
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. S\mathrm{C}\mathrm{I}. C\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. \mathrm{c}\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 6, pp. A3873--A3901

WELL-BALANCED SECOND-ORDER FINITE ELEMENT
APPROXIMATION OF THE SHALLOW WATER EQUATIONS WITH

FRICTION\ast 

JEAN-LUC GUERMOND\dagger , MANUEL QUEZADA DE LUNA\ddagger , BOJAN POPOV\dagger ,

CHRISTOPHER E. KEES\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} MATTHEW W. FARTHING\ddagger 

Abstract. This paper investigates the approximation of the shallow water equations with
topography and friction, using continuous finite elements. A new, second-order, parameter-free, well-
balanced and positivity preserving explicit approximation technique is introduced. The novelties of
the method are the explicit treatment of the friction term, the robust approximation of dry states, a
commutator-based, high-order, entropy viscosity, and a local limiting procedure. The computational
method is illustrated on various benchmark tests.
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1. Introduction. The present paper is concerned with the approximation of the
time-dependent shallow water equations with friction, using explicit time stepping and
continuous finite elements. The objective is to construct a method that is at least
second order in space and third or higher order in time, well-balanced with respect
to rest states (see Berm\'udez and V\'azquez [6], Greenberg and Le Roux [22]), well-
balanced with respect to time-independent sliding solutions on inclined planes (see
Chertock et al. [13]), and robust with respect to dry states. Such solution methods are
available in the literature for finite volumes techniques either on structured meshes,
as in [13], or unstructured meshes as in Duran et al. [17]. We also refer the reader
to Audusse et al. [1], Bollermann, Noelle, and Luk\'a\v cov\'a-Medvidov\'a [8], Gallardo,
Par\'es, and Castro [21], Kurganov and Petrova [38], Perthame and Simeoni [43], and
Ricchiuto and Bollermann [44] for examples of schemes that are well-balanced at rest
and robust with respect to dry states. A good review of well-balancing can be found
in the book of Bouchut [10]. We also refer the reader to the paper of Xing and
Shu [53] for a survey on well-balanced schemes in the context of finite volume and
discontinuous Galerkin methods, and to [38] for a survey of central upwind schemes.
However, to the best of our knowledge, approximations techniques with the above
properties are not well developed in the context of continuous finite elements.

The starting point of the present paper is a method introduced in Azerad, Guer-
mond, and Popov [3]. It is a finite element technique that is second-order accurate
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in space, positivity preserving, and well-balanced with respect to rest states. The
way the numerical viscosity is constructed in [3], though, makes the accuracy of the
method limited to second order at best with a loss of accuracy at extrema in the
water height. The goal of the present work is to go beyond the method described in
[3]. More specifically, we propose extensions in the following four directions: (i) We
introduce a singular Manning friction term and show that after proper regularization
this term can be treated explicitly under the usual CFL condition. To the best of
our knowledge, the proposed technique seems to be one of the first explicit methods
available in the literature to handle this type of singular source term; (ii) we make
the proposed method high order in space by adapting the entropy viscosity method-
ology introduced in Guermond, Pasquetti, and Popov [28]. One particular innovation
consists in bypassing one mass matrix inversion by estimating a commutator; (iii) the
high-order method is made positivity preserving via a new local limiting process. We
adapt the technique introduced in Guermond et al. [31] to the shallow water setting
and extract local lower bounds on the water heights and, more generally, exact local
bounds that are used to limit the high-order solution. The resulting method is pa-
rameter free and is numerically shown to be accurate and robust in all problems we
have solved.

The paper is organized as follows. The description of the problem and the finite
element setting are introduced in section 2. The extension to the shallow water
equations with friction of the method introduced in Azerad, Guermond, and Popov
[3] is done in section 3. The explicit treatment and the regularization of the friction
term are explained in section 3.2. The guaranteed maximum wave speed method
that is used to extract exact bounds for limiting the high-order solution is exposed
in section 4. The smoothness-based viscosity introduced in [3] is recalled in section
5 for completeness. The higher-order entropy viscosity extension of the method and
the novel commutator technique that is used to estimate the entropy residual are
introduced in section 6. The novel limiting technique announced above is exposed
in section 6.4. The method is numerically illustrated on various benchmark tests in
section 7; this section finishes with the simulation of the Malpasset dam break.

2. Preliminaries. We introduce the model problem and the finite element set-
ting in this section.

2.1. The model problem. Let us consider a body of water evolving under the
action of gravity and friction effects. Under the assumption that the deformations of
the free surface are small compared to the water height and the bottom topography
z varies slowly with respect to horizontal displacements, the problem can be well
represented by the Saint-Venant shallow water model

(2.1) \partial t\bfitu +\nabla \cdot f(\bfitu ) + \bfitb (\bfitu ,\nabla z) = \bfitS (\bfitu ), a.e. \bfitx \in D, t \in \BbbR +,

where D \subset \BbbR d is henceforth called the computational domain and d is the space
dimension, which is either 1 or 2. The dependent variable is \bfitu = (\sansh , \bfitq )\sansT , where \sansh 
is the water height, and the vector field \bfitq is the flow rate or discharge. The ratio
\bfitv := 1

\sansh \bfitq is the depth averaged velocity. We refer to \bfitv as the velocity. The flux f(\bfitu )
and \bfitb (\bfitu ,\nabla z) are given by

(2.2) f(\bfitu ) :=

\biggl( 
\bfitq \sansT 

1
\sansh \bfitq \otimes \bfitq + 1

2g\sansh 
2\BbbI d

\biggr) 
\in \BbbR (1+d)\times d, \bfitb (\bfitu ,\nabla z) :=

\biggl( 
0

g\sansh \nabla z

\biggr) 
,

where \BbbI d is the d\times d identity matrix. The mapping z : D \ni \bfitx \mapsto \rightarrow z(\bfitx ) \in \BbbR is
the bottom topography and is assumed to be known. Finally to account for loss of
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WELL-BALANCED FINITE ELEMENT APPROXIMATION A3875

discharge through friction effects, we adopt Manning's friction law

(2.3) \bfitS (\bfitu ) := (0, - gn2\sansh  - \gamma \bfitq \| \bfitv \| \ell 2)\sansT .

In the applications reported in the paper we take \gamma = 4
3 . The parameter n is Manning's

roughness coefficient; it has units m
\gamma  - 2
2 s.

2.2. Finite element setting. We are going to approximate the solution of (2.2)
with continuous finite elements. For this purpose we introduce a shape-regular family
of matching meshes (\scrT h)h>0. We are going to abuse the notation slightly by denoting
the water height by \sansh and the mesh size by h when the context is unambiguous. For
instance, the finite element approximation of the water height is denoted \sansh h. The
elements in \scrT h are assumed to be generated from a reference element denoted \widehat K. For
any K \in \scrT h, we denote by TK : \widehat K \rightarrow K the geometric bijective transformation that
maps the reference element \widehat K to the current element K. We do not assume that TK is
affine. Let ( \widehat K, \widehat P , \widehat \Sigma ) be a reference finite element. The reference space \widehat P is assumed
to be composed of scalar-valued functions; we denote by k the largest natural number
such that \BbbP k \subset \widehat P , where \BbbP k is the space of the d-variate polynomials of degree at
most k. In the applications reported at the end of the paper we are going to take
k = 1, but most of what is said in the paper holds true for higher polynomial degree.
The reference shape functions are denoted \{ \widehat \theta i\} i\in \scrN ; recall that \widehat P = span\{ \widehat \theta i\} i\in \scrN . We

assume that the basis \{ \widehat \theta i\} i\in \scrN has the partition of unity property,
\sum 

i\in \scrN 
\widehat \theta i(\widehat \bfitx ) = 1,

for all \widehat \bfitx \in \widehat K. We then introduce the finite element space

(2.4) P (\scrT h) := \{ v \in C0(D;\BbbR ) | v| K\circ TK \in \widehat P \forall K \in \scrT h\} .

We are going to use \bfitP (\scrT h) := [P (\scrT h)]1+d to approximate the conservative variable \bfitu 
in space. The approximation of the bottom topography will be done in P (\scrT h). The
global shape functions in P (\scrT h) are denoted by \{ \varphi i\} i\in \scrV , i.e., dim(P (\scrT h)) = card(\scrV ).
Recall that \varphi \ttj \ttd \tto \ttf (K,i)| K = \widehat \theta i((TK) - 1) for all i \in \scrN and all K \in \scrT h, where \ttj \ttd \tto \ttf :
\scrT h\times \scrN  - \rightarrow \scrV is the connectivity mapping. This identity together with the partition
of unity property implies that

\sum 
i\in \scrV \varphi i(\bfitx ) = 1 for all \bfitx \in D.

For any i \in \scrV , we set \scrI (i) := \{ j \in \scrV | \varphi i\varphi j \not \equiv 0\} and refer to \scrI (i) as the stencil
of the shape function \varphi i.

Let \scrM be the consistent mass matrix with entries mij :=
\int 
D
\varphi i(\bfitx )\varphi j(\bfitx ) dx, and

let \scrM L be the diagonal lumped mass matrix with entries mi :=
\int 
D
\varphi i(\bfitx ) dx. The

partition of unity property implies that mi =
\sum 

j\in \scrI (i)mij . We henceforth assume
that

(2.5) mi > 0 \forall i \in \scrV .

This assumption is satisfied by many finite element families: \BbbP 1 elements on simplicies,
\BbbQ 1 elements on quadrangles and hexahedrons, prismatic elements, Bernstein finite
elements, etc.

Finally, we define the following two quantities which will play an important role
in the rest of the paper:

(2.6) \bfitc ij :=

\int 
D

\varphi i\nabla \varphi j dx, \bfitn ij :=
\bfitc ij

\| \bfitc ij\| \ell 2
, i, j \in \scrV .

Note that the partition of unity property implies
\sum 

j\in \scrV \bfitc ij = 0. Furthermore, if either
\varphi i or \varphi j is zero on \partial D, then \bfitc ij =  - \bfitc ji. In particular we have

\sum 
i\in \scrV \bfitc ij = 0 if \varphi j is

zero on \partial D. This property will be used to establish conservation.
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Definition 2.1 (centrosymmetry). The mesh \scrT h is said to be centrosymmetric
if the following condition holds true: For all i \in \scrV , there is a permutation \sigma i : \scrI (i) \rightarrow 
\scrI (i) such that for every function Di \ni \bfitx \rightarrow 

\sum 
j\in \scrI (i) \sansA j\varphi j(\bfitx ) \in \BbbR that is linear over

Di we have \sansA i =
1
2 (\sansA j + \sansA \sigma i(j)) for all j \in \scrI (i).

Although at some point in the paper we will invoke centrosymmetry of the mesh
to establish formal consistency of some terms, we do not assume that the mesh is
centrosymmetric in the rest of the paper.

3. Generic algorithm. We describe in this section a generic algorithm that
is well-balanced. The positivity on the water height and the accuracy in space will
depend on the definition of the artificial viscosity. Three possible definitions of the
artificial viscosity are presented in sections 4, 5, and 6. The bottom topography is
henceforth approximated by zh =

\sum 
i\in \scrV \sansZ i\varphi i. We also use the following notation

for the approximation of the water height and discharge: \sansh h =
\sum 

i\in \scrV \sansH i\varphi i, \bfitq h =\sum 
i\in \scrV Qi\varphi i, respectively. The approximate conservative variable \bfitu h := (\sansh h, \bfitq h)

\sansT is

represented as follows: \bfitu h =
\sum 

i\in \scrV Ui\varphi i, i.e., Ui := (\sansH i,Qi)
\sansT . The key novelty in

this section with respect to Azerad, Guermond, and Popov [3] is the handling of the
Manning friction.

3.1. Velocity regularization. The velocity, \bfitv h := 1
\sansh h
\bfitq h, which is invoked to

compute the flux and other related quantities, is approximated as follows: \bfitv h =\sum 
i\in \scrV Vi\varphi i, where Vi is related to the water height and the discharge by using a

formula that avoids division by zero in dry regions. There are many ways to remove the
dry state singularity; in this paper we are going to use a formula similar in spirit to that
in Kurganov and Petrova [38, Eq. (2.17)], Chertock et al. [13, Eq. (3.10)], [3, section
5.1]. Recalling that \sansh 0 is the initial water height, we set \sansH 0,\mathrm{m}\mathrm{a}\mathrm{x} = ess sup\bfitx \in D \sansh 0(\bfitx ),
and we define the following regularization length scale and regularized velocity:

\sansH \epsilon := \epsilon \sansH 0,\mathrm{m}\mathrm{a}\mathrm{x}, Vi :=
2\sansH i

\sansH 2
i +max(\sansH i,\sansH \epsilon )2

Qi,(3.1)

where \epsilon is a tiny parameter that takes care of roundoff errors. In the applications
reported at the end of the paper we take \epsilon = 10 - 13 to account for double precision
arithmetic. Note that with the above definition we have Vi =

1
\sansH i
Qi if \sansH i \geq \sansH \epsilon ; hence,

the proposed regularization is active only in situations where genuine dry states occur.
Whether this type of regularization can be physically justified is not clear. Further
studies in this direction should be done in the future.

3.2. Full time and space approximation. The notion of well-balancing is
rooted in the seminal work of Berm\'udez and V\'azquez [6, Def. 1] and Greenberg
and Le Roux [22]. The idea is that well-balanced schemes should at the very least
preserve steady states at rest. Following Audusse et al. [1], we are going to make use
of the so-called hydrostatic reconstruction of the water height to make the method
well-balanced with respect to rest states:

(3.2) \sansH \ast ,j
i := max(0,\sansH i + \sansZ i  - max(\sansZ i,\sansZ j)) \forall i \in \scrV , j \in \scrI (i).

This leads us to introduce the auxiliary state U\ast ,j
i :=

\sansH \ast ,j
i

\sansH i
Ui.

