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Abstract In this paper we study the effect of the use of the consistent mass matrix when
solving scalar nonlinear conservation equations. It is shown that a continuous finite element
method based on artificial viscosity in space and explicit time stepping using the consistent
mass matrix cannot satisfy the maximum principle.
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1 Introduction

It is awell established fact that the unique entropy solution of any scalar conservation equation
satisfies themaximumprinciple (see, e.g., Theorem6.9.3 inDafermos [5]). It is oftendesirable
to reproduce this property at the discrete level to avoid nonphysical over- or under-shoots.
Many finite volume methods using piecewise constant or piecewise linear approximation
in space preserve the maximum principle (see e.g., Lax [15], Leer [16], Osher [19], and
Nessyahu and Tadmor [18]). We refer to Mehmetoglu and Popov [17] for one of the very
rare proofs of convergence for a class of second-order maximum-principle preserving finite
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volumemethods. There are alsomanymaximum-principle preserving finite element methods
based on the discontinuous Galerkin approximation; we refer for instance to Zhang and Shu
[21] for a review. But, in this paper we focus our interest exclusively on continuous Galerkin
methods. The type of methods we are interested in are for instance the so-called local extrema
diminishing (LED) schemes developed in Jameson [11, §2.1], Kuzmin and Turek [14, Eq.
(32)–(33)], Kuzmin et al. [13, p. 163], where the stabilization is based on an algebraic point
of view, or other approaches where the stabilization is based on either a nonlinear or a linear
artificial viscosity like in Burman [2], Burman and Ern [3], Badia and Hierro [1], Guermond
and Nazarov [8], Guermond and Popov [10]. We note in passing that the method proposed
in [10] is very general and extends naturally to any hyperbolic systems.

A common factor of all the continuous finite element methods referred to above is that
they all assume that the mass matrix is lumped. This is an important deficiency, at least for
piecewise linear approximation, since it is well-known that lumping the mass matrix induces
dispersion errors that have adverse effects when solving transport-like equations with non-
smooth initial data, see e.g., Christon et al. [4], Gresho et al. [7], Guermond and Pasquetti
[9]. The objective of the present paper is to investigate whether it is possible to construct an
explicit maximum-principle preserving method using the consistent mass matrix where the
stabilization is induced by artificial viscosity in space. We are going to restrict the analysis
to one space dimension and continuous piecewise linear finite elements. The conclusion, and
main result of this paper, is that even in this very simplistic setting, it is impossible to construct
an artificial viscosity that makes the method maximum-principle preserving, (whether the
explicit artificial viscosity is linear or nonlinear). This will be demonstrated both for the
Cauchy problem and for the periodic boundary value problem.

This paper is organized as follows. We introduce in Sect. 2 some definitions, the notation,
the model problem and the finite element method that is used to solve the model problem.
The Cauchy problem and the periodic boundary value problem are considered in Sects. 3 and
4, respectively. The main results of the paper are stated in Theorems 3.2 and 4.3.

2 Preliminaries

In this section, we first formulate the problem, then we introduce the finite element setting.

2.1 Model Problem

Let f : R −→ R be a non-constant Lipschitz function such that f (0) = 0. Consider the
following nonlinear conservation equation in one space dimension: Given an open interval
� in R and some initial data in L∞(�), find u ∈ L∞(�×(0,∞)) such that

{
∂t u(x, t) + ∂x f (u(x, t)) = 0, a.e. (x, t) in �×(0,∞),

u(x, 0) = u0(x), a.e. x in �
(2.1)

where the PDE is understood in the weak sense. When � = R and f (u) = βu with β ∈ R,
the method of characteristics gives u(t, x) = u0(x − βt). The same formula holds in the
periodic case upon replacing u0 by its periodic extension. For a general flux f it is known that
this problem has a unique entropy solution; i.e., a weak solution that additionally satisfies
the entropy inequalities ∂t E(u) + ∂x F(u) ≤ 0 for all convex entropies E ∈ Lip(R; R) and
associated entropy fluxes F(u) = ∫ u

0 E ′(v) f ′(v) dv. Moreover, this solution satisfies the
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maximum principle, i.e., ess infx∈�u0(x) ≤ u(x, t) ≤ ess supx∈�u
0(x) for every t > 0 and

a.e. x in �. We refer to Kružkov [12] for more details.
In the rest of the paper we are going to assume that either � = R or � is a bounded

interval and periodic boundary conditions are imposed. We will refer to the first case as the
Cauchy problem and to the second case as the periodic boundary value problem. For the
Cauchy problem we assume that there exists a < b and u0a, u

0
b ∈ R such that u0(x) = u0a for

all x < a and u0(x) = u0b for all x > b.

