1. Write the difference quotient \(\frac{f(x) - f(a)}{x - a} \) and simplify it, so \(x - a \) can be cancelled, if possible.

Find \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \) by substituting \(x = a \) in the simplified D.Q.

Or use \(\frac{f(x + h) - f(x)}{h} \), simplify and cancel \(h \), find \(\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \) by substituting \(h = 0 \) in the simplified D.Q.

\(a) \ f(x) = \sqrt{x} \)

\[
\frac{\sqrt{x + h} - \sqrt{x}}{h} = \frac{(\sqrt{x + h} - \sqrt{x})(\sqrt{x + h} + \sqrt{x})}{h(\sqrt{x + h} + \sqrt{x})} = \frac{h}{h(\sqrt{x + h} + \sqrt{x})} = \frac{1}{\sqrt{x + h} + \sqrt{x}}
\]

\[
= \frac{x + h - x}{h(\sqrt{x + h} + \sqrt{x})} = \frac{h}{h(\sqrt{x + h} + \sqrt{x})} = \frac{1}{\sqrt{x + h} + \sqrt{x}}
\]

\[
\lim_{h \to 0} \frac{1}{\sqrt{x + h} + \sqrt{x}} = \frac{1}{2\sqrt{x}} = f'(x)
\]

Or \(\frac{\sqrt{x} - \sqrt{a}}{x - a} \cdot \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} = \frac{1}{\sqrt{x} + \sqrt{a}} \)

\[
\lim_{x \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \frac{1}{2\sqrt{a}} = f'(a) \text{ for any } a \neq 0.
\]

So \(\frac{1}{2\sqrt{x}} = f'(x) \)
1b) \[\frac{\sqrt{7x^2+5} - \sqrt{7a^2+5}}{x-a} \] is the D. Q. We conjugate to get:

\[
\left(\frac{\sqrt{7x^2+5} - \sqrt{7a^2+5}}{x-a} \right) \left(\frac{\sqrt{7x^2+5} + \sqrt{7a^2+5}}{\sqrt{7x^2+5} + \sqrt{7a^2+5}} \right)
\]

\[
= \frac{7x^2+5 - (7a^2+5)}{(x-a)(\sqrt{7x^2+5} + \sqrt{7a^2+5})} = \frac{7(x^2-a^2)}{(x-a)(\sqrt{7x^2+5} + \sqrt{7a^2+5})}
\]

\[
= \frac{7(x+a)}{\sqrt{7x^2+5} + \sqrt{7a^2+5}}
\]

\[
\lim_{x \to a} \frac{7(x+a)}{\sqrt{7x^2+5} + \sqrt{7a^2+5}} = \frac{7(2a)}{2\sqrt{7a^2+5}} = \frac{7a}{\sqrt{7a^2+5}}
\]

\[f'(x) = \frac{7x}{\sqrt{7x^2+5}} \]

Note the chain rule gives

\[f'(x) = \frac{1}{2}(7x^2+5)^{-\frac{1}{2}} (14x) = \frac{7x}{\sqrt{7x^2+5}} \]
1c) \[\frac{f(x) - f(a)}{x - a} = \frac{1}{x} - \frac{1}{a} = \frac{a - x}{xa} = \frac{x}{x - a} \]

\[= \frac{a - x}{ax(x - a)} = \frac{-1}{ax} \]

\[\lim_{x \to a} \frac{-1}{ax} = \frac{-1}{a^2} \quad f'(x) = \frac{-1}{x^2} \]

d) \[\frac{1}{x^2 + 4} - \frac{1}{a^2 + 4} \]

\[= \frac{a^2 + 4 - (x^2 + 4)}{(x - a)(x^2 + 4)(a^2 + 4)} \]

\[= \frac{a^2 - x^2}{(x - a)(x^2 + 4)(a^2 + 4)} = \frac{(a - x)(a + x)}{(x - a)(x^2 + 4)(a^2 + 4)} \]

but \(a - x = -(x - a) \) so this is

\[\frac{-2x}{(x^2 + 4)(a^2 + 4)} \]

