Math 131 Exam 1 Review

1. Find the domain of each function, \(f(x) = \)
 \(a) \sqrt{100 - x^2} \quad b) \frac{1}{\sqrt{100 - x^2}} \quad c) \sqrt{x^2 - 9} \quad d) \ln(x + 2) \quad e) \ln x^2 \quad f) \ e^{x^2 - 3x} \quad g) \sqrt{x^2 - 3x + 2} \)

2. A tax schedule requires you to pay 15\% of the first $20000 of income plus 20\% of the amount above $20000. For example a person earning $50000 pays 15\% of $20000 plus 20\% of $30000. Write the tax as a piecewise function of income, \(x \).

3. \(f(x) \) is a transformation of \(y = x^2 \). The range of \(f \) is \([-\infty, 12] \), \(f(-3)=12 \) and \(f(0)=-6 \). You do not need a horizontal distortion. Write the formula for \(f(x) \).

4. \(f(x) \) is a transformation of \(y=\ln(x) \). \(f(x) \) approaches minus infinity as \(x \) approaches 2, \(f(3)=7 \) and \(f(e+2)=10 \). Write a formula for \(f(x) \) assuming no \(x \)-distortion was done.

5. Solve for \(A, B \) and \(C \) if \(f(x) = A + Be^{Cx} \)
 \(f(x) \rightarrow 3 \ as \ x \rightarrow \infty \quad f(0) = 8 \quad f(1) = 7 \)

 List the transformations of \(y = e^x \), in a proper order, that result in \(f(x) \).

6. A culture begins with 100 cells and grows exponentially so that after 2 hours, there are 250 cells. Find \(N(t) \), the number of cells after \(t \) hours.

7. Give two possibilities for \(f \) and \(g \) if \(f(g(x)) = (x^2 - 2x + 1)^{1/3} \).

8. An account earning continuous compound interest had the values shown at ends of the first through the fifth years.
 \[
 \begin{array}{cccccc}
 \text{year} & 1 & 2 & 3 & 4 & 5 \\
 \text{account value} & 1056.54 & 1116.28 & 1179.40 & 1246.08 & 1316.58 \\
 \end{array}
 \]

 a) Do an exponential regression and write the exponential model.
 Write the model in base \(e \) using \(b = e^{\ln b} \).
 Estimate the annual interest rate and the initial principal.

 b) According to the model, what is the approximate doubling time? tripling time?

 c) If the \(y \) values in the table were replaced by \(\ln y \), which model would best fit?

 d) If the \(x \) and \(y \) values in the table were switched, which model would best fit?
9. Solve for x if:
 a) \(e^{2x} + 2e^x + 1 = 16 \)
 b) \(e^{2x} - 3e^x + 2 = 0 \)

10. Solve for \(x \) exactly.

 a) \(e^{-3\ln 2} = x \)
 b) \(\log_4(x+12) - 5\log_4\sqrt{2} = 3 \)
 c) \(\log_4(x+3) + \log_4(x-3) = 2 \)

 d) \(\log_4(x^2 - 9) = 2 \)
 e) \(\log_3(3x+2) - \log_3(x-2) = 3 \)

Section 2.1 problem

11. A particle travels in a straight line. The directed distance from a reference point is given by \(d(t) \) ft. where \(t \) is in seconds. Find the average velocity for \(t \) between 1 and 3 secs. Find the instantaneous velocity at \(t=1 \) sec.

 a) \(d(t) = 8t + 12 \)
 b) \(d(t) = 60t - 16t^2 \)
 c) \(d(t) = 15 - \sqrt{t} \)

12. Evaluate each limit or state DNE if it does not exist.

 a) \(\lim_{x \to 4} \frac{x^2 + x - 20}{x^2 - 16} \)
 b) \(\lim_{x \to -4} \frac{x^2 + x - 20}{x^2 - 16} \)
 c) \(\lim_{x \to -5} \frac{x^2 + x - 20}{x^2 - 16} \)

 d) \(\lim_{x \to 0} x \ln(x^2) \)
 e) \(\lim_{x \to 0^+} e^{1/x} \)
 f) \(\lim_{x \to 0^+} e^{1/x} \)
 g) \(\lim_{x \to \pi/2} \frac{\sin^2 x - 1}{\sin x - 1} \)

13. Find the value of \(c \) which makes \(f(x) \) continuous for all \(x \).

 \[f(x) = \begin{cases}
 x^2 + cx - 1 & \text{if } x < 2 \\
 7x & \text{if } 2 \leq x
 \end{cases} \]

14.

 \[f(x) = \begin{cases}
 \sin \frac{x}{x} & \text{if } x < 0 \\
 1 & \text{if } x = 0 \\
 x \ln x & \text{if } 0 < x
 \end{cases} \]

 Find a) \(\lim_{x \to 0^+} f(x) \) and b) \(\lim_{x \to 0^-} f(x) \).

 Is \(f \) left continuous at 0, right continuous at 0, both or neither?
15. Find all discontinuities of \(f(x) \) and give either a graphical or a definition reason for each discontinuity.

\[
f(x) = \begin{cases}
\frac{x^2 + 5x + 6}{x^2 + 2x} & x < 1 \\
x^2 + 3 & 1 \leq x \leq 5 \\
\frac{5x + 11}{x + 1} & 5 < x
\end{cases}
\]

Section 2.5 problem
16. Find each limit as a number, infinity or minus infinity, or state DNE.

\[
a) \lim_{{x \to \infty}} e^{\frac{1}{x}} \quad b) \lim_{{x \to \infty}} e^{\frac{x+1}{x-2}} \quad c) \lim_{{x \to \infty}} \frac{x^5 - 4x^4 + 27}{x^2 + 2x} \\
d) \lim_{{x \to \infty}} \frac{x^4 + 2x^3}{x^2 + 10} \quad e) \lim_{{x \to \infty}} \frac{5x^3 - 15x^2 + 3}{7x^3 + 25} \\
f) \lim_{{x \to \infty}} \left(\sqrt{x^2 + 7x} - \sqrt{x^2 - 3x}\right)
\]

17. Find the inverse function for each.

\[
a) \quad f(x) = 4e^{x+2} \quad b) \quad f(x) = \ln(7x + 3)
\]