2.2 Finite Element Approximation

Let N ∈ N and let {xi }i∈{0:N } be a sequence of equidistributed points in � which we hence-
forth call Lagrange nodes.We denote Ii := [xi , xi+1], h := |Ii | and�comp := int(

⋃N−1
i=0 Ii ).

For the Cauchy problem we assume that the interval (a, b) defined above is such that
(a, b) ⊂ �comp � R, and for the periodic boundary value problem we assume that
�comp = �. We define the mesh Th := {Ii }i∈{0:N−1}. Let Î := [0, 1] be the refer-
ence element, we denote by TIi : Î −→ Ii the affine geometric transformation such that
TIi (̂x) = xi (1 − x̂) + x̂ xi+1.

We solve problem (2.1) by using theC0 finite elements. For the Cauchy problemwe define
the discrete space

Vh := {vh ∈ C0(�comp) | vh◦TI ∈ P1, ∀I ∈ Th}. (2.2)

For the periodic boundary value problem we will use

V per
h = {vh ∈ C0(�) | vh◦TI ∈ P1, ∀I ∈ Th; vh(x0) = vh(xN )}. (2.3)

Note that the periodic boundary condition is built intoV per
h . Let {ϕ0, . . . , ϕN } be theLagrange

nodal basis functions associated with the Lagrange nodes of the mesh Th , i.e., ϕi (x j ) = δi j .
It follows that

Vh = span{ϕ0, . . . , ϕN },
V per
h = span{ϕ0 + ϕN , . . . , ϕN−1}.

We also introduce a space for the artificial viscosity

Dh = {vh ∈ L∞(�comp) | vh◦TI ∈ P0, ∀I ∈ Th}.

3 Cauchy Problem

Let τ > 0 be the time step. Let u0h ∈ Vh be a reasonable approximation of u0. For instance
u0h can be chosen to be the L2 projection or Lagrangian interpolation of u0 (provided the
quantities {u0(xi )}i∈{0:N } makes sense). The forward Euler finite element approximation to
the Cauchy problem (2.1) is formulated as follows: For n ≥ 0, find un+1

h ∈ Vh such that∫
�

(
un+1
h − unh

τ
+ ∂x

(
fh(u

n
h)

))
vh dx +

∫
�

νn(x)∂xu
n
h∂xvh dx = 0, ∀vh ∈ Vh, (3.1)

where νn is any specified distribution of artificial viscosity. The discrete flux fh : Vh −→ Vh
is defined by fh(uh) = ∑N

i=0 f (Un
i )ϕi where unh(x) := ∑N

i=0U
n
i ϕi (x) ∈ Vh . Note that

this approximation is second-order accurate since it is exact if f is a linear function. The
viscous term is estimated exactly as follows

∫
�

νn(x)∂xunh∂xϕi dx = ∑
j (U

n
i −Un

j )d
n
i j where
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dni j := − ∫
�

νn(x)∂xϕ j∂xϕi dx , andwehave used that
∑

j d
n
i j = 0 due to the partition of unity

property. Note also that dni j = dnji .We set dn
i+ 1

2
:= dnii+1 = dni+1i and d

n
i− 1

2
:= dnii−1 = dni−1i ,

andwe denote by dn ∈ Dh the piece-wise constant function such that dn|Ii = dn
i+ 1

2
. Then upon

setting λ := τ
h , the discrete formulation of the finite element method (3.1) can be written as

Un+1
i+1 + 4Un+1

i +Un+1
i−1

6
= Un

i+1 + 4Un
i +Un

i−1

6

+ λ

2
( f (Un

i−1) − f (Un
i+1))

+ λdn
i− 1

2
(Un

i−1 −Un
i ) + λdn

i+ 1
2
(Un

i+1 −Un
i ), (3.2)

for i ∈ {1:N − 1}. For i = 0, N , we can choose Un+1
0 = Un

0 = u0a , U
n+1
N = Un

N = u0b.
Since f is not constant and f (0) = 0 by assumption, there is γ ∈ R such that f (γ ) �= 0.
Let us now define L := � N

2 , where �· is the floor function, and let us choose the special
initial data u0h satisfying that

U 0
i =

{
γ, if i ∈ {0:L}
0, if i ∈ {L + 1:N }. (3.3)

The following result shows that the maximum principle is violated in (3.2).

