1. Find the derivative of each.
 a) \(f(x) = e^{x^2 - 3x + 7} \)

 b) \(f(x) = 3^{\sqrt{x}} \)

 c) \(f(x) = \ln \left[\frac{(x^4 + 2x)}{(e^x + 12)^3} \right] \)

 d) \(f(x) = \frac{e^{5x}}{x^2 + 7} \)
3. \(f(x) = (x + 2)^2 (x - 1)^3 \).

a) Find and simplify \(f'(x) \). List the \(x \)-values where the tangent line is horizontal.

b) Make a sign chart for \(f'(x) \). On what intervals is \(f \) increasing? decreasing? Locate any local max or min of \(f \).
4. \(f(x) = \frac{x}{(x^2 + 75)^2} \).

a) Find and simplify \(f'(x) \).

b) Make a sign chart for \(f'(x) \) and find the intervals on which \(f \) is increasing and on which \(f \) is decreasing. Locate any local max or min of \(f \).
5. Courtesy Barnett, Ziegler and Byleen. The cost per hour for fuel to run a train is \(\frac{v^2}{4} \) dollars where \(v \) is the velocity of the train in miles per hour. Other costs total $300/hour. How fast should the train travel on a 360 mile trip to minimize the total cost for the trip?

Hint: The total number of hours for the trip is \(\frac{360}{v} \).