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A novel conservative level set method is introduced for the approximation of two-
phase incompressible fluid flows. The method builds on recent conservative level set
approaches and utilizes an entropy production to construct a balanced artificial diffusion
and artificial anti-diffusion. The method is self-tuning, maximum principle preserving,
suitable for unstructured meshes, and neither re-initialization of the level set function
nor reconstruction of the interface is needed for long-time simulation. Computational
results in one, two and three dimensions are presented for finite element and finite volume
implementations of the method.
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1. Introduction

The method of level sets was first introduced by Osher and Sethian [1] in the late 1980s as a technique for capturing
evolving interfaces and tracking the propagation of fronts. The traditional level set method is useful for handling complex
topological dynamics but suffers from a lack of mass conservation. In the present paper we present a novel conservative
level set technique using a new compression strategy; the underlying idea is to utilize a corrective flux constructed from
entropy principles. A first-order application of the approach yields a provable maximum principle. The first-order scheme
can be extended to a high-order non-linear compression, and flux-corrected transport techniques can be applied to retrieve
the maximum principle.

Conservative level set methods have been the focus of recent research. Techniques for enforcing mass conservation
in level set methods differ depending on the context of the method. The use of an entropy-production to inform the
assembly of a precise anti-diffusion performs similarly to hybrid particle-type methods (e.g., Enright et al. [2], Ianniello
and Di Mascio [3]). The proposed construction is, however, less complex, and straight-forward to implement. In addition,
the proposed method does not require solving a re-initialization or interface reconstruction subproblem (see e.g., Fedkiw
et al. [4], Olsson and Kreiss [5]). Further, the non-compressive first-order variant of our method does not rely on heuristics
such as limiters or explicit mass redistribution (see e.g., Olsson and Kreiss [5], Chiu and Lin [6]) to address the usual
undershoots, and overshoots.
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The current work offers other improvements over many contemporary algorithms, and specific comparisons are dis-
cussed in the computational results, Sections 7–12. For instance, the proposed approach does not invoke a characteristic
mesh size; this is important for general unstructured meshes as the notion of local mesh size can be problematic to define
(see Section 2.4 in Guermond and Nazarov [7] for a discussion on this topic). Secondly, the current approach details how to
construct a first-order, diffusion corrected, viscous tensor which is maximum principle preserving, as proven in Guermond
and Popov [8], provided the transport velocity is incompressible. Third, a high-order extension of the diffusion corrected
dissipation is explained; this extension ensures that the artificial dissipation vanishes outside of a neighborhood of the level
set iso-surface. Finally, it is shown how this extension can be made maximum-principle preserving through the adapta-
tion of the flux-corrected transport ideas of Boris–Book–Zalesak. A similar methodology has been proposed in Chiu and Lin
[6, Eq. (18)] and, in some sense, our work can be viewed as an extension thereof. In a wider, more historical, context the
proposedmethod can be seen as combining the level set methodwith the one-step re-initialization heuristics of Coupez [9],
the theory of artificial compressors vis-a-vis Harten [10,11], Olsson and Kreiss [5] and the entropy production principles of
Guermond et al. [12].

The paper is organized as follows. Section 2 gives a brief literature survey of historical topics related to the discussions
in the sections that follow. Section 3 discusses the preliminaries of artificial compression as a viscous correction and
introduces Eq. (10). This equation is the motivation of the method proposed in the paper and can be viewed as a one-
stage version of the classical artificial compression method proposed by Harten [10,11]. Section 4 describes the full method
and implementation in the context of finite elements. Section 5 describes the analogous implementation details in the
finite volume framework. Section 6 details an extension of the methods to a maximum principle preserving technique;
this is done by adapting the flux-corrected transport methodology of Boris–Book–Zalesak. Sections 7–12 present numerical
illustrations of the performance of the method in one, two, and three dimensions for a variety of benchmark test problems.
The computations and results discussed in Sections 7–12 demonstrate the efficacy of the technique for interface capturing.
The computation of secondary terms, such as surface tension or stresses, is out of the scope the currentwork and is therefore
not discussed.

2. Brief overview of the literature

This section gives a brief survey of the topics which constitute a historical foundation for the proposed method. Readers
who are already familiar with numerical front trackingmethods, the level setmethod, the role of re-initialization in the level
set method, and the connection between re-initialization of Heaviside level set functions and anti-diffusion should advance
to Section 3.

2.1. Numerical front tracking and the level set method

Numerical techniques for the evolution of interfaces and free surfaces are an active area of research. Popular Eulerian
approaches for the transport of an interface include volume trackingmethods and level setmethods.More extensive sources
for the historical development of thesemethods and their variants are found in, respectively, Rider and Kothe [13] and Osher
and Fedkiw [14]. A drawback of the volume tracking methods is the difficulty in a-posteriori interface reconstruction while
level set methods can suffer from loss of area enclosed by the interface. Hybrid methods have been proposed to address
these issues such as coupling volume tracking and the level set method (CLSVOF) (Sussman and Puckett [15]), the addition
of marker particles (Enright et al. [2]), and the extension to oriented marker particles with reconstruction (Ianniello and Di
Mascio [3]).

The level set method typically refers to the transport of a smooth distance function whose zero isosurface is the interface
to be tracked. Themethod has been used successfully inmany fluid flow applications, see e.g., Sussman et al. [16], Osher and
Sethian [1], Gibou et al. [17], Ville et al. [18], Bonito et al. [19], but it can also be used in other contexts like shape optimization
as in Dapogny et al. [20], Yamada et al. [21].

If the advection velocity field is incompressible, the transport problem can be recast in conservative formwhich allows for
the use of smoothed Heaviside level set functions, conservative discretizations, and anti-diffusion techniques for enhancing
mass conservation.

Given a velocity field u, the basic equation for the level set method is

φt + u · ∇φ = 0. (1)

Depending on the specifics of the problem, the above equation is often rewritten in alternative forms. For instance if u is
divergence free, (1) can be expressed in the conservation formφt +∇·(uφ) = 0which can be discretized using conservative
numerical schemes. In the context of curvature driven flows Eq. (1) can be rewritten as follows:

φt + uN∥∇φ∥ℓ2 = 0, (2)

which is of Hamilton–Jacobi type, allowing access to fast numerical schemes for solving problems in this category. Both
Eqs. (1) and (2) are often referred to as ‘the level set equation’. The reader is referred to Fedkiw et al. [4], and the sources
therein, for a large selection of references on the many applications of level set methods. We also refer to Dapogny et al.
[20, Section 4] for a review of important mathematical properties of the signed distance function.
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2.2. Reinitialization and level set methods

To minimize area loss, level set methods typically use re-initialization procedures although interface reconstruction has
also been used in place of re-initialization in Ianniello and Di Mascio [3]. The type of reinitialization procedure depends on
the context of the problem and the type of level set function used. The method described in this manuscript uses smoothed
Heaviside level set functions and the level set equation in conservative form. The re-initialization procedure used is therefore
a shock capturing anti-diffusion technique.

The classical level set method uses a smooth distance function for its level set function φ. Therefore the re-initialization
problem is aimed at preserving the property ∥∇φ∥ℓ2 = 1 which is necessary and sufficient for φ to be a distance function.
Historically, level set methods were implemented in two stages: (i) the first one consists of solving the level set equation
(1), or one of its variations, for a few time steps; (ii) in the second stage the time stepping is suspended and a subproblem
is solved to reinitialize the level set function. The usual re-initialization approach for distance level set functions consists of
solving the unsteady Hamilton–Jacobi problem

∂τφ = S(φ)(1 − ∥∇φ∥ℓ2), φ(x, 0) = φ0(x), (3)

to steady state, where S(·) is a smoothed approximation of the sign function, see e.g., Sussman et al. [22]. Fast methods for
solving unsteady Hamilton–Jacobi problems is a well established area of ongoing research.

