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Abstract We present a conservative Arbitrary Lagrangian Eulerian method for solv-
ing nonlinear hyperbolic systems. The key characteristics of the method is that it
preserves all the convex invariants of the hyperbolic system in question. The method
is explicit in time, uses continuous finite elements and is first-order accurate in space
and high-order in time. The stability of the method is obtained by introducing an
artificial viscosity that is unambiguously defined irrespective of the mesh geome-
try/anisotropy and does not depend on any ad hoc parameter.

1 Introduction

This paper is the expanded version of a talk given at the University of Houston
in February 2016 at a workshop honoring the 70th birthday of Olivier Pironneau
and his long lasting contributions to Numerical Analysis and Scientific Computing,
[19]. The topic of paper is in the continuation of the groundbreaking work done by
Olivier Pironneau on the analysis of the method of characteristics for solving the
transport equation, [18]. More specifically, our objective is to build a finite element
approximation to the entropy solution of the following hyperbolic system written in
conservative form:
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∂tuuu+∇· fff (uuu) = 0, for(xxx, t) ∈ Rd×R+.

uuu(xxx,0) = uuu0(xxx), forxxx ∈ Rd ,
(1)

where the dependent variable uuu is Rm-valued and the flux fff is Rm×d-valued. We
investigate in this paper an approximation technique using an Arbitrary Lagrangian
Eulerian (ALE) formulation with continuous finite elements and explicit time step-
ping on non-uniform meshes.

The paper is organized as follows. We introduce some notation and recall im-
portant properties about the one-dimensional Riemann problem in §2. We introduce
notation relative to mesh motion and Lagrangian mappings in §3. The results estab-
lished in §2 and §3 are standard and will be invoked in §4 and §5. It is proved in
§5 that under the appropriate CFL condition the algorithm is conservative, satisfies
a local entropy inequality for every admissible entropy pair and preserves invari-
ant domains. The main results of this section are Theorem 1 and Theorem 2. The
SSP RK3 extension of the method is tested numerically in §6 on scalar conservation
equations and on the compressible Euler equations. The paper essentially repro-
duces the arguments developed in Guermond et al. [13]. We refer the reader to [13]
for details, proofs and extensions of the material presented herein.

2 Riemann problem and invariant domain

We recall in this section elementary properties of Riemann problems that will be
used in the paper.

2.1 Notation and boundary conditions

The dependent variable uuu in (1) is considered as a column vector uuu = (u1, . . . ,um)
T.

The flux is a matrix with entries fi j(uuu), 1 ≤ i ≤ m, 1 ≤ j ≤ d. We denote by fff i
the row vector ( fi1, . . . , fid), i ∈ {1:m}. We denote by ∇· fff the column vector with
entries (∇· fff )i = ∑1≤ j≤d ∂x j fi j. For any nnn = (n1 . . . ,nd)

T ∈ Rd , we denote fff (uuu)·nnn
the column vector with entries fff i(uuu)·nnn = ∑1≤l≤d nl fil(uuu), where i ∈ {1:m}. Given
two vector fields, say uuu ∈ Rm and vvv ∈ Rd , we define uuu⊗ vvv to be the m×d matrix
with entries uiv j, i ∈ {1:m}, j ∈ {1:d}. We also define ∇·(uuu⊗ vvv) to be the column
vector with entries ∇·(uuu⊗ vvv)i = ∑

d
j=1 ∂ j(uiv j). The unit sphere in Rd centered at 0

is denoted by Sd−1(000,1).
To simplify questions regarding boundary conditions, we assume that either the

initial data is constant outside a compact set and we solve the Cauchy problem in
Rd or we use periodic boundary conditions.
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2.2 One-dimensional Riemann problem

We are not going to try to define weak solutions to (1), but instead we assume that
there is a clear notion for the solution of the Riemann problem. To stay general
we introduce a generic hyperbolic flux hhh and we say that (η ,qqq) is an entropy pair
associated with the flux hhh if η is convex and the following identity holds:

∂vk(qqq(vvv)·nnn) =
m

∑
i=1

∂viη(vvv)∂vk(hhhi(vvv)·nnn), ∀k ∈ {1:m}, ∀nnn ∈ Sd−1(000,1). (2)

We refer to Chen [4, §2] for more details on convex entropies and symmetrization. In
the rest of the paper we assume that there exists a nonempty admissible set Ahhh ⊂Rm

such that the following one-dimensional Riemann problem

∂tuuu+∂x(hhh(uuu)·nnn) = 0, (x, t) ∈ R×R+, uuu(x,0) =

{
uuuL, if x < 0
uuuR, if x > 0,

(3)

has a unique entropy satisfying solution for any pair of states (uuuL,uuuR)∈Ahhh×Ahhh and
any unit vector nnn ∈ Sd−1(000,1). We henceforth denote the solution to this problem
by uuu(hhh,nnn,uuuL,uuuR). We also say that uuu is an entropy satisfying solution of (3) if the
following holds in the distribution sense for any entropy pair (η ,qqq):

∂tη(uuu)+∂x(qqq(uuu)·nnn)≤ 0. (4)

Since it is unrealistic to expect a general theory of the Riemann problem (3) for
arbitrary nonlinear hyperbolic systems with large data, we instead make the follow-
ing assumption: The unique solution of (3) has a finite speed of propagation for any
nnn and any (uuuL,uuuR) ∈Ahhh×Ahhh, i.e., there are λL(hhh,nnn,uuuL,uuuR)≤ λR(hhh,nnn,uuuL,uuuR) s.t.

uuu(x, t) =

{
uuuL, if x≤ tλL(hhh,nnn,uuuL,uuuR)

uuuR, if x≥ tλR(hhh,nnn,uuuL,uuuR).
(5)

This assumption is known to hold for small data when the system is strictly hyper-
bolic with smooth flux and all the characteristic fields are either genuinely nonlinear
or linearly degenerate, see e.g., Dafermos [6, Thm. 9.5.1]. The sector λLt < x < λRt,
0 < t, is henceforth referred to as the Riemann fan. The maximum wave speed in
the Riemann fan is λmax := λmax(hhh,nnn,uuuL,uuuR) := max(|λL|, |λR|).