Let \bfitu 0
h =

\sum 
i\in \scrV U0

i\varphi i \in \bfitP (\scrT h) be a reasonable approximation of \bfitu 0, where we
recall that \bfitu 0 is the initial datum. Let \tau be the time step at the current time tn,
n \in \BbbN , and let us set tn+1 := tn + \tau . Let \bfitu n

h :=
\sum 

i\in \scrV Un
i \varphi i \in \bfitP (\scrT h) be the space

approximation of \bfitu at time tn and let us set \bfitu n+1
h :=

\sum 
i\in \scrV Un+1

i \varphi i.
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We construct the update \bfitu n+1
h by following the same strategy as in [3]; the key

difference is in the treatment of the Manning friction. The idea is to use the Galerkin
method augmented with some artificial viscosity. The time stepping is done with a
strong stability preserving (SSP) Runge--Kutta method with the mass matrix lumped.
Regarding the friction term, we approximate

\int 
D
gn2\sansh  - \gamma \bfitq \| \bfitv \| \ell 2\varphi i dx as follows:

(3.3)

\int 
D

gn2\sansh  - \gamma \bfitq \| \bfitv \| \ell 2\varphi i dx \approx 2gn2Qn
i \| Vi\| \ell 2mi

(\sansH n
i )

\gamma +max
\bigl( 
(\sansH n

i )
\gamma , 2\tau gn2\| Vi\| \ell 2

\bigr) .
Remark 3.1 (friction regularization). Observe that the above definition of the fric-

tion reduces to gn2(\sansH n
i )

 - \gamma Qn
i \| Vi\| \ell 2mi when \sansH n

i \geq (2\tau gn2\| Vi\| \ell 2)
1
\gamma ; that is to say, the

regularization is inactive away from dry states when the time step \tau is small enough.
This regularization allows us to use explicit time stepping with a standard CFL re-
striction and makes the scheme well-balanced with respect to rest states and sliding
steady states. A precise statement about well-balancing is made in Proposition 3.7.
Notice that in the literature the Manning friction is usually treated semi-implicitly.
Since the proposed regularization allows for explicit treatment, the present scheme is
easier to implement and possibly faster.

We approximate the term
\int 
D
(\nabla \cdot (f(\bfitu )) + (0, gh\nabla z)\sansT )\varphi i dx as follows:

(3.4)

\int 
D

\biggl( 
\nabla \cdot (f(\bfitu )) +

\biggl( 
0

gh\nabla z

\biggr) \biggr) 
\varphi i dx \approx 

\sum 
j\in \scrI (i)

\biggl( 
\sansH n

j V
n
j \cdot \bfitc ij

Vn
j Q

n
j \cdot \bfitc ij + g\sansH n

i (\sansH 
n
j + Zj)\bfitc ij

\biggr) 
.

Since all the SSP Runge--Kutta methods are composed of convex combinations of the
forward Euler method, we restrict the presentation of the scheme to the forward Euler
method. Recalling that the mass matrix is lumped in [3], we update Un+1

i , i \in \scrV , as
follows:

mi
Un+1

i  - Un
i

\tau 
=
\sum 

j\in \scrI (i)

 - 
\bigl( 
\sansH n

j V
n
j \cdot \bfitc ij ,V

n
j Q

n
j \cdot \bfitc ij + g\sansH n

i (\sansH 
n
j + Zj)\bfitc ij

\bigr) \sansT 
 - 
\biggl( 
0,

2gn2Qn
i \| Vi\| \ell 2mi

(\sansH n
i )

\gamma +max((\sansH n
i )

\gamma , 2gn2\tau \| Vi\| \ell 2)

\biggr) \sansT 

+
\sum 

j\in \scrI (i)\setminus \{ i\} 

(dnij  - \mu n
ij)
\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
+ \mu n

ij

\bigl( 
Un

j  - Un
i ),

(3.5)

dnij = dnji, \mu n
ij = \mu n

ji, dnij \geq \mu n
ij \geq 0, i \not = j.(3.6)

Here dnij , \mu 
n
ij are the artificial viscosity coefficients. Setting dnij = \mu n

ij gives the Galerkin
method with lumped mass matrix; the scheme is then high-order accurate in space
but positivity is a priori lost. The purpose of \mu n

ij and dnij is to introduce numerical
dissipation in a controlled way in order to preserve well-balancing and positivity of
the water height. Precise definitions of dnij and \mu n

ij are given in sections 4, 5, and 6.
Well-balancing is established in section 3.3 and positivity is established in sections 4,
5, and 6.

Remark 3.2 (Dirichlet boundary conditions). The question of boundary condi-
tions for hyperbolic systems is highly nontrivial, but whenever Dirichlet boundary
conditions have to be enforced either on the water height or on the normal compo-
nent of the discharge, we enforce them a posteriori on Un+1

i . When using an SSP
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Runge--Kutta method, the enforcement of Dirichlet conditions is done at the end of
every Runge--Kutta substep.

3.3. Conservation and well-balancing. In this section we investigate some
properties of the scheme (3.5)--(3.6) that are independent of the definition of the
numerical viscosity coefficients \mu n

ij and dnij .

Definition 3.3 (conservation). We say that a mapping \bfitR : \bfitP (\scrT h) \rightarrow \bfitP (\scrT h)
is a conservative approximation of (2.1) if

\sum 
i\in \scrV mi\bfitR (U) =

\sum 
i\in \scrV miU when the

topography map is constant and there is no friction.

Proposition 3.4. The mapping Un \rightarrow Un+1 defined by the scheme (3.5)--(3.6)
is conservative.

Proof. For the proof, see Azerad, Guermond, and Popov [3]; see also Re-
mark 3.9.

The key idea advocated by Berm\'udez and V\'azquez [6] and Greenberg and Le Roux
[22] is that good numerical schemes should at the very least preserve steady states
at rest and possibly preserve some other time-independent solutions. We refer the
reader to Noelle, Xing, and Shu [42] where this question is addressed in the context
of high-order methods.

Definition 3.5 (exact well-balancing at rest). (i) A numerical state (\sansh h, \bfitq h, zh)
is said to be at exact rest (or exactly at rest) if the approximate discharge \bfitq h is zero,
and if the approximate water height \sansh h and the approximate bottom topography map zh
satisfy the following alternative for all i \in \scrV : either \sansH j = \sansH i = 0 or \sansH j +\sansZ j = \sansH i+\sansZ i

for all j \in \scrI (i). (ii) A mapping \bfitR : \bfitP (\scrT h) \rightarrow \bfitP (\scrT h) is said to be an exactly well-
balanced approximation of (2.1) if \bfitR (\bfitu h) = \bfitu h when \bfitu h is an exact rest state.

Proposition 3.6. The scheme (3.5)--(3.6) is exactly well-balanced if \mu n
ij = 0

when Vn
i = Vn

j = 0.

Proof. The statement has been proved in [3] when there is no friction. But at
rest, the friction term is zero, so its contribution to the discharge equation is zero;
hence the argument from [3] still holds in this case as well.

Now following Chertock et al. [13], we observe that when the bottom is an infinite
inclined plane, the system (2.1) admits a steady state solution that solves \bfitb (\bfitu ,\nabla z) =
\bfitS (\bfitu ). More precisely, assuming that the plane has two tangent orthonormal vectors
\bfitt 1, \bfitt 2 with \bfitt 2 being horizontal and \bfitt 1 pointing downward, we have \nabla z =  - b\bfitt 1 with
b > 0. The steady state solution to (2.1) is given by

(3.7) \bfitq (\bfitx , t)\cdot \bfitt 2 = 0, \bfitq (\bfitx , t)\cdot \bfitt 1 = q0, \sansh (\bfitx , t) = \sansh 0 :=

\biggl( 
n2q20
b

\biggr) 1
2+\gamma 

.

Proposition 3.7 (well-balanced steady state). Let q0, \sansh 0 be defined in (3.7).
Assume that \tau \leq q0

2gb\sansh 0
. Suppose also that the following alternative holds: (i) The

mesh is centrosymmetric and fine enough, and the artificial viscosity is defined so
that dnij and \mu n

ij are constant when Un
j = Un

i for all j \in \scrI (i); or (ii) the mesh is
nonuniform but the artificial viscosity is defined so that dnij = 0 and \mu n

ij = 0 when

Un
i = Un

j for all j \in \scrI (i) and all i \in \scrV . Then the field U\mathrm{s}\mathrm{t} := (\sansH \mathrm{s}\mathrm{t},Q\mathrm{s}\mathrm{t})\sansT , where

Q\mathrm{s}\mathrm{t}
i \cdot \bfitt 2 = 0, Q\mathrm{s}\mathrm{t}

i \cdot \bfitt 1 = q0, \sansH \mathrm{s}\mathrm{t}
i = \sansh 0 =

\bigl( 
b - 1n2q20

\bigr) 1
2+\gamma , is a steady state solution to

(3.5)--(3.6).
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Proof. Suppose that \sansH n
i = \sansh 0 and Qn

i = q0\bfitt 1 for all i \in \scrV . Let us prove that
1
\tau (U

n+1
i  - Un

i ) = 0. Since the bottom topography is linear, we have

(3.8)
\sum 

j\in \scrI (i)

Zj\bfitc ij =

\int 
D

\nabla z\varphi i dx = mi\nabla z =  - bmi\bfitt 1.

Since the discrete field Un is constant is space, using the property
\sum 

j\in \scrI (i) \bfitc ij = 0 we
infer that

(3.9)
\sum 

j\in \scrI (i)

 - 
\bigl( 
\sansH n

j V
n
j \cdot \bfitc ij ,V

n
j Q

n
j \cdot \bfitc ij + g\sansH n

i (\sansH 
n
j + Zj)\bfitc ij

\bigr) \sansT 
= (0, g\sansh 0mib\bfitt 1)

\sansT 
.

Moreover, using that 2g\tau \leq q0
b\sansh 0

, we infer that \sansh \gamma 0 = \mathrm{n}2q0
\sansh 0

q0
b\sansh 0

\geq 2gn2\tau q0
\sansh 0
. Hence

the regularization in the approximation of the Manning friction (3.3) is inactive, and
the friction term reduces to  - gn2q20\sansh 

 - 1 - \gamma 
0 mi\bfitt 1. As a result, denoting by r.h.s. the

right-hand side of (3.5), we have

r.h.s. =
\Bigl( 
0, - gn2q20\sansh 

 - 1 - \gamma 
0 mi\bfitt 1 + g\sansh 0mib\bfitt 1

\Bigr) \sansT 
(3.10)

+
\sum 

j\in \scrI (i)\setminus \{ i\} 

(dnij  - \mu n
ij)
\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
+ \mu n

ij

\bigl( 
Un

j  - Un
i )

=
\sum 

j\in \scrI (i)\setminus \{ i\} 

(dnij  - \mu n
ij)
\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
.

In alternative (i), we have min(\sansh 0+\sansZ i - max(\sansZ i,\sansZ j), \sansh 0+\sansZ j  - max(\sansZ i,\sansZ j)) > 0 since

the mesh is supposed to be fine enough; hence \sansH \ast ,i,n
j  - \sansH \ast ,j,n

i = \sansZ j  - \sansZ i. This means

that U\ast ,i,n
j  - U\ast ,j,n

i = (\sansZ j  - \sansZ i)(1, \sansh 
 - 1
0 q0\bfitt 1)

\sansT . Since by assumption, the coefficients
d := dnij and \mu := \mu n

ij do not depend on j \in \scrI (i), we have

(3.11) r.h.s. = \alpha (d - \mu )

\biggl( 
1

\sansh  - 1
0 q0\bfitt 1

\biggr) \sum 
j\in \scrI (i)\setminus \{ i\} 

(\sansZ j  - \sansZ i) .

Let \sigma i : \scrI (i) \rightarrow \scrI (i) be the permutation introduced in the centrosymmetry definition
(see Definition 2.1); we have

\sum 
j\in \scrI (i)\setminus \{ i\} \sansZ j =

1
2

\sum 
j\in \scrI (i)\setminus \{ i\} 

\bigl( 
\sansZ j + \sansZ \sigma i(j)

\bigr) 
. The centro-

symmetry assumption implies that

(3.12) r.h.s. = \alpha (d - \mu )

\biggl( 
1

\sansh  - 1
0 q0\bfitt 1

\biggr) 
1

2

\sum 
j\in \scrI (i)\setminus \{ i\} 

\bigl( 
\sansZ j + \sansZ \sigma i(j)  - 2\sansZ i

\bigr) 
= 0,

since the function \bfitx \rightarrow 
\sum 

j\in \scrI (i) \sansZ j\varphi j(\bfitx ) is linear over Di for all i \in \scrV . Hence
1
\tau (U

n+1
i  - Un

i ) = 0 as desired. In the other alternative (ii), we suppose that dnij =
\mu n
ij = 0 when Un

i = Un
j for all j \in \scrI (i); this means that the right-hand side of (3.5)

is zero, whence 1
\tau (U

n+1
i  - Un

i ) = 0 as desired. This completes the proof.
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Remark 3.8. The first-order artificial viscosity proposed in section 4 satisfies the
assumption of the alternative (i). The higher-order viscosities proposed in sections 5
and 6 satisfy the assumption of alternative (ii).

Remark 3.9 (local conservation). The notion of conservation introduced in Defi-
nition 3.3 may look inappropriate to the reader who is more familiar with the finite
volume or/and discontinuous Galerkin literature since our definition of conservation
is global. Actually, assuming that the topography map is constant and there is no
friction, the update (3.5) can be rewritten miU

n+1
i = miU

n
i + \tau 

\sum 
j\in \scrI (i) \BbbF n

ij , where

\BbbF n
ij :=  - 

\bigl( 
(\sansH n

j V
n
j + \sansH n

i V
n
i )\cdot \bfitc ij , (V

n
j Q

n
j + Vn

i Q
n
i )\cdot \bfitc ij + g\sansH n

i \sansH 
n
j \bfitc ij

\bigr) \sansT 
+ \mu n

ij(U
n
j  - Un

i ) +

(dnij  - \mu n
ij)(U

\ast ,i,n
j  - U\ast ,j,n

i ) since
\sum 

j\in \scrI (i) V
n
i Q

n
i \cdot \bfitc ij = Vn

i Q
n
i \cdot (
\sum 

j\in \scrI (i) \bfitc ij) = 0 and\sum 
j\in \scrI (i) \sansH 

n
i V

n
i \cdot \bfitc ij = \sansH n

i V
n
i \cdot (
\sum 

j\in \scrI (i) \bfitc ij) = 0. The key property we are using here is

that definition (2.6) implies that
\sum 

j\in \scrI (i) \bfitc ij = 0, which is a consequence of the parti-

tion of unity property. Using definition (2.6) again we observe that \bfitc ij =  - \bfitc ji if either
\varphi i or \varphi j is zero on \partial D. As a result, away from the boundary, we have \BbbF n

ij =  - \BbbF n
ji;

that is to say, the mass flux from the degree of freedom j to the degree of freedom i is
opposite to the mass flux from the degree of freedom i to the degree of freedom j. This
is the property that is usually understood as ``local mass conservation"" in the finite
volume or/and discontinuous Galerkin literature. In conclusion, the update (3.5), i.e.,

mi
Un+1

i  - Un
i

\tau =
\sum 

j\in \scrI (i) \BbbF n
ij , is ``locally conservative"" in the sense that \BbbF n

ij =  - \BbbF n
ji for

any j \in \scrI (i) and any i \in \scrV (and for for any i \in \scrI (j) and any j \in \scrV ) away from the
boundary and if the topography map is constant and there is no friction.