When u is divergence free the level set Eq. (1) can be recast in conservative form. In this case a smooth Heaviside type
function can be used as the level set function and the level set equation is often discretized using a conservative method
limiting oscillations at the interface; these methods include the total variation diminishing (TVD) methods, and essentially
non-oscillatory (ENO/WENO) type approaches discussed in Harten [23]. The re-initialization for smoothed Heaviside type
level set functions is an anti-diffusive artificial compression technique, see e.g., Harten [10,11]. This is precisely the approach
followed in Olsson and Kreiss [5] where a TVD schemewith Superbee limiter on a uniformmesh is coupledwith the artificial
compression subproblem

∂τφ + ∇ ·


φ(1 − φ)

∇φ

∥∇φ∥ℓ2


= 0, φ(x, 0) = φ0(x). (4)

Recently, researchers have put forth methods combining these two steps into a single-step method, see e.g., Coupez
[9, Eq. (16)], Ville et al. [18, Eq. (25)] and Chiu and Lin [24]. In the present work a modified equation is introduced which lifts
the two step, artificial compression approach of Olsson and Kreiss [5] to a one stepmethod. The procedure yields a modified
level set equation similar to that of Chiu and Lin [24].

3. Principle of the artificial-viscosity-based compression method

This section introduces Eq. (10) which is the motivation of the method proposed in the paper. Artificial compression
methods were proposed by Harten [10,11] for use in the numerical solution of conservation laws. Harten introduced the
technique with the one dimensional, possibly stabilized, conservation equation

∂tφ + ∂xf (φ) = ∂x(µ∂xφ), φ(x, 0) =


φL if x < 0
φR if x > 0. (5)

with convex flux f , artificial viscosity µ ≥ 0, and Riemann initial data. The artificial compression method proceeds by
augmenting (5) with an additional flux term g(φ) to produce

∂tφ + ∂x (f (φ)+ g(φ)) = ∂x(µ∂xφ). (6)

The function g(φ) is called an ‘‘artificial compression function’’ and in practice it may be any function satisfying the
compatibility condition:

g(φ) = 0, ∀φ ∉ (φR, φL), and g(φ) sign(φR − φL) > 0, ∀φ ∈ (φR, φL). (7)

The classical artificial compression approach to solving (6) is a two-stage method. First, (5) is solved followed by a
sub-timestep problem of the form ∂t φ̂ + ∂xg(φ̂) = 0 with initial data equal to the current numerical solution; see
Harten [10,11] for more details. An anti-diffusive formulation which can be solved in one stage is enabled by the careful
selection of the artificial compression function g(φ). Introducing the notation z+

= max(z, 0), for reasons which will
be clear shortly, a simple way to ensure that the compatibility condition is satisfied is to choose g(φ) proportional to
[(φ−φL)(φR −φ)]+sign(φR −φL). Whenµ ≠ 0, in (6), the profile of the wave connecting φL to φR is smooth andmonotone,
and we have sign(φR − φL) = ∂xφ/|∂xφ|. It is then natural to set

g(φ) = cµ [(φ − φL)(φR − φ)]+
∂xφ

|∂xφ|
, (8)
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where c ≥ 0 is a non-negative parameter. It can now be seen that the use of the positive part [·]
+ in (8) ensures that a

numerical approximation to g(φ) avoids overshoots and undershoots. Note that since µ scales like a wave speed times a
length scale, and g(φ)must scale like a wave speed times φ, the parameter c must scale like c ∼ ccompL

−1 where ccomp is a
universal constant and L is some length scale. In the context of an approximation method with mesh size h, we expect the
compression to be active over a few mesh cells; it is then natural to set L = h. Eq. (6) can then be rewritten

∂tφ + ∂x


f (φ)− µ


1 − ccomp

[(φ − φL)(φR − φ)]+

h|∂xφ|

+

∂xφ


= 0. (9)

Hence, artificial compression can be achieved for any artificial-viscosity-based approximation method by redefining the
viscosity appropriately. The generalization of (9) in higher dimension is

∂tφ + ∇ ·


f (φ)− µ


1 − ccomp

[(φ − φL)(φR − φ)]+

h∥∇φ∥ℓ2

+

∇φ


= 0, (10)

where ∥ · ∥ℓ2 is the Euclidean norm. The use of the positive part [·]
+ in (10) guarantees that numerical approximations

to the effective viscosity are non-negative. Furthermore, since Eq. (10) incorporates the anti-diffusion of g(φ) directly
into its formulation it can be interpreted as an artificial compression method, in the spirit of Harten, amenable to direct
discretization.

A simple analysis for the case of f (φ) = uφwith∇·u = 0 allows for a demonstration of the effect of artificial compression
on (10). Suppose that 0 ≤ φ ≤ 1 and the transition interface is embedded as the iso-value {φ =

1
2 }, i.e., the Riemann data

are such thatφL, φR ∈ {0, 1}. Let x0(t) be a point on themoving interface, and assume that the velocity u is locally constant in
a neighborhood of x0, and φ(x−ut) is time-independent, i.e., the interface is just transported and is at equilibrium. Assume
also that µ is locally constant. Denoting ϕ(x) = φ(x − ut) and letting s be the signed distance along the direction of the
gradient of ϕ, we infer that µ


1 −

ccomp
h

ϕ(1−ϕ)
∥∇ϕ∥

ℓ2


∇ϕ = 0, i.e., ϕ solves the following ODE, ∂sϕ − αϕ(1 − ϕ) = 0, ϕ(0) =

1
2 ,

where α = ccomph−1. The solution to this ODE is

ϕ(s) =
1
2


1 + tanh


ccomp

s
2h


. (11)

We interpret this result by saying that at equilibrium the compression balances exactly the artificial viscosity, and the level
set adopts the classical hyperbolic tangent profile of width 2h/ccomp. The constant ccomp can be used to further control the
width of the interface.

This simple example demonstrates the advantage of incorporating the viscosity into the artificial compressor. Compared
to Harten [10], Olsson and Kreiss [5] the formulation (10) allows for the combination of the transport step and the
compression step. Another important aspect of the formulation is that it is fully conservative, i.e., assuming that ∇ · u = 0
and there is no flux at the boundary of the domain, the quantity


Ω
φ dx is constant over time. Finally, arriving at Eq. (10)

does not require any heuristic reasoning, a particular flux f (φ), or the a-priori knowledge of a particular solution such as the
‘‘phase field kernel’’-motivated derivation of Chiu and Lin [6]. The theory of artificial compressionmethods of Harten [10,11]
provides the provable conclusion that, since the compatibility condition (7) is satisfied, the viscous profile for the original
problem, (5) with µ = 0, and the model problem (10) coincide, and that as µ ↓ 0 these viscous profiles converge in the L1
sense to the physically relevant solution.

4. Implementation of the method with finite elements

The artificial viscosity technique that we propose consists of three steps: (i) first we introduce a first-order maximum
preserving artificial viscosity method, see Section 4.1; (ii) some of this viscosity is removed by considering an entropy
residual, see Section 4.2; (iii) the compression technique described in (10) is applied, see Section 4.3. In computational
practice the parameters presented in the formulation of the finite method, e.g. cE and ccomp in Eqs. (18) and (20), are taken
to be cE = ccomp = 1.

