1. Find all vertical and horizontal asymptotes of \(f(x) = \frac{24 - 20x - 4x^2}{5x^2 - 5} \).

2. \(f(x) \) is an exponential function in which \(f(2) = 6 \) and \(f(3) = 30 \). Find a formula for \(f(x) \).

3.
 a) \(f(x) = 5(2^x) \) \(\text{Find} \quad f^{-1}(80) \).

 b) \(f(x) = 3 \ln x \) \(\text{Find} \quad f^{-1}(10) \).

4. A bacteria culture grows at a continuous rate. If initially there were 10 g and after 6 hours there were 15 g then
 a) find a formula for the weight at \(t \) hours past the initial time.
 b) find the doubling time.
 c) find the continuous growth rate.

5. A radioactive substance decays continuously so that initially there were 60 g and after 250 years there were 50 g.
 a) Find the formula for the weight \(t \) years past the initial time.
 b) Find the half life.
 c) Find the continuous decay rate.

6. Solve for \(x \) in \(8^x - 3(4^x) - 2^{x+2} = 0 \).

7. Write \(\log \left[\frac{x^3(x - 2)^2}{\sqrt{x^5 + 1}} \right] \) as a sum of simpler logs as much as possible.

8. Given the system of linear equations \(2x + 5y = 1, \ 3x + ky = c \), for what value(s) of \(k \) and \(c \) does the system have
 a) infinitely many solutions?
 b) no solution?
 c) a unique solution?

9. Solve for \(x \) and \(y \) in the linear system \(5x + 2y = 7, \ 4x - 3y = 24 \).
10. Solve for all \((x, y)\) so that

\[
a) \quad 5x^2 - y^2 - 4x + 16 = 0 \quad \text{and} \quad -2x + y = 1
\]

\[
b) \quad (x, y) \text{ is on the ellipse } \frac{x^2}{4} + \frac{y^2}{9} = 1 \quad \text{and on the circle of radius } 3 \text{ centered at } (2,0).
\]

11. A right triangle has height 2 and hypotenuse 5. If \(t\) is the angle opposite the height, find \(\sin t, \cos t, \tan t, \sec t, \tan(\frac{\pi}{2} - t), \sec(\frac{\pi}{2} - t), \sin 2t, \text{ and } \cos 2t.\)

12. Evaluate each.

\[
a) \quad \tan \left(\frac{11}{12}\pi\right) \quad b) \quad \sec \left(\frac{7}{12}\pi\right)
\]

13. Solve for all \(t\) in \([0, 2\pi]\) for which

\[
a) \quad \tan t = 4 \sin t \quad b) \quad \tan^2 t + \sec^2 t = 7 \quad c) \quad \cos t = \sin(\pi - 2t)
\]

14. Be able to graph an \(x\) or \(y\) shift of each of the functions \(y = \)

\[
a) \quad y = e^t \quad b) \quad y = e^{-t} \quad c) \quad y = \ln t \quad d) \quad y = \sin t \quad e) \quad y = \cos t
\]

\[
f) \quad y = \tan t \quad g) \quad y = \sec t
\]

15. Compare the graphs of \(y = 2\ln t \quad \text{and} \quad y = \ln(t^2).\)