Remark 3.10 (hydrostatic reconstruction). It has been observed in Delestre et al.
[15] that the hydrostatic reconstruction may not be appropriate to approximate steady
state solutions that are not at rest ``for certain combinations of water height, slope,
and mesh size."" This issue has been investigated in Audusse et al. [2], Chen and
Noelle [12]. We are not going to address this problem in the present paper.

4. Guaranteed maximum speed (GMS) viscosity. In this section we give a
definition of the artificial viscosity coefficients \mu n

ij , d
n
ij that makes the method positive

and entropy satisfying (when the bottom is flat), but also reduces the accuracy in
space to first order (see [3]). More accurate definitions of the viscosities \mu n

ij and dnij ,
producing higher-order methods, are given in sections 5 and 6.

4.1. Definition of the GMS viscosity. In order to distinguish the low-order
viscosity from other higher-order variants, we now use the superscript \mathrm{V} and define
\mu \mathrm{V}
ij and d\mathrm{V},n

ij as follows:

\mu \mathrm{V},n
ij := max((Vi\cdot \bfitn ij) - , (Vj \cdot \bfitn ij)+)\| \bfitc ij\| \ell 2 , i \not = j,(4.1)

d\mathrm{V},n
ij := max

\Bigl( 
\lambda 
f1\mathrm{D}

\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ij ,U
n
i ,U

n
j )\| \bfitc ij\| \ell 2 , \lambda 

f1\mathrm{D}

\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ji,U
n
j ,U

n
i )\| \bfitc ji\| \ell 2

\Bigr) 
, i \not = j,(4.2)

with the notation a+ := max(a, 0) and a - =  - min(a, 0). Here \lambda 
f1\mathrm{D}

\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ,UL,UR)
is an upper bound for the maximum wave speed in the following one-dimensional
Riemann problem \partial t\bfitw + \partial x(f1\mathrm{D}(\bfitw )) = 0 with Riemann data \bfitw L := (hL,\bfitn \cdot QL)
and \bfitw R := (hR,\bfitn \cdot QR) and the restricted flux f1\mathrm{D}(\bfitw ) := (q, 1hq

2 + g
2h

2)\sansT , where
\bfitw := (\sansh , q)\sansT . It is shown in [3, Props. 3.7 and 3.8] that if the bottom is flat and if
there if no friction, then the scheme (3.5)--(3.6) with the above viscosities preserves
all the convex invariant domains of the PDE and satisfies discrete entropy inequalities
for every admissible entropy pair.
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4.2. Maximum wave speed. For completeness, we now give an explicit upper
bound on the maximum wave speed. Let \lambda  - 1 (\sansh \ast ) and \lambda 

+
2 (\sansh \ast ) be defined as follows:

\lambda  - 1 (\sansh \ast ) = uL  - 
\sqrt{} 
g\sansh L

\sqrt{}    \Biggl( 1 + \biggl( \sansh \ast  - \sansh L
2\sansh L

\biggr) 
+

\Biggr) \Biggl( 
1 +

\biggl( 
\sansh \ast  - \sansh L

\sansh L

\biggr) 
+

\Biggr) 
,(4.3)

\lambda +2 (\sansh \ast ) = uR +
\sqrt{} 
g\sansh R

\sqrt{}    \Biggl( 1 + \biggl( \sansh \ast  - \sansh R
2\sansh R

\biggr) 
+

\Biggr) \Biggl( 
1 +

\biggl( 
\sansh \ast  - \sansh R

\sansh R

\biggr) 
+

\Biggr) 
.(4.4)

Let f(\sansh ) := fL(\sansh , \sansh L) + fR(\sansh , \sansh R) + uR  - uL, where for Z \in \{ L,R\} we have defined

(4.5) fZ(\sansh , \sansh Z) =

\Biggl\{ 
2(
\surd 
g\sansh  - 

\surd 
g\sansh Z) if \sansh \leq \sansh Z ,

(\sansh  - \sansh Z)
\sqrt{} 

g(\sansh +\sansh Z)
2\sansh \sansh Z

if \sansh > \sansh Z .

Let \sansh \mathrm{m}\mathrm{i}\mathrm{n} = min(\sansh L, \sansh R), \sansh \mathrm{m}\mathrm{a}\mathrm{x} = max(\sansh L, \sansh R), x0 = (2
\surd 
2 - 1)2, and \sansh \ast be defined by

(4.6) \sansh \ast =

\left\{           
1

16g

\bigl( 
max(0, uL  - uR + 2

\surd 
g\sansh L + 2

\surd 
g\sansh R)

\bigr) 2
if 0 \leq f(x0\sansh \mathrm{m}\mathrm{i}\mathrm{n}),

\surd 
\sansh \mathrm{m}\mathrm{i}\mathrm{n}\sansh \mathrm{m}\mathrm{a}\mathrm{x}

\Bigl( 
1 +

\surd 
2(uL - uR)\surd 

g\sansh \mathrm{m}\mathrm{i}\mathrm{n}+
\surd 
g\sansh \mathrm{m}\mathrm{a}\mathrm{x}

\Bigr) 
if f(x0\sansh \mathrm{m}\mathrm{a}\mathrm{x}) < 0,

\sansh \mathrm{m}\mathrm{i}\mathrm{n}

\biggl( 
 - 
\surd 
2+

\sqrt{} 
3+2

\sqrt{} 
2 \sansh \mathrm{m}\mathrm{a}\mathrm{x}

\sansh \mathrm{m}\mathrm{i}\mathrm{n}
+
\sqrt{} 

2
g\sansh \mathrm{m}\mathrm{i}\mathrm{n}

(uL  - uR)

\biggr) 2

otherwise.

Note that to avoid division by zero in the third case, f(x0\sansh \mathrm{m}\mathrm{i}\mathrm{n}) < 0 \leq f(x0\sansh \mathrm{m}\mathrm{a}\mathrm{x}), it
is better to use the expression

(4.7) \sansh \ast =

\biggl( 
 - 
\sqrt{} 
2\sansh \mathrm{m}\mathrm{i}\mathrm{n} +

\sqrt{} 
3\sansh \mathrm{m}\mathrm{i}\mathrm{n} + 2

\sqrt{} 
2\sansh \mathrm{m}\mathrm{i}\mathrm{n}\sansh \mathrm{m}\mathrm{a}\mathrm{x} +

\sqrt{} 
2g - 1(uL  - uR)

\sqrt{} 
\sansh \mathrm{m}\mathrm{i}\mathrm{n}

\biggr) 2

.

The following result, which gives an upper bound on \lambda f1\mathrm{D}
\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ,UL,UR), is proved in

Guermond and Popov [27].

Lemma 4.1. Let \lambda f1\mathrm{D}
\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ,UL,UR) be the maximum wave speed in the following

one-dimensional Riemann problem \partial t\bfitv + \partial x(f1\mathrm{D}(\bfitv )) = 0, then \lambda f1\mathrm{D}
\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ,UL,UR) \leq 

\lambda 
f1\mathrm{D}

\mathrm{m}\mathrm{a}\mathrm{x}(\bfitn ,UL,UR) := max(\lambda  - 1 (\sansh \ast ), \lambda 
+
2 (\sansh \ast )).

Remark 4.2 (GMS). Using an artificial viscosity based on a guaranteed maximum
wave speed is important for two reasons. First, it makes the method invariant domain
preserving. Without a guaranteed maximum wave speed the low-order solution could
produce unphysical states (see, e.g., Einfeldt et al. [18]). Second, using a guaranteed
maximum wave is important to guarantee that the scheme satisfies discrete entropy
inequalities for every admissible entropy pair. We refer the reader to [3, Props. 3.7
and 3.8] and to [25, Thm. 4.7] for precise statements. We stress that being invari-
ant domain preserving is not enough to guarantee convergence to the proper weak
solution. A counterexample is given in Guermond and Popov [26, section 3.2] for
the Burgers equation. It is shown therein that the so-called ``LED (local extremum
diminishing) algebraic upwinding"" technique, which is a first-order viscosity method
that guarantees the maximum principle locally and maintains the total variation of
the initial data, converges to a weak solution that is not entropic. The origin of the
problem is that the artificial viscosity is not based on a guaranteed maximum wave
speed. This problem is often referred to in the literature as ``entropy glitch"". For
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instance the wave speed produced by Roe's average does not give a guaranteed max-
imum wave speed. Let us finally add that the GMS-based scheme will be used in
section 6.4 to extract local bounds which will be enforced on the high-order solution
to reduce oscillations and correct unphysical states.

5. Smoothness-based positivity preserving viscosity. In order to make
the method (3.5) second-order accurate in space, we now adopt a strategy based on a
smoothness indicator first suggested in Jameson, Schmidt, and Turkel [35, Eq. (12)],
Jameson [34, p. 1490] (see also Burman [11, Thm. 4.1]). We define the viscosity
coefficients

(5.1) \mu \mathrm{S},n
ij = \alpha n

ij\mu 
\mathrm{V},n
ij , d\mathrm{S},nij = \alpha n

ijd
\mathrm{V},n
ij ,

where \alpha n
ij is the smoothness indicator. More precisely, let \beta ij be some positive coeffi-

cients yet to be defined. For any i \in \scrV we introduce the smoothness indicator based
on the water height:

(5.2) \alpha n
i :=

| 
\sum 

j\in \scrI (i) \beta ij(\sansH 
n
j  - \sansH n

i )| \sum 
j\in \scrI (Si)

\beta ij | \sansH n
j  - \sansH n

i | 
.

The purpose of the parameters \beta ij is to make the method linearity preserving; that
is, \alpha n

i = 0 when the water height is linear on the support of the shape function
\varphi i. The linearity-preserving property implies that the numerator of (5.2) behaves
like h2\| D2\sansh (\bfitxi , tn)\| \ell 2(\BbbR d\times d) at some point \bfitxi , whereas the denominator behaves like
h\| \nabla \sansh (\bfitzeta , tn)\| \ell 2(\BbbR d) at some point \bfitzeta . In these conditions, assuming that \sansh is not max-
imum or minimum in the neighborhood of \bfitzeta , the smoothness indicator \alpha n

i behaves
like h\| D2\sansh (\bfitxi , tn)\| \ell 2(\BbbR d\times d)/\| \nabla \sansh (\bfitzeta , tn)\| \ell 2(\BbbR d), that is to say, \alpha n

i is of the order of the
nondimensional ratio h/diam(D) in smooth regions and away from the extrema of
the water height. We now define

(5.3) \alpha n
ij = max(\psi (\alpha n

i ), \psi (\alpha 
n
j )),

where \psi : [0, 1] \rightarrow [0, 1] can be any Lipschitz function such that \psi (1) = 1. In the
numerical simulations reported at the end of the paper we use

(5.4) \psi (\alpha ) =

\biggl( 
(\alpha  - \alpha 0)+
1 - \alpha 0

\biggr) p

, \alpha 0 \in [0, 1),

with p = 2 and \alpha 0 = 0. Choosing \alpha 0 \in (0, 1) makes the viscosity zero in regions where
the water height is very smooth and is not at an extremum. The linearity-preserving

property implies that, away from extrema, \mu n
ij = \scrO (h)

\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(D)\mu 
\mathrm{V},n
ij , dnij = \scrO (h)

\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(D)d
\mathrm{V},n
ij ,

which makes the method formally second-order accurate in space. The algorithm
(3.5) with (5.1)--(5.2)--(5.3)--(5.4) is referred to as the \alpha 2-method in the remainder of
the paper.

Theorem 5.1. Let \psi : [0, 1] \rightarrow [0, 1] be any Lipschitz function such that \psi (1) = 1.
Up to the appropriate CFL condition depending on the Lipschitz constant of \psi (see
Proposition 3.7 and [3, Prop. 4.4]), the algorithm (3.5) with (5.1)--(5.2)--(5.3)--(5.4) is
positivity preserving.

Proof. Since the mass conservation equation is the equation that controls the
positivity property of the water height, and the friction term modifies the momentum
equations but does not affect the mass conservation equation, the proof is exactly the
same as in Guermond and Popov [26, Thm. 4.4].
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Remark 5.2 (linearity preserving). There are many ways to define the weights
\beta ij , j \in \scrI (i). One option consists of using generalized barycentric coordinates as
discussed in [26, section 4.3] and [3, Rem. 4.5]; one can use, for instance, the so-called
mean value coordinates; see, e.g., Floater [20, Eq. (5.1)]. A second option consists of
reconstructing gradients as proposed in Kuzmin, Basting, and Shadid [40, Eq. (33)];
the method achieves linearity preservation with a \BbbP 1 approximation. A third option,
prefigured in Burman [11, Thm. 4.1], using the jump and the average of the gradient
across the mesh interfaces is proposed in Badia and Bonilla [4, Eq. (7)]. Finally, a
fourth option is given in Barrenechea, Burman, and Karakatsani [5, Eq. (2.16)] where
local optimization problems are solved to estimate \beta ij , j \in \scrI (i).

Remark 5.3 (other viscosities). Other possibilities to define \alpha n
ij that are not based

on smoothness but also guarantee positivity of the water height are described in [26,
sections 4.4 and 4.5].

6. Entropy viscosity. We present in this section a variation of the method that
is higher-order accurate in space when combined with quadratic and higher-order
finite elements. We define \mu n

ij and dnij via the entropy viscosity technique introduced
by Guermond, Pasquetti, and Popov [28] and reduce the dispersive errors induced by
the lumped mass matrix by making use of the consistent mass matrix. These two
modifications introduce violations in the positivity. We correct those violations via
the flux corrected transport method first introduced by Boris and Book [9] and then
generalized by Zalesak [54].

6.1. Commutator-based entropy viscosity. The idea behind the entropy
viscosity (EV) method is to introduce a nonlinear artificial viscosity based on an
estimate of the entropy production. Given a hyperbolic system of the form \partial t\bfitu +
\nabla \cdot (f(\bfitu )) = 0, \bfitu \in \BbbR m, with an entropy pair (\eta ,\bfitF ), it is proposed in Guermond and
Popov [26] to estimate the entropy production at time tn as follows: (i) First compute
the (inviscid) Galerkin solution u\mathrm{G}\mathrm{a}\mathrm{l}

h obtained by solving

(6.1)

\int 
D

\biggl( 
\bfitu \mathrm{G}\mathrm{a}\mathrm{l}
h  - \bfitu n

h

\tau 
+\nabla \cdot (f(\bfitu n

h))

\biggr) 
\varphi i dx = 0 \forall i \in \scrV 

(note that a linear system involving the consistent mass matrix has to be solved here).