\(x \to a \)

\[f'(x) = \frac{-2x}{(x^2 + 4)^2} \]
2a) \(f(1) = 5+10+3 = 18 \) The Pt is \((1, 18)\)
\[f'(x) = 10x + 10 \quad f'(1) = 20 \] The Slope is 20
Pt. Slope \(y - y_1 = m(x - x_1) \)
\[y - 18 = 20(x - 1) = 20x - 20 \]
\[y = 20x - 20 \]

b) \(f'(4) = \frac{16-16+32}{2} = 16 \) Pt \((4, 16)\)
\[f'(x) = \frac{(2x-4)\sqrt{x} - (x^2-4x+32) \frac{1}{2\sqrt{x}}}{x} \]

Or Rewrite \(f(x) = x^{\frac{3}{2}} - 4x^{\frac{1}{2}} + 32x^{-\frac{1}{2}} \)
so \(f'(x) = \frac{3}{2} x^{\frac{1}{2}} - 2x^{-\frac{1}{2}} = 16 x^{-\frac{3}{2}} \)

Either way, the slope is \(f'(4) = 0 \)
Pt. \((4, 16)\) \(m = 0 \)
The horizontal line \(y = 16 \) is the tangent line.

c) \(f(0) = 0 \)
\(f'(x) = e^x + xe^x \) \(f'(0) = 1 \) \(m = 1 \)
\[y = x \]

\[\text{Tangent line} \]

d) \(f'(\frac{\pi}{4}) = \tan\frac{\pi}{4} = 1 \) Pt \((\frac{\pi}{4}, 1)\)
\[f'(x) = \sec^2 x \]
\(f'(\frac{\pi}{4}) = 2 = \text{Slope} \)
Pt. Slope \(y - 1 = 2(x - \frac{\pi}{4}) \)
\[y = 2x - \frac{\pi}{2} + 1 \]
2. c) \(f(x) = \sec x \) at \(x = \frac{\pi}{4} \)
\[
f\left(\frac{\pi}{4}\right) = \sqrt{2}
\]
\[
f'(x) = \sec x \tan x
\]
\[
f'\left(\frac{\pi}{4}\right) = \sqrt{2} \cdot 1 = \sqrt{2} = m \quad y - \sqrt{2} = \sqrt{2}(x - \frac{\pi}{4})
\]
\[
y = \frac{\sqrt{2}x - \sqrt{2}\pi}{4} + \sqrt{2}
\]

2. f) \(f(2) = \ln(\frac{5}{4}) \)

\(f(x) \) can be rewritten using log rules to make \(f'(x) \) easier to compute.
\[
f(x) = \ln(x^2 + 1) - \ln(2x) \quad \text{using the chain rule:}
\]
\[
f'(x) = \frac{2x}{x^2 + 1} - \frac{2}{2x} = \frac{2x}{x^2 + 1} - \frac{1}{x}
\]
\[
f'(2) = \frac{4}{5} - \frac{1}{2} = \frac{3}{10} \quad y - \ln\frac{5}{4} = \frac{3}{10}(x - 2)
\]
\[
y = \frac{3}{10}x - \frac{3}{5} + \ln\frac{5}{4}
\]

\[
\lim_{x \to \frac{3}{2}} f(x) = 9 \quad \lim_{x \to 3} f'(x) = 9 = f(3)
\]
\[
f'(3) = e^{\frac{3}{2}} \quad f'(3) = 6 \quad \text{so since \(f \)'s are continuous at 3 and the slopes match, \(f \) is differentiable at \(x = 3 \).}
\]

Check \(x = 5 \)
\[
\lim_{x \to 5^-} f(x) = 21 \quad \lim_{x \to 5^+} f(x) = 21 \quad \sqrt{f \text{is continuous at } x = 5}
\]
\[
f'(5) = 6 \quad f'(5) = \frac{1}{14} = \frac{1}{14} \neq 6 \quad \text{so \(f \) has a corner at } x = 5.
\]
3. a) continued.

The derivative of \(\sqrt{9-x} + 19 \) does not exist at \(x=9 \) since \(\frac{1}{2\sqrt{9-x}} \) has a vertical asymptote at \(x=9 \).

f has a vertical tangent at \(x=9 \).