2.3 Invariant sets and domains

The following elementary result is a well-known and important consequence of the
Riemann fan assumption (5):
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Lemma 1. Let hhh be a hyperbolic flux over the admissible set Ahhh and satisfying
the finite wave speed assumption (5). Let vvv(hhh,nnn,vvvL,vvvR) be the unique solution to
the problem ∂tvvv+ ∂x(hhh(vvv)·nnn) = 0 with initial data vvvL,vvvR ∈ Ahhh. Let (η ,qqq) be an
entropy pair associated with the flux hhh. Assume that t λmax(hhh,nnn,vvvL,vvvR)≤ 1

2 and let

vvv(t,hhh,nnn,vvvL,vvvR) :=
∫ 1

2
− 1

2
vvv(hhh,nnn,vvvL,vvvR)(x, t)dxxx, then

vvv(t,hhh,nnn,vvvL,vvvR) =
1
2 (vvvL + vvvR)− t

(
hhh(vvvR)·nnn−hhh(vvvL)·nnn

)
. (6)

η(vvv(t,hhh,nnn,vvvL,vvvR))≤ 1
2 (η(vvvL)+η(vvvR))− t(qqq(vvvR)·nnn−qqq(vvvL)·nnn). (7)

We now introduce notions of invariant sets that are slightly different from what
is usually done in the literature (see e.g., in Chueh et al. [5], Hoff [15], Frid [9].)

Definition 1 (Invariant set). Let hhh be a hyperbolic flux over the admissible set Ahhh
and satisfying the finite wave speed assumption (5). A convex set A ⊂Ahhh ⊂ Rm is
said to be invariant for the problem ∂tvvv+∇·hhh(vvv) = 0 if for any pair (vvvL,vvvR) ∈ A×A,
any unit vector nnn ∈ Sd−1(000,1), the average of the entropy solution of the Riemann
problem ∂tvvv+∇·(hhh(vvv)·nnn)= 0 over the Riemann fan 1

t(λR−λL)

∫ λRt
λLt vvv(hhh,nnn,vvvL,vvvR)(x, t)dxxx,

remains in A for all t > 0.

Remark 1. The above definition implies that 1
I
∫

I vvv(hhh,nnn,vvvL,vvvR)(x, t)dxxx ∈ A for any
t > 0 and any interval I such that (λLt,λRt)⊂ I.

Lemma 2 (Translation). Let W ∈ Rd and let ggg(vvv) := fff (vvv)− vvv⊗W.

(i) The two problems: ∂tuuu+∇· fff (uuu) = 0 and ∂tvvv+∇·ggg(vvv) = 0 have the same ad-
missible sets and the same invariant sets.

(ii) (η(uuu),qqq(uuu)) is an entropy pair for the flux fff if and only if (η(vvv),qqq(vvv)−
η(vvv)W) is an entropy pair for the flux ggg.

3 Geometric preliminaries

In this section we introduce some notation and recall well known results about La-
grangian mappings. The key results, which will be invoked in §4 and §5, are lem-
mas 3 and 4. The reader who is familiar with these notions is invited to skip this
section and to go directly to §4.

3.1 Jacobian of the coordinate transformation

Let ΦΦΦ : Rd×R+ −→Rd be a uniformly Lipschitz mapping, and assume that there is
t∗ > 0 such that the mapping ΦΦΦ t : Rd 3 ξξξ 7−→ ΦΦΦ t(ξξξ ) := ΦΦΦ(ξξξ , t) ∈ Rd is invertible
for all t ∈ [0, t∗]. Let vvvA : Rd×[0, t∗]−→Rd be the vector field implicitly defined by
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vvvA(ΦΦΦ(ξξξ , t), t) := ∂tΦΦΦ(ξξξ , t), ∀(ξξξ , t) ∈ R×[0, t∗]. (8)

This definition makes sense owing to the inversibility assumption on the mapping
ΦΦΦ t ; actually (8) is equivalent to vvvA(xxx, t) := ∂tΦΦΦ(ΦΦΦ−1

t (xxx), t) for any t ∈ [0, t∗].

Lemma 3 (Liouville’s formula). Let J(ξξξ , t) = ∇ξξξ ΦΦΦ(ξξξ , t) be the Jacobian matrix
of ΦΦΦ , then

∂t det(J(ξξξ , t)) = (∇·vvvA)(ΦΦΦ(ξξξ , t), t)det(J(ξξξ , t)). (9)

Note that the expression (∇·vvvA)(ΦΦΦ(ξξξ , t), t) in (9) should not be confused with
∇·(vvvA(ΦΦΦ(ξξξ , t), t)).

3.2 Arbitrary Lagrangian Eulerian formulation

The following result is the main motivation for the arbitrary Lagrangian Eulerian
formulation that we are going to use in the paper.

Lemma 4. The following identity holds in the distribution sense (in time) over
the interval [0, t∗] for every function ψ ∈ C0

0(Rd ;R) (with the notation ϕ(xxx, t) :=
ψ(ΦΦΦ−1

t (xxx))):

∂t

∫
Rd

uuu(xxx, t)ϕ(xxx, t)dxxx =
∫
Rd

∇·(uuu⊗ vvvA− fff (uuu))ϕ(xxx, t)dxxx. (10)

Proof. Using the chain rule and Lemma 3, we have

∂t

∫
Rd

uuu(xxx, t)ϕ(xxx, t)dxxx = ∂t

∫
Rd

uuu(ΦΦΦ t(ξξξ ), t)det(J(ξξξ , t))ψ(ξξξ )dξξξ

=
∫
Rd

{
∂t(uuu(ΦΦΦ t(ξξξ ), t))det(J(ξξξ , t))+uuu(ΦΦΦ t(ξξξ ), t)∂t(det(J(ξξξ , t)))

}
ψ(ξξξ )dξξξ

=
∫
Rd

{
(∂tuuu)(ΦΦΦ t(ξξξ ), t)+∂tΦΦΦ(ξξξ , t)·(∇uuu)(ΦΦΦ t(ξξξ ), t)

}
det(J(ξξξ , t))ψ(ξξξ )dξξξ

+
∫
Rd

uuu(ΦΦΦ t(ξξξ ), t)(∇·vvvA)(ΦΦΦ t(ξξξ ), t)det(J(ξξξ , t))ψ(ξξξ )dξξξ .

Then using (1) and the definition of the vector field vvvA yields

∂t

∫
Rd

uuu(xxx, t)ϕ(xxx, t)dxxx =
∫
Rd
−∇· fff (uuu)(ΦΦΦ t(ξξξ ), t)ψ(ξξξ )det(J(ξξξ , t))dξξξ

+
∫
Rd

{
vvvA(ΦΦΦ t(ξξξ ), t)·(∇uuu)(ΦΦΦ t(ξξξ ), t)+(∇·vvvA)(ΦΦΦ t(ξξξ ), t)uuu(ΦΦΦ t(ξξξ ), t)

}
ψ(ξξξ )det(J(ξξξ , t))dξξξ

=
∫
Rd

{
−∇· fff (uuu)(ΦΦΦ t(ξξξ ), t)+∇·(uuu⊗ vvvA)(ΦΦΦ t(ξξξ ), t)

}
ψ(ξξξ )det(J(ξξξ , t))dξξξ .

