Jacobian of x∗

0 → x0 → x → x∗, which is AJ J−1
0 AT , then we have

det(A) = 1 ⇒ det(AJ J−1
0 AT ) = det(J J−1

0 ) ⇒ h∗

3 = h3.

∥AJ J−1
0 AT u∗

∥ℓ2

∥u∗∥ℓ2
=

∥AJ J−1
0 u∥ℓ2

∥Au∥ℓ2
=

∥J J−1
0 u∥ℓ2

∥u∥ℓ2
⇒ h∗

1 = h1.

∥AJ J−1
0 AT s∗

∥ℓ2

∥s∗∥ℓ2
=

∥AJ J−1
0 s∥ℓ2

∥As∥ℓ2
=

∥J J−1
0 s∥ℓ2

∥s∥ℓ2
⇒ h∗

2 = h2.

This implies that λ∗
= λ and ν∗

= ν for all the options.

A.2. Parameter list

In this section we list all the parameters that have been used in the computations reported in the paper. Are listed
the viscosity options, the polynomial degree of the finite element space, the size of the initial mesh, the Runge–Kutta
method, the CFL constant ccfl, the viscosity constants cvisc, centr, and the final time t .

• 2D Taylor–Green problem, all figures (ccfl = 0.5) and convergence tables (ccfl = 0.1): Option 2 (with h3 on |D|),
RK4, cvisc = 1.0, centr = 0.5, t = 0.5.

• 1D Sod tube, Fig. 6: Option 2 (with h3 on |D|), Q1, 128 cells, RK4, ccfl = 0.2, cvisc = 1.0, t = 0.2.
• 1D Sod tube, Table 3, Fig. 7, Fig. 8: Option 1 (with h3 on |D|), 256 cells for Q4, 1024 cells for Q1, RK4,

ccfl = 0.4, cvisc = 0.5, centr = 20.0, t = 0.2.
• 1D Sod tube, Fig. 8: 1024 Q1 cells with the same parameters as above.
• 2D Sedov explosion, Fig. 9, Fig. 11: Option 2 (with h3 on |D|), Q2, RK3, 64 × 64, ccfl = 0.2, cvisc = 2.0, centr =

5.0, t = 1.0.
• 2D Sedov explosion, Fig. 12: Option 2 (with h3 on |D|), Q2, RK3, 64 × 64 cells in quadrant #2, 32 × 64 in #1,

64 × 32 in #3, 32 × 32 in #4, ccfl = 0.15, cvisc = 2.0, centr = 20.0, t = 1.0, ε = 1.0 for h0 smoothing.
• 2D Noh implosion, Fig. 13, Fig. 14: Option 1 (with h1 on |D|), Q2, RK4, 64×64, ccfl = 0.05, cvisc = 0.75, centr =

20.0, t = 0.6.
• 2D Noh implosion, Fig. 15, Fig. 16: Option 1 (with h1 on |D|), Q2, RK4, 64 × 64 cells in quadrant #2, 32 × 64 in

#1, 64 × 32 in #3, 32 × 32 in #4, ccfl = 0.05, cvisc = 0.75, centr = 20.0, t = 0.6, ε = 30.0 for h0 smoothing.
• 3D Noh implosion, Fig. 17, Fig. 18: Option 1 (with h1 on |D|), Q2/Q4, RK 4, 32 × 32 × 32/16 × 16 × 16,

ccfl = 0.05, cvisc = 0.75, centr = 20.0, t = 0.6.
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