(ii) Then, upon setting \eta \mathrm{m}\mathrm{a}\mathrm{x},n
i := maxj\in \scrI (Si) \eta (U

n
j ), \eta 

\mathrm{m}\mathrm{i}\mathrm{n},n
i := minj\in \scrI (Si) \eta (U

n
j ), \epsilon i =

\epsilon maxj\in \scrI (Si) | \eta (U
n
j )| , and \Delta \eta ni = max(12 (\eta 

\mathrm{m}\mathrm{a}\mathrm{x},n
i  - \eta \mathrm{m}\mathrm{i}\mathrm{n},n

i ), \epsilon i), the entropy residual is
defined by

Rn
i :=

1

\Delta \eta ni

\int 
D

\nabla \eta (\bfitu n
h)\cdot 
\biggl( 
\bfitu \mathrm{G}\mathrm{a}\mathrm{l}
h  - \bfitu n

h

\tau 
+\nabla f(\bfitu n

h):\nabla \bfitu n
h

\biggr) 
\phi i dx(6.2)

with the convention \nabla f(\bfitv ):\nabla \bfitw =
\sum m

j=1

\sum d
k=1 \partial vjfik(\bfitv )\partial xk

wj(\bfitx ) for all i \in \{ 1:m\} .
(iii) Finally, the viscosity is defined by setting \mu \mathrm{E}\mathrm{V},n

ij := min
\bigl( 
\mu \mathrm{V},n
ij ,max(| Rn

i | , | Rn
j | )
\bigr) 
,

d\mathrm{E}\mathrm{V},n
ij := min

\bigl( 
d\mathrm{V},n
ij ,max(| Rn

i | , | Rn
j | )
\bigr) 
. This methodology is shown in [26] to work very

well, but its main inconvenience is that it requires us to compute the function \bfitu \mathrm{G}\mathrm{a}\mathrm{l}
h

by solving the mass matrix problem (6.1).
We now propose a route somewhat equivalent to the one above that circumvents

the mass matrix problem. We first observe that instead of solving (6.1), one can use

(6.3) mi
U\mathrm{G}\mathrm{a}\mathrm{l}

i  - Un
i

\tau 
+
\sum 

j\in \scrI (i)

f(Un
j )\cdot \bfitc ij = 0.
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Then upon observing that \nabla \eta (Un
i )\cdot (mi

U\mathrm{G}\mathrm{a}\mathrm{l}
i  - Un

i

\tau ) =  - 
\sum 

j\in \scrI (i) \nabla \eta (U
n
i )\cdot (f(U

n
j )\cdot \bfitc ij) and

\nabla \eta (\bfitu n)\cdot (\nabla f(\bfitu n):\nabla \bfitu n) = \nabla \cdot \bfitF (\bfitu n), we can estimate the entropy residual by setting

Rn
i :=

1

\Delta \eta ni

\sum 
j\in \scrI (i)

\bigl( 
\bfitF (Un

j ) - \nabla \eta (Un
i )\cdot f(U

n
j )
\bigr) 
\cdot \bfitc ij .(6.4)

Note that Rn
i = 0 if \eta is a linear form. Note also that, contrary to other variants of

the EV method presented in previous works [28, 29], the above definition is invariant
by any scaling and translation on the entropy; that is, replacing \eta (\bfitv ) by \lambda i\eta (\bfitv ) + \mu i

for any \lambda i \in \BbbR \setminus \{ 0\} , \mu i \in \BbbR , does not change Rn
i . Moreover, using the property\sum 

j\in \scrI (i) \bfitc ij = 0, and using the Frechet differential notation, we have

(6.5)

Rn
i =

1

\Delta \eta ni

\sum 
j\in \scrI (i)

\bigl( 
\bfitF (Un

j ) - \bfitF (Un
i ) - \nabla \eta (Un

i )\cdot (f(U
n
j ) - f(Un

i ))
\bigr) 
\cdot \bfitc ij

=
1

\Delta \eta ni

\sum 
j\in \scrI (i)

\Bigl( 
D\bfitF (Un

i )(U
n
j  - Un

i ) +
1
2D

2\bfitF (\widetilde Uij)(U
n
j  - Un

i )
2

 - \nabla \eta (Un
i )\cdot (Df(Un

i )(U
n
j  - Un

i )) - 1
2\nabla \eta (U

n
i )\cdot 
\bigl( 
D2

f(\widehat Uij)(U
n
j  - Un

i )
2
\bigr) \Bigr) 

\cdot \bfitc ij

for some \widetilde Uij , \widehat Uij in the convex hull of \{ Uj | j \in \scrI (i)\} . Using that D\bfitF (\bfitv ) =
\nabla \eta (\bfitv )\cdot Df(\bfitv ), we obtain

(6.6) | Rn
i | \leq 

1

2\Delta \eta ni
(\| D2\eta \| \| Df\| + 2\| \nabla \eta \| \| D2

f\| )
\sum 

j\in \scrI (i)

\| Un
j  - Un

i \| 2\ell 2(\BbbR m)\| \bfitc ij\| \ell 2(\BbbR d),

where \| D2
f\| := sup\bfitv \in \scrC sup0 \not =\bfitw 1,\bfitw 2\in \BbbR m

\| D2F (\bfitv )(\bfitw 1,\bfitw 2)\| \ell 2(\BbbR m\times d)

\| \bfitw 1\| \ell 2(\BbbR m)\| \bfitw 2\| \ell 2(\BbbR m)
and we have adopted

a similar definition for \| \nabla \eta \| . In conclusion, the entropy residual | Rn
i | behaves like

\lambda \| \bfitc ij\| \ell 2(\BbbR d)
\| D2\eta \| 
\| D\eta \| \| \nabla Un\| \ell 2(\BbbR m\times d)hi for any j \in \scrI (i), where \lambda := \| Df\| is a local wave

speed and hi is the diameter of Di. Hence, if \bfitu n
h is smooth over Di, the entropy

residual is (at least) one order smaller than d\mathrm{V},n
ij . Actually, when \widehat P is composed of

polynomials of degree k, | Rn
i | behaves like \lambda \| \bfitc ij\| \ell 2(\BbbR d)

\| D2\eta \| 
\| D\eta \| \| DkUn\| 

\ell 2(\BbbR m\times dk )
hki .

We now apply the above idea to the system (2.1). The shallow water equations
without friction admit an entropy pair

(6.7) \eta (\bfitu ) = g( 12h
2 + hz) + 1

2h\| \bfitv \| 
2
\ell 2 , F (\bfitu ) = (12h\| \bfitv \| 

2
\ell 2 + g(h2 + hz))\bfitv ;

see, e.g., Audusse et al. [1, Eq. (1.3)], Bouchut [10, Eq. (3.15)], LeVeque and George
[41], Toro [51]. Then using the definition (2.2) for the flux f, a first way to estimate
the entropy residual consists of setting

(6.8) | Rn
i | :=

1

\Delta \eta ni

\sum 
j\in \scrI (i)

\bigl( 
\bfitF (Un

j ) - \nabla \eta (Un
i )\cdot f(U

n
j )
\bigr) 
\cdot \bfitc ij  - g\sansH n

i \sansZ jV
n
j \cdot \bfitc ij .

Since we are just estimating commutators, a second way to define an entropy residual
consists of using the entropy pair for the shallow water equation without friction and
flat bottom:

(6.9) \eta fl\mathrm{a}\mathrm{t}(\bfitu ) = g 1
2h

2 + 1
2h\| \bfitv \| 

2
\ell 2 , \bfitF fl\mathrm{a}\mathrm{t}(\bfitu ) = (12h\| \bfitv \| 

2
\ell 2 + gh2)\bfitv ,
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and setting

(6.10) | Rn
i | :=

1

2\Delta \eta fl\mathrm{a}\mathrm{t},ni

\sum 
j\in \scrI (i)

\Bigl( 
\bfitF fl\mathrm{a}\mathrm{t}(Un

j ) - \nabla \eta fl\mathrm{a}\mathrm{t}(Un
i )\cdot f(U

n
j )
\Bigr) 
\cdot \bfitc ij .

Then the numerical EVs are defined as follows:

\mu \mathrm{E}\mathrm{V},n
ij := min

\Bigl( 
\mu \mathrm{V},n
ij ,max(| Rn

i | , | Rn
j | )
\Bigr) 
,(6.11)

d\mathrm{E}\mathrm{V},n
ij := min

\Bigl( 
d\mathrm{V},n
ij ,max(| Rn

i | , | Rn
j | )
\Bigr) 
,(6.12)

where \mu \mathrm{V},n
ij and d\mathrm{V},n

ij are defined in (4.2) and (4.2), respectively. We use the second
definition (6.10) in the numerical tests reported at the end of the paper.

Remark 6.1 (loss of positivity). The above definition of \mu \mathrm{E}\mathrm{V},n
ij and d\mathrm{E}\mathrm{V},n

ij no longer
guarantees positivity of the water height when used in the scheme (3.5). We remedy
this situation in section 6.3.

6.2. Dispersion correction. Recall that the method (3.5) uses the lumped
mass matrix. This is not fully satisfactory, at least for piecewise linear approxima-
tion, since it is well known that lumping the mass matrix induces dispersion errors
that have adverse effects when solving problems with nonsmooth initial data. We re-
fer the reader to Christon, Martinez, and Voth [14], Gresho and Sani [23], Guermond
and Pasquetti [24], Thompson [50] where this question is thoroughly investigated.
As shown in the above references, one can remove the dispersion error by using the
consistent mass matrix. The beneficial effects of the consistent mass matrix are par-
ticularly visible when working with nonsmooth solutions. In the rest of the paper,
the algorithm that we refer to as the EV method consists of using the viscosities
(6.11)--(6.12) and computing the update \bfitu n+1

h by solving the following mass matrix
problem

(6.13)
(\scrM (Un+1  - Un))i

\tau 
=
\sum 

j\in \scrI (i)

 - 
\bigl( 
\sansH n

j V
n
j \cdot \bfitc ij ,V

n
j Q

n
j \cdot \bfitc ij + g\sansH n

i (\sansH 
n
j + Zj)\bfitc ij

\bigr) \sansT 
 - 
\biggl( 
0,

2gn2Qn
i \| Vi\| \ell 2mi

(\sansH n
i )

\gamma +max((\sansH n
i )

\gamma , 2gn2\tau \| Vi\| \ell 2)

\biggr) \sansT 

+
\sum 

j\in \scrI (i)\setminus \{ i\} 

(d\mathrm{E}\mathrm{V},n
ij  - \mu \mathrm{E}\mathrm{V},n

ij )
\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
+ \mu \mathrm{E}\mathrm{V},n

ij

\bigl( 
Un

j  - Un
i ).

Remark 6.2 (loss of positivity). The presence of the consistent mass matrix makes
the above scheme non-positivity-preserving irrespective of the definition of the viscosi-
ties \mu n

ij and dnij . More precisely, it is proved in Guermond, Popov, and Yang [30] that
the continuous finite element method based on artificial viscosity in space and explicit
time stepping cannot satisfy the maximum principle when using the consistent mass
matrix. Again, we remedy this problem in section 6.3.

Remark 6.3 (alternative to the consistent mass matrix). An alternative strategy
to correct the effects of lumping the mass matrix consists of replacing the inverse of \scrM 
by a Neumann series. It is shown in Guermond and Pasquetti [24] that one correction
exactly corrects the dispersion errors for \BbbP 1 elements; that is, one can legitimately
replace \scrM  - 1 by its approximation (\scrM L) - 1(\scrI + (\scrM L  - \scrM )(\scrM L) - 1).
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6.3. Flux corrected transport. An easy way to correct the possible loss of
positivity on the water height induced by the use of the EVs (6.11)--(6.12) and the
use of the consistent mass matrix consists of invoking the flux corrected transport
(FCT) methodology of Boris and Book [9] and Zalesak [54]. For completeness, and
without claiming originality, we now explain how we deploy the FCT technique in the
context of the time stepping method described in (6.13). We essentially paraphrase
Kuzmin, L\"ohner, and Turek [39, section 6.1].

6.3.1. The method. We start by renaming the updates given by (3.5) and
(6.13). We set U\mathrm{L} := Un+1, where Un+1 is the (L)ow-order solution defined in

(3.5), and we rename the corresponding viscosities as follows: \mu \mathrm{L},n
ij := \alpha n

ij\mu 
\mathrm{V},n
ij and

d\mathrm{L},nij := \alpha n
ijd

\mathrm{V},n
ij . The viscosities could be defined with \alpha n

ij = 1 (the low-order solution

is first-order accurate in space), or it could be the \alpha 2-viscosity defined in section 5
(the low-order solution is then second-order accurate in space); the property that
matters for the time being is that we are guaranteed that the water height given by
U\mathrm{L} is positive. We set U\mathrm{H} := Un+1, where Un+1 is the (H)igh-order solution defined

in (6.13), and we rename the EVs defined in (6.11)--(6.12) by setting \mu \mathrm{H},n
ij = \mu \mathrm{E}\mathrm{V},n

ij

and d\mathrm{H},n
ij = d\mathrm{E}\mathrm{V},n

ij . Then, subtracting (3.5) from (6.13) and denoting \delta U := U\mathrm{H}  - Un,
we obtain the following identity:

(6.14) mi(U
\mathrm{H}
i  - U\mathrm{L}

i ) =
\sum 

j\in \scrI (i)

(\scrM L  - \scrM )ij\delta Uj

+ \tau 
\sum 

j\in \scrI (i)\setminus \{ i\} 

(d\mathrm{H},n
ij  - d\mathrm{L},nij  - \mu \mathrm{H},n

ij + \mu \mathrm{L},n
ij )(U\ast ,i,n

j  - U\ast ,j,n
i ) + (\mu \mathrm{H},n

ij  - \mu \mathrm{L},n
ij )(Un

j  - Un
i ),

where recall that \scrM L is the lumped mass matrix. Note that by definition we have\sum 
j\in \scrI (i)(\scrM L  - \scrM )ij = 0, which in turn implies that

\sum 
j\in \scrI (i)(\scrM L  - \scrM )ij\delta Uj =\sum 

j\in \scrI (i)(\scrM L  - \scrM )ij(\delta Uj  - \delta Ui). Therefore, the above identity can be rewritten in
the following alternative form:

(6.15) mi(U
\mathrm{H}
i  - U\mathrm{L}

i ) =
\sum 

j\in \scrI (i)

(\scrM L  - \scrM )ij(\delta Uj  - \delta Ui)

+ \tau 
\sum 

j\in \scrI (i)\setminus \{ i\} 

(d\mathrm{H},n
ij  - d\mathrm{L},nij  - \mu \mathrm{H},n

ij + \mu \mathrm{L},n
ij )(U\ast ,i,n

j  - U\ast ,j,n
i ) + (\mu \mathrm{H},n

ij  - \mu \mathrm{L},n
ij )(Un

j  - Un
i ).