We conclude by making the change of variable xxx = ΦΦΦ(ξξξ , t). ut
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We now state a result regarding the notion of entropy solution in the ALE frame-
work. The proof of this result is similar to that of Lemma 4.

Lemma 5. Let (η ,qqq) be an entropy pair for (1). The following inequality holds
in the distribution sense (in time) over the interval [0, t∗] for every non-negative
function ψ ∈C0

0(Rd ;R+) (with the notation ϕ(xxx, t) := ψ(ΦΦΦ−1
t (xxx))):

∂t

∫
Rd

η(uuu(xxx, t))ϕ(xxx, t)dxxx≤
∫
Rd

∇·(η(uuu)vvvA−qqq(uuu))ϕ(xxx, t)dxxx. (11)

4 The Arbitrary Lagrangian Eulerian algorithm

We describe in this section the ALE algorithm to approximate the solution of (1).
We use continuous finite elements and explicit time stepping. We use two different
discrete settings: one for the mesh motion and one for the approximation of (1).

4.1 Geometric finite elements and mesh

Let (T 0
h )h>0 be a shape-regular sequence of matching meshes. The symbol 0 in T 0

h
refers to the initial configuration of the meshes. The meshes will deform over time,
in a way that has yet to be defined, and we are going to use the symbol n to say that
T n

h is the mesh at time tn for a given h> 0. We assume that the elements in the mesh
cells are generated from a finite number of reference elements denoted K̂1, . . . , K̂ϖ .
For instance, T 0

h could be composed of a combination of triangles and parallelo-
grams in two space dimensions (ϖ = 2 in this case); the mesh T 0

h could also be
composed of a combination of tetrahedra, parallelepipeds, and triangular prisms in
three space dimensions (ϖ = 3 in this case). The diffeomorphism mapping K̂r to an
arbitrary element K ∈ T n

h is denoted T n
K : K̂r −→ K and its Jacobian matrix is de-

noted Jn
K , 1≤ r ≤ ϖ . We now introduce a set of reference Lagrange finite elements

{(K̂r, P̂
geo
r , Σ̂

geo
r )}1≤r≤ϖ (the index r ∈ {1:ϖ} will be omitted in the rest of the pa-

per to alleviate the notation). Letting ngeo
sh := dim P̂geo, we denote by {âaai}i∈{1: ngeo

sh }

and {θ̂ geo
i }i∈{1: ngeo

sh }
the Lagrange nodes of K̂ and the associated Lagrange shape

functions.
The unique purpose of the geometric reference element {(K̂, P̂geo, Σ̂ geo) is to

construct the geometric transformation T n
K . Let {aaan

i }i∈{1: Igeo} be the collection of
all the Lagrange nodes in the mesh T n

h . The Lagrange nodes are organized in cells
by means of the geometric connectivity array jgeo : T n

h ×{1:ngeo
sh } −→ {1: Igeo} (as-

sumed to be independent of the time index n). Given a mesh cell K ∈ T n
h , the con-

nectivity array is defined such that {aaan
jgeo(i,K)}i∈{1: ngeo

sh }
is the set of the Lagrange

nodes describing Kn. More precisely, upon defining the geometric transformation
T n

K : K̂ −→ K at time tn by
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T n
K (x̂xx) = ∑

i∈{1: ngeo
sh }

aaan
jgeo(i,K)θ̂

geo
i (x̂xx) (12)

we have K := T n
K (K̂). In other words the geometric transformation is fully described

by the motion of geometric Lagrange nodes. Recall that constructing the Jacobian
matrix Jn

K from (12) is an elementary operation for any finite element code.

4.2 Approximating finite elements

We now introduce a set of reference finite elements {(K̂r, P̂r, Σ̂r)}1≤r≤ϖ which we
are going to use to construct an approximate solution to (1) (the index r ∈ {1:ϖ}
will be omitted in the rest of the paper to alleviate the notation). The shape func-
tions on the reference element are denoted {θ̂i}i∈{1: nsh}. We assume that the basis
{θ̂i}i∈{1: nsh} has the following key properties:

θ̂i(xxx)≥ 0, ∑
i∈{1: nsh}

θ̂i(x̂xx) = 1, ∀x̂xx ∈ K̂. (13)

These properties hold true for linear Lagrange elements and for Bernstein-Bezier
finite elements, see e.g., Lai and Schumaker [16, Chap. 2], Ainsworth [1].

Given the mesh T n
h , we denote by Dn the computational domain generated by

T n
h and we define the scalar-valued space

P(T n
h ) := {v ∈ C 0(Dn;R) | v|K◦T n

K ∈ P̂, ∀K ∈T n
h }, (14)

We also introduce the vector-valued spaces

PPPd(T
n

h ) := [P(T n
h )]d , and PPPm(T

n
h ) := [P(T n

h )]m. (15)

We are going to approximate the ALE velocity in PPPd(T
n

h ) and the solution of (1) in
PPPm(T n

h ). The global shape functions in P(T n
h ) are denoted by {ψn

i }i∈{1: I}. Recall
that these functions form a basis of P(T n

h ). Let j : T n
h ×{1:nsh} −→ {1: I} be the

connectivity array, assumed to be independent of n. This array is defined such that

ψ
n
j(i,K)(xxx) = θ̂i((T n

K )
−1(xxx)), ∀i ∈ {1:nsh}, ∀K ∈T n

h . (16)

This definition together with (13) implies that

ψ
n
i (xxx)≥ 0, ∑

i∈{1: I}
ψ

n
i (xxx) = 1, ∀xxx ∈ Rd . (17)

We denote by Sn
i the support of ψn

i and by |Sn
i | the measure of Si, i ∈ {1: I}. We

also define Sn
i j := Sn

i ∩ Sn
j the intersection of the two supports Sn

i and Sn
j . Let E be

a union of cells in T n
h ; we define I (E) := { j ∈ {1: I} | |Sn

j ∩E| 6= 0} the set that
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contains the indices of all the shape functions whose support on E is of nonzero
measure. Note that the index set I (E) does not depend on the time index n since
we have assumed that the connectivity of the degrees of freedom is fixed once for
all. We are going to regularly invoke I (K) and I (Sn

i ) and the partition of unity
property: ∑i∈I (K) ψn

i (xxx) = 1 for all xxx ∈ K.