Final answer

f is not differentiable at \(x=5 \) corner and at \(x=9 \) vertical tangent.

3b) \(12x^{\frac{1}{3}} \) is not differentiable at \(x=0 \) since

\[
\frac{d}{dx}(12x^{\frac{1}{3}}) = 4x^{-\frac{2}{3}} = \frac{4}{x^{\frac{2}{3}}}
\]

has a vertical asymptote at \(x=0 \), f has a vertical tangent at \(x=0 \).

Check \(x=8 \):

Is \(f \) continuous at \(x=8 \)?

\[
\lim_{x \to 8^-} f(x) = 24 \text{ but } f(8) = 5^- \text{ so No.}
\]

Since \(f \) is not continuous at 8, \(f \) is not differentiable at 8.

\(24|x-9| \) has a corner at \(x=9 \) so

f is not differentiable at \(x=9 \).

Answer f is not diff. at 8 — a discontinuity, at 0, f has a vertical tangent and at 9, a corner.
3c) Graph \(f(x) = (x^2 - 16)^{\frac{1}{5}} \) and observe the vertical tangents at \(x = -4 \) and \(x = 4 \).

Note: \(f'(x) = \frac{2x}{5(x^2 - 16)^{\frac{4}{5}}} \) has vertical asymptotes at \(x = -4 \) and \(x = 4 \).

4. a) \(s(t) \) has a minimum when \(v \) changes from \(-\) to \(+\).

\[
v(t) = s'(t) \quad \frac{1}{2} \quad - \quad + \quad 4\]

\[
s(t) \quad \frac{2}{5} \quad \frac{\text{max} \at \ t = 2}{\text{min} \at \ t = 5}\]

b) \(v(t) > 0 \) (eastward motion) and a max at \(t \approx 0.88 \) secs.

c) \(v(t) < 0 \) (westward motion) and \(v \) has a min (so \(v \) is most negative) at \(t \approx 3.79 \) secs.

d) \(s(t) \) has inflection pts at \(t \approx 0.88 \) and \(t \approx 3.79 \).

5. a) \(f(3) = 4(3) - 7 = 5 \quad f'(3) = 4 \)

b) \(f(5) = 15 \quad f'(5) = 0 \)

c) The tangent line has undefined slope so \(f(2) \) does not exist and \(f(2) \) cannot be determined from this tangent line.
6. \(g(1) = -4(1) + 6 = 2 \) and \(f(2) = 0 \) so \(f(g(1)) = 0 \).

\[
\frac{d}{dx}(f(g(x_1))) = f'(g(1))g'(x_1)
\]

from the chain rule

\[
x = 1 = -4(3) = -12
\]

\[
y = -12(x-1) + 0 = -12x + 12
\]

7. a) \(\frac{d}{dt}(1000 e^{0.06t}) = 1000(0.06)e^{0.06t} = 60e^{0.06t} \)

b) \[
\begin{align*}
\frac{d}{dx} \left(\ln\left(\frac{x^5}{\sqrt{x^4+1}} \right) \right) &= \frac{d}{dx} \left(5 \ln x - \frac{1}{2} \ln(x^4+1) \right) \\
&= \frac{5}{x} - \frac{4x^3}{x^4+1} = \frac{5}{x} - \frac{2x^3}{x^4+1}
\end{align*}
\]

c) \[
\frac{d}{dx} \left(x^2 \cos^3 x \right) = 2x \cos^2 x + x^2 (2 \cos x)(-\sin x) = 2x \cos^2 x - 2x^2 \cos x \sin x
\]

d) \[
\frac{d}{dx} \left(e^x \sin^2 x \right) = e^x \sin^2 x + 2e^x \sin x \cos x
\]

e) \[
\frac{d}{dt} \left(e^{x^2-5x} \right) = (3x^2-5)e^{x^2-5x}
\]

f) \[
\frac{d}{dx} \left(\frac{e^{x^2}}{\tan x+4} \right) = \frac{2xe^{x^2}(\tan x+4) - (\sec^2 x)e^{x^2}}{(\tan x+4)^2}
\]
8. a) \(f(x) = \sqrt[4]{x} \) \(f(16) = 2 \)