Upon denoting

(6.16) Aij := (\scrM L  - \scrM )ij(\delta Uj  - \delta Ui) + \tau (\mu \mathrm{H},n
ij  - \mu \mathrm{L},n

ij )(Un
j  - Un

i )

+ \tau (d\mathrm{H},n
ij  - d\mathrm{L},nij  - \mu \mathrm{H},n

ij + \mu \mathrm{L},n
ij )(U\ast ,i,n

j  - U\ast ,j,n
i ),

we finally obtain the following expression that relates U\mathrm{H}
i and U\mathrm{L}

i :

mi(U
\mathrm{H}
i  - U\mathrm{L}

i ) =
\sum 

j\in \scrI (i)

Aij .(6.17)

Note that the coefficients Aij are skew symmetric, i.e., Aij =  - Aji; this is exactly
the structure that is needed to apply the FCT limiting. In particular this property
implies mass conservation:

\sum 
i\in \scrV miU

\mathrm{H}
i =

\sum 
i\in \scrV miU

\mathrm{L}
i . The EV solution is enforced
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to have positive water height by introducing limiters \ell ij \in [0, 1], \ell ij = \ell ji, as follows:

mi(U
\mathrm{n}+1
i  - U\mathrm{L}

i ) =
\sum 

j\in \scrI (i)

\ell ijAij .(6.18)

Note that the symmetry property of the limiters \ell ij = \ell ji again ensures mass conser-

vation:
\sum 

i\in \scrV miU
n+1
i =

\sum 
i\in \scrV miU

\mathrm{L}
i .

Proposition 6.4 (conservation). Assume that \ell ij = \ell ji, then the algorithm (6.18)

is conservative, that is to say,
\sum 

i\in \scrV miU
n+1
i =

\sum 
i\in \scrV miU

\mathrm{L}
i .

Remark 6.5 (limiters). Note that in (6.18) the limiters are applied on all the fields,
i.e., they are applied both on the water height and on the discharge.

6.4. Limiting with exact bounds. We proceed as in Guermond et al. [31]
to extract exact local lower bounds on the water heights and, more generally, exact
limiting bounds on the solution. The key idea consists in separating the hyperbolic
part of the PDE and the source term and to limit the hyperbolic part.

Let i \in \scrV and let us set
(6.19)

Sn
i :=

\biggl( 
0,

 - 2gn2Qn
i \| Vi\| \ell 2mi

(\sansH n
i )

\gamma +max((\sansH n
i )

\gamma , 2gn2\tau \| Vi\| \ell 2)
+
\sum 

j\in \scrI (i)

g
\bigl( 
 - \sansH n

i Zj +
1
2 (\sansH j  - \sansH i)

2
\bigr) 
\bfitc ij

\biggr) \sansT 

,

then using
\sum 

j\in \scrI (i)\setminus \{ i\}  - g\bfitc ij\sansH j\sansH i =
\sum 

j\in \scrI (i)\setminus \{ i\} 
1
2g\bfitc ij(\sansH j  - \sansH i)

2  - 
\sum 

j\in \scrI (i)\setminus \{ i\} 
1
2g\sansH 

2
j ,

(recall that
\sum 

j\in \scrI (i)\setminus \{ i\} \bfitc ij = 0), the scheme (3.5) can be rewritten as follows:

(6.20)
mi

\tau 
(Un+1

i  - Un
i ) = Sn

i +
\sum 

j\in \scrI (i)\setminus \{ i\} 

 - \bfitc ij \cdot (f(Un
j ) - f(Un

i ))

+
\sum 

j\in \scrI (i)\setminus \{ i\} 

(dnij  - \mu n
ij)
\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
+ \mu n

ij

\bigl( 
Un

j  - Un
i ).

We now introduce the following auxiliary states for all j \in \scrI (i):

Un
ij =  - \bfitc ij

2d\mathrm{L},nij

\cdot (f(Un
j ) - f(Un

i )) +
1

2
(Un

j +Un
i ),(6.21)

\widetilde Un
ij =

d\mathrm{L},nij  - \mu \mathrm{L},n
ij

2d\mathrm{L},nij

(U\ast ,i,n
j  - Un

j  - (U\ast ,j,n
i  - Un

i )).(6.22)

Let U\mathrm{L},n+1
i be the low-order update corresponding to taking dnij = d\mathrm{L},nij and \mu n

ij = \mu \mathrm{L},n
ij

in the above equation. The following result will enable us to derive exact bounds.

Lemma 6.6. Let W\mathrm{L},n+1
i := U\mathrm{L},n+1

i  - \tau 
mi

Sn
i , then, if 1 - 2\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} d

\mathrm{L},n
ij \geq 0,

the following convex combination holds true:

(6.23) W\mathrm{L},n+1
i = Un

i

\Bigl( 
1 - \tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

2d\mathrm{L},nij

\Bigr) 
+

\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

2d\mathrm{L},nij

\Bigl( 
Un

ij +
\widetilde Un

ij

\Bigr) 
.

Furthermore we have \sansH n
ij +

\widetilde \sansH n
ij \geq 0 for all j \in \scrI (i).
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Proof. We rewrite (6.20)

(6.24) W\mathrm{L},n+1
i = Un

i +
\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

 - \bfitc ij \cdot (f(Un
j ) - f(Un

i )) + d\mathrm{L},nij (Un
j  - Un

i )

+
\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

(d\mathrm{L},nij  - \mu \mathrm{L},n
ij )

\Bigl( 
U\ast ,i,n

j  - U\ast ,j,n
i

\Bigr) 
+ \mu \mathrm{L},n

ij

\bigl( 
Un

j  - Un
i ) - d\mathrm{L},nij (Un

j  - Un
i )

= Un
i +

\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

 - \bfitc ij \cdot (f(Un
j ) - f(Un

i )) + d\mathrm{L},nij (Un
j +Un

i )

 - \tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

2d\mathrm{L},nij Un
i +

\tau 

mi

\sum 
j\in \scrI (i)\setminus \{ i\} 

(d\mathrm{L},nij  - \mu \mathrm{L},n
ij )

\Bigl( 
U\ast ,i,n

j  - Un
j  - (U\ast ,j,n

i  - Un
i )
\Bigr) 
.

Then (6.23) follows naturally. The nonnegativity of \sansH n
ij +

\widetilde \sansH n
ij is a consequence of the

following series of inequalities:

(6.25) 2d\mathrm{L},nij (\sansH n
ij +

\widetilde \sansH n
ij) =  - \bfitc ij \cdot (Vj\sansH 

n
j  - Vi\sansH 

n
i ) + d\mathrm{L},nij (\sansH n

j + \sansH n
i )

+ (d\mathrm{L},nij  - \mu \mathrm{L},n
ij )

\Bigl( 
\sansH \ast ,i,n

j  - \sansH n
j  - (\sansH \ast ,j,n

i  - \sansH n
i )
\Bigr) 

=  - \bfitc ij \cdot (Vj\sansH 
n
j  - Vi\sansH 

n
i ) + \mu \mathrm{L},n

ij (\sansH n
j + \sansH n

i ) + (d\mathrm{L},nij  - \mu \mathrm{L}
ij)(\sansH 

n
j + \sansH n

i )

+ (d\mathrm{L},nij  - \mu \mathrm{L},n
ij )

\Bigl( 
\sansH \ast ,i,n

j  - \sansH n
j  - (\sansH \ast ,j,n

i  - \sansH n
i )
\Bigr) 

\geq (d\mathrm{L},nij  - \mu \mathrm{L},n
ij )

\Bigl( 
\sansH \ast ,i,n

j + 2\sansH n
i  - \sansH \ast ,j,n

i

\Bigr) 
\geq 0.

This completes the proof.

Realizing that \sansH n
ii +

\widetilde \sansH n
ii = \sansH n

i , an immediate consequence of the above result is

(6.26) 0 \leq \sansH \mathrm{m}\mathrm{i}\mathrm{n}
i := min

j\in \scrI (i)

\Bigl( 
\sansH n

ij +
\widetilde \sansH n
ij

\Bigr) 
\leq \sansH \mathrm{L},n+1

i \leq max
j\in \scrI (i)

\Bigl( 
\sansH n

ij +
\widetilde \sansH n
ij

\Bigr) 
=: \sansH \mathrm{m}\mathrm{a}\mathrm{x}

i ,

that is to say, \sansH \mathrm{m}\mathrm{i}\mathrm{n}
i and \sansH \mathrm{m}\mathrm{a}\mathrm{x}

i , as defined above, are legitimate lower and upper
bounds, which we would like the high-order solution to satisfy. More precisely, the
bounds \sansH \mathrm{m}\mathrm{i}\mathrm{n}

i , \sansH \mathrm{m}\mathrm{a}\mathrm{x}
i are legitimate in the sense that the set of limiters \{ \ell ij\} j\in \scrI (i)\setminus \{ i\} 

such that the update computed with (6.18) has a water height \sansH n+1
i in the interval

[\sansH \mathrm{m}\mathrm{i}\mathrm{n}
i ,\sansH \mathrm{m}\mathrm{a}\mathrm{x}

i ] is not empty; actually, the purpose of the inequalities (6.26) is to show
that \ell ij = 0, j \in \scrI (i)\setminus \{ i\} , is in this set. Moreover, since it is our experience that
limiting should switch the method to lower order at the shoreline and in dry regions,
we introduce the following dry state indicator to detect these regions: \sansH \mathrm{d}\mathrm{r}\mathrm{y}

i := \sansH \mathrm{L},n
i  - 

1
2 (maxj\in \scrI (i) \sansH 

n
j  - minj\in \scrI (i) \sansH 

n
j ). Let A

\sansh 
ij be the first component of the column vector

Aij \in \BbbR 1+d, then we propose to limit the water height as follows:

Q - 
i := mi(\sansH 

\mathrm{m}\mathrm{i}\mathrm{n}
i  - \sansH \mathrm{L},n+1

i ), Q+
i := mi(\sansH 

\mathrm{m}\mathrm{a}\mathrm{x}
i  - \sansH \mathrm{L},n+1

i ),(6.27)

P - 
i :=

\sum 
j\in \scrI (i)\setminus \{ i\} 

(A\sansh 
ij) - , P+

i :=
\sum 

j\in \scrI (i)\setminus \{ i\} 

(A\sansh 
ij)+,(6.28)

R - 
i :=

\left\{       
0 if \sansH \mathrm{d}\mathrm{r}\mathrm{y}

i \leq 0,

1 if Pi = 0, \sansH \mathrm{d}\mathrm{r}\mathrm{y}
i > 0,

Q - 
i

P - 
i

if Pi \not = 0, \sansH \mathrm{d}\mathrm{r}\mathrm{y}
i > 0.

R+
i :=

\left\{       
0 if \sansH \mathrm{d}\mathrm{r}\mathrm{y}

i \leq 0,

1 if Pi = 0, \sansH \mathrm{d}\mathrm{r}\mathrm{y}
i > 0,

Q+
i

P+
i

if Pi \not = 0, \sansH \mathrm{d}\mathrm{r}\mathrm{y}
i > 0,

(6.29)

\ell ij := min(R+
i , R

 - 
j ) if A

\sansh 
ij \geq 0, \ell ij := min(R - 

i , R
+
j ) if A

\sansh 
ij < 0.(6.30)
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Lemma 6.7. Under the CFL condition 1  - 2\tau 
mi

\sum 
j\in \scrI (i)\setminus \{ i\} d

\mathrm{L},n
ij \geq 0, the update

Un+1
i given by (6.18) with the limiting defined by (6.27)--(6.28)--(6.29)--(6.30) satisfies

the bounds 0 \leq \sansH \mathrm{m}\mathrm{i}\mathrm{n}
i \leq \sansH n+1

i \leq \sansH \mathrm{m}\mathrm{a}\mathrm{x}
i .

Proof. This is a direct consequence of the definitions (6.27)--(6.28)--(6.29)--
(6.30).

We finish this section by mentioning that, as in [31], we can limit any convex or
concave functional of the solution. As an example, we show how to limit the kinetic
energy. At this point we assume that limiting on the water height as described in
(6.27)--(6.28)--(6.29) has been done, and we assume that \sansH \mathrm{L},n

i > 0. If it is not the
case, we set \ell ij = 0 for all j \in \scrI (i). Let us set (\sansH (Wi),Q(Wi))

\sansT := Wi := Ui - \tau 
mi

Sn
i ,

where Ui is any state given by (6.18) when the limiters \ell ij span [0, 1]. Let us consider
the kinetic energy \psi (W) := 1

2
1

\sansH (W)\| Q(W)\| 2\ell 2 . It is well known that the functional

\psi (W) is convex; more precisely, we have D2\psi (W)(a, \bfitb )(a, \bfitb ) = 1
2\sansH (a

Q
\sansH  - \bfitb )2 \geq 0, for

all a \in \BbbR , \bfitb \in \BbbR d. As a result of the convex combination (6.23), the following holds:

(6.31) \psi (W\mathrm{L},n+1
i ) \leq max

j\in \scrI (i)
\psi (Un

ij +
\widetilde Un

ij) =: \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i .