Lemma 6. For all K ∈T n
h , all xxx ∈K, and all vvvh := ∑i∈{1: I}Viψ

n
i ∈ PPPm(T n

h ), vvvh(xxx)
is in the convex hull of (Vi)i∈I (K) (henceforth denoted conv(Vi)i∈I (K)). Moreover
for any convex set A in Rm, we have(

(Vi)i∈I (K) ∈ A
)
⇒ (vvvh(xxx) ∈ A, ∀xxx ∈ K) . (18)

4.3 The ALE algorithm

Let T 0
h be the mesh at the initial time t = 0. Let (m0

i )i∈{1: I} be the approximations
of the mass of the shape functions at time t0 defined by m0

i = m0
i :=

∫
Rd ψ0

i (xxx)dxxx.
Let uuuh0 := ∑i∈{1: I}U0

i ψ0
i ∈ PPPm(T 0

h ) be a reasonable approximation of the initial
data uuu0 (we shall make a more precise statement later).

Let T n
h be the mesh at time tn, (mn

i )1≤i≤I be the approximations of the mass of
the shape functions at time tn, and uuun

h := ∑i∈{1: I}Un
i ψn

i ∈ PPPm(T n
h ) be the approx-

imation of uuu at time tn. We denote by ML,n the approximate lumped matrix, i.e.,
ML,n

i j = mn
i δi j. We now make the assumption that the given ALE velocity field is a

member of PPPd(T
n

h ), i.e., wwwn = ∑i∈{1: I}Wn
i ψn

i ∈ PPPd(T
n

h ). Then the Lagrange nodes
of the mesh are moved by using the following rule:

aaan+1
i = aaan

i + τwwwn(aaan
i ). (19)

This fully defines the mesh T n+1
h as explained at the end of §4.1. Upon introducing

ψ
geo
jgeo(i,K)

(ξξξ ) := θ̂i((T n
K )
−1(ξξξ )) and aaai(t) = aaan

i +(t − tn)wwwn(aaan
i ) for t ∈ [tn, tn + τ],

this also defines the ALE mapping

ΦΦΦ t|K(ξξξ ) = ∑
i∈{1: ngeo

sh }
aaajgeo(i,K)(t)ψ

geo
jgeo(i,K)

(ξξξ ), ∀ξξξ ∈ K, ∀K ∈T n
h . (20)

We now estimate the mass of the shape function ψ
n+1
i := ψn

i ◦ΦΦΦ tn+1 . Of course
we could use mn+1

i =
∫
Rd ψ

n+1
i (xxx)dxxx. This option leads to many difficulties that are

explored in Guermond et al. [13]; in particular, extending the method to high-order
in time with this definition is problematic. To have a method that is compatible with
higher-order strong stability preserving (SSP) time stepping techniques, we define
mn+1

i by approximating the following identity with a first-order quadrature rule:

∫
Rd

ψ
n+1(xxx)dxxx−

∫
Rd

ψ
n(ξξξ )dξξξ =

∫
Rd

ψ
n(ξξξ )

[∫ tn+1

tn
∂ζ det(J(ξξξ ,ζ ))dζ

]
dξξξ .
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Note that det(J(ξξξ ,ζ )) is a polynomial function of ζ of degree d. The first-order
approximation of the integral with respect to ζ in the above expression gives:

mn+1
i =mn

i + τ

∫
Sn

i

ψ
n
i (xxx)∇·wwwn(xxx)dxxx. (21)

Taking inspiration from (10), we propose to compute uuun+1
h as follows:

mn+1
i Un+1

i −mn
i Un

i

τ
− ∑

j∈I (Sn
i )

dn
i jU

n
j

+
∫
Rd

∇·
(

∑
j∈{1: I}

( fff (Un
j)−Un

j ⊗Wn
j)ψ

n
j (xxx)

)
ψ

n
i (xxx)dxxx = 0, (22)

where uuun+1
h := ∑i∈{1: I}Un+1

i ψ
n+1
i ∈ PPPm(T

n+1
h ). Notice that we have replaced the

consistent mass matrix by an approximation of the lumped mass matrix to approx-
imate the time derivative. The coefficient dn

i j is an artificial viscosity for the pair of
degrees of freedom (i, j) that will be identified by proceeding as in Guermond and
Popov [12]. We henceforth assume that dn

i j = 0 if j 6∈I (Sn
i ) and

dn
i j ≥ 0, if i 6= j, dn

i j = dn
ji, and dii := ∑

i6= j∈I (Sn
i )

−dn
ji. (23)

The entire process is described in Algorithm 1.
Let us reformulate (22) in a form that is more suitable for computations. Let us

introduce the vector-valued coefficients

cccn
i j :=

∫
Sn

i

∇ψ
n
j (xxx)ψ

n
i (xxx)dxxx. (24)

We define the unit vector nnnn
i j :=

cccn
i j

‖cccn
i j‖`2

. Then we rewrite (22) as follows:

mn+1
i Un+1

i −mn
i Un

i

τ
+ ∑

j∈I (Sn
i )

( fff (Un
j)−Un

j ⊗Wn
j)·cccn

i j−dn
i jU

n
j = 0. (25)

It will be shown in the proof of Theorem 1 that an admissible choice for dn
i j is

dn
i j = max(λmax(gggn

j ,nnn
n
i j,U

n
i ,U

n
j)‖cccn

i j‖`2 ,λmax(gggn
i ,nnn

n
ji,U

n
j ,U

n
i )‖cccn

ji‖`2). (26)

where λmax(gggn
j ,nnn

n
i j,U

n
i ,Un

j) is the largest wave speed in the following one-dimensional
Riemann problem with the flux gggn

j(vvv) := fff (vvv)− vvv⊗Wn
j :

∂tvvv+∂x(gggn
j(vvv)·nnnn

i j) = 0, (x, t) ∈ R×R+, vvv(x,0) =

{
Un

i if x < 0
Un

j if x > 0.
(27)
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Remark 2 (Fastest wave speed). The fastest wave speed in (27) can be obtained by
estimating the fastest wave speed in the Riemann problem (3) with the flux fff (vvv)·nnnn

i j
and the initial data (Un

i ,Un
j). Let λL( fff ,nnnn

i j,U
n
i ,Un

j) and λR( fff ,nnnn
i j,U

n
i ,Un

j) be the
speed of the leftmost and the rightmost waves in (3), respectively. Then

λmax(gggn
j ,nnn

n
i j,U

n
i ,U

n
j) = max(|λL( fff ,nnnn

i j,U
n
i ,U

n
j)−Wn

j ·nnnn
i j|,

|λR( fff ,nnnn
i j,U

n
i ,U

n
j)−Wn

j ·nnnn
i j|). (28)

A fast algorithm to compute λL( fff ,nnnn
i j,U

n
i ,Un

j) and λR( fff ,nnnn
i j,U

n
i ,Un

j) for the com-
pressible Euler equations is given in Guermond and Popov [11]; see also Toro [20].