Using the tangent line:

\[
f(16) = 2 \quad \text{and} \quad f'(16) = \frac{1}{4} \left(\frac{-3}{8} \right)x^{-\frac{3}{4}} |_{x=16} = \frac{1}{4} \cdot \frac{1}{8} = \frac{1}{32}
\]

\[
y = \frac{1}{32}(x-16) + 2
\]

Now substitute \(x = 15 \) into the tangent line.

\[
y(15) = \frac{1}{32}(15-16) + 2 = \frac{1}{32} + 2 = 2.03125
\]

Using differentials:

\[
df = f'(x) \, dx = \frac{1}{4} x^{-\frac{3}{4}} \, dx \bigg|_{x=16} = \frac{1}{32}(-1) = -\frac{1}{32}
\]

Then \(f(15) \approx f(16) + df = 2 - \frac{1}{32} = 2.03125 \)

b) \(f(x) = \sqrt[4]{x} \) same as above but now \(dx = 1 \)

\[
y = \frac{1}{32}(x-16) + 2 \quad \text{Substitute} \quad x = 17
\]

\[
y(17) = \frac{1}{32} + 2 = 2.03125
\]

or

\[
df = \frac{1}{4} x^{-\frac{3}{4}} \, dx = \frac{1}{32}(1) \quad f(17) \approx 2 + \frac{1}{32}
\]

\[
= 2.03125
\]
9. a) \(V = \frac{4}{3} \pi r^3 \)
\(dV = 4\pi r^2 \, dr \)
\(= \frac{4\pi}{3} r^2 \cdot 0.02 \)
\(= 2\pi \text{ cu. units} \)

b) \(\frac{dV}{\sqrt{\frac{4}{3} \pi r^3}} = \frac{3}{r} \, dr = \frac{3 \cdot 0.02}{5} = 0.06 \)

or \(\frac{6}{5} \% = 1.2\% \)

10. Local min \(f' = + \) This occurs only \(f \downarrow \uparrow \) at \(x = -6 \)

Local max \(f' = - \) only at \(x = 4 \)
\(f \downarrow \uparrow \)

Inflection pts \(f' \) changes direction \(x = -3, 0, 2 \)

\(f \) is increasing where \(f' > 0 \) so on \((-6, 0)\)
and on \((0, 4)\) so on \((-6, 4)\) since \(f \) is continuous at 0.

\(f \) is decreasing where \(f' < 0 \) so on \((-\infty, -6)\) and on \((4, \infty)\) (or to edge of picture)

\(f \) is concave up \(\cup \) where \(f' \) is increasing
so on \((-\infty, -3)\) and on \((0, 2)\)

\(f \) is concave down on \((-3, 0)\) and \((2, \infty)\).
9. \(V = \frac{4}{3} \pi r^3 \) \[dll = 4\pi r^2 \, dr \]
\[= 4\pi (5^2)(6.02) \]
\[= 2\pi \text{ cu. units} \]

b) \[\frac{dl}{\sqrt{\frac{4}{3} \pi r^2}} = \frac{3\, dr}{\sqrt{r}} = 3\left(\frac{0.02}{5}\right) = \frac{0.06}{5} \]

or \(\frac{6}{5} \% = 1.2\% \)

10. Local min \(f' \) - + This occurs only at \(x = -6 \)

Local max \(f' \) + - Only at \(x = 4 \)

Inflection pts. \(f' \) changes direction \(x = -3, 0, 2 \)

\(f \) is increasing where \(f' > 0 \) so on \((-6, 0)\) and on \((0, 4)\) so on \((-6, 4)\) since \(f \) is continuous at 0.

\(f \) is decreasing where \(f' < 0 \) so on \((-\infty, -6)\) and on \((4, \infty)\) lost to edge of picture

\(f \) is concave up \(\cup \) where \(f' \) is increasing so on \((-\infty, -3)\) and on \((0, 2)\)

\(f \) is concave down on \((-3, 0)\) and \((2, \infty)\).