4.1. Finite element-based first-order viscosity

We first describe the first-order viscosity method in the context of finite elements as introduced in Guermond and
Popov [8]. Consider the following scalar conservation equation as model problem

∂tφ(x, t)+ ∇ · f(φ) = 0, x ∈ D, t > 0, (12)

whereD ⊆ Rd is an open and connected domain and the initial data is given byφ(x, 0) = φ0(x). To simplify the presentation,
we assume that the initial data or/and the flux f are such that the flux at the boundary of D is zero. The Cauchy problem has
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a unique entropy solution, i.e., a weak solution satisfying all the entropy inequalities ∂tE(φ)+ ∇ · F(φ) ≤ 0 where E(φ) is
any convex entropy function and F(φ) =

 φ
0 E ′(v)f′(v) dv is the associated entropy flux. For any unit vector n and any pair

of real numbers vL, vR we denote by λmax(f , n, vL, vR) the fastest wave speed in the one-dimensional Riemann problem

∂tv + ∂x(n · f (v)) = 0 v(x, 0) =


vL if x < 0
vR if x > 0. (13)

For instance λmax(f , n, vL, vR) = |u · n| if f (v) = uv.
Let (Th)h>0 be a sequence of shape-regular matching meshes. Let (K ,P, Σ) be a reference element. The shape functions

on the reference element are denoted {θi}i∈{1:nsh}. We assume that the basis {θi}i∈{1:nsh} has the following key properties:θi(x) ≥ 0,


i∈{1:nsh}
θi(x) = 1, for allx ∈ K . These properties hold for linear Lagrange elements and for Bernstein–Bezier

finite elements, see e.g., Schumaker [25, Chap. 2]. For any mesh cell K ∈ Th we denote by TK : K −→ K geometric map
between the reference elementK and the cell K . We define the scalar-valued space

P(Th) = {v ∈ C0(D; R) | v|K ◦ TK ∈P, ∀K ∈ Th}, (14)

whereP is the reference polynomial space. The global shape functions in P(Th) are denoted by {ψi}i∈{1:I}. Recall that these
functions form a basis of P(Th). We denote by Si the support of ψi and by I(Si) the collection of the indices of the shape
functions whose support has an intersection with Si of nonzero measure. We definemij =


D ψiψj dx andmi =


D ψi dx. Let

MC denote the consistent mass matrix, with entriesmij, and ML denote the lumped mass matrix with entriesmi.
We now describe the explicit first-order maximum principle preserving method from [8]. The method is described with

explicit Euler time stepping, but higher-order accuracy in time can be achieved by using any strong stability preserving (SSP)
method (see Gottlieb et al. [26] for a review on SSP methods). Let φn

h =


i∈{1:I}Φ
n
i ψ

n
i be the approximation of φ at time tn.

For any pair i, j ∈ {1 : I} we define the vector cij :=

D ψi∇ψj dx and the unit vector nij := cij/∥cij∥ℓ2 where ∥ · ∥ℓ2 denotes

the Euclidean norm. We now introduce the artificial viscosity coefficients

dnij = max(λmax(f , nij,Φ
n
i ,Φ

n
j )∥cij∥ℓ2 , λmax(f , nji,Φ

n
j ,Φ

n
i )∥cji∥ℓ2), i ≠ j. (15)

The first-order approximation of φ at time tn+1 is then defined by

mi
Φn+1

i − Φn
i

τ
+


j∈I(Si)


cij · (f (Φn

j )− f (Φn
i ))− dnij(Φ

n
j − Φn

i )


= 0. (16)

Theorem 1 (Guermond and Popov [8]). The scheme (15)–(16) is maximum principle preserving under CFL condition for any
Lipschitz flux f .

4.2. Entropy viscosity

We describe the entropy-viscosity method in this section. Letφn+1
h =


i∈{1:I}

Φn
i ψi be the Galerkin approximation of φ

at tn+1, i.e.,


j∈I(Si)
mijΦn+1

j =


j∈I(Si)
mijΦ

n
j −

τ
mi


j∈I(Si)

cij · (f (Φn
j )− f (Φn

i )). Let E be an entropy. For any pair of indices
i, j ∈ {1 : I} such that int(Si ∩ Sj) ≠ ∅, we define the normalized entropy residual

Rn
i =

1
Emax
i − Emin

i


D

φn+1
h − φn

h

τ
+ f ′(φn

h) · ∇φn
h


E ′(φn

h)ψi dx, ∀i ∈ {1 : I}, (17)

where Emax
i = maxj∈I(Si) |E(Φ

n
j )| and Emin

i = minj∈I(Si) |E(Φ
n
j )|. (In all the applications shown in Sections 7–12 we use the

entropy E(Φ) = − log(|Φ(1 − Φ)| + ϵ) with ϵ = 1 × 10−14 and 0 ≤ Φ ≤ 1.) Note that the entropy residual is zero
when E(φ) = φ; hence this regularization is useful only for nonlinear entropies. Then the entropy viscosity coefficients are
defined by

dE,nij = min(dnij, cE max(|Rn
i |, |R

n
j |)), i ≠ j, (18)

where cE is a user-defined non-dimensional parameter. Extensive numerical experiments have shown that cE = 1 may be
taken. The entropy-viscosity solution is obtained by replacing dnij by dE,nij and by replacing the lumped mass matrix by the
consistent mass matrix in (16):


j∈I(Si)

mij
Φn+1

j − Φn
j

τ
+


j∈I(Si)


cij · (f (Φn

j )− f (Φn
i ))− dE,nij (Φ

n
j − Φn

i )


= 0. (19)
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Remark 4.1. The consistent mass matrix is used in (19) to approximate the time derivative. This detail is important since it
eliminates the second-order dispersion errors; we refer to Christon et al. [27], Guermond and Pasquetti [28], Thompson [29]
for details.

Section 6 discusses the extension of (19) to a maximum preserving scheme. More on the entropy-viscosity technique, its
attributes, and its applications are discussed in [7,30,12,31].

4.3. Artificial compression

Let us now assume that the level set function φ is in the range [0, 1], i.e., ΦL,ΦR ∈ {0, 1} in (10). Then, following
the principles of the artificial compression technique broached in Section 3, the entropy viscosity is refined by setting
Φn

ij :=
1
2 (Φ

n
i + Φn

j ) and

dC,nij = dE,nij


1 − ccomp

[Φn
ij (1 − Φn

ij )]
+

|Φn
i − Φn

j |

+

(20)

where ccomp is a user-defined parameter. It is demonstrated numerically that this parameter can be taken to be 1 without
any noticeable drawbacks. In all the finite element applications shown in Sections 7–12we use ccomp = 1. Using the positive
part of the correction, in (20) avoids the introduction of any negative viscosity. The approximate level set solution is obtained
by replacing dE,nij by dC,nij in (19):


j∈I(Si)

mij
Φn+1

j − Φn
j

τ
+


j∈I(Si)


cij · (f (Φn

j )− f (Φn
i ))− dC,nij (Φ

n
j − Φn

i )


= 0. (21)

Finally, in the process of conducting numerical computations, the use of the anti-diffusion (20) to reduce the artificial
viscosity produced no notable difference in the standard CFL restriction.

5. Implementation of the method with finite volumes

We now describe how the method can be implemented with finite volumes method on Cartesian grids. For brevity we
restrict ourselves to two space dimensions and to uniform grids. The extension to nonuniform grids and to three space
dimensions is evident. For the finite volumemethod, the parameters presented in the formulation described in this section,
see e.g. Eqs. (25) and (29), are cE =

1
10 , and ccomp =

2
5 .