Algorithm 1
Require: uuu0

h and ML,0

1: while tn < T do
2: Use CFL condition to estimate τ .
3: if tn + τ > T then
4: τ ← T − tn

5: end if
6: Estimate/choose wwwn and make sure that the transformation ΦΦΦ t defined in (20) is invertible

over the interval [tn, tn+1].
7: Move mesh from tn to tn+1 using (19).
8: Compute mn+1

i , see (21). Check mn+1
i > 0; otherwise, go to step 6, reduce τ .

9: Compute cccn
i j as in (24).

10: Compute dn
i j , see (26) and (23).

11: Check 1−∑i6= j∈I (Sn
i )

2dn
i j

τ

mn+1
i

positive. Otherwise, go to step 6 and reduce τ .

12: Compute uuun+1
h by using (25).

13: tn← tn + τ

14: end while

Since it is important to compare Un+1
j and Un

j to establish the invariant domain
property, we rewrite the scheme in a form that is more suitable for this purpose.

Lemma 7 (Non-conservative form). The scheme (22) is equivalent to

mn+1
i

Un+1
i −Un

i

τ
= ∑

j∈I (Sn
i )

((Un
j −Un

i )⊗Wn
j − fff (Un

j))·cccn
i j +dn

i jU
n
j , (29)

Proof. We rewrite (25) as follows:

mn+1
i

Un+1
i −Un

i

τ
+

mn+1
i −mn

i
τ

Un
i = ∑

j∈I (Sn
i )

(Un
j ⊗Wn

j − fff (Un
j))·cccn

i j +dn
i jU

n
j ,

Then, recalling the expression wwwn = ∑i∈{1: I}Wn
i ψn

i , and using (21), we infer that
mn+1

i =mn
i + τ ∑ j∈I (Sn

i )
Wn

j ·cccn
i j, which in turn implies that
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(mn+1
i −mn

i )U
n
i = τUn

i ∑
j∈I (Sn

i )

Wn
j ·cccn

i j = τ ∑
j∈I (Sn

i )

(Un
i ⊗Wn

j)·cccn
i j. ut

Remark 3 (Other discretizations). The method for computing the artificial diffu-
sion is quite generic, i.e., it is not specific to continuous finite elements. The above
method can be applied to any type of discretization that can be put into the form (25).

4.4 SSP extension

Retaining the invariant domain property (see §5.1) and increasing the time accuracy
can be done by using so-called Strong Stability Preserving (SSP) time discretization
methods. The key is to achieve higher-order accuracy in time by making convex
combination of solutions of forward Euler sub-steps. More precisely each time step
of a SSP method is decomposed into substeps that are all forward Euler solutions,
and the end of step solution is a convex combination of the intermediate solutions;
see Ferracina and Spijker [8], Higueras [14], Gottlieb et al. [10] for reviews on SPP
techniques. Algorithm 2 illustrates one Euler step of the scheme. SSP techniques
are useful when combined with reasonable limitation strategies since the resulting
methods are high-order, both in time and space, and invariant domain preserving.

Algorithm 2 Euler step
Require: T 0

h , uuu0
h, (m0 or m0), www0, τ

1: Compute ãaa1
i = aaa0

i + τwww0, (m̃1 or m̃1), ũuu1
h, and build new mesh T̃ 1

h

2: return T̃ 1
h , ũuu1

h, (m̃1 or m̃1)

As an illustration we describe the SSP RK3 implementation of the scheme in
Algorithm 3. Generalizations to other SSP techniques are left to the reader.

Algorithm 3 SPP RK3
Require: T 0

h , uuu0
h, m0, t0

1: Define the ALE velocity www0 at t0

2: Call Euler step(T 0
h , uuu0

h, m0, www0, τ , T 1
h , uuu1

h, m1)
3: Define the ALE velocity www1 at t0 + τ

4: Call Euler step(T 1
h , uuu1

h, m1, www1, τ , T̃ 2
h , ũuu2

h, m̃2)
5: Set aaa2 = 3

4 aaa0 + 1
4 ãaa2, m2 = 3

4m
0 + 1

4 m̃
2, build mesh T 2

h , uuu2
h =

3
4
m0

m2 uuu0
h +

1
4
m̃2

m2 ũuu2
h

6: Define the ALE velocity www2 at t0 + 1
2 τ

7: Call Euler step(T 2
h , uuu2

h, m2, www2, τ , T̃ 3
h , ũuu3

h, m̃3)

8: Set aaa3 = 1
3 aaa0 + 2

3 ãaa3, m3 = 1
3m

0 + 2
3 m̃

3, build mesh T 3
h , uuu3

h =
1
3
m0

m3 uuu0
h +

2
3
m̃3

m3 ũuu3
h

9: return T 3
h , uuu3

h, m3, t1 = t0 +dt
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Note that uuu2
h is a convex combination of uuu0

h and ũuu2
h since 1 = 3

4
m0

i
m2

i
+ 1

4
m̃2

i
m2

i
. The

same observation holds true for uuu3
h, i.e., uuu3

h is a convex combination of uuu0
h and ũuu3

h

since 1 = 1
3
m0

i
m3

i
+ 2

3
m̃3

i
m3

i
, for any i ∈ {1: I}.

5 Stability analysis

We establish the conservation and the invariant domain property of the scheme (22).

5.1 Invariant domain property

We first discuss the conservation properties of the scheme.

Lemma 8. For the scheme (22), the quantity ∑i∈{1: I}m
n
i Un

i is is independent of n,
i.e., the total mass is conserved.

We can now prove a result somewhat similar in spirit to Thm 5.1 from Farhat et al.
[7], although the present result is more general since it applies to any hyperbolic
system. We define the local minimum mesh size hn

i j associated with an ordered pair
of shape functions (ψn

i ,ψ
n
j ) as follows: hn

i j := 1
‖‖∇ϕ j‖`2‖L∞(Sn

i j)
, where Sn

i j = Sn
i ∩ Sn

j .

We then define a local mesh size and a local mesh structure parameter κn
i by setting

hn
i = min

j∈I (Sn
i )

hn
i j, κ

n
i :=

∑i 6= j∈I (Sn
i )

∫
Sn

i j
ψn

i (xxx)dxxx∫
Sn

i
ψn

i (xxx)dxxx
. (30)

Note that the upper estimate κn
i ≤max j∈{1: I} card(I (S j(0)))−1 implies that κn

i is
uniformly bounded with respect to n and i.

