Ex) What is the distance between the numbers 2 and -24 ?

Ex) Find the distance between the numbers -1 and $\frac{3}{2}$.

Ex4) Find the distance between the numbers $-\frac{3}{4}$ and $-\frac{2}{7}$.

Ex5) Evaluate

$$
\begin{aligned}
& \quad|-24+(-24)|+75+(-49)-|74| \\
& =|-24-24|+75-49-74 \\
& =|-48|+75-49-74 \\
& =48+75-49-74 \\
& =(48-49)+(75-74) \\
& =-1+1=0
\end{aligned}
$$

Ex6) Evaluate

$$
=\frac{8}{5}
$$

$$
\begin{aligned}
& =\frac{-2-\left|-\left|-\frac{8}{5}\right|\right.}{\frac{3}{4}}=\frac{-2-\frac{13}{5}}{\frac{3}{4}}=\frac{-2 \cdot 1-\frac{13}{5}}{\frac{3}{4}} \\
& =\frac{-2 \cdot \frac{5}{5}-\frac{13}{5}}{\frac{3}{4}}=\frac{-\frac{10}{5}-\frac{13}{5}}{\frac{3}{4}}=\frac{\frac{-10-13}{5}}{\frac{3}{4}}=\left(\frac{-23}{5} \frac{3}{4}\right. \\
& =\frac{-23}{5} \div \frac{3}{4}=\frac{-23}{5} \cdot \frac{4}{5}=\frac{-92}{15}
\end{aligned}
$$

Ex7) Evaluate

$$
2 \frac{2}{5}=\frac{10}{5}+\frac{2}{5}=\frac{12}{5}
$$

$$
2 \frac{2}{3}=\frac{6}{3}+\frac{2}{3}=\frac{8}{3}
$$

$$
5 \frac{1}{8}=\frac{40}{8}+\frac{1}{8}=\frac{41}{8}
$$

$$
\begin{aligned}
& \left(2 \frac{2}{5}\right)\left|2 \frac{2}{3}-5 \frac{1}{8}\right| \\
= & \frac{12}{5} \cdot\left|\frac{8}{3}-\frac{41}{8}\right| \\
= & \frac{12}{5} \cdot\left|\frac{8}{3} \cdot 1-\frac{41}{8} \cdot 1\right| \\
= & \frac{12}{5} \cdot\left|\frac{8}{3} \cdot \frac{8}{8}-\frac{41}{8} \cdot \frac{3}{3}\right| \\
= & \frac{12}{5} \cdot\left|\frac{64}{24}-\frac{123}{24}\right| \\
= & \frac{12}{5} \cdot\left|\frac{64-123}{24}\right| \\
= & \frac{12}{5} \cdot\left|\frac{-59}{24}\right|=\frac{12}{5} \cdot \frac{59}{342} \\
= & \frac{59}{10}
\end{aligned}
$$

Ex8) Graph the following sets and write the solution in interval notation.
a)

b)

$$
\left(-2,-\frac{1}{3}\right) \cong\left(-\frac{1}{2}, 1\right)
$$


$0-0$

$$
\therefore-\frac{1}{2}<x<-\frac{1}{3} \text { or }\left(-\frac{1}{2},-\frac{1}{3}\right)
$$

## Chapter 1B Exponents and Radicals

## Properties of Exponents

1) If $n$ is a positive integer,

$$
\begin{aligned}
& \text { ex) } 7^{4}=7 \cdot 7 \cdot 7 \cdot 7 \\
& (-2)^{3}=(-2) \cdot(-2) \cdot(-2)=-8 \\
& (-2)^{4}=(-2)(-2)(-2)(-2)=16 \\
& (-3)^{2}=9 \\
& -(3)^{2}=-9
\end{aligned}
$$

$$
x^{n}=\underbrace{x \cdot x \cdots x}_{n})
$$

2) If $n=0$, then we define

$$
x^{0}=1
$$

ex) $1000000000^{0}=1$
3) We define $x(x \neq 0)$ to a negative power,

$$
x_{x^{\Theta}}^{\text {reciprocal. }} \frac{1}{x} \quad 2^{-2}=\frac{1}{2^{2}}
$$

$$
x^{-2}=\frac{1}{x^{2}} \quad\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}
$$

$$
x^{-n}=\frac{1}{x^{n}} \quad=\frac{3^{2}}{2^{2}}=\frac{9}{4}
$$

4) 

$$
\begin{aligned}
& \text { ex) } 3^{2} \cdot 3^{3}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{5} \leftarrow 3^{2+3} \\
& a^{m} \cdot a^{n}=a^{m+n}
\end{aligned}
$$