5.1. Finite volumes and first-order viscosity

The dimensions of the cell (i, j) are denoted hx and hy and the mass of the cell is mij = hxhy. The dependent variable
is cell-centered, φi,j, and the fluxes are face-centered. Let Γi± 1

2
, Γj± 1

2
be the four faces of the cell (i, j) with unit outward

normals ni± 1
2 j
and ni,j± 1

2
and measure hy and hx, respectively. The flux on these faces is denoted ni± 1

2
·
1
2 (f (φi±1,j)+ f (φi,j))

andni,j± 1
2
·
1
2 (f (φi,j±1)+f (φi,j)). Tomake the similaritieswith the finite element algorithmmore apparent, we define a global

set of indices by setting α := (i, j) andΦα := φi,j. Themass of the cell α ismα = hxhy andwe define the lumpedmassmatrix
ML to be the diagonalmatrixwith entriesmα .We introduce the set of neighboring indices,I(Sα) := {(i, j), (i±1, j), (i, j±1)}.
We then set

cαβ :=


hy

2
ni± 1

2 ,j
if β = (i ± 1, j)

hx

2
ni,j± 1

2
if β = (i, j ± 1).

Notice that


α≠β∈I(Sα) cαβ = 0 for any α. Taking inspiration from (15), we set

dnαβ = max(λmax(f , nαβ ,Φn
α,Φ

n
β)∥cαβ∥ℓ2 , λmax(f , nβ,α,Φn

β ,Φ
n
α)∥cβα∥ℓ2), α ≠ β. (22)

The first-order finite volume approximation of φ at time tn+1 is defined by

mα

Φn+1
α − Φn

α

τ
+


β∈I(Sα)


cαβ · (f (Φn

β)− f (Φn
α))− dnαβ(Φ

n
β − Φn

α)


= 0. (23)

Note that the arguments from Guermond and Popov [8] are still valid in this case; hence, the scheme (22)–(23) is maximum
principle preserving, under CFL condition, for any Lipschitz flux.
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5.2. Entropy viscosity

Since it is known that the use of the consistent mass matrix corrects the second-order dispersive error, see Christon [32],
Guermond and Pasquetti [28], Thompson [29], we introduce the consistent matrixMC with coefficients

mαβ = mα


1
6

if α ≠ β ∈ I(Sα)

1 −
2d
6

if α = β,

(24)

where d is the space dimension; here d = 2. To compute the entropy residual as in the finite element algorithm. First, we
estimate the solution at tn+1 without viscosity, i.e.,


β∈I(Sα)mαβ

Φn+1
β =


β∈I(Sα)mαβΦ

n
β −

τ
mα


β∈I(Sα) cαβ · (f (Φn

β) −

f (Φn
α)). Let E be an entropy. (In all the applications shown in Sections 7–12weuse the entropy E(Φ) = − log(|Φ(1−Φ)|+ϵ)

with ϵ = 1 × 10−14 and 0 ≤ Φ ≤ 1.) We define the entropy residual at α by Rn
α :=


β∈I(Sα)

mαβ
τ
(E(Φn+1

β ) − E(Φn
β)) +

β∈I(Sα) cαβ · f ′(Φn
α)(E(Φ

n
β)− E(Φn

α)). Then we define the entropy viscosity by

dE,nαβ = min(dnαβ , cE max(|Rn
α|, |R

n
β |)), α ≠ β. (25)

The entropy viscosity solution is obtained by replacing dnαβ by dE,nαβ and by using the consistent mass matrix:


β∈I(Sα)

mαβ

Φn+1
β − Φn

β

τ
+


β∈I(Sα)


cαβ · (f (Φn

β)− f (Φn
α))− dE,nαβ (Φ

n
β − Φn

β)


= 0. (26)

In the massively parallel code that we developed and which is documented in Guermond and Minev [33], the mass matrix
in inverted approximately by replacing (MC )−1 by (1 − (ML)−1(MC

− ML))(ML)−1.

5.3. Consistent mass matrix

To illustrate our point regarding the use of the consistent mass matrix in the finite volumes context, consider the semi-
discrete version of the one-dimensional transport equation ∂tφ + u∂xφ = 0 on a uniformly spaced mesh with constant
velocity u:

∂tφi +
u
2h
(φi+1 − φi−1) = 0. (27)

The Taylor analysis shows that the exact solution satisfies ∂tφ(xi)+ u
2h (φ(xi+1)− φ(xi−1))+ u h2

6 ∂xxxφ(xi)+O(h4) = 0. The
leading truncation error term is therefore dispersive. Using the consistentmassmatrix approach couples the time derivative
at neighboring cell centers and yields the discretization:

∂tφi +
1
6
(∂tφi−1 − 2∂tφi + ∂tφi+1)+

β

2h
(φi+1 − φi−1) = 0. (28)

The consistency analysis based on Taylor expansion shows that the exact solution satisfies ∂tφ(xi)+ 1
6 (∂tφ(xi−1)− 2∂tφ(xi)

+ ∂tφ(xi+1)) ≈ ∂tφ(xi) − β h2
6 ∂xxxφ(xi) + O(h4) so that the dispersive error term of (27) is offset in (28); hence (28) is a

better approximation than (27), see Guermond and Pasquetti [28, Prop 2.2]. The effect of the consistent mass matrix (24) is
to correct the dispersion error along the x and y directions.

5.4. Artificial compression

Finally the compression is realized exactly as in the finite element case. We set Φn
αβ :=

1
2 (Φ

n
α + Φn

β) and the corrected
artificial viscosity is defined by

dC,nαβ = dE,nαβ


1 − ccomp

[Φn
αβ(1 − Φn

αβ)]
+

|Φn
α − Φn

β |

+

, (29)

where ccomp is a user-defined non-dimensional parameter. The approximate level set solution is obtained by replacing dE,nαβ
by dC,nαβ in (26):


β∈I(Sα)

mαβ

Φn+1
β − Φn

β

τ
+


β∈I(Sα)


cαβ · (f (Φn

β)− f (Φn
α))− dC,nαβ (Φ

n
β − Φn

α)


= 0. (30)

In order to illustrate that the method is not too much sensitive to the choice of the parameters cE and ccomp, all the finite
volume computations reported in Sections 7–12 have been done with cE =

1
10 , and ccomp =

2
5 (see (25) and (29)).
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6. An extension of the method to preserve the maximum principle

The low-order method described in Section 4.1 preserves the discrete maximum principle locally; that is to say, given
the solution φn

h at time tn, the low-order solution at time tn+1 satisfies

min
j∈I(Si)

Φn
j =: Φmin

i ≤ Φn+1
i ≤ Φmax

i := max
j∈I(Si)

Φn
j ,

but there is no guarantee that the solution given by either (21) or (30) has this property. We describe in this section an
adaption of the Flux Corrected Transport (FCT) methodology from Boris and Book [34] and Zalesak [35] to the compression
method described in Section 4.3 and Section 5.4. We refer to Kuzmin et al. [36] for more details and to Guermond et al. [31]
for an example on the FCT method using continuous Galerkin finite elements.

For convenience we rewrite the low- and the high-order methods (16) and (21) (or (23) and (26) in the finite volume
context) as follows:

ML

ΦL

− Φn

τ


+ K(Φn)+ DLΦn

= 0, (31a)

MC

ΦH

− Φn

τ


+ K(Φn)+ DCΦn

= 0, (31b)

where ML and MC are the lumped and consistent mass matrices, respectively, K is the column vector with entries
j∈I(Si)

cij ·(f (Φn
j )− f (Φn

i )),D
L is the first-order viscositymatrix andDC is the high-order compressive viscositymatrix. The

entries of DL are dnij as defined in (15) (or (22) in the finite volume context), with the convention that dnii = −


j≠i d
n
ij. The

entries of DC are dC,nij as defined in (20) (or (29) in the finite volume context) with the convention that dC,nii = −


j≠i d
C,n
ij .