Theorem 1 (Local invariance). Let n≥ 0, and i∈{1: I}. Assume the CFL condition

2τ
λ n

i,max

hn
i

κ
n
i

mn
i

mn+1
i
≤ 1, (31)

where λ n
i,max := max j∈I (Sn

i )
(λmax(gggn

j ,nnn
n
i j,U

n
i ,Un

j), λmax(gggn
i ,nnn

n
ji,U

n
j ,Un

i )). Let B ⊂
A fff be a convex invariant set for the flux fff . If {Un

j | j ∈I (Sn
i )} ⊂ B, then Un+1

i ∈ B.

Proof. Let i ∈ {1: I} and invoke (29) from Lemma 7 to express Un+1
i as follows:

Un+1
i = Un

i +
τ

mn+1
i

∑
j∈I (Sn

i )

((Un
j −Un

i )⊗Wn
j − fff (Un

j))·cccn
i j +dn

i jU
n
j .
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Since the partition of unity property implies that ∑ j∈I (Sn
i )

cccn
i j = 0 and we have

∑ j∈I (Sn
i )

dn
i j = 0 from (23), we can rewrite the above equation as follows:

Un+1
i = Un

i + ∑
j∈I (Sn

i )

dn
i j(U

n
i +Un

j)

+
τ

mn+1
i

∑
j∈I (Sn

i )

((Un
j −Un

i )⊗Wn
j + fff (Un

i )− fff (Un
j))·cccn

i j

= Un
i

(
1+2dn

ii
τ

mn+1
i

)
+ ∑

i6= j∈I (Sn
i )

dn
i j(U

n
i +Un

j)

+
τ

mn+1
i

∑
i6= j∈I (Sn

i )

((Un
j −Un

i )⊗Wn
j + fff (Un

i )− fff (Un
j))·cccn

i j.

Let us introduced the auxiliary state Un+1
i j defined by

Un+1
i j = ( fff (Un

i )− fff (Un
j)− (Un

i −Un
j)⊗Wn

j)·nnnn
i j
‖cccn

i j‖`2

2dn
i j

+
1
2
(Un

i +Un
j),

where nnnn
i j := cccn

i j/‖cccn
i j‖`2 . Then, provided we establish that 1−∑i6= j∈I (Sn

i )
2dn

i j
τ

mn+1
i
≥

0, we have proved that Un+1
i is a convex combination of Un

i and (Un+1
i j )i6= j∈I (Sn

i )
:

Un+1
i = Un

i

(
1− ∑

i 6= j∈I (Sn
i )

2dn
i j

τ

mn+1
i

)
+

τ

mn+1
i

∑
i6= j∈I (Sn

i )

2dn
i jU

n+1
i j . (32)

Let us now consider the Riemann problem (27). Let vvv(gggn
j ,nnn

n
i j,U

n
i ,Un

j) be the solution
to (27) with gggn

j(vvv) := fff (vvv)− vvv⊗Wn
j . Let λmax(gggn

j ,nnn
n
i j,U

n
i ,Un

j) be the fastest wave

speed in (27), see (28). Using the notation of Lemma 1, we then observe that Un+1
i j =

vvv(t,gggn
j ,nnn

n
i j,U

n
i ,Un

j) with t =
‖cccn

i j‖`2
2dn

i j
, provided tλmax(gggn

j ,nnn
n
i j,U

n
i ,Un

j) ≤ 1
2 . Note that

the definition of dn
i j, (26), implies that the condition tλmax(gggn

j ,nnn
n
i j,U

n
i ,Un

i ) ≤ 1
2 is

satisfied. Since B is an invariant set for the flux fff , by Lemma 2, B is also an invariant
set for the flux gggn

j . Since, in addition, B contains the data (Un
i ,Un

j), we conclude that

Un+1
i j = vvv(t,gggn

j ,nnn
n
i j,U

n
i ,Un

j) ∈ B; see Remark 1. In conclusion, Un+1
i ∈ B since Un+1

i
is a convex combination of objects in B. The rest of the proof consists of verifying
that (31) indeed implies 1−∑i6= j∈I (Sn

i )
2dn

i j
τ

mn+1
i
≥ 0. ut

Corollary 1. Let n ∈ N. Assume that τ is small enough so that the CFL condition
(31) holds for all i ∈ {1: I}. Let B ⊂ A fff be a convex invariant set. Assume that
{Un

i | i ∈ {1: I}} ⊂ B. Then (i) {Un+1
i | i ∈ {1: I}} ⊂ B; (ii) uuun

h ∈ B and uuun+1
h ∈ B.

Proof. The statement (i) is a direct consequence of Theorem 1. The statement (ii) is
a consequence of (18) from Lemma 6. ut
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Corollary 2. Let B ⊂ A fff be a convex invariant set containing the initial data uuu0.
Assume that {U0

i | i ∈ {1: I}} ⊂ B. Let N ∈N. Assume that τ is small enough so that
the CFL condition (31) holds for all i ∈ {1: I} and all n ∈ {0:N}. Then {Un

i | i ∈
{1: I}} ⊂ B and uuun

h ∈ B for all n ∈ {0:N +1}.

Remark 4 (Construction of uuu0
h). Let B ⊂ A fff be a convex invariant set containing

the initial data uuu0. If PPPm(T 0
h ) is composed of piecewise Lagrange elements, then

defining uuu0
h to be the Lagrange interpolant of uuu0, we have {U0

i | i ∈ {1: I}} ⊂ B.
Similarly if PPPm(T 0

h ) is composed of Bernstein finite elements of degree two and
higher, then defining uuu0

h to be the Bernstein interpolant of uuu0 we have {U0
i | i ∈

{1: I}} ⊂ B; see Lai and Schumaker [16, Eq. (2.72)]. In both cases the assumptions
of Corollary 2 hold true.

5.2 Discrete Geometric Conservation Law

The ALE scheme (22) preserves constant states. This property is known in the liter-
ature as the Discrete Geometric Conservation Law (DGCL).

Corollary 3 (DGCL). The scheme (22) preserves constant states. In particular if
Un

j = Un
i for all j ∈I (Sn

i ), then Un+1
i = Un

i .

Proof. The partition of unity property implies that ∑ j∈I (Sn
i )

cccn
i j = 0. Moreover, the

definition dn
i j implies that ∑ j∈I (Sn

i )
dn

i j = 0 (see (23)). Since Lemma 7 implies that

Un+1
i = Un

i +dn
i j(U

n
j −Un

i )

+
τ

mn+1
i

∑
j∈I (Sn

i )

((Un
j −Un

i )⊗Wn
j + fff (Un

i )− fff (Un
j))·cccn

i j,

it is now clear that if Un
j = Un

i for all j ∈I (Sn
i ), then Un+1

i = Un
i . ut

Remark 5 (DGCL). Note that although the DGCL seems to be given some impor-
tance in the literature, Corollary 3 has no particular significance. It is a direct con-
sequence of the definition of the mass update (21) which is invoked to rewrite the
scheme (22) from the conservative form to the equivalent nonconservative form
(29). This equivalence is essential to prove the invariant domain property. In other
words, the DGCL is just a consequence of the equivalence of the discrete conserva-
tive and nonconservative formulations.