We now describe a process to estimate the limiters \ell ij so that \psi (Wn+1
i ) =

\psi (Un+1
i  - \tau 

mi
Sn
i ) \leq \sansK \mathrm{m}\mathrm{a}\mathrm{x}

i . Let us set \Psi (W) := \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i \sansH  - \sansH \psi (W). It is clear that,

provided the water height \sansH is nonzero, \psi (W) \leq \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i if and only if \Psi (W) \geq 0. (Note

in passing that we have already assumed that \sansH \mathrm{L},n
i > 0.) We are going to compute

the limiters so that \Psi (Wn+1
i ) \geq 0. We observe first that \Psi is the sum of a quadratic

form and a linear form: \Psi (W) = \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i \sansH  - 1

2\| Q\| 2\ell 2 . Then similarly to [31, section 4.5]
we proceed as follows. Let \{ \lambda j | j \in \scrI (i)\setminus \{ i\} \} be some positive numbers adding up
to 1. For instance one can take \lambda j =

mij

mi - mii
. In the simulations reported at the end

of the paper we take \lambda j :=
1

\mathrm{c}\mathrm{a}\mathrm{r}\mathrm{d}(\scrI (i)) - 1 , j \in \scrI (i) \setminus \{ i\} . For all j \in \scrI (i), j \not = i, we set

\sansH \mathrm{W},\mathrm{L}
i := \sansH (W\mathrm{L},n+1

i ), Q\mathrm{W},\mathrm{L}
i := Q(W\mathrm{L},n+1

i ),(6.32)

Pij := (P\sansh 
ij ,P

q
ij)

\sansT :=
1

mi\lambda j
Aij , a :=  - 1

2
\| Pq

ij\| 
2
\ell 2 ,(6.33)

b := \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i P\sansh 

ij  - Q\mathrm{W},\mathrm{L}
i \cdot Pq

ij , c := \sansK \mathrm{m}\mathrm{a}\mathrm{x}
i \sansH \mathrm{W},\mathrm{L}

i  - 1

2
\| Q\mathrm{W},\mathrm{L}

i \| 2\ell 2 .(6.34)

Let r be the largest positive root of the quadratic equation ax2 + bx + c = 0 with
the convention that r = 1 if the equation has no positive root. Let \ell \sansh ij be the
limiter obtained after applying (6.27)--(6.28)--(6.29). Then we are guaranteed that

\Psi (W\mathrm{L},n+1
i + tPij) \geq 0 for all t \in [0, \ell i,\sansK j ], and \Psi (W\mathrm{L},n+1

i + \ell ijPij) \geq 0 by setting

(6.35) \ell i,\sansK j := min(r, \ell \sansh ij), \ell ij = min(\ell i,\sansK j , \ell j,\sansK i ).

Indeed, if the quadratic equation has no positive root, then \Psi (W\mathrm{L},n+1
i + tPij) \geq 0

for all t \in [0, \ell \sansh ij ] = [0,min(1, \ell \sansh ij)] = [0, \ell i,\sansK j ]. If there is at least one positive root,

then \Psi (W\mathrm{L},n+1
i + tPij) \geq 0 for all t \in [0, \ell i,\sansK j ] = [0,min(r, \ell \sansh ij)] \subset [0, r]. As a result

\Psi (W\mathrm{L},n+1
i + \ell ijPij) \geq 0 because \ell ij \in [0, \ell i,\sansK j ].

Lemma 6.8. Under the CFL condition 1  - 2\tau 
mi

\sum 
j\in \scrI (i)\setminus \{ i\} d

\mathrm{L},n
ij \geq 0, the update

Un+1
i given by (6.18) with the limiting defined by (6.32)--(6.35) satisfies the bound

\psi (Un+1
i  - \tau 

mi
Sn
i ) \leq \sansK \mathrm{m}\mathrm{a}\mathrm{x}

i .
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Proof. Let us set Wn+1
i := Un+1

i  - \tau 
mi

Sn
i , then (6.18) can be rewritten Wn+1

i =

W\mathrm{L},n+1
i +

\sum 
j\in \scrI (i)\setminus \{ i\} \ell ijm

 - 1
i Aij =

\sum 
j\in \scrI (i)\setminus \{ i\} \lambda j(W

\mathrm{L},n+1
i + \ell ijm

 - 1
i \lambda  - 1

j Aij). Hence,

Jansen's inequality together with (6.32)--(6.35) gives

\psi (Wn+1
i ) \leq 

\sum 
j\in \scrI (i)\setminus \{ i\} 

\lambda j\psi (W
\mathrm{L},n+1
i + \ell ijPij) \leq 

\sum 
j\in \scrI (i)\setminus \{ i\} 

\lambda j\sansK 
\mathrm{m}\mathrm{a}\mathrm{x}
i = \sansK \mathrm{m}\mathrm{a}\mathrm{x}

i .(6.36)

This concludes the proof.

Remark 6.9 (convex limiting). Note that by proceeding as in [31, section 4.6],
one can limit the entropy \eta (\bfitu ) defined in (6.7) or the flat bottom entropy \eta (\bfitu )fl\mathrm{a}\mathrm{t}

defined in (6.7) since these two functional are convex. In this case one can invoke a
Newton-secant technique to estimate the limiters. The Newton-secant technique is
guaranteed to converge to a unique solution since these functionals are convex. We
leave the details to the reader.

7. Numerical illustrations. In this section we illustrate the performance of
the various algorithms introduced in the paper.

7.1. Technical details. All the numerical simulations are done in two space
dimensions even when the problem under consideration has a one-dimensional solu-
tion; that is, in all the test cases we take d = 2. Unstructured, nonnested, Delaunay
meshes composed of triangles are used in order to avoid extraneous super-convergence
effects. The computations are done with continuous \BbbP 1 finite elements. The time
stepping is done with the SSP RK(3,3) method (three stages, third order). Notice
that one could use any SSP RK(s,p) technique with p \geq 2 since the space approx-
imation is second order. The time step is estimated at each time step by using
\tau = CFL(maxi\in \scrV m

 - 1
i

\sum 
j\in \scrI (i)\setminus \{ i\} d

\mathrm{V},n
ij ) - 1. All the computations reported in this sec-

tion have been done with the upper bound on \lambda f1\mathrm{D}
\mathrm{m}\mathrm{a}\mathrm{x}(\bfitv L,\bfitv R) given by Lemma 4.1.

This bound is used to define the artificial viscosity d\mathrm{V},n
ij in (4.2). All the computa-

tions done with EV use the definition of the residual given in (6.10). We have verified
in tests not reported here that the definitions (6.8) and (6.10) give results that are
quantitatively very similar. The function \psi (\alpha ) that we use in (5.1) is defined in (5.4)
and, unless specified otherwise, we use \alpha 0 = 0 and p = 2. In tests not reported here
we have verified that using \alpha 0 = 0.25 and p = 4 gives slightly better errors, in general,
but similar convergence rates.

When doing convergence tests over meshes of different mesh size, the convergence
rates are estimated as follows: Given two errors e1, e2 obtained on two meshes \scrT h1,
\scrT h2, and denoting I1 := dimP (\scrT h1), I2 := dimP (\scrT h2), the convergence rate is defined
to be the ratio d log(e1/e2)/ log(I2/I1); note that the quantity I

 - 1
d scales like the mesh

size. All the errors are relative with respect to the corresponding norm of the exact
solution. We use SI units everywhere. In all the test cases we take g = 9.81m s - 1.

In an effort to demonstrate reproducibility, two demonstration codes have been
written. One code has been written at ERDC using the Proteus toolkit, (the reader
is referred to Kees and Farthing [37] for the details) and the second one has been
developed at TAMU using Fortran95/2003. Both codes use continuous \BbbP 1 Lagrange
elements on triangles. Proteus uses a reduced version of the limiting on the water
height described in section 6.4. In particular, only positivity on the water height
is enforced, i.e., (6.30) is used with \sansH \mathrm{m}\mathrm{i}\mathrm{n}

i = 0, R+
j = R+

i = 1, and the dry state

detector is defined by setting \sansH \mathrm{d}\mathrm{r}\mathrm{y}
i = \sansH n

i  - (| Di| 
1
d / diam(D))k+1\sansH 0,\mathrm{m}\mathrm{a}\mathrm{x}, where \sansH 0,\mathrm{m}\mathrm{a}\mathrm{x} =

ess sup\bfitx \in D \sansh 0(\bfitx ), diam(D) is the diameter ofD, and | Di| is the d-dimensional measure
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Fig. 1. Hydraulic jump. Left: Galerkin + full limiting; Center: EV + full limiting; Right: EV
without any limiting.

of Di. Recall that Di is the support of the shape function \varphi i and that | Di| 
1
d is of the

order of the local mesh size h; hence (| Di| 
1
d / diam(D))k+1\sansH 0,\mathrm{m}\mathrm{a}\mathrm{x} is of the same order

as the interpolation error. The TAMU code uses the limiting on the water height
described in section 6.4 with the exception of section 7.2, where only limiting on the
water height is used. The computations done with the \alpha 2-viscosity in both codes use
\beta ij = 1. We have verified that using the generalized barycentric coordinates does not
make any significant difference.

7.2. EV versus Galerkin + limiting. It is sometimes advocated in the finite
element literature that one can use the Galerkin method, or some linearly stabilized
version thereof, as the high-order method and rely on some kind of limiting (FCT
or otherwise) to obtain the right solution. We have demonstrated in the past that
this idea is not robust and sometimes outright wrong (see Ern and Guermond [19],
Guermond et al. [29, section 4.2.3], Guermond and Popov [26, Lem. 4.4]), and we
want to illustrate this point again. We consider a transcritical flow over a bump with
a hydraulic jump. The problem is described in Noelle, Xing, and Shu [42, p. 49],
but we run it with the parameters given in Azerad, Guermond, and Popov [3, section
5.3.3]. The flow domain is D = [0, 25]\times [0, 1], the bottom topography is z(x) =
0.2
64 (x  - 8)3(12  - x)3 if 8 \leq x \leq 12 and z(x) = 0 otherwise. The flow rate q\mathrm{i}\mathrm{n} =
0.18m2 s - 1 is enforced at \{ x = 0\} and the exact water hL = 0.282 052 798 138 021 81m
is enforced at the outflow \{ x = L\} . The initial condition is q(x) = q\mathrm{i}\mathrm{n} and h(x) +
z(x) = hL.

We show in Figure 1 a close-up view of the water height at time t = 80 s in the
vicinity of the hydraulic jump. The water height is scaled 20 times to amplify the
defects. The mesh is nonuniform and composed of 5998 triangles with 3260 \BbbP 1 nodes.
There are approximately 13 nodes in the y-direction and 250 nodes in the x-direction.
The solution shown in the leftmost panel has been obtained with the TAMU code with
d\mathrm{H},n
ij = \mu \mathrm{H},n

ij = 0 with limiting on the water height plus limiting on the kinetic energy
as described in section 6.4. Spurious oscillations occurring at the hydraulic jump are
clearly visible. Note that at each time step, the limiting implies that the solution is
always within the bounds prescribed by the low-order solution. Tests done without
limiting the kinetic energy (not shown here) give a solution that is barely recognizable.
The panel in the center shows the solution obtained with the EV plus the same limiting
as in the previous case. The solution is clean. The solution obtained in the rightmost
panel has been obtained with the EV solution without any limiting. Here again the
solution is clean; one distinguishes tiny (innocuous) oscillations though. This example
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illustrates the use of the EV strategy that we have adopted: The EV method gives
a reasonable solution without any limiting; limiting is used for robustness only since
it guarantees that the solution satisfies physical bounds after limiting. In conclusion
the Galerkin method or linearly stabilized versions thereof should not be used as a
high-order method when solving nonlinear hyperbolic systems. One should not try to
use limiting to fix a bad (possibly nonentropic) approximation technique.

7.3. One-dimensional dam break without friction. We now assess the con-
vergence properties of the method without friction. For this purpose we consider Rit-
ter's solution [45] of the dam break problem without friction and with flat bottom.
This is a one-dimensional Riemann problem with the initial condition

\bfitv 0 = 0, h0(x) =

\Biggl\{ 
hl if 0 \leq x < x0,

0 if x0 \leq x < L,
(7.1)

where hl > 0. The solution is as follows (see Toro [51], SWASHES in [16]):

(h, v) =

\left\{     
(hl, 0) if 0 \leq x \leq xA(t),

( 4
9g

\bigl( \surd 
ghl  - x - x0

2t

\bigr) 2
, 23
\bigl( 
x - x0

t +
\surd 
ghl
\bigr) 
) if xA(t) \leq x \leq xB(t),

(0, 0) if xB(t) \leq x \leq L,

(7.2)

where xA(t) = x0  - t
\surd 
ghl and xB(t) = x0 + 2t

\surd 
ghl. The computational domain

is D = [0, L]\times [0, 1m]. We consider hl = 0.005m, x0 = 5m, L = 10m. In order
to estimate the accuracy of the method with a solution whose partial derivatives are
in BV(D), we select the initial condition to be the solution to the above problem at
t = 1 s and estimate the relative L1-norm of the error at t = 6 s.

Our objective is to compare the \alpha 2-method with the EV method using the \alpha 2-
method for the low-order viscosity. In order to demonstrate also the effectiveness
of the consistent mass matrix, the EV solution is computed with either the lumped
mass matrix (term \scrM L - \scrM not present in (6.16)) or with the consistent mass matrix
(term \scrM L  - \scrM present in (6.16)). The results are reported in Table 1. This series
of tests clearly shows that the EV method is superior to the the \alpha 2-method whether
the mass matrix is lumped or not. This test shows also that the EV method is indeed
second-order accurate in space; recall that the solution (7.3) is not in W 2,1(D), but
the gradient is in BV(D).

Table 1
Convergence tests, one-dimensional dam break without friction, flat bathymetry.

\alpha 2-method EV--\alpha 2, lumped EV--\alpha 2, consistent

I L1-error Rate L1-error Rate L1-error Rate
205 1.72E-02 -- 2.00E-02 -- 2.14E-02 --

P
ro
te
u
s 729 8.50E-03 1.11 7.89E-03 1.47 7.75E-03 1.60

2737 3.70E-03 1.26 2.98E-03 1.47 2.31E-03 1.83
10593 1.57E-03 1.27 1.31E-03 1.22 6.88E-04 1.79
41665 6.37E-04 1.31 5.72E-04 1.21 2.23E-04 1.64

248 1.44E-02 -- 1.42E-02 -- 1.10E-02 --

T
A
M
U

816 7.15E-03 1.18 6.89E-03 1.14 3.40E-03 1.85
3069 2.91E-03 1.35 2.77E-03 1.37 1.04E-03 1.79
12189 1.17E-03 1.32 1.08E-03 1.36 3.12E-04 1.74
48053 4.60E-04 1.36 4.21E-04 1.38 8.75E-05 1.85
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Table 2
Well-balancing tests, TAMU code (EV-\alpha 2, consistent), \gamma = 4

3
.

\sansh 0 (m) q0 (m2s - 1) n (m - 1/3s) b Error
5.7708E-01 2.0E-00 2.0E-02 -1.E-02 4.26E-14
9.5635E-02 1.0E-01 2.0E-02 -1.E-02 1.82E-15
2.5119E-01 1.0E-01 1.0E-01 -1.E-02 9.04E-15
2.4022E-02 2.0E-03 1.0E-01 -1.E-02 1.49E-14

4.4894E-01 2.0E-00 1.0E-01  - 1/
\surd 
3 1.86E-14

Table 3
Convergence to steady state with friction.