Note that both DL and DC are symmetric matrices. The high-order method can be rewritten as follows:

ML(ΦH
− ΦL) = (ML

− MC )(ΦH
− Φn)+ τ(DL

− DC )Φn. (32)

Note that for any i = 1, . . . ,N , we have


j(M
L
− M)ij = 0 by definition of the lumped mass matrix, and (DL

− DC )ii =

−


j≠i(D
L
− DC )ij, by definition of the diagonal terms in DL and DC . Therefore,

[(DL
− DC )Φn

]i =


j

(DL
− DC )ijΦ

n
j =


j≠i

(DL
− DC )ijΦ

n
j + (DL

− DC )iiΦ
n
i

=


j≠i

(DL
− DC )ij(Φ

n
j − Φn

i ) =


j

(DL
− DC )ij(Φ

n
j − Φn

i ),

and since DL
− DC is symmetric, the matrix with entries (DL

− DC )ij(Φ
n
j − Φn

i ) is skew-symmetric. Similarly,


j(M
L
−

M)ij(ΦH
j −Φn

j ) =


j(M
L
−M)ij(δΦj−δΦi), where δΦ := ΦH

−Φn, and again thematrixwith entries (ML
−M)ij(δΦj−δΦi)

is skew-symmetric. Let us then introduce the so-called flux correction matrix F with entries

fij := (ML
− M)ij(δΦj − δΦi)+ τ(DL

− DC )ij(Φ
n
j − Φn

i ).

The above arguments show that fij = −fji, i.e., F is skew-symmetric. Then the update for the high-order solution (32) can be
rewritten as

ΦH
i = ΦL

i + m−1
i


j∈Si

fij. (33)

This equality shows that the flux correctionmatrix improves the accuracy of the low-ordermethod, but it is also responsible
for the high-order solution to possibly jump out of bounds; i.e., the high-order solutionmay violate themaximum principle.
The idea behind FCT is to limit the flux correction when it induces a violation of the maximum principle. Following
Zalesak [35] (see Eq. (10)–(13) [35]) we introduce a symmetric flux limiter matrix α, with entries αij, and we compute
the high-order update as follows:

Φn+1
i = ΦL

i + m−1
i


j∈Si

αijfij, (34)

where the entries of the flux limiter matrix are computed as follows:

αij :=


min


R+

i , R
−

j


if fij ≥ 0

min

R−

i , R
+

j


otherwise,

(35a)
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where

R+

i :=

min

1,

Q+

i

P+

i


if P+

i ≠ 0

1 otherwise,
R−

i :=

min

1,

Q−

i

P−

i


if P−

i ≠ 0

1 otherwise,
(35b)

P+

i :=


j

max(0, fij), P−

i :=


j

min(0, fij), (35c)

Q+

i := mi(Φ
max
i − ΦL

i ), Q−

i := mi(Φ
min
i − ΦL

i ). (35d)

Remark 6.1 (Maximum Principle). Assume that ΦL satisfies the local discrete maximum principle; i.e., Φmin
i ≤ ΦL

i ≤ Φmax
i

for all i = 1, . . . ,N . Then the solution of (34) satisfies the local discrete maximum principle; i.e., Φmin
i ≤ Φn+1

i ≤ Φmax
i for

all i = 1, . . . ,N . We prove this statement by following Guermond et al. [31] (see also Kuzmin et al. [36, p. 182]). Assume
that P+

i ≠ 0, then using (35) we obtain

mi(Φ
n+1
i − ΦL

i ) =


j

αijfij ≤


j,fij≥0

αijfij =


j,fij≥0

min(R+

i , R
−

j )fij ≤


j,fij≥0

R+

i fij

≤
Q+

i

P+

i


j,fij≥0

fij =
Q+

i

P+

i


j∈Si

max(0, fij) = Q+

i = mi(Φ
max
i − ΦL

i );

therefore,Φn+1
i ≤ Φmax

i . If P+

i = 0, then

mi(Φ
n+1
i − ΦL

i ) ≤


j,fij≥0

R+

i fij =


j,fij≥0

fij = P+

i = 0,

and, provided ΦL
i ≤ Φmax

i , we infer that P+

i = 0 ≤ mi(Φ
max
i − ΦL

i ), which implies Φn+1
i ≤ Φmax

i . The lower bound
Φmin

i ≤ Φn+1
i is proven similarly. �

Remark 6.2 (Mass Conservation). The method (34) is mass conservative in the following sense:
Ω

φn
h(x) dx =


Ω

φ0
h(x) dx, ∀n ≥ 0.

To establish this property, consider the row sum of (34) and use the properties αij = αji and fij = −fji to see that:
i

mi(Φ
n+1
i − ΦL

i ) =


i


j∈Si

αijfij =


i,j

αijfij + αjifji =


i,j

αij(fij − fij) = 0. �

7. A one-dimensional validation

To directly illustrate the effectiveness of the entropy viscosity stabilization the one-dimensional linear transport
equation, ∂tφ + ∂xφ = 0, over the periodic domain (0, 1) is solved. Piecewise linear P1 finite elements and the strong
stability preserving SSPRK(3,3) version of the algorithm (21) (together with (15), (18) and (20)) are utilized. The initial data
is φ0(x) = 1 if 0.4 ≤ x ≤ 0.7 and φ0(x) = 0 otherwise. We choose the entropy to be E(φ) = − log(|φ(1 − φ)| + ϵ) with
ϵ = 10−14. The mesh is composed of 100 cells, i.e., 100 grid points. Three solutions are computed at T = 1, T = 10, and
T = 100 in each panel.

We show in the left panel of Fig. 1 the solutions obtained by using the first-order viscosity only, i.e., the scheme (15)–(16).
The method is monotonic but very diffusive; actually it is O(h

1
2 ) accurate in the L1-norm with this particular initial data.

The solution computed with the entropy viscosity is shown in the central panel, i.e., the scheme (18)–(19) with cE = 1. The
superiority of the entropy viscosity method over the first-order viscosity solution is clear. Note that, although the entropy
viscosity is mainly localized in the two regions where the graph of the solution goes from 0 to 1, the dissipation accumulates
in time and the graph of the approximate solution is eventually flattened. We show in the right panel of the figure the
solutions obtained by using the compression technique, i.e., the scheme (20)–(21) with ccomp = 1. The effects of the entropy
viscosity and the compression are evident.

8. A rotating disk in two dimensions

We now test the method on the linear transport equation ∂tφ + u · ∇φ = 0 using three numerical methods: the first
one uses second-order finite volumes on Cartesian meshes, the second one uses unstructured P1 finite elements, the third
one uses Q1 finite elements. The computational domain is the diskΩ = {x ∈ R2

| ∥x∥ℓ2 ≤ 1} and the velocity is the solid
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(a) First-order visc. (b) Entropy visc. (c) Entropy visc. + compression.

Fig. 1. Linear transport: exact and approximate solutions at T = 1, 10, 100 using 100 grid points.

rotation about the origin of angular velocity 2π , i.e., u = 2π(−y, x). The initial data is φ0(x) = 1 if ∥x − x0∥ℓ2 ≤ 0.25 with
x0 = ( 12 , 0) and φ0(x) = 0 otherwise. We choose the entropy to be E(φ) = − log(|φ(1 − φ)| + ϵ), ϵ = 10−14.