Lemma 3.1 Let u0h as defined in (3.3). Then

|γ | = max
i

{U 0
i } − min

i
{U 0

i } < max
i

{U 1
i } − min

i
{U 1

i }, (3.4)

for every d0 ∈ Dh and every λ > 0, i.e., the solution u1h of (3.1) at t1 := τ violates the
maximum principle.

Proof (1) For simplicity, we shift the indices of the Lagrange nodes and shape functions to
make the range of indices be {−L , · · · , N − L}. Then the initial data (3.3) is rewritten

U 0
i =

{
γ, if i ∈ {−L :0}
0, if i ∈ {1:N − L}.

From (3.2), we obtain that u1h satisfies the following equation

U 1
i+1 + 4U 1

i +U 1
i−1

6
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ for i < 0
5γ
6 + λ(

f (γ )
2 − γ d01

2
) for i = 0

γ
6 + λ(

f (γ )
2 + γ d01

2
) for i = 1

0 for i > 1.

(3.5)

We have a non-homogeneous linear recurrence relations with constant coefficients U 1
i+1 +

4U 1
i + U 1

i−1 = bi . The characteristic equation is r2 + 4r + 1 = 0, and the two roots are

r+ = −2 + √
3 and r− = −2 − √

3. We propose the ansatz U 1
i = αr i+ for i ≥ 1 and

U 1
i = βr i− + γ for i ≤ 0 where α, β ∈ R are yet to be determined. It is clear that these two

ansätze satisfy (3.5) for all i /∈ {0, 1}. We are going to compute α and β by requesting that
the ansätze also satisfy (3.5) for i = 0 and i = 1:
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⎧⎪⎪⎨
⎪⎪⎩

U1
1+4U1

0+U1−1
6 = 5γ

6 + λ

(
f (γ )
2 − γ d01

2

)
U1
2+4U1

1+U1
0

6 = γ
6 + λ

(
f (γ )
2 + γ d01

2

)
.

(3.6)

Inserting the ansätze in the above two equations, we have⎧⎨
⎩

αr+ + 4(β + γ ) + (βr−1− + γ ) = 5γ + 6λ(
f (γ )
2 − γ d01

2
)

αr2+ + 4αr+ + (β + γ ) = γ + 6λ(
f (γ )
2 + γ d01

2
),

i.e., ⎧⎨
⎩

α(−2 + √
3) + β(2 + √

3) = 6λ(
f (γ )
2 − γ d01

2
)

−α + β = 6λ(
f (γ )
2 + γ d01

2
).

Solving these equations, we obtain the solution u1h as follows

U 1
i = γ

⎧⎨
⎩

(−√
3 + 3)λ[ f (γ )

2γ − √
3d01

2
]r i− + 1 for i ≤ 0

−(
√
3 + 3)λ[ f (γ )

2γ + √
3d01

2
]r i+ for i ≥ 1.

(3.7)

Note that it is not possible that both f (γ )
2γ +√

3d01
2
and f (γ )

2γ −√
3d01

2
be zero since f (γ ) �= 0.

Note also both r− < 0 and r+ < 0; hence depending on the parity of i the factor r i± is either
positive or negative.
(2) Assume first that either f (γ )

2γ +√
3d01

2
= 0 or f (γ )

2γ −√
3d01

2
= 0 (the “or” is exclusive, i.e.,

either f (γ )
2γ + √

3d01
2

�= 0 or f (γ )
2γ − √

3d01
2

�= 0 since f (γ ) �= 0). Assume now that γ > 0.