5) 

$$
\frac{2^{4}}{2^{2}}=2^{4^{-2}=2^{2}} \quad \frac{2^{2}}{x^{2}}=\frac{2^{2}}{1}=2^{2} \frac{a^{m}}{a^{n}}=a^{m-n}, \quad a \neq 0
$$

6) 

$$
\text { ex) }\left(7^{2}\right)^{4}=7^{2} \quad\left(a^{m}\right)^{n}=a^{m n}
$$

7) 

$$
\left.(2 \cdot 3)^{4}=2^{4} \cdot\right]^{4} \quad(a b)^{n}=a^{n} b^{n}
$$

8) $\left(\frac{2}{3}\right)^{2}=\frac{2^{2}}{3^{2}}$

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, \quad b \neq 0
$$

Ex9) Simplify the expression

$$
\begin{aligned}
\text { a) } \left.\begin{array}{rl}
(-x)^{4}(-2 x y)^{3} & =(-1)^{4} \cdot x^{4} \cdot(-2)^{3} \cdot x^{3} y^{3} \\
& =x^{4} \cdot(-8) x^{3} \cdot y^{3} \\
& =-8 \cdot x^{4+3} \cdot y^{3} \\
& =-8 x^{7} \cdot y^{3}
\end{array} \$+x\right)^{4}
\end{aligned}
$$

b) $\left(\frac{x^{-2} y^{3}}{3 y^{-1}}\right)^{-3}=\frac{x^{6} \cdot y^{-9}}{3^{-3} \cdot y^{3}}=\frac{x^{6} \cdot 3^{3}}{y^{9} \cdot y^{3}}=\frac{27 x^{6}}{y^{9+3}}=\frac{27 x^{6}}{y^{12}}$

$$
\text { c) } \begin{array}{rlr}
8^{4} \cdot 2^{-3} & =\left(2^{3}\right)^{4} \cdot 2^{-3} & \overbrace{\overbrace{4}^{8}}^{8}=2^{3} \\
& =2^{12} \cdot 2^{-3}=2^{12-3}=2^{9} & \overbrace{2}^{4}
\end{array}
$$

d) $15^{-2} \cdot 3^{2}=(3 \cdot 5)^{-2} \cdot 3^{2}$

$$
\begin{aligned}
& 15=3.5 \\
& 1 / 5
\end{aligned}
$$

$$
\begin{aligned}
& =3^{-2} \cdot 5^{-2} \cdot \frac{3^{2}}{-2} \\
& =3^{-2+2} \cdot 5^{-2} \\
& =3^{0} \cdot 5^{-2}=1 \cdot 5^{-2}=5^{-2}=\frac{1}{5^{2}}
\end{aligned}
$$

e) $5^{3}$

$$
5^{3} \cdot 4^{-2} \cdot 10^{2} \cdot 7^{3}=5
$$

$$
\begin{aligned}
& =5^{3} \cdot 2^{-4} \cdot 2^{2} \cdot 5^{2} \cdot 7^{3} \\
& =2^{-4+2} \cdot 5^{3+2} \cdot 7^{3} \\
& =2^{-2} \cdot 5^{5} \cdot 7^{3}=\frac{5^{5} \cdot 7^{3}}{2^{2}}
\end{aligned}
$$

$$
\text { f) } \frac{(198)^{3} \cdot(700)^{-4}}{5^{4} \cdot 6^{-3}}=\frac{\left(2 \cdot 3^{2} \cdot 11\right)^{3} \cdot\left(2^{2} \cdot 5^{2} \cdot 7\right)^{-4}}{5^{4} \cdot(2 \cdot 3)^{-3}}
$$