8.1. Finite volumes

We start with second-order finite volumes on a Cartesian gridwith the SSPRK(3,3) version of the algorithm (30) (together
with (22), (25), (29)). An important capability of a level set algorithm for conservative two-phase flow, as mentioned in
Olsson and Kreiss [5], is the demonstration of sustained duration conservation of area enclosed by the interface level set
for a normative test case. In order to demonstrate the long-term conservative properties of the compression method, we
use two error indicators introduced in Olsson and Kreiss [5], Enright et al. [2] to measure interface differences between the
exact solution φ and the approximate solution φh. These are the interface error defined in (36) and the area conservation
error defined in (37):

IErr(φh) =
1
L


Ω

H φ −
1
2


− H


φh −

1
2

 dx (36)

AErr(φh) =
1

Ω
H

φ −

1
2


dx


Ω

H

φ −

1
2


− H


φh −

1
2


dx
 . (37)

The quantity L is the measure of the interface level set {φ =
1
2 } (a length in 2D and a surface area in 3D) and H(·) is the

Heaviside function. We test the finite volume method by letting the initial data revolve through thirty two full revolutions.
The test was conducted for various discretization levels; the results are reported in Table 1. The average area conservation
error is plotted for each discretization level. The computations are done with fixed time step 1t = 3.25 × 10−4 and the
conservation of area error (37) was recorded every three hundred time steps. The average order of area convergence for
the finite volume method is seen to be 1.82; see Table 1. An analysis of the left panel in Table 1 shows that the drift in area
conservation error is substantial for h ≈ 2×10−2 and nears 15% over thirty revolutions. Conversely, for h ≈ 4.95×10−3 the
area difference varies by only about 1% over thirty revolutions and h ≈ 2.488 × 10−3 sees a variation in the area enclosed
by the interface of less than 0.3% over thirty turns.

A comparison of Tables 1, 3, and 4 exemplifies the strong similarities between the three computational approaches
examined; i.e., P1 finite elements Q1 finite elements, and finite volumes.

8.2. P1 finite elements

We now test the method with continuous piecewise linear finite elements on triangular Delaunay meshes and the
SSPRK(3,3) version of the algorithm (21) (together with (15), (18), (20)). We systematically set cE = 1 for the entropy
viscosity coefficient. We show in Table 2 convergence tests on various nonuniform meshes of characteristic size h =

0.1, 0.05, 0.025, 0.0125, 0.01. We give the relative L1-norm of the error at T = 1, i.e., after one revolution. The table
shows results without compression, ccomp = 0, and with compression, ccomp = 1. Note that for this problem the maximum
convergence order achievable is 1 since the solution has only bounded variation regularity.We observe that the convergence
order of the method with compression is close to 0.88 whereas it is close to 0.78 without compression. The difference is
small, but this test shows that the method with compression performs better over long time simulations. We show in Fig. 2
contour lines of the solution at T = 1 on a mesh composed of 76996 P1 finite elements; the typical meshsize is h = 0.01.
The contour lines shown are φ ∈ {0.1, 0.2, . . . , 0.9}. The left panel shows the first-order solution without compression; the
center panel shows the entropy-viscosity solution; the right panel shows the entropy-viscosity solution with compression.
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Table 1
Area conservation error vs. time (left) and average over 32 revolutions (right); Finite volumes.

Table 2
Convergence tests using P1 elements. L1-norm of error at T = 1.

h ccomp = 1 Order ccomp = 0 Order

1.00E−1 6.768E−1 7.612E−1
5.00E−2 3.704E−1 0.87 4.350E−1 0.81
2.50E−2 2.034E−1 0.87 2.529E−1 0.78
1.25E−2 1.142E−1 0.83 1.469E−1 0.78
1.00E−2 9.380E−2 0.88 1.230E−1 0.80

Table 3
Area conservation error vs. time (left) and average over 30 revolutions (right); P1 finite elements.

The effect of the compression is again clear when comparing the center and right panels. Finally we do the area conservation
test over 30 revolutions with CFL = 0.25. The area error was recorded at the end of every revolution. The results are shown
in Table 3. The convergence rate of the finite element method on AErr is between 1.5 and 2.2. The long time behavior of the
method is similar to that of the finite volume method.

8.3. Q1 finite elements

We test the FCT version of the method with continuous Q1 finite elements on quadrangles using again the SSPRK(3,3)
version of the algorithm (21) (together with (15), (18), (20)). The code is based on deal.ii, and is written in C++, see Bangerth
et al. [37] for details.

We show in Table 4 the convergence of the L1-norm of the error with respect to the mesh size after one revolution. We
also show in this table the behavior of interface error (36) and the area error (37) with respect to the mesh size.

We show in Fig. 3 contour lines of the solution at T = 1 on a mesh of mesh size h = 1 × 10−2. The contour lines are
φ ∈ {0.1, 0.2, . . . , 0.9}. The left panel shows the contour lines without compression, i.e., with ccomp = 0, and the right
panel shows the contour lines with compression, i.e., with ccomp = 1. The effects of the compression are evident. In the
right panel of the figure we show the graph of the solution along the cross section x = 0.5. In this figure we compare the
solution obtained by using the FCT method, i.e., (34), and that without FCT, i.e., (33). This figure effectively illustrates the
FCT method’s ability to produce a solution which is free of under-shoots and over-shoots.
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(a) cE = ∞, ccomp = 0. (b) cE = 1, ccomp = 0.

(c) cE = 1, ccomp = 1.

Fig. 2. 2D transport, solid rotation, P1 finite elements, effect of entropy viscosity and compression.
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(a) Without compression. (b) With compression. (c) Cross section x =
1
2 , with compression.

Fig. 3. (a) and (b) contour lines after one revolution using Q1 elements with the FCT method and h = 1 × 10−2 . (c) Cross section at x = 0.5 of the graph
of the solution using FCT (in dotted black) and without FCT (in solid red). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

9. A Zalesak disk problem in two dimensions

We now consider a test first proposed in Zalesak [35]. The initial data is the characteristic function of a disc of radius
r = 0.15 centered at the point x0 := (0.5, 0.75) with a thin rectangular volume removed; for this test case the removed
volume is


x = (x, y) ∈ R2

| |x − 0.5| < 0.025, y − 0.75 < 0.1125

. The initial data undergoes rigid circularmotion in the

vector field u = (−2π (y − 0.5) , 2π (x − 0.5)) so that the exact solution coincides with the initial data in unit time. The
interface arclength for this configuration is L = 1.46724 and the exact area is A = 5.756 × 10−2. For this problem the
reconstruction of the thin slit in the interface is of primary importance.
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Table 4
Convergence tests using Q1 elements with the FCT method; T = 1. L1-norm of the error (left); interface error
(36) (center); area error (37) (right).

h L1-norm Order IErr Order AErr Order

1.00E−1 8.174E−02 4.695E−2 1.487E−1
5.00E−2 4.676E−02 0.80 1.889E−2 1.31 5.493E−2 1.43
2.50E−2 2.697E−02 0.79 7.311E−3 1.36 2.245E−2 1.29
1.25E−2 1.543E−02 0.80 2.810E−3 1.37 7.761E−3 1.53

Table 5
Zalesak’s disc with finite volumes: level set {φ =

1
2 } after one revolution (left); level set {φ =

1
2 } after two revolutions

(center); interface error (36) after one and two revolutions (right).

Table 6
Zalesak’s disk with FCT and Q1 uniform meshes. (a) L1-norm of error; (b) Interface error after one and two
revolutions; (c) Area error after one and two revolutions.

(a) L1-norm of error (b) IErr (c) AErr

h 1 rev. 2 rev. 1 rev. 2 rev. 1 rev. 2 rev.

2.50E−2 1.439E−2 1.607E−2 1.160E−2 1.256E−2 9.510E−2 9.239E−2
1.25E−2 8.401E−3 9.482E−3 4.259E−3 4.446E−3 2.021E−2 7.412E−3
6.25E−3 4.768E−3 5.448E−3 1.750E−3 2.010E−3 1.527E−3 4.412E−3

9.1. Finite volumes

We start the tests with the finite volume method. The interface error, defined by (36), is reported in Table 5 for various
discretizations after one and two revolutions. The level sets {φ =

1
2 } for three different mesh resolutions after one and

two revolutions are shown in the left and center panel of Table 5. The computations were carried out with various mesh
discretizations: h = 1×10−2 (green dashed), h = 4.950×10−3 (blue dotted), and h = 2.488×10−3 (black dashed–dotted).