5.3 Discrete entropy inequality

In this section we prove a discrete entropy inequality which is consistent with the
inequality stated in Lemma 5.
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Theorem 2. Let (η ,qqq) be an entropy pair for (1). Let n ∈ N and i ∈ {1: I}. Assume
that all the assumptions of Theorem 1 hold. Then the following discrete entropy
inequality holds:

1
τ

(
mn+1

i η(Un+1
i )−mn

i η(Un
i )
)
≤− ∑

j∈I (Sn
i )

dn
i jη(Un

j)

−
∫
Rd

∇·
(

∑
j∈I (Sn

i )

(qqq(Un
j)−η(Un

j)W
n
j)ψ

n
j (xxx)

)
ψ

n
i (xxx)dxxx. (33)

Proof. Let (η ,qqq) be an entropy pair for the hyperbolic system (1). Let i∈ {1: I} and
let n ∈ N. Then using (32), the CFL condition and the convexity of η , we have

η(Un+1
i )≤ η(Un

i )

(
1− ∑

i 6= j∈I (Sn
i )

2dn
i j

τ

mn+1
i

)
+

τ

mn+1
i

∑
i6= j∈I (Sn

i )

2dn
i jη(Un+1

i j ).

This can also be rewritten as follows:

mn+1
i
τ

(
η(Un+1

i )−η(Un
i )
)
≤ ∑

i 6= j∈I (Sn
i )

2dn
i j(η(Un+1

i j )−η(Un
i )).

Owing to (7) from Lemma 1, and recalling that the entropy flux of the Riemann
problem (27) is (qqq(v)−η(v)Wn

j)·nnnn
i j we infer that

η(Un+1
i j )≤ 1

2 (η(Un
i )+η(Un

j))− t
(
qqq(Un

j)−η(Un
j)W

n
j −qqq(Un

i )+η(Un
i )W

n
j
)
·nnnn

i j

with t = ‖cccn
i j‖`2/2dn

i j. Inserting this inequality in the first one, we have

mn+1
i
τ

(
η(Un+1

i )−η(Un
i )
)
≤ ∑

j∈I (Sn
i )

dn
i j(η(Un

j)−η(Un
i ))

− ∑
j∈I (Sn

i )

‖cccn
i j‖`2

(
qqq(Un

j)−qqq(Un
i )− (η(Un

j)−η(Un
i ))W

n
j
)
·nnnn

i j.

By proceeding as in the proof of Lemma 7, we observe that mn+1
i −mn

i
τ

=∑ j∈I (Sn
i )

Wn
j ·cccn

i j.

Then using that ‖cccn
i j‖`2nnnn

i j = cccn
i j, we obtain (33). This concludes the proof. ut

6 Numerical tests

In this section, we numerically illustrate the performance of the proposed method
using SSP RK3. All the tests have been done with two different codes. One code is
written in F95 and uses P1 Lagrange elements on triangles. The other code is based
on deal.ii [2], is written in C++ and uses Q1 Lagrange elements on quadrangles.



16 Jean-Luc Guermond, Bojan Popov, Laura Saavedra, and Yong Yang

The mesh composed of triangles is obtained by dividing all the quadrangles into
two triangles. The same numbers of degrees of freedom are used for both codes.

6.1 Analytical scalar-valued solution

To test the convergence property of the SSP RK3 version of the method, as described
in Algorithm 3, we solve the linear transport equation in the domain D0 = (0,1)2:

∂tu+∇·(βββu) = 0, u0(xxx) = x1 + x2, (34)

where βββ = (sin(πx1)cos(πx2)cos(2πt),−cos(πx1)sin(πx2)cos(2πt))T. In both
codes the ALE velocity is chosen by setting Wn

i = βββ (aaan
i ), i.e., wwwn

h is the Lagrange
interpolant of βββ on T n

h . Notice that there is no issue with boundary condition since
βββ ·nnn|∂D0 = 0. We first test the accuracy in time of the algorithm by setting dn

i j = 0,

Table 1 Rotation problem (34) with Lagrangian formulation, CFL=1.0

Without viscosity With viscosity
# dofs Q1, L1-norm P1, L1-norm Q1, L1-norm P1, L1-norm

81 6.46E-04 - 1.76E-03 - 1.31E-02 - 1.13E-02 -
289 1.16E-04 2.48 2.46E-04 2.85 4.28E-03 1.61 3.63E-03 1.64

1089 1.41E-05 3.03 3.23E-05 2.93 1.23E-03 1.80 1.04E-03 1.80
4225 1.76E-06 3.01 4.20E-06 2.94 3.29E-04 1.90 2.78E-04 1.90

16641 2.26E-07 2.96 5.76E-07 2.87 8.50E-05 1.95 7.19E-05 1.95
66049 2.82E-08 3.00 9.57E-08 2.59 2.16E-05 1.97 1.83E-05 1.98

i.e., the viscosity is removed. The computations are done with CFL = 1. The error
measured in the L1-norm at time t = 0.5 is reported in the left part of Table 1. The
third-order convergence in time is confirmed. Note that there is no space error due
to the particular choice for the ALE velocity and the initial data.

In the second test we put back the viscosity dn
i j. Notice that the particular choice

of the ALE velocity implies that λmax(gggn
j ,nnn

n
i j,U

n
i ,Un

j) = |(βββ
n
i −βββ

n
j) ·nnnn

i j|; hence the
viscosity is second-order in space instead of being first-order. This phenomenon
makes the algorithm second-order in space (in addition to being conservative and
maximum principle preserving). The error in the L1-norm at time t = 0.5 is shown
in the right part of Table 1.

6.2 Nonlinear scalar conservation equations

We now test the method on nonlinear scalar conservation equations.
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6.2.1 Definition of the ALE velocity

In nonlinear conservation equations, solutions may develop shocks in finite time. In
this case, using the purely Lagrangian velocity leads to a breakdown of the method
in finite time which manifests itself by a time step that goes to zero as the current
time approaches the time of formation of the shock. One way to avoid this break-
down is to use an ALE velocity that is a modified version of the Lagrangian velocity.