$$
=\frac{2^{3} \cdot\left(3^{6} \cdot 11^{3} \cdot 2^{-8} \cdot 5^{-8} \cdot 7^{-4}\right.}{5^{4} \cdot\left(2^{-3} \cdot 3^{-3}\right.}
$$



$$
\begin{aligned}
& =2^{3+(-8)+(+1))} \cdot 3^{6+(+3)} \cdot 5^{-8-4} \cdot 7^{-4} \cdot 11^{3} \\
& =2^{-2} \cdot 3^{9} \cdot 5^{-12} \cdot 7^{-4} \cdot 11^{3} \\
& =\frac{3^{9} \cdot 11^{3}}{2^{2} \cdot 5^{12} \cdot 7^{4}}
\end{aligned}
$$

$$
\text { or } 2^{21-22}=2^{-1}=\frac{1}{2}
$$

$$
\text { g) } \frac{\left(\frac{1}{2}\right)^{-22}-8^{7}}{4^{12}+4^{11}}=\frac{2^{22}-\left(2^{3}\right)^{7}}{\left(2^{2}\right)^{21}+\left(2^{2}\right)^{11}}=\frac{2^{22}-2^{21}}{2^{2^{4}}+2^{22}}=\frac{2^{24}\left(2^{1}-1\right)}{2^{2^{1}}\left(2^{2}+1\right)}
$$

$$
=\frac{1 \cdot(2-1)}{2\left(2^{2}+1\right)}=\frac{1}{2 \cdot 5}=\frac{1}{10} .
$$

## Radicals and Properties of Radicals

Radicals (or roots) are, in effect, the opposite of exponents. In other words, the $n^{\text {th }}$ root of a number $a$ is a number $b$ such that

$$
b=\sqrt[n]{a}=a^{1} \quad \Leftrightarrow \quad b^{n}=a .
$$

The number $b$ is called an $n^{\text {th }}$ root of $a$. The number $n$ is refered to as the index of the radical (if no index appears, $n$ is 2 ).

The principal $n^{\text {th }}$ root of a number is the $n^{\text {th }}$ root of $a$ which has the same sign as $a$. For example, both 2 and -2 satisfy $x^{2}=4$, but 2 is the (principal) square root of 4 .

$$
\begin{aligned}
& \sqrt{4}=\sqrt{2^{2}}=2 \text { or }(4)^{\frac{1}{2}}=\left(2^{2}\right)^{\frac{1}{2}}=2^{2 \cdot \frac{1}{2}}=2^{1} \\
& \sqrt[3]{0}=\sqrt[3]{2^{3}}=2 \text { or }(8)^{\frac{1}{3}}=\left(2^{3}\right)^{\frac{1}{3}}=2^{3 \cdot \frac{1}{3}}=2^{1}=2 \\
& \sqrt[3]{-64}=(-64)^{\frac{1}{3}}=\left((-4)^{3}\right)^{\frac{1}{3}}=-4
\end{aligned}
$$

Properties of $n^{t h}$ Roots
1)

$$
\begin{aligned}
& \text { operties of } n^{i n} \text { Roots } \\
& \sqrt[n]{a b}=(a b)^{\frac{1}{n}}=a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}=\sqrt[n]{a} \cdot \sqrt[n]{b} \\
& \sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}
\end{aligned}
$$

2) 

$$
=\left(\frac{b}{a}\right)^{\frac{1}{n}}=\frac{b^{\frac{1}{4}}}{a^{\frac{1}{n}}}=\frac{\sqrt[n]{b}}{\sqrt[n]{a}} \quad \sqrt[n]{\frac{b}{a}}=\frac{\sqrt[n]{b}}{\sqrt[n]{a}}
$$

3) 
4) 

$$
\begin{aligned}
& \sqrt[m]{\sqrt[n]{a})}=\sqrt[m n]{a} \\
& \binom{1}{a^{\frac{1}{n}}}^{\frac{1}{m}}=a^{\frac{1}{n m}}=\sqrt[n m]{a} \\
& \sqrt[n]{a^{n}}=a \text { if } n \text { is odd }
\end{aligned}
$$

5) 

$$
\sqrt[n]{a^{n}}=|a| \quad \text { if } n \text { is even }
$$

6) 

$$
\sqrt[m]{a^{n}}=a^{\frac{n}{m}}
$$