9.2. P1 finite elements

We report in this section results for the Zalesak test using continuous P1 finite elements. Fig. 4(a) and (b) depict the level
sets {φ =

1
2 } on a Delaunay mesh with characteristic mesh size h ≈ 0.01 after one and ten revolutions. This test shows that

the method performs well over long time integration on moderately refined meshes. Fig. 4(c) shows the level sets {φ =
1
2 }

after one revolution for four meshes h ≈ 0.025, h ≈ 0.0125, h ≈ 0.01, and h ≈ 0.00625.

9.3. Q1 finite elements

We continue with the Zalesak problem using Q1 finite elements limited with the FCT method. Table 6 gives the L1-norm
of the error, the interface error, and the area error for the three discretizations, h = 2.5 × 10−2, h = 1.25 × 10−2 and
h = 6.25 × 10−3, after one and two revolutions. The level sets {φ =

1
2 } for the three meshes after one revolution and two

revolutions are shown in Fig. 5(a) and (b).

10. A periodic swirling flow problem in two dimensions

In this section a transport problem is computed with the divergence free velocity u given by:

u =

−2 sin(πy) cos(πy) sin2(πx) cos(π t/T ), 2 sin(πx) cos(πx) sin2(πy) cos(π t/T )


. (38)

The initial data for the problem is the characteristic function of a disk of radius r = 0.15 with initial position (0.5, 0.75):
φ0(x) = 1 if ∥x − (0.5, 0.75) ∥ℓ2 ≤ 0.15 and φ0(x) = 0 otherwise. The solution is periodic and modulated in time by
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(a) 1 rev., ccomp = 1, h ≈ 0.01. (b) 10 rev., ccomp = 1, h ≈ 0.01.

(c) 1 rev., ccomp = 1, 4 meshes.

Fig. 4. Zalezak disk; P1 finite elements on Delaunay grids; Level set {φ =
1
2 }. Panel 4(a)–(b): 1 and 10 revolutions, dark blue dashes, h ≈ 0.01, 38813

nodes. Panel 4(c): 1 revolution, Black dots, h ≈ 0.025, 6532 nodes; green dots–dashes, h ≈ 0.0125, 24916 nodes; dark blue dashes, h ≈ 0.01, 38813
nodes; brown long dots, h ≈ 0.00625, 98648 nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

(a) One revolution. (b) Two revolution.

Fig. 5. Zalesak disk; FCT and Q1 finite elements. Fig. 5(a)–(b) One and two revolutions. Are shown the exact solution (black) and the numerical solution
with h = 2.5 × 10−2 (red), h = 1.25 × 10−3 (blue), and h = 6.25 × 10−3 (green). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

the parameter T . The circular initial data is twisted into a thin vortex and returns to its initial configuration in time T ; as
the period T is increased the ability of the method to capture thin filaments is tested. This test uses T = 8 to allow for
comparison with Enright et al. [2]. As a consequence of the choice T = 8 the winding of the initial data forms very thin and
elongated structures in the tail which are difficult to resolve.

10.1. Finite volumes

Fig. 6 shows half of a period to the periodic swirl problem, from t = 0 to t = 4,with themesh resolution h = 4.95×10−3;
the process then proceeds in reverse and the exact solution at the final time t = 8 coincides with the initial data.
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Fig. 6. Periodic vortex; Finite volumes; Level set {φ =
1
2 }; t = 0, 1, 2, 3, 4; h = 4.95 × 10−3 .

Fig. 7. Periodic vortex at times (from left to right) t = 0, 1, 2, 3, and 4 using P1 elements with h ≈ 3.125 × 10−3 .
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Fig. 8. Periodic vortex at times (from left to right) t = 0, 1, 2, 3, 4 using Q1 with the FCT method and h = 2.5 × 10−3 .

At low discrete resolutions the tail disassociates and forms isolated structures; when the flow is reversed this leads to
area loss.Measuring the area loss provides ametric for the ability of themethod to capture thin structures. Table 7 gives both
the area conservation error and the interface error as defined in (36) and (37), respectively, for four different meshes. The
left panel shows the interface level set for threemeshes: h = 1×10−2 (red), h = 4.950×10−3 (blue), and h = 2.488×10−3

(green) while the exact solution is shown in black. The results are qualitatively similar to those of particle level set methods
as reported in Enright et al. [2].

10.2. P1 finite elements

We consider again the vortex in this section, but this timewe use continuous P1 finite elements with ccomp = cE = 1.We
show in Fig. 7 the level set {φ =

1
2 } at t = 0, 1, 2, 3, 4 on a Delaunay mesh of characteristic size h ≈ 0.003125 composed

of 118851 P2 degrees of freedoms. The left panel in Table 8 shows the level set {φ =
1
2 } at T = 8 for three different meshes

of mesh size h ≈ 0.01, h ≈ 0.00625 and h ≈ 0.003125. The L1-norm of the error at T = 8 and the quantities IErr, AErr for
these three meshes are reported in the table.

10.3. Q1 finite elements

In this section we solve the periodic swirl problem with Q1 finite elements, on uniform grids, and also utilize the
flux-corrected transport modification. The maximum principle is guaranteed by the FCT technique. In Fig. 8, we consider
h = 2.5 × 10−3 and show the solution at times t = 0, 1, 2, 3, and 4. In Table 9 we show the L1-norm of the error at T = 8
and the quantities IErr, AErr for these threemeshes after one cycle. The left panel in Table 9 shows the exact and the numerical
solutions at t = 8 for different refinements.

11. Multiphase simulations

In this section we use the maximum principle preserving method with artificial compression presented in Section 6
along with an incompressible Navier–Stokes solver to simulate two-phase flow; the method is documented in Guermond
and Salgado [38].
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Table 7
Periodic vortex with finite volumes, one period.

Table 8
Periodic vortex in 2D with P1 finite elements. Level set {φ =

1
2 } in the left panel at T = 8: h ≈ 0.01 red line;

h ≈ 0.00625, dark blue line; h ≈ 0.003125, green line. The table on the right shows the L1-norm of the error and
the quantities IErr , AErr after one cycle.

Table 9
Periodic vortex in 2D with Q1 finite elements with FCT. Level set {φ =

1
2 } in the left panel at T = 8: h = 0.01

red line; h ≈ 0.005, dark blue line; h ≈ 0.0025, green line. The table on the right shows the L1-norm of the error
and the quantities IErr , AErr after one cycle.

11.1. Overview of the methodology

The velocity and the pressure are computed using the method from [38], and the density is computed by solving the
transport equation for the level set. The density and the viscosity fields are reconstructed from the level set function by
employing the linear reconstruction:

ρ = ρwaterHϵ(φ)+ ρair (1 − Hϵ(φ)) , (39a)
µ = µwaterHϵ(φ)+ µair (1 − Hϵ(φ)) , (39b)

where φ ∈ [0, 1] is the level set function andHϵ is a regularized Heaviside function. In particular, the set {φ = 1} represents
water and the set {φ = 0} represents air. Ideally, the transition from 0 to 1 should bemaintained as sharply as possible since
values of φ in the range (0, 1) give non-physical values for the reconstructed fields. This observation leads naturally to the
definition of the regularized Heaviside function:

Hϵ(φ) =


1 if 2φ − 1 > ϵ
0 if 2φ − 1 < −ϵ,
2φ − 1 + ϵ

2ϵ
otherwise.