I L1-error Rate L\infty -error Rate
258 1.36E-04 -- 4.05E-04 --

T
A
M
U

885 2.91E-05 2.50 3.78E-05 3.85
3260 7.15E-06 2.15 9.44E-06 2.13
12023 1.82E-06 2.10 2.38E-06 2.11
47043 4.44E-07 2.07 5.82E-07 2.06

7.4. Well-balancing w.r.t. friction. We continue with a series tests suggested
in Chertock et al. [13] to check well-balancing. We consider the domainD = (0, 25m)\times 
(0, 1m). The bottom is an inclined plane defined by z(\bfitx ) = bx, where b is the slope.
We run the five same experiments as in [13, section 4.1, Ex. 1]. The mesh is a
nonuniform Delaunay triangulation composed of 382 triangles; the mesh size is ap-
proximately 0.33m. Dirichlet boundary conditions are enforced at the inflow bound-
ary and no condition is enforced at the outflow. We use \gamma = 4

3 and let n, b and q0

vary. The initial data are chosen to be \bfitq 0 := q0\bfite x and \sansh 0 :=
\bigl( 
n2q20b

 - 1
\bigr) 1

2+\gamma . We
compute sup0\leq tn\leq T \| \bfitq n

h - \bfitq 0\| \bfitL \infty (D)/\| \bfitq 0\| \bfitL \infty (D) with T = 100 s. The results obtained
with the TAMU code (EV-\alpha 2, consistent) are reported in Table 2. It is clear that
well-balancing is achieved.

7.5. Convergence to steady state with friction. We solve a one-dimensional
steady state friction problem with an analytical solution. Assuming that the solution
to (2.1) is one-dimensional, time-independent, and the discharge is constant, \bfitq = q0\bfite x,
the bathymetry map and the water height are related through the following identity:

z\prime (x) = h\prime (x)(
q20

gh3(x)  - 1)  - \mathrm{n}2q20
\sansh \gamma +2 . Choosing h(x) := (2  - sin4(\pi xL - 1)) - 

1
\gamma +2 , we can

solve the above ODE, and, upon setting z(0) = 0, the solution turns out to be

(7.3) z(x) = q20(2g)
 - 1
\bigl( 
h - 2(x) - h - 2(0)

\bigr) 
 - h(x) + h(0)

 - n2q20
\bigl( 
2x - (16\pi ) - 1

\bigl( 
 - 4L sin3(\pi xL ) cos(\pi xL ) + 3

\bigl( 
2\pi x - L sin( 2\pi xL )

\bigr) \bigr) \bigr) 
.

We use the same data as in Chertock et al. [13, p. 370]. We consider the rectangular do-

main D = (0, 150m)\times (0, 1m). We set q0 = 1m2 s - 1 (q0 = 2m2 s - 1), n = 0.03m
\gamma  - 2
2 s

(n = 0.03m
\gamma  - 2
2 s), and \gamma = 4

3 . We enforce \bfitq = q0\bfite x at x = 0 and the exact value
of h at the outflow boundary x = 25m. We also enforce \bfitq \cdot \bfite y = 0 on the sides of
the domain, y = 0 and y = 1m. The initial conditions are \bfitq = 0 and h = 1m. The
simulation is stopped at T = 1000 s and we compute the L1-norm of the error on the
water height and the discharge. The results obtained with the TAMU code (EV-\alpha 2,
consistent) are shown in Table 3. The optimal \scrO (h2) convergence rate is achieved
both in the L1 and L\infty norms.
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Table 4
Convergence tests on a one-dimensional paraboloid.

\alpha 2-method EV--\alpha 2, lumped EV--\alpha 2, consistent

I L1-error Rate L1-error Rate L1-error Rate L\infty -error Rate
205 4.58E-03 -- 5.48E-03 -- 6.93E-03 -- 3.58E-02 --

P
ro
te
u
s 729 1.72E-03 1.54 2.23E-03 1.42 2.81E-03 1.42 1.65E-02 1.21

2737 6.60E-04 1.45 8.78E-04 1.41 9.85E-04 1.58 8.66E-3 0.97
10593 2.56E-04 1.40 3.14E-04 1.52 3.24E-04 1.64 4.91E-03 0.83
41665 9.78E-05 1.41 1.13E-04 1.50 1.01E-04 1.70 2.94E-03 0.74

248 5.38E-03 -- 4.02E-03 -- 4.06E-03 -- 2.41E-02 --

T
A
M
U

816 1.59E-03 2.04 1.37E-03 1.81 1.32E-03 1.89 1.21E-02 1.16
3069 5.38E-04 1.64 5.03E-04 1.51 4.76E-04 1.54 6.69E-03 0.90
12191 1.72E-04 1.65 1.80E-04 1.47 1.50E-04 1.67 2.98E-03 1.17
48053 6.66E-05 1.3 7.21E-05 1.33 5.64E-05 1.43 1.29E-03 1.22

7.6. Planar free surface in a one-dimensional paraboloid. We consider a
planar surface moving in a one-dimensional paraboloid with the linear friction \bfitS (\bfitu ) =
 - k\bfitq (see Sampson, Easton, and Singh [47, section 4.1]). The bathymetry is z(\bfitx ) =
\sansh 0
a2

\bigl( 
x - 1

2L
\bigr) 2
. The exact solution (h(\bfitx , t), q(x, t))\sansT is given by

h(\bfitx , t) = max(\~h(\bfitx , t), 0),(7.4)

\~h(\bfitx , t) = \sansh 0  - z(\bfitx ) + (a2B2/8g2\sansh 0)e
 - kt
\Bigl[ \bigl( 

1
4k

2  - s2
\bigr) 
cos(2st) - sk sin(2st)

\Bigr] 
 - (B2/4g)e - kt  - (B/g)e - 

1
2kt
\bigl[ 
s cos(st) + 1

2k sin(st)
\bigr] \bigl( 
x - 1

2L
\bigr) 
,

(7.5)

\bfitq (\bfitx , t) = (h(\bfitx , t)Be - 
1
2kt sin(st), 0)\sansT ,(7.6)

where p =
\surd 
8g\sansh 0/a and s =

\sqrt{} 
p2  - k2/2. We do the computation in the same

configuration as in Duran et al. [17].
We consider a rectangular domain D \in (0, 10000m)\times (0, 1000m) and set L =

10000m, g = 9.81ms - 2, \sansh 0 = 10m, a = 3000m, B = 2ms - 1, k = 0.001 s - 1. Since
the paraboloid is large enough so that no water reaches the boundaries, we do not
enforce any boundary condition. The initial condition is given by (7.4) at t = 0.
We show in Table 4 the results of convergence tests on the water height. The errors
are computed after one period t = 4\pi 

p \approx 1345.71 s. The EV-\alpha 2 method delivers the

rate \scrO (h1.5) in the L1-norm and \scrO (h) in the L\infty -norm. The rate in the L\infty -norm
is optimal since the water height in only in W 1,\infty (D\times (0,\infty )). Using the consistent
mass matrix improves the convergence rates.

7.7. Planar free surface in a two-dimensional paraboloid. We now use a
variation of Thacker's solution in a paraboloid developed in Sampson, Easton, and
Singh [46] (see (20)--(21)--(28) therein). The friction is linear, \bfitS (\bfitu ) =  - k\bfitq , and the
topography of the bottom is a paraboloid of revolution defined by z(\bfitx ) = r2

\bigl( 
h0

a2

\bigr) 
,

where r2 =
\bigl( 
x - L

2

\bigr) 2
+
\bigl( 
y  - L

2

\bigr) 2
. The exact solution (h(\bfitx , t), \bfitq (\bfitx , t))\sansT is given by

h(\bfitx , t) = max(\~h(\bfitx , t), 0),(7.7)

\~h(\bfitx , t) = \sansh 0  - z(\bfitx ) - (B/g) exp( - 1
2kt)

\bigl[ 
1
2k sin(st) + s cos(st)

\bigr] \bigl( 
x - 1

2L
\bigr) 

 - (B2/2g) exp( - kt) - (B/g) exp( - 1
2kt)

\bigl[ 
1
2k cos(st) - s sin(st)

\bigr] \bigl( 
y  - 1

2L
\bigr) 
,

(7.8)

\bfitq (\bfitx , t) = h(\bfitx , t)B exp( - 1
2kt)(sin(st), cos(st))

\sansT .(7.9)
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Table 5
L1 convergence of planar surface on a two-dimensional paraboloid.

\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{u}\mathrm{s}

I L1-\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e} L\infty -\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}
441 4.58\mathrm{E}-02 8.41\mathrm{E}-02
1681 1.45\mathrm{E}-02 1.72 4.07\mathrm{E}-02 1.08
6561 6.30\mathrm{E}-03 1.22 2.64\mathrm{E}-02 0.63
25921 2.24\mathrm{E}-03 1.50 1.34\mathrm{E}-02 0.99
103041 7.52\mathrm{E}-04 1.58 6.46\mathrm{E}-03 1.06

\mathrm{T}\mathrm{A}\mathrm{M}\mathrm{U}

I L1-\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e} L\infty -\mathrm{e}\mathrm{r}\mathrm{r}\mathrm{o}\mathrm{r} \mathrm{R}\mathrm{a}\mathrm{t}\mathrm{e}
508 4.70\mathrm{E}-02 8.12\mathrm{E}-02
1926 1.95\mathrm{E}-02 1.32 4.55\mathrm{E}-02 0.87
7553 7.67\mathrm{E}-03 1.37 1.98\mathrm{E}-02 1.22
29870 2.91\mathrm{E}-03 1.41 1.11\mathrm{E}-02 0.84
118851 1.09\mathrm{E}-03 1.43 6.21\mathrm{E}-03 0.85

Fig. 2. Surface plot of water elevation h(\bfitx , t) + z(\bfitx ) at t = \{ 0, 1, . . . , 7\} .

Here p =
\surd 
8g\sansh 0/a and s =

\sqrt{} 
p2  - k2/2. We consider D = [L = 10m, 10m] and

set g = 9.81ms - 2, \sansh 0 = 1m, a = 3m, B = 2ms - 1, k = 0.5 s - 1. We do not impose any
boundary condition since the water never reaches the boundary of the computational
domain. The initial condition is given by (7.8) at t = 0. We show in Table 5 the
errors and the corresponding convergence rates computed at t = 1. This time we just
consider the EV method with the consistent mass matrix. The rates are consistent
with those obtained in section 7.6, it is \scrO (h)1.5 in the L1 norm and \scrO (h) in the L\infty 

norm.
We shown in Figure 2 the results of a computation done with a mesh containing

6561 \BbbP 1 nodes. The solution is represented at t = \{ 0, 1, . . . , 7\} . The free surface keeps
its circular shape over the entire duration of the simulation.

7.8. Dam break over three bumps. We consider now a test case proposed
in Kawahara and Umetsu [36]. (See also Huang, Zhang, and Pei [33], Song et al.
[49] and references therein.) This problem tests the numerical method for complex
wetting/drying processes. The problem consists of a channel with the following di-
mensions 75m\times 30m. A dam is located at x = 16m. The initial water height behind
the dam is 1.875m and 0m beyond the dam. There are three obstacles sitting on the
dry bottom; the bathymetry is given by

z(\bfitx ) = max\{ 0, z1(\bfitx ), z2(\bfitx ), z3(\bfitx )\} ,(7.10)

z1(\bfitx ) = 1 - 1/8
\sqrt{} 
(x - 30)2 + (y  - 6)2,(7.11)

z2(\bfitx ) = 1 - 1/8
\sqrt{} 
(x - 30)2 + (y  - 24)2),(7.12)

z3(\bfitx ) = 3 - 3/10
\sqrt{} 
(x - 47.5)2 + (y  - 15)2.(7.13)
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Fig. 3. Surface plot of the water elevation h(\bfitx , t) + z(\bfitx ) at different times.

\mathrm{G}\mathrm{a}\mathrm{u}\mathrm{g}\mathrm{e} \mathrm{x} (\mathrm{m}) \mathrm{y} (\mathrm{m})
\mathrm{G}6 4947.46 4289.71
\mathrm{G}7 5717.30 4407.61
\mathrm{G}8 6775.14 3869.23
\mathrm{G}9 7128.20 3162.00
\mathrm{G}10 8585.30 3443.08
\mathrm{G}11 9674.97 3085.89
\mathrm{G}12 10939.15 3044.78
\mathrm{G}13 11724.37 2810.41
\mathrm{G}15 12723.70 2485.08

Fig. 4. Coordinates (left) and location of the gauges (right).

The Manning coefficient is n = 0.02m - 1/3s. The solution at various times is shown
in Figure 3. The computations have been done with a mesh composed of 6561 \BbbP 1

nodes.

7.9. Malpasset dam break. We finish with the 1959 Malpasset dam break
which caused 423 casualties. In an effort to better understand the origins of this
catastrophic event and possibly help prevent such accidents in the future, a scaled
model was built in 1964 and calibrated against the available data. We refer the reader
to Hervouet and Petitjean [32] for a complete description of this problem and for the
data extracted from the the scaled model. Fourteen gauges were placed to measure
the maximum water height and arrival time, 9 of which were positioned downstream
from the dam. For completeness, we show in the left panel of Figure 4 the coordinates
of the nine gauges downstream of the dam; the corresponding geographic locations
are show in the right panel of the figure.
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Table 6
Malpasset dam break problem. Maximum water elevation.

Proteus TAMU
Gauge Exp. n = 0.025 n = 0.029 n = 0.033 n = 0.025 n = 0.029 n = 0.033
G6 84.2 86.24 86.17 86.14 86.36 86.24 86.20
G7 49.1 51.49 51.77 52.05 50.66 51.64 51.80
G8 54.0 54.52 54.54 54.53 54.39 54.6 54.7
G9 40.2 48.51 48.59 48.66 48.33 48.39 48.50
G10 34.9 38.11 38.18 38.17 38.21 38.28 38.20
G11 27.4 25.27 25.93 25.91 25.60 25.84 25.97
G12 21.5 18.38 18.31 18.43 18.28 18.27 18.52
G13 16.1 16.65 16.76 16.82 16.44 16.61 16.77
G14 12.9 12.87 12.91 13.06 12.94 12.96 13.13

We follow Hervouet and Petitjean [32] and consider the dam to be a straight
line between the points (4701.18m, 4143.41m) and (4655.5m, 4392.1m). The wa-
ter level in the reservoir is 100m. We consider three different Manning coefficients:
0.025m - 1

3 s, 0.029m - 1
3 s, 0.033m - 1

3 s. We use a mesh composed of 56698 triangles
and 29391 \BbbP 1 nodes. The simulations are run until t = 3000 s.

The maximum water elevations maxt=[0,3000] h(g, t) + z(\bfitx g) reached during the
simulations are shown in Table 6 for all the gauges g \in \{ G6, . . . ,G14\} . Here z(\bfitx g)
is the bathymetry at the gauge g. The column denoted ``Exp."" shows the maximum
water elevation estimated from the experiment on the scaled model as reported in
Hervouet and Petitjean [32].