Then either there exists i0 ≤ 0 such that U 1
i0

> γ and U 1
i = 0 for all i ≥ 1 or there exists

i0 ≥ 1 such thatU 1
i0

< 0 andU 1
i = γ for all i ≤ 0. In both cases maxi {U 1

i }−mini {U 1
i } > γ .

The same argument holds if γ < 0 and in this case we have maxi {U 1
i } − mini {U 1

i } > |γ |.
(3)Assume that f (γ )

2γ +√
3d01

2
�= 0 and f (γ )

2γ −√
3d01

2
�= 0.Assumenow that γ > 0. Then there

is i0 ≤ 0 such thatU 1
i0

> γ and there j0 ≥ 1 such thatU 1
j0

< 0, i.e., maxi {U 1
i }−mini {U 1

i } >

γ . The same argument holds if γ < 0 and in this case we have maxi {U 1
i }−mini {U 1

i } > |γ |.
This concludes the proof. ��

As an immediate consequence of the above lemmawe derive themain result of this section.

Theorem 3.2 If the consistent mass matrix is used in (3.1), then for every nonzero flux f
there exists u0h ∈ Vh such that the solution uh of (3.1) violates the maximum principle at the
first time step for every λ > 0 and every artificial viscosity distribution d0 ∈ Dh.

Remark 3.1 (Viscosity distribution ν0) Note that since d0 ∈ Dh is arbitrary, the distribution
of viscosity ν0 in (3.1) can be arbitrary as well. In particular ν0 could be any nonlinear
function of u0h . In conclusion there is not hope to recover the maximum principle by using an
explicit nonlinear viscosity when the consistent mass matrix is used. This result is somewhat
in agreement with Theorem 2.1 in Thomée and Wahlbin [20] where the authors study the
semi-discrete finite element approximation of a general linear parabolic equation.
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4 Periodic Boundary Value Problem

We now investigate the periodic boundary value problem. Let τ > 0 be the time step and
let u0h ∈ V per

h be a reasonable approximation of u0. For all n ≥ 0, the forward Euler finite
element approximation to the periodic problem (2.1) consists of finding un+1

h ∈ V per
h , i.e.,

un+1
h (x) = ∑N−1

i=0 Un+1
i ϕi (x) +Un+1

0 ϕN (x), such that

∫
�

(
un+1
h − unh

τ
+ ∂x

(
fh(u

n
h)

))
vh dx +

∫
�

νn(x)∂xu
n
h∂xvh dx = 0, ∀vh ∈ V per

h , (4.1)

where νn is the distribution of the artificial viscosity. Upon settingUn := [Un
0 , · · · ,Un

N−1]T,
the algebraic form of (4.1) is as follows:

M(Un+1 −Un) = λFn (4.2)

where the consistent mass matrix M is a N×N circulant matrix:

M = 1

6
circ[4, 1, 0, · · · , 0, 1], (4.3)

Fn := [Fn
0 , · · · , Fn

N−1]T, and Fn
i = −λ[ f (Un

i+1)− f (Un
i−1)

2 + dn
i+ 1

2
(Un

i −Un
i+1)+ dn

i− 1
2
(Un

i −
Un
i−1)] with the convention thatUn−1 = Un

N−1,U
n
N = Un

0 , dn− 1
2

= Un
N− 1

2
. As a Gram matrix,

M is invertible. SinceM is a circulant matrix,M−1 is also a circulant matrix. In fact, since the
mesh is uniform, the inverse M−1 can be written out explicitly as stated in the next Lemma.

Lemma 4.1 Assume N > 3. Then M−1 = circ[a0, a1, · · · , aN−1], where a j :=
√
3
r j
++r N− j

+
1−r N+

, j ∈ {0:N − 1}, where r+ := −2 + √
3.

Proof Assume M−1 = circ[a0, a1, · · · , aN−1]. The condition MM−1 = I gives{
4a0 + a1 + aN−1 = 6,

ai−1 + 4ai + ai+1 = 0, i = 1, . . . , N − 1
(4.4)

with the convention that aN = a0. The solution to the (N−1) linear recurrence relations with
constant coefficients ai−1 + 4ai + ai+1 = 0 for i = 1, . . . , N − 1 is ai = Ari+ + Bri− where
we recall that r± := −2 ± √

3 are the roots of the characteristic equation r2 + 4r + 1 = 0.
Thenwe use the other two equations 4a0+a1+aN−1 = 6 and aN = a0 to find the coefficients
A and B: {

4A + 4B + Ar+ + Br− + Ar N−1+ + Br N−1− = 6,
Ar N+ + Br N− = A + B.