We now propose an algorithm to compute an ALE velocity based on Loubère
et al. [17]. The only purpose of this algorithm is to be able to run the nonlinear
simulations past the time of formation of shocks. We refer the reader to the abundant
ALE literature to design other ALE velocities that better suit the reader’s goals.

We first deform the mesh by using the Lagrangian motion, i.e., we set aaan+1
i,Lg =

aaan
i + τ∇u fff (Un

i ); we recall that Un
i ∈ R and ∇u fff (Un

i ) ∈ Rd for scalar equations.
Then, given L ∈ N \ {0}, we define a smooth version of the Lagrangian mesh by
smoothing the position of the geometric Lagrange nodes as follows:

aaan+1,0
i :=aaan+1

i,Lg , i ∈ {1: I}(
aaan+1,l

i :=
1

|I (Si)|−1 ∑
i 6= j∈I (Si)

aaan+1,l−1
j , i ∈ {1: I}

)
, l ∈ {1:L}

aaan+1
i,Sm :=aaan+1,L

i , i ∈ {1: I}.

(35)

Finally, the actual ALE motion is defined by aaan+1
i = ωaaan+1

i,Lg +(1−ω)aaan+1
i,Sm, i ∈

{1: I} where ω is a user-defined constant. In all our computations, we use ω = 0.9
and L = 2. As mentioned in [17], a more advanced method consists of choosing ω

pointwise by using the right Cauchy-Green strain tensor. We have not implemented
this version of the method since the purpose of the tests in the next sections is just to
show that the present method works as advertised for any reasonable ALE velocity.

6.2.2 Burgers equation

We consider the inviscid Burgers equation in two space dimensions

∂tu+∇·( 1
2 u2

βββ ) = 0, u0(xxx) = 1{‖xxx‖
`2}

, (36)

where βββ = (1,1)T and 1E denotes the characteristic function of the set E ⊂Rd . The
solution to this problem at time t > 0 and at xxx = (x1,x2) is given as follows. Assume
first that x2 ≤ x1, then define α = x1− x2 and let α0 = 1− t

2 . There are three cases.
If α > 1, then u(x1,x2, t) = 0.
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If α ≤ α0, then u(x1,x2, t) =


x2
t if 0≤ x2 < t

1 if t ≤ x2 <
t
2 +1−α

0 otherwise.
(37)

If α0 < α ≤ 1, then u(x1,x2, t) =

{
x2
t if 0≤ x2 <

√
2t(1−α)

0 otherwise.
(38)

If x2 > x1, then u(x1,x2, t) := u(x2,x1, t). The computation are done up to T = 1 in
the initial computational domain D0 = (−0.25,1.75)2. The boundary of Dn does not
move in the time interval (0,1), i.e., ∂D0 = ∂Dn for any n ≥ 0. The results of the
convergence tests are reported in Table 2. The solution is computed on a 128×128
mesh. The Q1 and P1 meshes at T = 1 are shown in Figure 1.

Table 2 Burgers equation, convergence tests, CFL = 0.1

Q1 P1

# dofs L2-error L1-error L2-error L1-error
81 5.79E-01 - 6.00E-01 - 5.80E-01 - 6.17E-01 -

289 4.20E-01 0.46 3.88E-01 0.63 4.43E-01 0.39 4.68E-01 0.40
1089 2.96E-01 0.51 2.32E-01 0.74 3.12E-01 0.51 2.86E-01 0.71
4225 2.14E-01 0.47 1.32E-01 0.82 2.17E-01 0.53 1.55E-01 0.88

16641 1.56E-02 0.45 7.40E-02 0.83 1.23E-01 0.82 7.57E-02 1.04

Fig. 1 Burgers equation. Left: Q1 FEM with 25 contours; Center left: Final Q1 mesh; Center right:
P1 FEM with 25 contours; Right: Final P1 mesh.

6.3 Compressible Euler equations

We finish the series of tests by solving the compressible Euler equations in R2
∂tρ +∇·(ρuuu) = 0,
∂t(ρuuu)+∇·(ρuuu⊗uuu+ pI) = 0,
∂tE +∇·(uuu(E + p)) = 0,

(39)
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with the ideal gas equation of state, p = (γ − 1)(E − 1
2 ρ‖uuu‖2

`2) where γ > 1, and
appropriate initial and boundary conditions. The motion of the mesh is done as de-
scribed in (35) with aaan+1

i,Lg = aaan
i +τuuun

h(aaa
n
i ) where uuun

h is the approximate fluid velocity.
We consider the so-called Noh problem, see e.g., Caramana et al. [3, §5]. The

computational domain at the initial time is D0 = (−1,1)2 and the initial data is

ρ0(xxx) = 1.0, uuu0(xxx) =−
xxx
‖xxx‖`2

, p0(xxx) = 10−15. (40)

A Dirichlet boundary condition is enforced on all the dependent variables at the
boundary of the domain. We use γ = 5

3 . The ALE velocity at the boundary of the
computational domain is prescribed to be equal to the fluid velocity, i.e., the bound-
ary moves inwards in the radial direction with speed 1. The final time is chosen to
be T = 0.6 in order to avoid that the shockwave collides with the moving boundary
of the computational domain which happens at t = 3

4 since the shock moves radially
outwards with speed 1

3 .

Table 3 Noh problem, convergence test, T = 0.6, CFL = 0.2

Q1 P1

# dofs L2-norm L1-norm L2-norm L1-norm
961 2.60 - 1.44 - 2.89 - 1.71 -

3721 1.81 0.52 8.45E-01 0.77 2.21 0.39 1.09 0.64
14641 1.16 0.64 4.21E-01 1.01 1.42 0.64 5.15E-01 1.08
58081 7.66E-01 0.60 2.10E-01 0.99 9.39E-01 0.59 2.60E-01 0.99

231361 5.21E-01 0.56 1.06E-01 0.98 6.33E-01 0.57 1.28E-01 1.02

The solution to this problem is known. We show in Table 3 the L1- and the L2-
norm of the error on the density for various meshes which are uniform at t = 0:
30×30, 60×60, etc.

7 Concluding remarks

In this paper we have developed a framework for constructing ALE algorithms using
continuous finite elements. The method is invariant domain preserving on any mesh
in arbitrary space dimension. The methodology applies to any hyperbolic system
which has such intrinsic property. If the system at hand has an entropy pair, then the
method also satisfies a discrete entropy inequality. The time accuracy of the method
can be increased by using SSP time discretization techniques. The equivalence be-
tween the conservative and non-conservative formulations implies the that DGCL
condition holds (preservation of constant states). The new methods have been tested
on a series of benchmark problems and the observed convergence orders and nu-
merical performance are compatible with what is reported in the literature.
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