(40)

All the experiments reported in this section are done with quadrangular meshes and ϵ = h where h = 1x = 1y is the cell
size. The velocity is approximated using Q2 elements and the pressure is approximated using Q1 elements. Once the density
and the viscosity are reconstructed from the level set function, the Navier–Stokes equations are solved to obtain the velocity
field. The velocity field is then used to transport the level set. This process is repeated until the final time is reached.
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Fig. 9. Dam breaking problem at different times; ccomp = 1, cE = 1. The times shown are (from left to right and top to bottom) t =

0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6 and 4.8.

11.2. Two-dimensional dam breaking

We consider the two-dimensional dam breaking problem on the domain D = [0, 1] × [0, 0.5]. The initial data consists
of water occupying the domain W = {(x, y) | |x − 0.5| < 0.15, y < 0.35} and air occupying the domain A = D \ W . Both
water and air are at rest at the initial time. At t = 0 we let the system evolve under the action of gravity; i.e., the column of
water collapses under its own weight and spreads over the tank. The material parameters are given by

ρwater = 1000, ρair = 1, µwater = 1, µair = 1.8 × 10−2, (41)

and the gravity coefficient is g = −1. We impose u = 0 at all the boundaries; i.e., we consider the no-slip boundary
condition. The mesh size of the spatial discretization used is h = 1.953 × 10−3. The interface level set {φ = 0.5} is shown
in Fig. 9 for various times.

11.3. Two-dimensional tank filling

The tank-filling test problem simulates water entering a tank filled with air. The domain is D = [0, 0.4] × [0, 0.4]. The
initial data consists of water occupying the domain W = {(x, y) | x < 0.01, |y − 0.325| < 0.025} and air occupying the
domain A = D \ W . Both water and air are at rest at the initial time. We use the same material parameters and the same
gravity coefficient as in the previous section. The boundary conditions on the velocity are:

u = uleft :=


(0.25, 0), ∀x = 0, y ∈ [0.3, 0.35],
(0, 0), ∀x = 0, y ∉ [0.3, 0.35],

u = utop :=


(0, 0.25), ∀x ∈ [0.3, 0.35], y = 0.4,
(0, 0), ∀x ∉ [0.3, 0.35], y = 0.4,

u =: uright = 0 if x = 0.4 and u =: ubottom = 0 if y = 0. The boundary condition for the level set is: φ = 1,∀x = 0, y ∈

[0.3, 0.35]; i.e., water is introduced. The mesh size of the spatial discretization used is h = 1.562×10−3. The interface level
set {φ = 0.5} is shown, for various times, in Fig. 10.

12. Three-dimensional tests

This section illustrates the compression technique in three space dimensions. The computations are done in parallel using
the massively parallel second-order finite volume code described in Guermond and Minev [33]. The Brazos computational
cluster at Texas A&M University and the Beacon computational cluster at the University of Tennessee were used for these
computations.
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Fig. 10. Tank filling problem at different times; ccomp = 1, cE = 1. The times shown are (from left to right and top to bottom) t =

0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4 and 4.6.

Table 10
Zalesak’s sphere; one revolution.

h AErr IErr

1.00E−2 4.60E−2 3.22E−3
5.00E−3 1.32E−2 1.17E−3
3.33E−3 5.06E−3 5.47E−4
2.50E−3 3.29E−3 4.09E−4

12.1. Zalesak’s problem in three dimensions

This section revisits the Zalesak problem. The Zalesak sphere initial data is rotated by the vector field u =

(−2π (y − 0.5) , 2π (x − 0.5) , 0). The initial data is the characteristic function of a sphere with radius r = 0.15 centered
at the point (0.5, 0.75, 0.75) with a thin rectangular volume removed; for this test case the removed volume is R = {x =

(x, y, z) | |x−0.5| < 0.025, y−0.75 < 0.1125, |z| < 1}. The surface area of the level set {φ =
1
2 } is L = 2.3058848×10−1.

The exact solution coincides with the initial data in unit time.
The results of the parallel simulations are compared at T = 1 on various meshes, and results with, and without,

compression are presented for comparison. Note again that these results have beenproducedby correcting themass lumping
effect to limit dispersion effects as explained in Section 5. The results are shown in Fig. 11 on three meshes: 503, 1003 and
2003. The effects of the compression are visible when one compares the panels in the top rowwith the panels in the bottom
row in Fig. 11. The area and interface error measures are reported in Table 10.

12.2. LeVeque test in three dimensions

We conclude the three dimensional tests by a problem proposed in Leveque [39]. The ambient, periodic vector field
u = (u, v, w) is given by

u(x, y, z) = 2 sin(πx)2 sin(2πy) sin(2πz) cos(π t/T )

v(x, y, z) = − sin(2πx) sin(πy)2 sin(2πz) cos(π t/T ) (42)

w(x, y, z) = − sin(2πx) sin(2πy) sin(πz)2 cos(π t/T ).



466 J.-L. Guermond et al. / Journal of Computational and Applied Mathematics 321 (2017) 448–468

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

1.0

0.8

0.6

0.4

0.2

1.0.0 0.2 0.4 0.6
X-Axis

0.8 1.0

(a) 503 . (b) 1003 . (c) 2003 .

Fig. 11. Zalesak’s problem, T = 1.; (Top) with compression; (bottom) without compression.
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Fig. 12. 3D LeVeque test, h = 1 × 10−2 , t = 0 to t = 3.

This divergence-free vector field combines deformations in the x − y and x − z planes. The initial data is the characteristic
function of a sphere with radius r = 0.15 centered at the point (0.35, 0.35, 0.35), and the time modulation was chosen
as T = 3. The solution was computed using several discretizations of the unit cube, including the classical benchmark
discretization of 100 × 100 × 100. The surface area, used to measure interface error, is L ≈ 2.827 × 10−3.

The interface level set entrained in the velocity field (41), develops very thin regions to the point of under-resolution,
before returning to its initial position. A basis for comparison can be found in the works of Enright et al. [2], Ianniello and
Di Mascio [3] in addition to Luo et al. [40], Wang et al. [41,42], which were suggested in the review process, although it does
not appear in Chiu and Lin [6].

A time progression of the {φ =
1
2 } iso-surface interface for h = 1 × 10−2 is shown in Fig. 12(a)–(k). Area conservation

error and interface error results are reported in Table 11(a). A comparison of the initial versus final time appears in panel
Table 11(b) and (c). All these computations have been done for a CFL number of 0.75 without the use of the flux-corrected
transport (FCT) described in Section 6. The absence of flux correction leads to slight overshoots interface iso-surface for
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Table 11
3D LeVeque test, one period.

t = 3. The overall results are similar to those achieved by other methods; see for instance Enright et al. [2], Ianniello and Di
Mascio [3], Luo et al. [40], Wang et al. [41,42].

13. Concluding remarks

In conclusion we have introduced a novel anti-diffusion method, based on entropy production, for use with the level set
method. We have detailed the implementation of the method with linear continuous finite elements and finite volumes,
andwe have given explicit values for the constants in themethods which were used for all computations. It has been shown
that the method is conservative and suitable for use on unstructured meshes; it can also be made (formally) second-order
accurate in space and maximum principle preserving. Computational tests of the approach using well-known benchmark
problems have been conducted in the context of both finite volumes and finite elements in one, two and three dimensions.
The method proposed in the paper has recently been used to solve challenging magneto-hydrodynamics problems like the
metal pad roll instability and the Tayler instability in liquid metal batteries, Cappanera et al. [43], Herreman et al. [44].

The authors would like to acknowledge the generous support of computational time on the Brazos cluster at Texas A&M
and on the University of Tennessee’s Beacon cluster located at the Joint Institute for Computational Sciences.
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