(4.5)

That is, the pair (A, B) solves the following linear system[
r N−1+ + 4 + r+ r N−1− + 4 + r−

r N+ − 1 r N− − 1

] [
A
B

]
=

[
6
0

]
.

Using Vieta’s formulas, i.e., r+ + r− = −4 and r+r− = 1, the system can be rewritten as
follows: [

r− r+
1 1

] [
(r N+ − 1)A
(r N− − 1)B

]
=

[
6
0

]
.
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Solving the above system, we get that A =
√
3

1−r N+
and B = −√

3
1−r N−

which proves that a j :=
√
3(

r j
+

1−r N+
− r j

−
1−r N−

). Eliminating r−, we simplify the expression as follows

a j =√
3(

r j
+

1 − r N+
− r j

−
r N+ r N− − r N−

) = √
3(

r j
+

1 − r N+
+ r j−N

−
1 − r N+

) = √
3
r j
+ + r N− j

+
1 − r N+

. (4.6)

This completes the proof. ��
Remark 4.1 Note that M is a banded Toeplitz matrix with modified corner terms. Hence,
M−1 can also be obtained by using the technique described in Dow [6, §4] together with
Theorem 1, page E199, therein.

Lemma 4.2 The coefficients {a j } j∈{0:N } satisfy the following properties: a j = aN− j ;
sgn(a j ) = (−1) j for 2 j ≤ N; |a j | is decreasing for 2 j ≤ N + 1.

Proof The proof follows from the expression of a j given in Lemma 4.1. ��
We are now in position to state the main result of this section.

Theorem 4.3 Assume that N ≥ 10. If the consistent mass matrix is used in (4.1), then for
every flux f , there exists u0h ∈ Vh such that the solution uh of (4.1) violates the maximum
principle at the first time step for every λ > 0 and every distribution d0 ∈ Dh.

Proof Let γ �= 0 be such that f (γ ) �= 0. Let m = � N
2  and consider the following initial

data

U 0
i =

{
0 1 ≤ i ≤ m − 1

γ otherwise

For this data, the right-hand side vector in (4.2) is as follows:

F0
0 = f (γ )

2 − γ d01
2
, F0

1 = f (γ )
2 + γ d01

2
, F0

m−1 = − f (γ )
2 + γ d0

m− 1
2
, F0

m = − f (γ )
2 − γ d0

m− 1
2
,

and F0
i = 0 if i /∈ {0, 1,m − 1,m}. To simplify the notation we henceforth set g = f (γ )

2γ ,

d0 = d01
2
, dm = d0

m− 1
2
. After left-multiplying the linear system (4.2) by M−1, we obtain the

following equations for lines N − 1, 0, 1, 2:

1
λγ

(U 1
N−1 − γ ) = a1(g − d0) + a2(g + d0) + am(−g + dm) + am+1(−g − dm)

1
λγ

(U 1
0 − γ ) = a0(g − d0) + a1(g + d0) + am−1(−g + dm) + am(−g − dm)

1
λγ

(U 1
1 − 0) = a1(g − d0) + a0(g + d0) + am−2(−g + dm) + am−1(−g − dm)

1
λγ

(U 1
2 − 0) = a2(g − d0) + a1(g + d0) + am−3(−g + dm) + am−2(−g − dm),

where we have used that aN−k = ak and m ≥ 5 (since N ≥ 10). Similarly we obtain the
following equations for lines m − 2,m − 1,m,m + 1:

1
λγ

(U 1
m−2 − 0) = am−2(g − d0) + am−3(g + d0) + a1(−g + dm) + a2(−g − dm)

1
λγ

(U 1
m−1 − 0) = am−1(g − d0) + am−2(g + d0) + a0(−g + dm) + a1(−g − dm)

1
λγ

(U 1
m − γ ) = am(g − d0) + am−1(g + d0) + a1(−g + dm) + a0(−g − dm)