In order to put in perspective our results, we show in the left table of Figure 5 the
maximum water elevation reported from the following sources: Huang, Zhang, and Pei
[33] (``Huang""); Valiani, Caleffi, and Zanni [52] (``Valiani""); Hervouet and Petitjean
[32] (``Hervouet""); Biscarini et al. [7] (``Biscarini""); Savant et al. [48] (``Savant"").
The symbols connected with solid lines are the results from the TAMU code. With
the exception of [7], all the numerical results have been obtained with shallow water
codes using one of the Manning coefficients we have considered. Our results agree
with those reported in the literature. It seems that the maximum water elevation
does not depend very much on the Manning coefficient. We show in the right table
of Figure 5 the arrival time at the various gauges for the three Manning coefficients
considered.

Finally we show in Figure 6 the water height at various times after the collapse
of the dam: t = 0, 600 s, 1200 s, 1800 s, 2400 s, 3000 s. Although the value 0.033m - 1

3 s
best fits the data, we think that it is probably unrealistic to expect that one Manning
coefficient can properly model the entire terrain.

8. Conclusions. We have proposed a new numerical method to solve the shallow
water equations using continuous finite elements. The properties of the method are
based on the introduction of an artificial dissipation that is defined so that the method
is positivity preserving, robust with respect to dry states, well-balanced, and can
handle explicit treatment of the friction term. The base of the new method is the
smoothness-based second-order method introduced in Azerad, Guermond, and Popov
[3]. One novelty in this paper is the addition of the friction term to the shallow
water system and its explicit treatment and regularization. A new higher-order EV
extension of the method is given in section 6. A commutator technique is introduced to
increase the efficiency of the EV method. Another novel idea is the derivation of local
admissible states from the first-order GMS scheme and the use of these states for local
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Fig. 5. Maximum water elevation (left). Arrival time (right).

Fig. 6. Malpasset dam break problem. Water height at different times. The color code (from
blue to red) is based on the water height at t = 0.

limiting in order to remove unphysical states in the high-order solution and to control
the remaining innocuous oscillations. The new method is numerically illustrated on
various benchmark tests including the Malpasset dam break.

REFERENCES

[1] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame, A fast and stable
well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci.
Comput., 25 (2004), pp. 2050--2065.

D
ow

nl
oa

de
d 

01
/2

2/
19

 to
 1

65
.9

1.
11

4.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WELL-BALANCED FINITE ELEMENT APPROXIMATION A3899

[2] E. Audusse, F. Bouchut, M.-O. Bristeau, and J. Sainte-Marie, Kinetic entropy inequal-
ity and hydrostatic reconstruction scheme for the Saint-Venant system, Math. Comp., 85
(2016), pp. 2815--2837.

[3] P. Azerad, J.-L. Guermond, and B. Popov, Well-balanced second-order approximation of the
shallow water equation with continuous finite elements, SIAM J. Numer. Anal., 55 (2017),
pp. 3203--3224.

[4] S. Badia and J. Bonilla, Monotonicity-preserving finite element schemes based on differ-
entiable nonlinear stabilization, Comput. Methods Appl. Mech. Engrg., 313 (2017), pp.
133--158.

[5] G. R. Barrenechea, E. Burman, and F. Karakatsani, Edge-based nonlinear diffusion for
finite element approximations of convection--diffusion equations and its relation to algebraic
flux-correction schemes, Numer. Math., 135 (2017), 521.

[6] A. Berm\'udez and M. E. V\'azquez, Upwind methods for hyperbolic conservation laws with
source terms, Comput. Fluids, 23 (1994), pp. 1049--1071.

[7] C. Biscarini, S. Di Francesco, E. Ridolfi, and P. Manciola, On the simulation of floods
in a narrow bending valley: The Malpasset Dam break case study, Water, 8 (2016).

[8] A. Bollermann, S. Noelle, and M. Luk\'a\v cov\'a-Medvidov\'a, Finite volume evolution Galerkin
methods for the shallow water equations with dry beds, Commun. Comput. Phys., 10 (2011),
pp. 371--404.

[9] J. P. Boris and D. L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm
that works, J. Comput. Phys., 11 (1973), pp. 38--69.

[10] F. Bouchut, Nonlinear stability of Finite Volume Methods for Hyperbolic Conservation Laws
and well-balanced schemes for sources, Front. Math., Birkh\"auser, Basel, 2004.

[11] E. Burman, On nonlinear artificial viscosity, discrete maximum principle and hyperbolic con-
servation laws, BIT, 47 (2007), pp. 715--733.

[12] G. Chen and S. Noelle, A new hydrostatic reconstruction scheme based on subcell reconstruc-
tions, SIAM J. Numer. Anal., 55 (2017), pp. 758--784.

[13] A. Chertock, S. Cui, A. Kurganov, and T. Wu, Well-balanced positivity preserving central-
upwind scheme for the shallow water system with friction terms, Internat. J. Numer. Meth-
ods Fluids, 78 (2015), pp. 355--383.

[14] M. A. Christon, M. J. Martinez, and T. E. Voth, Generalized Fourier analyses of the
advection-diffusion equation-part I: One-dimensional domains, Internat. J. Numer. Meth-
ods Fluids, 45 (2004), pp. 839--887.

[15] O. Delestre, S. Cordier, F. Darboux, and F. James, A limitation of the hydrostatic recon-
struction technique for shallow water equations, C. R. Math. Acad. Sci. Paris, 350 (2012),
pp. 677--681.

[16] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.-N. Vo, F. James,
S. Cordier, Swashes: A compilation of shallow water analytic solutions for hydraulic and
environmental studies, Internat. J. Numer. Methods Fluids, 72 (2013), pp. 269--300.

[17] A. Duran, F. Marche, R. Turpault, and C. Berthon, Asymptotic preserving scheme for
the shallow water equations with source terms on unstructured meshes, J. Comput. Phys.,
287 (2015), pp. 184--206.

[18] B. Einfeldt, C.-D. Munz, P. L. Roe, and B. Sj\"ogreen, On Godunov-type methods near low
densities, J. Comput. Phys., 92 (1991), pp. 273--295.

[19] A. Ern and J.-L. Guermond, Weighting the edge stabilization, SIAM J. Numer. Anal., 51
(2013), pp. 1655--1677.

[20] M. S. Floater, Generalized barycentric coordinates and applications, Acta Numer., 24 (2015),
pp. 161--214 .

[21] J. M. Gallardo, C. Par\'es, and M. Castro, On a well-balanced high-order finite volume
scheme for shallow water equations with topography and dry areas, J. Comput. Phys., 227
(2007), pp. 574 -- 601.

[22] J. M. Greenberg and A. Y. Le Roux, A well-balanced scheme for the numerical processing
of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), pp. 1--16.

[23] P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method. Volume
1: Advection-Diffusion and Isothermal Laminar Flow, Wiley, New York, 1998.

[24] J.-L. Guermond and R. Pasquetti, A correction technique for the dispersive effects of mass
lumping for transport problems, Comput. Methods Appl. Mech. Engrg., 253 (2013), pp.
186--198.

[25] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element
approximation for hyperbolic systems, SIAM J. Numer. Anal., 54 (2016), pp. 2466--2489.

[26] J.-L. Guermond and B. Popov, Invariant domains and second-order continuous finite element
approximation for scalar conservation equations, SIAM J. Numer. Anal., 55 (2017), pp.
3120--3146.

D
ow

nl
oa

de
d 

01
/2

2/
19

 to
 1

65
.9

1.
11

4.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A3900 GUERMOND, QUEZADA DE LUNA, POPOV, KEES, FARTHING

[27] J.-L. Guermond and B. Popov, Estimation from Above of the Maximum Wave Speed in the
Riemann Problem for the Euler Equations and Related Problems, manuscript.

[28] J.-L. Guermond, R. Pasquetti, and B. Popov, Entropy viscosity method for nonlinear con-
servation laws, J. Comput. Phys., 230 (2011), pp. 4248--4267.

[29] J.-L. Guermond, M. Nazarov, B. Popov, and Y. Yang, A second-order maximum principle
preserving Lagrange finite element technique for nonlinear scalar conservation equations,
SIAM J. Numer. Anal., 52 (2014), pp. 2163--2182.

[30] J.-L. Guermond, B. Popov, and Y. Yang, The effect of the consistent mass matrix on the
maximum-principle for scalar conservation equations, J. Sci. Comput., 70 (2017), pp. 1358--
1366.

[31] J.-L. Guermond, M. Nazarov, B. Popov, and I. Tomas, Second-order invariant domain pre-
serving approximation of the Euler equations using convex limiting, SIAM J. Sci. Comput.,
40 (2018), pp. A3211--A3239.

[32] J.-M. Hervouet and A. Petitjean, Malpasset dam-break revisited with two-dimensional com-
putations, J. Hydraul. Res., 37 (1999), pp. 777--788.

[33] Y. Huang, N. Zhang, and Y. Pei, Well-balanced finite volume scheme for shallow water
flooding and drying over arbitrary topography, Eng. Appl. Comput. Fluid Mech., 7 (2013),
pp. 40--54.

[34] A. Jameson, Origins and further development of the Jameson-Schmidt-Turkel scheme, AIAA
Journal, 55 (2017), pp. 1487--1510.

[35] A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by
finite volume. Methods using Runge-Kutta time-stepping schemes, in 14th AIAA Fluid and
Plasma Dynamics Conference, AIAA, New York, 1981, pp. 1981--1259.

[36] M. Kawahara and T. Umetsu, Finite element method for moving boundary problems in river
flow, Internat. J. Numer. Methods Fluids, 6 (1986), pp. 365--386.

[37] C. E. Kees and M. W. Farthing, Parallel computational methods and simulation for coastal
and hydraulic applications using the Proteus Toolkit, in Supercomputing11: Proceedings
of the PyHPC11 Workshop, Seattle, WA, 2011, https://www.dlr.de/sc/en/Portaldata/15/
Resources/dokumente/pyhpc2011/submissions/pyhpc2011 submission 11.pdf.

[38] A. Kurganov and G. Petrova, A second-order well-balanced positivity preserving central-
upwind scheme for the Saint-Venant system, Commun. Math. Sci., 5 (2007), pp. 133--160.

[39] D. Kuzmin, R. L\"ohner, and S. Turek, Flux--Corrected Transport, Sci. Comput, Springer,
Berlin, 2005.

[40] D. Kuzmin, S. Basting, and J. N. Shadid, Linearity-preserving monotone local projection
stabilization schemes for continuous finite elements, Comput. Methods Appl. Mech. Engrg.,
322 (2017), pp. 23--41.

[41] R. J. LeVeque and D. L. George, High-resolution finite volume methods for the shallow
water equations with bathymetry and dry states, in Advanced Numerical Models for Sim-
ulating Tsunami Waves and Runup, Adv. Const. Ocean Eng. 10, 2008, World Scientific,
Hackensack, NJ, pp. 43--73.

[42] S. Noelle, Y. Xing, and C.-W. Shu, High-order well-balanced finite volume WENO schemes
for shallow water equation with moving water, J. Comput. Phys., 226 (2007), pp. 29--58.

[43] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source
term, Calcolo, 38 (2001), pp. 201--231.

[44] M. Ricchiuto and A. Bollermann, Stabilized residual distribution for shallow water simula-
tions, J. Comput. Phys., 228 (2009), pp. 1071--1115.

[45] A. Ritter, Die fortpflanzung der wasserwellen, Z. Vereines Deutscher Ingen., 36 (1892), pp.
947--954.

[46] J. Sampson, A. Easton, M. Singh, Moving boundary shallow water flow in circular paraboloidal
basins, in Proceedings of the Sixth Engineering Mathematics and Applications Conference,
5th International Congress on Industrial and Applied Mathematics, at the University of
Technology, Sydney, Australia, R. L. May and W.F. Blyth, eds., Engineering Mathematical
Group, ANZIAM, Sydney, Australia, 2003, pp. 223--227.

[47] J. Sampson, A. Easton, and M. Singh, Moving boundary shallow water flow above parabolic
bottom topography, ANZIAM J., 47 (2005), pp. C373--C387.

[48] G. Savant, C. Berger, T. O. McAlpin, and J. N. Tate, Efficient implicit finite-element
hydrodynamic model for dam and levee breach, J. Hydraul. Eng., 137 (2010), pp. 1005--
1018.

[49] L. Song, J. Zhou, Q. Li, X. Yang, and Y. Zhang, An unstructured finite volume model for
dam-break floods with wet/dry fronts over complex topography, Internat. J. Numer. Methods
Fluids, 67 (2011), pp. 960--980.D

ow
nl

oa
de

d 
01

/2
2/

19
 to

 1
65

.9
1.

11
4.

14
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://www.dlr.de/sc/en/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_11.pdf
https://www.dlr.de/sc/en/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_11.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WELL-BALANCED FINITE ELEMENT APPROXIMATION A3901

[50] T. Thompson, A discrete commutator theory for the consistency and phase error analysis of
semi-discrete C0 finite element approximations to the linear transport equation, J. Comput.
Appl. Math., 303 (2016), pp. 229--248.

[51] E. F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows, Wiley, Chichester, Eng-
land, 2001.

[52] A. Valiani, V. Caleffi, and A. Zanni, Case study: Malpasset dam-break simulation using a
two-dimensional finite volume method, J. Hydraul. Eng., 128 (2002), pp. 460--472.

[53] Y. Xing and C.-W. Shu, A survey of high order schemes for the shallow water equations, J.
Math. Study, 47 (2014), pp. 221--249.

[54] S. T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput.
Phys., 31 (1979), pp. 335--362.

D
ow

nl
oa

de
d 

01
/2

2/
19

 to
 1

65
.9

1.
11

4.
14

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


	Introduction
	Preliminaries
	The model problem
	Finite element setting

	Generic algorithm
	Velocity regularization
	Full time and space approximation
	Conservation and well-balancing

	Guaranteed maximum speed (GMS) viscosity
	Definition of the GMS viscosity
	Maximum wave speed

	Smoothness-based positivity preserving viscosity
	Entropy viscosity
	Commutator-based entropy viscosity
	Dispersion correction
	Flux corrected transport
	The method

	Limiting with exact bounds

	Numerical illustrations
	Technical details
	EV versus Galerkin + limiting
	One-dimensional dam break without friction
	Well-balancing w.r.t. friction
	Convergence to steady state with friction
	Planar free surface in a one-dimensional paraboloid
	Planar free surface in a two-dimensional paraboloid
	Dam break over three bumps
	Malpasset dam break

	Conclusions