1
λγ

(U 1
m+1 − γ ) = am+1(g − d0) + am(g + d0) + a2(−g + dm) + a1(−g − dm).
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Let us assume that the artificial viscosity d is such that the maximum principle holds. Then
U1
k −γ

γ
≤ 0 and

U1
k −0
γ

≥ 0 for any k ∈ {0:N − 1}. As a result, the above equations give the
following two sets of inequalities:

d0(a2 − a1) + dm(am − am+1) + g(a1 + a2 − am − am+1) ≤ 0 (4.7a)

d0(a1 − a0) + dm(am−1 − am) + g(a0 + a1 − am−1 − am) ≤ 0 (4.7b)

d0(a0 − a1) + dm(am−2 − am−1) + g(a1 + a0 − am−2 − am−1) ≥ 0 (4.7c)

d0(a1 − a2) + dm(am−3 − am−2) + g(a2 + a1 − am−3 − am−2) ≥ 0. (4.7d)

and

d0(am−3 − am−2) + dm(a1 − a2) + g(−a1 − a2 + am−3 + am−2) ≥ 0 (4.8a)

d0(am−2 − am−1) + dm(a0 − a1) + g(−a0 − a1 + am−2 + am−1) ≥ 0 (4.8b)

d0(am−1 − am) + dm(a1 − a0) + g(−a1 − a0 + am−1 + am) ≤ 0 (4.8c)

d0(am − am+1) + dm(a2 − a1) + g(−a2 − a1 + am + am+1) ≤ 0. (4.8d)

After adding (4.7a) and (4.8d) and adding (4.7b) and (4.8c), we obtain

(d0 + dm)(a2 − a1 + am − am+1) ≤ 0, and (d0 + dm)(a1 − a0 + am−1 − am) ≤ 0.

A direct computation shows that |am − am+1| < a2 − a1 (since m ≥ 5); hence d0 + dm ≤ 0.
The same argument implies that |am − am−1| < a0 − a1; hence d0 + dm ≥ 0. In conclusion
d0 + dm = 0. After substituting dm by −d0 in (4.7b), (4.8c), (4.7d) and (4.8a) we obtain{

d0α2 + gβ2 ≤ 0

d0α2 + gβ2 ≥ 0,

{
d0α4 + gβ4 ≥ 0

d0α4 + gβ4 ≤ 0,

where α2 := a1−a0−am−1+am , β2 := a0+a1−am−1−am , α4 := a1−a2−am−3+am−2,
β4 := a2 + a1 − am−3 − am−2. This immediately implies that

d0α2 + gβ2 = 0, and d0α4 + gβ4 = 0.

Let us now show that the determinant α2β4 − α4β2 is not equal to zero. Essentially we want
to show that the

( 1
2 (

β2
α2

+1)
)−1 is different from

( 1
2 (

β4
α4

+1)
)−1. A direct computation shows

that

1
1
2 (

β2
α2

+ 1)
= 1 − a0 − am

a1 − am−1
,

1
1
2 (

β4
α4

+ 1)
= 1 − a2 − am−2

a1 − am−3
.

It can be shown that a0−am
a1−am−1

− a2−am−2
a1−am−3

> 3; thereby proving that α2β4 − α4β2 �= 0. Hence

d0 = 0 and g = 0, which is a contradiction since γ has been chosen so that g := f (γ )
γ

�= 0.
The proof is complete. ��

5 Conclusions

We have shown in this paper that it is impossible to satisfy the maximum principle for
an explicit finite element method using the consistent mass matrix and artificial viscosity
for stabilization in space. This statement is proved for any nonlinear scalar conservation
equation in one space dimension. The approximation in space is done with piecewise linear
finite elements on uniform meshes, the approximation in time is done with forward Euler,
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and the stabilization is done with piecewise constant artificial viscosity. For both the Cauchy
problem and the periodic boundary value problem, we have proved that if the consistent mass
matrix is used, there exists u0h such the maximum principle is violated at the first time step
for every time step τ and every distribution of artificial viscosity. Note that this result holds
for any type of explicit artificial viscosity – whether the artificial viscosity is a nonlinear
function of u0h or not.
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